request.c revision c72086e3c2897eaca5b99c005dd9844fdc784981
1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "task.h"
58#include "request.h"
59#include "sata.h"
60#include "scu_completion_codes.h"
61#include "sas.h"
62
63/**
64 * This method returns the sgl element pair for the specificed sgl_pair index.
65 * @sci_req: This parameter specifies the IO request for which to retrieve
66 *    the Scatter-Gather List element pair.
67 * @sgl_pair_index: This parameter specifies the index into the SGL element
68 *    pair to be retrieved.
69 *
70 * This method returns a pointer to an struct scu_sgl_element_pair.
71 */
72static struct scu_sgl_element_pair *scic_sds_request_get_sgl_element_pair(
73	struct scic_sds_request *sci_req,
74	u32 sgl_pair_index
75	) {
76	struct scu_task_context *task_context;
77
78	task_context = (struct scu_task_context *)sci_req->task_context_buffer;
79
80	if (sgl_pair_index == 0) {
81		return &task_context->sgl_pair_ab;
82	} else if (sgl_pair_index == 1) {
83		return &task_context->sgl_pair_cd;
84	}
85
86	return &sci_req->sg_table[sgl_pair_index - 2];
87}
88
89/**
90 * This function will build the SGL list for an IO request.
91 * @sci_req: This parameter specifies the IO request for which to build
92 *    the Scatter-Gather List.
93 *
94 */
95void scic_sds_request_build_sgl(struct scic_sds_request *sds_request)
96{
97	struct isci_request *isci_request = sci_req_to_ireq(sds_request);
98	struct isci_host *isci_host = isci_request->isci_host;
99	struct sas_task *task = isci_request_access_task(isci_request);
100	struct scatterlist *sg = NULL;
101	dma_addr_t dma_addr;
102	u32 sg_idx = 0;
103	struct scu_sgl_element_pair *scu_sg   = NULL;
104	struct scu_sgl_element_pair *prev_sg  = NULL;
105
106	if (task->num_scatter > 0) {
107		sg = task->scatter;
108
109		while (sg) {
110			scu_sg = scic_sds_request_get_sgl_element_pair(
111					sds_request,
112					sg_idx);
113
114			SCU_SGL_COPY(scu_sg->A, sg);
115
116			sg = sg_next(sg);
117
118			if (sg) {
119				SCU_SGL_COPY(scu_sg->B, sg);
120				sg = sg_next(sg);
121			} else
122				SCU_SGL_ZERO(scu_sg->B);
123
124			if (prev_sg) {
125				dma_addr =
126					scic_io_request_get_dma_addr(
127							sds_request,
128							scu_sg);
129
130				prev_sg->next_pair_upper =
131					upper_32_bits(dma_addr);
132				prev_sg->next_pair_lower =
133					lower_32_bits(dma_addr);
134			}
135
136			prev_sg = scu_sg;
137			sg_idx++;
138		}
139	} else {	/* handle when no sg */
140		scu_sg = scic_sds_request_get_sgl_element_pair(sds_request,
141							       sg_idx);
142
143		dma_addr = dma_map_single(&isci_host->pdev->dev,
144					  task->scatter,
145					  task->total_xfer_len,
146					  task->data_dir);
147
148		isci_request->zero_scatter_daddr = dma_addr;
149
150		scu_sg->A.length = task->total_xfer_len;
151		scu_sg->A.address_upper = upper_32_bits(dma_addr);
152		scu_sg->A.address_lower = lower_32_bits(dma_addr);
153	}
154
155	if (scu_sg) {
156		scu_sg->next_pair_upper = 0;
157		scu_sg->next_pair_lower = 0;
158	}
159}
160
161static void scic_sds_io_request_build_ssp_command_iu(struct scic_sds_request *sci_req)
162{
163	struct ssp_cmd_iu *cmd_iu;
164	struct isci_request *ireq = sci_req_to_ireq(sci_req);
165	struct sas_task *task = isci_request_access_task(ireq);
166
167	cmd_iu = &sci_req->ssp.cmd;
168
169	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
170	cmd_iu->add_cdb_len = 0;
171	cmd_iu->_r_a = 0;
172	cmd_iu->_r_b = 0;
173	cmd_iu->en_fburst = 0; /* unsupported */
174	cmd_iu->task_prio = task->ssp_task.task_prio;
175	cmd_iu->task_attr = task->ssp_task.task_attr;
176	cmd_iu->_r_c = 0;
177
178	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
179		       sizeof(task->ssp_task.cdb) / sizeof(u32));
180}
181
182static void scic_sds_task_request_build_ssp_task_iu(struct scic_sds_request *sci_req)
183{
184	struct ssp_task_iu *task_iu;
185	struct isci_request *ireq = sci_req_to_ireq(sci_req);
186	struct sas_task *task = isci_request_access_task(ireq);
187	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
188
189	task_iu = &sci_req->ssp.tmf;
190
191	memset(task_iu, 0, sizeof(struct ssp_task_iu));
192
193	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
194
195	task_iu->task_func = isci_tmf->tmf_code;
196	task_iu->task_tag =
197		(ireq->ttype == tmf_task) ?
198		isci_tmf->io_tag :
199		SCI_CONTROLLER_INVALID_IO_TAG;
200}
201
202/**
203 * This method is will fill in the SCU Task Context for any type of SSP request.
204 * @sci_req:
205 * @task_context:
206 *
207 */
208static void scu_ssp_reqeust_construct_task_context(
209	struct scic_sds_request *sds_request,
210	struct scu_task_context *task_context)
211{
212	dma_addr_t dma_addr;
213	struct scic_sds_controller *controller;
214	struct scic_sds_remote_device *target_device;
215	struct scic_sds_port *target_port;
216
217	controller = scic_sds_request_get_controller(sds_request);
218	target_device = scic_sds_request_get_device(sds_request);
219	target_port = scic_sds_request_get_port(sds_request);
220
221	/* Fill in the TC with the its required data */
222	task_context->abort = 0;
223	task_context->priority = 0;
224	task_context->initiator_request = 1;
225	task_context->connection_rate = target_device->connection_rate;
226	task_context->protocol_engine_index =
227		scic_sds_controller_get_protocol_engine_group(controller);
228	task_context->logical_port_index =
229		scic_sds_port_get_index(target_port);
230	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
231	task_context->valid = SCU_TASK_CONTEXT_VALID;
232	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
233
234	task_context->remote_node_index =
235		scic_sds_remote_device_get_index(sds_request->target_device);
236	task_context->command_code = 0;
237
238	task_context->link_layer_control = 0;
239	task_context->do_not_dma_ssp_good_response = 1;
240	task_context->strict_ordering = 0;
241	task_context->control_frame = 0;
242	task_context->timeout_enable = 0;
243	task_context->block_guard_enable = 0;
244
245	task_context->address_modifier = 0;
246
247	/* task_context->type.ssp.tag = sci_req->io_tag; */
248	task_context->task_phase = 0x01;
249
250	if (sds_request->was_tag_assigned_by_user) {
251		/*
252		 * Build the task context now since we have already read
253		 * the data
254		 */
255		sds_request->post_context =
256			(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
257			 (scic_sds_controller_get_protocol_engine_group(
258							controller) <<
259			  SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
260			 (scic_sds_port_get_index(target_port) <<
261			  SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
262			 scic_sds_io_tag_get_index(sds_request->io_tag));
263	} else {
264		/*
265		 * Build the task context now since we have already read
266		 * the data
267		 *
268		 * I/O tag index is not assigned because we have to wait
269		 * until we get a TCi
270		 */
271		sds_request->post_context =
272			(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
273			 (scic_sds_controller_get_protocol_engine_group(
274							owning_controller) <<
275			  SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
276			 (scic_sds_port_get_index(target_port) <<
277			  SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
278	}
279
280	/*
281	 * Copy the physical address for the command buffer to the
282	 * SCU Task Context
283	 */
284	dma_addr = scic_io_request_get_dma_addr(sds_request,
285						&sds_request->ssp.cmd);
286
287	task_context->command_iu_upper = upper_32_bits(dma_addr);
288	task_context->command_iu_lower = lower_32_bits(dma_addr);
289
290	/*
291	 * Copy the physical address for the response buffer to the
292	 * SCU Task Context
293	 */
294	dma_addr = scic_io_request_get_dma_addr(sds_request,
295						&sds_request->ssp.rsp);
296
297	task_context->response_iu_upper = upper_32_bits(dma_addr);
298	task_context->response_iu_lower = lower_32_bits(dma_addr);
299}
300
301/**
302 * This method is will fill in the SCU Task Context for a SSP IO request.
303 * @sci_req:
304 *
305 */
306static void scu_ssp_io_request_construct_task_context(
307	struct scic_sds_request *sci_req,
308	enum dma_data_direction dir,
309	u32 len)
310{
311	struct scu_task_context *task_context;
312
313	task_context = scic_sds_request_get_task_context(sci_req);
314
315	scu_ssp_reqeust_construct_task_context(sci_req, task_context);
316
317	task_context->ssp_command_iu_length =
318		sizeof(struct ssp_cmd_iu) / sizeof(u32);
319	task_context->type.ssp.frame_type = SSP_COMMAND;
320
321	switch (dir) {
322	case DMA_FROM_DEVICE:
323	case DMA_NONE:
324	default:
325		task_context->task_type = SCU_TASK_TYPE_IOREAD;
326		break;
327	case DMA_TO_DEVICE:
328		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
329		break;
330	}
331
332	task_context->transfer_length_bytes = len;
333
334	if (task_context->transfer_length_bytes > 0)
335		scic_sds_request_build_sgl(sci_req);
336}
337
338/**
339 * This method will fill in the SCU Task Context for a SSP Task request.  The
340 *    following important settings are utilized: -# priority ==
341 *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
342 *    ahead of other task destined for the same Remote Node. -# task_type ==
343 *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
344 *    (i.e. non-raw frame) is being utilized to perform task management. -#
345 *    control_frame == 1.  This ensures that the proper endianess is set so
346 *    that the bytes are transmitted in the right order for a task frame.
347 * @sci_req: This parameter specifies the task request object being
348 *    constructed.
349 *
350 */
351static void scu_ssp_task_request_construct_task_context(
352	struct scic_sds_request *sci_req)
353{
354	struct scu_task_context *task_context;
355
356	task_context = scic_sds_request_get_task_context(sci_req);
357
358	scu_ssp_reqeust_construct_task_context(sci_req, task_context);
359
360	task_context->control_frame                = 1;
361	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
362	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
363	task_context->transfer_length_bytes        = 0;
364	task_context->type.ssp.frame_type          = SSP_TASK;
365	task_context->ssp_command_iu_length =
366		sizeof(struct ssp_task_iu) / sizeof(u32);
367}
368
369
370/**
371 * This method constructs the SSP Command IU data for this ssp passthrough
372 *    comand request object.
373 * @sci_req: This parameter specifies the request object for which the SSP
374 *    command information unit is being built.
375 *
376 * enum sci_status, returns invalid parameter is cdb > 16
377 */
378
379
380/**
381 * This method constructs the SATA request object.
382 * @sci_req:
383 * @sat_protocol:
384 * @transfer_length:
385 * @data_direction:
386 * @copy_rx_frame:
387 *
388 * enum sci_status
389 */
390static enum sci_status
391scic_io_request_construct_sata(struct scic_sds_request *sci_req,
392			       u32 len,
393			       enum dma_data_direction dir,
394			       bool copy)
395{
396	enum sci_status status = SCI_SUCCESS;
397	struct isci_request *ireq = sci_req_to_ireq(sci_req);
398	struct sas_task *task = isci_request_access_task(ireq);
399
400	/* check for management protocols */
401	if (ireq->ttype == tmf_task) {
402		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
403
404		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
405		    tmf->tmf_code == isci_tmf_sata_srst_low)
406			return scic_sds_stp_soft_reset_request_construct(sci_req);
407		else {
408			dev_err(scic_to_dev(sci_req->owning_controller),
409				"%s: Request 0x%p received un-handled SAT "
410				"management protocol 0x%x.\n",
411				__func__, sci_req, tmf->tmf_code);
412
413			return SCI_FAILURE;
414		}
415	}
416
417	if (!sas_protocol_ata(task->task_proto)) {
418		dev_err(scic_to_dev(sci_req->owning_controller),
419			"%s: Non-ATA protocol in SATA path: 0x%x\n",
420			__func__,
421			task->task_proto);
422		return SCI_FAILURE;
423
424	}
425
426	/* non data */
427	if (task->data_dir == DMA_NONE)
428		return scic_sds_stp_non_data_request_construct(sci_req);
429
430	/* NCQ */
431	if (task->ata_task.use_ncq)
432		return scic_sds_stp_ncq_request_construct(sci_req, len, dir);
433
434	/* DMA */
435	if (task->ata_task.dma_xfer)
436		return scic_sds_stp_udma_request_construct(sci_req, len, dir);
437	else /* PIO */
438		return scic_sds_stp_pio_request_construct(sci_req, copy);
439
440	return status;
441}
442
443static enum sci_status scic_io_request_construct_basic_ssp(struct scic_sds_request *sci_req)
444{
445	struct isci_request *ireq = sci_req_to_ireq(sci_req);
446	struct sas_task *task = isci_request_access_task(ireq);
447
448	sci_req->protocol = SCIC_SSP_PROTOCOL;
449
450	scu_ssp_io_request_construct_task_context(sci_req,
451						  task->data_dir,
452						  task->total_xfer_len);
453
454	scic_sds_io_request_build_ssp_command_iu(sci_req);
455
456	sci_base_state_machine_change_state(
457			&sci_req->state_machine,
458			SCI_BASE_REQUEST_STATE_CONSTRUCTED);
459
460	return SCI_SUCCESS;
461}
462
463enum sci_status scic_task_request_construct_ssp(
464	struct scic_sds_request *sci_req)
465{
466	/* Construct the SSP Task SCU Task Context */
467	scu_ssp_task_request_construct_task_context(sci_req);
468
469	/* Fill in the SSP Task IU */
470	scic_sds_task_request_build_ssp_task_iu(sci_req);
471
472	sci_base_state_machine_change_state(&sci_req->state_machine,
473		SCI_BASE_REQUEST_STATE_CONSTRUCTED);
474
475	return SCI_SUCCESS;
476}
477
478
479static enum sci_status scic_io_request_construct_basic_sata(struct scic_sds_request *sci_req)
480{
481	enum sci_status status;
482	struct scic_sds_stp_request *stp_req;
483	bool copy = false;
484	struct isci_request *isci_request = sci_req_to_ireq(sci_req);
485	struct sas_task *task = isci_request_access_task(isci_request);
486
487	stp_req = &sci_req->stp.req;
488	sci_req->protocol = SCIC_STP_PROTOCOL;
489
490	copy = (task->data_dir == DMA_NONE) ? false : true;
491
492	status = scic_io_request_construct_sata(sci_req,
493						task->total_xfer_len,
494						task->data_dir,
495						copy);
496
497	if (status == SCI_SUCCESS)
498		sci_base_state_machine_change_state(&sci_req->state_machine,
499			SCI_BASE_REQUEST_STATE_CONSTRUCTED);
500
501	return status;
502}
503
504
505enum sci_status scic_task_request_construct_sata(struct scic_sds_request *sci_req)
506{
507	enum sci_status status = SCI_SUCCESS;
508	struct isci_request *ireq = sci_req_to_ireq(sci_req);
509
510	/* check for management protocols */
511	if (ireq->ttype == tmf_task) {
512		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
513
514		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
515		    tmf->tmf_code == isci_tmf_sata_srst_low) {
516			status = scic_sds_stp_soft_reset_request_construct(sci_req);
517		} else {
518			dev_err(scic_to_dev(sci_req->owning_controller),
519				"%s: Request 0x%p received un-handled SAT "
520				"Protocol 0x%x.\n",
521				__func__, sci_req, tmf->tmf_code);
522
523			return SCI_FAILURE;
524		}
525	}
526
527	if (status == SCI_SUCCESS)
528		sci_base_state_machine_change_state(
529				&sci_req->state_machine,
530				SCI_BASE_REQUEST_STATE_CONSTRUCTED);
531
532	return status;
533}
534
535/**
536 * sci_req_tx_bytes - bytes transferred when reply underruns request
537 * @sci_req: request that was terminated early
538 */
539#define SCU_TASK_CONTEXT_SRAM 0x200000
540static u32 sci_req_tx_bytes(struct scic_sds_request *sci_req)
541{
542	struct scic_sds_controller *scic = sci_req->owning_controller;
543	u32 ret_val = 0;
544
545	if (readl(&scic->smu_registers->address_modifier) == 0) {
546		void __iomem *scu_reg_base = scic->scu_registers;
547
548		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
549		 *   BAR1 is the scu_registers
550		 *   0x20002C = 0x200000 + 0x2c
551		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
552		 *   TCi is the io_tag of struct scic_sds_request
553		 */
554		ret_val = readl(scu_reg_base +
555				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
556				((sizeof(struct scu_task_context)) * scic_sds_io_tag_get_index(sci_req->io_tag)));
557	}
558
559	return ret_val;
560}
561
562enum sci_status
563scic_sds_request_start(struct scic_sds_request *request)
564{
565	if (request->device_sequence !=
566	    scic_sds_remote_device_get_sequence(request->target_device))
567		return SCI_FAILURE;
568
569	if (request->state_handlers->start_handler)
570		return request->state_handlers->start_handler(request);
571
572	dev_warn(scic_to_dev(request->owning_controller),
573		 "%s: SCIC IO Request requested to start while in wrong "
574		 "state %d\n",
575		 __func__,
576		 sci_base_state_machine_get_state(&request->state_machine));
577
578	return SCI_FAILURE_INVALID_STATE;
579}
580
581enum sci_status
582scic_sds_io_request_terminate(struct scic_sds_request *request)
583{
584	if (request->state_handlers->abort_handler)
585		return request->state_handlers->abort_handler(request);
586
587	dev_warn(scic_to_dev(request->owning_controller),
588		"%s: SCIC IO Request requested to abort while in wrong "
589		"state %d\n",
590		__func__,
591		sci_base_state_machine_get_state(&request->state_machine));
592
593	return SCI_FAILURE_INVALID_STATE;
594}
595
596enum sci_status scic_sds_io_request_event_handler(
597	struct scic_sds_request *request,
598	u32 event_code)
599{
600	if (request->state_handlers->event_handler)
601		return request->state_handlers->event_handler(request, event_code);
602
603	dev_warn(scic_to_dev(request->owning_controller),
604		 "%s: SCIC IO Request given event code notification %x while "
605		 "in wrong state %d\n",
606		 __func__,
607		 event_code,
608		 sci_base_state_machine_get_state(&request->state_machine));
609
610	return SCI_FAILURE_INVALID_STATE;
611}
612
613/**
614 *
615 * @sci_req: The SCIC_SDS_IO_REQUEST_T object for which the start
616 *    operation is to be executed.
617 * @frame_index: The frame index returned by the hardware for the reqeust
618 *    object.
619 *
620 * This method invokes the core state frame handler for the
621 * SCIC_SDS_IO_REQUEST_T object. enum sci_status
622 */
623enum sci_status scic_sds_io_request_frame_handler(
624	struct scic_sds_request *request,
625	u32 frame_index)
626{
627	if (request->state_handlers->frame_handler)
628		return request->state_handlers->frame_handler(request, frame_index);
629
630	dev_warn(scic_to_dev(request->owning_controller),
631		 "%s: SCIC IO Request given unexpected frame %x while in "
632		 "state %d\n",
633		 __func__,
634		 frame_index,
635		 sci_base_state_machine_get_state(&request->state_machine));
636
637	scic_sds_controller_release_frame(request->owning_controller, frame_index);
638	return SCI_FAILURE_INVALID_STATE;
639}
640
641/*
642 * This function copies response data for requests returning response data
643 *    instead of sense data.
644 * @sci_req: This parameter specifies the request object for which to copy
645 *    the response data.
646 */
647static void scic_sds_io_request_copy_response(struct scic_sds_request *sci_req)
648{
649	void *resp_buf;
650	u32 len;
651	struct ssp_response_iu *ssp_response;
652	struct isci_request *ireq = sci_req_to_ireq(sci_req);
653	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
654
655	ssp_response = &sci_req->ssp.rsp;
656
657	resp_buf = &isci_tmf->resp.resp_iu;
658
659	len = min_t(u32,
660		    SSP_RESP_IU_MAX_SIZE,
661		    be32_to_cpu(ssp_response->response_data_len));
662
663	memcpy(resp_buf, ssp_response->resp_data, len);
664}
665
666/*
667 * This method implements the action taken when a constructed
668 * SCIC_SDS_IO_REQUEST_T object receives a scic_sds_request_start() request.
669 * This method will, if necessary, allocate a TCi for the io request object and
670 * then will, if necessary, copy the constructed TC data into the actual TC
671 * buffer.  If everything is successful the post context field is updated with
672 * the TCi so the controller can post the request to the hardware. enum sci_status
673 * SCI_SUCCESS SCI_FAILURE_INSUFFICIENT_RESOURCES
674 */
675static enum sci_status scic_sds_request_constructed_state_start_handler(
676	struct scic_sds_request *request)
677{
678	struct scu_task_context *task_context;
679
680	if (request->io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
681		request->io_tag =
682			scic_controller_allocate_io_tag(request->owning_controller);
683	}
684
685	/* Record the IO Tag in the request */
686	if (request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) {
687		task_context = request->task_context_buffer;
688
689		task_context->task_index = scic_sds_io_tag_get_index(request->io_tag);
690
691		switch (task_context->protocol_type) {
692		case SCU_TASK_CONTEXT_PROTOCOL_SMP:
693		case SCU_TASK_CONTEXT_PROTOCOL_SSP:
694			/* SSP/SMP Frame */
695			task_context->type.ssp.tag = request->io_tag;
696			task_context->type.ssp.target_port_transfer_tag = 0xFFFF;
697			break;
698
699		case SCU_TASK_CONTEXT_PROTOCOL_STP:
700			/*
701			 * STP/SATA Frame
702			 * task_context->type.stp.ncq_tag = request->ncq_tag; */
703			break;
704
705		case SCU_TASK_CONTEXT_PROTOCOL_NONE:
706			/* / @todo When do we set no protocol type? */
707			break;
708
709		default:
710			/* This should never happen since we build the IO requests */
711			break;
712		}
713
714		/*
715		 * Check to see if we need to copy the task context buffer
716		 * or have been building into the task context buffer */
717		if (request->was_tag_assigned_by_user == false) {
718			scic_sds_controller_copy_task_context(
719				request->owning_controller, request);
720		}
721
722		/* Add to the post_context the io tag value */
723		request->post_context |= scic_sds_io_tag_get_index(request->io_tag);
724
725		/* Everything is good go ahead and change state */
726		sci_base_state_machine_change_state(&request->state_machine,
727			SCI_BASE_REQUEST_STATE_STARTED);
728
729		return SCI_SUCCESS;
730	}
731
732	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
733}
734
735/*
736 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
737 * object receives a scic_sds_request_terminate() request. Since the request
738 * has not yet been posted to the hardware the request transitions to the
739 * completed state. enum sci_status SCI_SUCCESS
740 */
741static enum sci_status scic_sds_request_constructed_state_abort_handler(
742	struct scic_sds_request *request)
743{
744	/*
745	 * This request has been terminated by the user make sure that the correct
746	 * status code is returned */
747	scic_sds_request_set_status(request,
748		SCU_TASK_DONE_TASK_ABORT,
749		SCI_FAILURE_IO_TERMINATED);
750
751	sci_base_state_machine_change_state(&request->state_machine,
752		SCI_BASE_REQUEST_STATE_COMPLETED);
753	return SCI_SUCCESS;
754}
755
756/*
757 * *****************************************************************************
758 * *  STARTED STATE HANDLERS
759 * ***************************************************************************** */
760
761/*
762 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
763 * object receives a scic_sds_request_terminate() request. Since the request
764 * has been posted to the hardware the io request state is changed to the
765 * aborting state. enum sci_status SCI_SUCCESS
766 */
767enum sci_status scic_sds_request_started_state_abort_handler(
768	struct scic_sds_request *request)
769{
770	if (request->has_started_substate_machine)
771		sci_base_state_machine_stop(&request->started_substate_machine);
772
773	sci_base_state_machine_change_state(&request->state_machine,
774		SCI_BASE_REQUEST_STATE_ABORTING);
775	return SCI_SUCCESS;
776}
777
778/*
779 * scic_sds_request_started_state_tc_completion_handler() - This method process
780 *    TC (task context) completions for normal IO request (i.e. Task/Abort
781 *    Completions of type 0).  This method will update the
782 *    SCIC_SDS_IO_REQUEST_T::status field.
783 * @sci_req: This parameter specifies the request for which a completion
784 *    occurred.
785 * @completion_code: This parameter specifies the completion code received from
786 *    the SCU.
787 *
788 */
789static enum sci_status
790scic_sds_request_started_state_tc_completion_handler(struct scic_sds_request *sci_req,
791						     u32 completion_code)
792{
793	u8 datapres;
794	struct ssp_response_iu *resp_iu;
795
796	/*
797	 * TODO: Any SDMA return code of other than 0 is bad
798	 *       decode 0x003C0000 to determine SDMA status
799	 */
800	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
801	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
802		scic_sds_request_set_status(sci_req,
803					    SCU_TASK_DONE_GOOD,
804					    SCI_SUCCESS);
805		break;
806
807	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP):
808	{
809		/*
810		 * There are times when the SCU hardware will return an early
811		 * response because the io request specified more data than is
812		 * returned by the target device (mode pages, inquiry data,
813		 * etc.).  We must check the response stats to see if this is
814		 * truly a failed request or a good request that just got
815		 * completed early.
816		 */
817		struct ssp_response_iu *resp = &sci_req->ssp.rsp;
818		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
819
820		sci_swab32_cpy(&sci_req->ssp.rsp,
821			       &sci_req->ssp.rsp,
822			       word_cnt);
823
824		if (resp->status == 0) {
825			scic_sds_request_set_status(
826				sci_req,
827				SCU_TASK_DONE_GOOD,
828				SCI_SUCCESS_IO_DONE_EARLY);
829		} else {
830			scic_sds_request_set_status(
831				sci_req,
832				SCU_TASK_DONE_CHECK_RESPONSE,
833				SCI_FAILURE_IO_RESPONSE_VALID);
834		}
835	}
836	break;
837
838	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE):
839	{
840		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
841
842		sci_swab32_cpy(&sci_req->ssp.rsp,
843			       &sci_req->ssp.rsp,
844			       word_cnt);
845
846		scic_sds_request_set_status(sci_req,
847					    SCU_TASK_DONE_CHECK_RESPONSE,
848					    SCI_FAILURE_IO_RESPONSE_VALID);
849		break;
850	}
851
852	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
853		/*
854		 * / @todo With TASK_DONE_RESP_LEN_ERR is the response frame
855		 * guaranteed to be received before this completion status is
856		 * posted?
857		 */
858		resp_iu = &sci_req->ssp.rsp;
859		datapres = resp_iu->datapres;
860
861		if ((datapres == 0x01) || (datapres == 0x02)) {
862			scic_sds_request_set_status(
863				sci_req,
864				SCU_TASK_DONE_CHECK_RESPONSE,
865				SCI_FAILURE_IO_RESPONSE_VALID);
866		} else
867			scic_sds_request_set_status(
868				sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
869		break;
870
871	/* only stp device gets suspended. */
872	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
873	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
874	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
875	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
876	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
877	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
878	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
879	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
880	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
881	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
882	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
883		if (sci_req->protocol == SCIC_STP_PROTOCOL) {
884			scic_sds_request_set_status(
885				sci_req,
886				SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
887				SCU_COMPLETION_TL_STATUS_SHIFT,
888				SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
889		} else {
890			scic_sds_request_set_status(
891				sci_req,
892				SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
893				SCU_COMPLETION_TL_STATUS_SHIFT,
894				SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
895		}
896		break;
897
898	/* both stp/ssp device gets suspended */
899	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
900	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
901	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
902	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
903	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
904	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
905	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
906	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
907	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
908	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
909		scic_sds_request_set_status(
910			sci_req,
911			SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
912			SCU_COMPLETION_TL_STATUS_SHIFT,
913			SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
914		break;
915
916	/* neither ssp nor stp gets suspended. */
917	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
918	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
919	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
920	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
921	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
922	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
923	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
924	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
925	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
926	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
927	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
928	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
929	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
930	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
931	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
932	default:
933		scic_sds_request_set_status(
934			sci_req,
935			SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
936			SCU_COMPLETION_TL_STATUS_SHIFT,
937			SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
938		break;
939	}
940
941	/*
942	 * TODO: This is probably wrong for ACK/NAK timeout conditions
943	 */
944
945	/* In all cases we will treat this as the completion of the IO req. */
946	sci_base_state_machine_change_state(
947			&sci_req->state_machine,
948			SCI_BASE_REQUEST_STATE_COMPLETED);
949	return SCI_SUCCESS;
950}
951
952enum sci_status
953scic_sds_io_request_tc_completion(struct scic_sds_request *request, u32 completion_code)
954{
955	if (request->state_machine.current_state_id == SCI_BASE_REQUEST_STATE_STARTED &&
956	    request->has_started_substate_machine == false)
957		return scic_sds_request_started_state_tc_completion_handler(request, completion_code);
958	else if (request->state_handlers->tc_completion_handler)
959		return request->state_handlers->tc_completion_handler(request, completion_code);
960
961	dev_warn(scic_to_dev(request->owning_controller),
962		"%s: SCIC IO Request given task completion notification %x "
963		"while in wrong state %d\n",
964		__func__,
965		completion_code,
966		sci_base_state_machine_get_state(&request->state_machine));
967
968	return SCI_FAILURE_INVALID_STATE;
969}
970
971/*
972 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
973 * object receives a scic_sds_request_frame_handler() request. This method
974 * first determines the frame type received.  If this is a response frame then
975 * the response data is copied to the io request response buffer for processing
976 * at completion time. If the frame type is not a response buffer an error is
977 * logged. enum sci_status SCI_SUCCESS SCI_FAILURE_INVALID_PARAMETER_VALUE
978 */
979static enum sci_status
980scic_sds_request_started_state_frame_handler(struct scic_sds_request *sci_req,
981					     u32 frame_index)
982{
983	enum sci_status status;
984	u32 *frame_header;
985	struct ssp_frame_hdr ssp_hdr;
986	ssize_t word_cnt;
987
988	status = scic_sds_unsolicited_frame_control_get_header(
989		&(scic_sds_request_get_controller(sci_req)->uf_control),
990		frame_index,
991		(void **)&frame_header);
992
993	word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
994	sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
995
996	if (ssp_hdr.frame_type == SSP_RESPONSE) {
997		struct ssp_response_iu *resp_iu;
998		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
999
1000		status = scic_sds_unsolicited_frame_control_get_buffer(
1001			&(scic_sds_request_get_controller(sci_req)->uf_control),
1002			frame_index,
1003			(void **)&resp_iu);
1004
1005		sci_swab32_cpy(&sci_req->ssp.rsp,
1006			       resp_iu, word_cnt);
1007
1008		resp_iu = &sci_req->ssp.rsp;
1009
1010		if ((resp_iu->datapres == 0x01) ||
1011		    (resp_iu->datapres == 0x02)) {
1012			scic_sds_request_set_status(
1013				sci_req,
1014				SCU_TASK_DONE_CHECK_RESPONSE,
1015				SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
1016		} else
1017			scic_sds_request_set_status(
1018				sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
1019	} else {
1020		/* This was not a response frame why did it get forwarded? */
1021		dev_err(scic_to_dev(sci_req->owning_controller),
1022			"%s: SCIC IO Request 0x%p received unexpected "
1023			"frame %d type 0x%02x\n",
1024			__func__,
1025			sci_req,
1026			frame_index,
1027			ssp_hdr.frame_type);
1028	}
1029
1030	/*
1031	 * In any case we are done with this frame buffer return it to the
1032	 * controller
1033	 */
1034	scic_sds_controller_release_frame(
1035		sci_req->owning_controller, frame_index);
1036
1037	return SCI_SUCCESS;
1038}
1039
1040/*
1041 * *****************************************************************************
1042 * *  COMPLETED STATE HANDLERS
1043 * ***************************************************************************** */
1044
1045
1046/*
1047 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1048 * object receives a scic_sds_request_complete() request. This method frees up
1049 * any io request resources that have been allocated and transitions the
1050 * request to its final state. Consider stopping the state machine instead of
1051 * transitioning to the final state? enum sci_status SCI_SUCCESS
1052 */
1053static enum sci_status scic_sds_request_completed_state_complete_handler(
1054	struct scic_sds_request *request)
1055{
1056	if (request->was_tag_assigned_by_user != true) {
1057		scic_controller_free_io_tag(
1058			request->owning_controller, request->io_tag);
1059	}
1060
1061	if (request->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) {
1062		scic_sds_controller_release_frame(
1063			request->owning_controller, request->saved_rx_frame_index);
1064	}
1065
1066	sci_base_state_machine_change_state(&request->state_machine,
1067		SCI_BASE_REQUEST_STATE_FINAL);
1068	return SCI_SUCCESS;
1069}
1070
1071/*
1072 * *****************************************************************************
1073 * *  ABORTING STATE HANDLERS
1074 * ***************************************************************************** */
1075
1076/*
1077 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1078 * object receives a scic_sds_request_terminate() request. This method is the
1079 * io request aborting state abort handlers.  On receipt of a multiple
1080 * terminate requests the io request will transition to the completed state.
1081 * This should not happen in normal operation. enum sci_status SCI_SUCCESS
1082 */
1083static enum sci_status scic_sds_request_aborting_state_abort_handler(
1084	struct scic_sds_request *request)
1085{
1086	sci_base_state_machine_change_state(&request->state_machine,
1087		SCI_BASE_REQUEST_STATE_COMPLETED);
1088	return SCI_SUCCESS;
1089}
1090
1091/*
1092 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1093 * object receives a scic_sds_request_task_completion() request. This method
1094 * decodes the completion type waiting for the abort task complete
1095 * notification. When the abort task complete is received the io request
1096 * transitions to the completed state. enum sci_status SCI_SUCCESS
1097 */
1098static enum sci_status scic_sds_request_aborting_state_tc_completion_handler(
1099	struct scic_sds_request *sci_req,
1100	u32 completion_code)
1101{
1102	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1103	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1104	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1105		scic_sds_request_set_status(
1106			sci_req, SCU_TASK_DONE_TASK_ABORT, SCI_FAILURE_IO_TERMINATED
1107			);
1108
1109		sci_base_state_machine_change_state(&sci_req->state_machine,
1110			SCI_BASE_REQUEST_STATE_COMPLETED);
1111		break;
1112
1113	default:
1114		/*
1115		 * Unless we get some strange error wait for the task abort to complete
1116		 * TODO: Should there be a state change for this completion? */
1117		break;
1118	}
1119
1120	return SCI_SUCCESS;
1121}
1122
1123/*
1124 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1125 * object receives a scic_sds_request_frame_handler() request. This method
1126 * discards the unsolicited frame since we are waiting for the abort task
1127 * completion. enum sci_status SCI_SUCCESS
1128 */
1129static enum sci_status scic_sds_request_aborting_state_frame_handler(
1130	struct scic_sds_request *sci_req,
1131	u32 frame_index)
1132{
1133	/* TODO: Is it even possible to get an unsolicited frame in the aborting state? */
1134
1135	scic_sds_controller_release_frame(
1136		sci_req->owning_controller, frame_index);
1137
1138	return SCI_SUCCESS;
1139}
1140
1141/**
1142 * This method processes the completions transport layer (TL) status to
1143 *    determine if the RAW task management frame was sent successfully. If the
1144 *    raw frame was sent successfully, then the state for the task request
1145 *    transitions to waiting for a response frame.
1146 * @sci_req: This parameter specifies the request for which the TC
1147 *    completion was received.
1148 * @completion_code: This parameter indicates the completion status information
1149 *    for the TC.
1150 *
1151 * Indicate if the tc completion handler was successful. SCI_SUCCESS currently
1152 * this method always returns success.
1153 */
1154static enum sci_status scic_sds_ssp_task_request_await_tc_completion_tc_completion_handler(
1155	struct scic_sds_request *sci_req,
1156	u32 completion_code)
1157{
1158	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1159	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1160		scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
1161					    SCI_SUCCESS);
1162
1163		sci_base_state_machine_change_state(&sci_req->state_machine,
1164			SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE);
1165		break;
1166
1167	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1168		/*
1169		 * Currently, the decision is to simply allow the task request to
1170		 * timeout if the task IU wasn't received successfully.
1171		 * There is a potential for receiving multiple task responses if we
1172		 * decide to send the task IU again. */
1173		dev_warn(scic_to_dev(sci_req->owning_controller),
1174			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1175			 "ACK/NAK timeout\n",
1176			 __func__,
1177			 sci_req,
1178			 completion_code);
1179
1180		sci_base_state_machine_change_state(&sci_req->state_machine,
1181			SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE);
1182		break;
1183
1184	default:
1185		/*
1186		 * All other completion status cause the IO to be complete.  If a NAK
1187		 * was received, then it is up to the user to retry the request. */
1188		scic_sds_request_set_status(
1189			sci_req,
1190			SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
1191			SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
1192			);
1193
1194		sci_base_state_machine_change_state(&sci_req->state_machine,
1195			SCI_BASE_REQUEST_STATE_COMPLETED);
1196		break;
1197	}
1198
1199	return SCI_SUCCESS;
1200}
1201
1202/**
1203 * This method is responsible for processing a terminate/abort request for this
1204 *    TC while the request is waiting for the task management response
1205 *    unsolicited frame.
1206 * @sci_req: This parameter specifies the request for which the
1207 *    termination was requested.
1208 *
1209 * This method returns an indication as to whether the abort request was
1210 * successfully handled. need to update to ensure the received UF doesn't cause
1211 * damage to subsequent requests (i.e. put the extended tag in a holding
1212 * pattern for this particular device).
1213 */
1214static enum sci_status scic_sds_ssp_task_request_await_tc_response_abort_handler(
1215	struct scic_sds_request *request)
1216{
1217	sci_base_state_machine_change_state(&request->state_machine,
1218			SCI_BASE_REQUEST_STATE_ABORTING);
1219	sci_base_state_machine_change_state(&request->state_machine,
1220			SCI_BASE_REQUEST_STATE_COMPLETED);
1221	return SCI_SUCCESS;
1222}
1223
1224/**
1225 * This method processes an unsolicited frame while the task mgmt request is
1226 *    waiting for a response frame.  It will copy the response data, release
1227 *    the unsolicited frame, and transition the request to the
1228 *    SCI_BASE_REQUEST_STATE_COMPLETED state.
1229 * @sci_req: This parameter specifies the request for which the
1230 *    unsolicited frame was received.
1231 * @frame_index: This parameter indicates the unsolicited frame index that
1232 *    should contain the response.
1233 *
1234 * This method returns an indication of whether the TC response frame was
1235 * handled successfully or not. SCI_SUCCESS Currently this value is always
1236 * returned and indicates successful processing of the TC response. Should
1237 * probably update to check frame type and make sure it is a response frame.
1238 */
1239static enum sci_status scic_sds_ssp_task_request_await_tc_response_frame_handler(
1240	struct scic_sds_request *request,
1241	u32 frame_index)
1242{
1243	scic_sds_io_request_copy_response(request);
1244
1245	sci_base_state_machine_change_state(&request->state_machine,
1246		SCI_BASE_REQUEST_STATE_COMPLETED);
1247	scic_sds_controller_release_frame(request->owning_controller,
1248			frame_index);
1249	return SCI_SUCCESS;
1250}
1251
1252/**
1253 * This method processes an abnormal TC completion while the SMP request is
1254 *    waiting for a response frame.  It decides what happened to the IO based
1255 *    on TC completion status.
1256 * @sci_req: This parameter specifies the request for which the TC
1257 *    completion was received.
1258 * @completion_code: This parameter indicates the completion status information
1259 *    for the TC.
1260 *
1261 * Indicate if the tc completion handler was successful. SCI_SUCCESS currently
1262 * this method always returns success.
1263 */
1264static enum sci_status scic_sds_smp_request_await_response_tc_completion_handler(
1265	struct scic_sds_request *sci_req,
1266	u32 completion_code)
1267{
1268	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1269	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1270		/*
1271		 * In the AWAIT RESPONSE state, any TC completion is unexpected.
1272		 * but if the TC has success status, we complete the IO anyway. */
1273		scic_sds_request_set_status(
1274			sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS
1275			);
1276
1277		sci_base_state_machine_change_state(
1278			&sci_req->state_machine,
1279			SCI_BASE_REQUEST_STATE_COMPLETED);
1280		break;
1281
1282	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1283	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1284	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1285	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1286		/*
1287		 * These status has been seen in a specific LSI expander, which sometimes
1288		 * is not able to send smp response within 2 ms. This causes our hardware
1289		 * break the connection and set TC completion with one of these SMP_XXX_XX_ERR
1290		 * status. For these type of error, we ask scic user to retry the request. */
1291		scic_sds_request_set_status(
1292			sci_req, SCU_TASK_DONE_SMP_RESP_TO_ERR, SCI_FAILURE_RETRY_REQUIRED
1293			);
1294
1295		sci_base_state_machine_change_state(
1296			&sci_req->state_machine,
1297			SCI_BASE_REQUEST_STATE_COMPLETED);
1298		break;
1299
1300	default:
1301		/*
1302		 * All other completion status cause the IO to be complete.  If a NAK
1303		 * was received, then it is up to the user to retry the request. */
1304		scic_sds_request_set_status(
1305			sci_req,
1306			SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
1307			SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
1308			);
1309
1310		sci_base_state_machine_change_state(
1311			&sci_req->state_machine,
1312			SCI_BASE_REQUEST_STATE_COMPLETED);
1313		break;
1314	}
1315
1316	return SCI_SUCCESS;
1317}
1318
1319/*
1320 * This function processes an unsolicited frame while the SMP request is waiting
1321 *    for a response frame.  It will copy the response data, release the
1322 *    unsolicited frame, and transition the request to the
1323 *    SCI_BASE_REQUEST_STATE_COMPLETED state.
1324 * @sci_req: This parameter specifies the request for which the
1325 *    unsolicited frame was received.
1326 * @frame_index: This parameter indicates the unsolicited frame index that
1327 *    should contain the response.
1328 *
1329 * This function returns an indication of whether the response frame was handled
1330 * successfully or not. SCI_SUCCESS Currently this value is always returned and
1331 * indicates successful processing of the TC response.
1332 */
1333static enum sci_status
1334scic_sds_smp_request_await_response_frame_handler(struct scic_sds_request *sci_req,
1335						  u32 frame_index)
1336{
1337	enum sci_status status;
1338	void *frame_header;
1339	struct smp_resp *rsp_hdr = &sci_req->smp.rsp;
1340	ssize_t word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
1341
1342	status = scic_sds_unsolicited_frame_control_get_header(
1343		&(scic_sds_request_get_controller(sci_req)->uf_control),
1344		frame_index,
1345		&frame_header);
1346
1347	/* byte swap the header. */
1348	sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
1349
1350	if (rsp_hdr->frame_type == SMP_RESPONSE) {
1351		void *smp_resp;
1352
1353		status = scic_sds_unsolicited_frame_control_get_buffer(
1354			&(scic_sds_request_get_controller(sci_req)->uf_control),
1355			frame_index,
1356			&smp_resp);
1357
1358		word_cnt = (sizeof(struct smp_req) - SMP_RESP_HDR_SZ) /
1359			sizeof(u32);
1360
1361		sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
1362			       smp_resp, word_cnt);
1363
1364		scic_sds_request_set_status(
1365			sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
1366
1367		sci_base_state_machine_change_state(&sci_req->state_machine,
1368			SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION);
1369	} else {
1370		/* This was not a response frame why did it get forwarded? */
1371		dev_err(scic_to_dev(sci_req->owning_controller),
1372			"%s: SCIC SMP Request 0x%p received unexpected frame "
1373			"%d type 0x%02x\n",
1374			__func__,
1375			sci_req,
1376			frame_index,
1377			rsp_hdr->frame_type);
1378
1379		scic_sds_request_set_status(
1380			sci_req,
1381			SCU_TASK_DONE_SMP_FRM_TYPE_ERR,
1382			SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
1383
1384		sci_base_state_machine_change_state(
1385			&sci_req->state_machine,
1386			SCI_BASE_REQUEST_STATE_COMPLETED);
1387	}
1388
1389	scic_sds_controller_release_frame(sci_req->owning_controller,
1390					  frame_index);
1391
1392	return SCI_SUCCESS;
1393}
1394
1395/**
1396 * This method processes the completions transport layer (TL) status to
1397 *    determine if the SMP request was sent successfully. If the SMP request
1398 *    was sent successfully, then the state for the SMP request transits to
1399 *    waiting for a response frame.
1400 * @sci_req: This parameter specifies the request for which the TC
1401 *    completion was received.
1402 * @completion_code: This parameter indicates the completion status information
1403 *    for the TC.
1404 *
1405 * Indicate if the tc completion handler was successful. SCI_SUCCESS currently
1406 * this method always returns success.
1407 */
1408static enum sci_status scic_sds_smp_request_await_tc_completion_tc_completion_handler(
1409	struct scic_sds_request *sci_req,
1410	u32 completion_code)
1411{
1412	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1413	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1414		scic_sds_request_set_status(
1415			sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS
1416			);
1417
1418		sci_base_state_machine_change_state(
1419			&sci_req->state_machine,
1420			SCI_BASE_REQUEST_STATE_COMPLETED);
1421		break;
1422
1423	default:
1424		/*
1425		 * All other completion status cause the IO to be complete.  If a NAK
1426		 * was received, then it is up to the user to retry the request. */
1427		scic_sds_request_set_status(
1428			sci_req,
1429			SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
1430			SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR
1431			);
1432
1433		sci_base_state_machine_change_state(
1434			&sci_req->state_machine,
1435			SCI_BASE_REQUEST_STATE_COMPLETED);
1436		break;
1437	}
1438
1439	return SCI_SUCCESS;
1440}
1441
1442static const struct scic_sds_io_request_state_handler scic_sds_request_state_handler_table[] = {
1443	[SCI_BASE_REQUEST_STATE_INITIAL] = { },
1444	[SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
1445		.start_handler		= scic_sds_request_constructed_state_start_handler,
1446		.abort_handler		= scic_sds_request_constructed_state_abort_handler,
1447	},
1448	[SCI_BASE_REQUEST_STATE_STARTED] = {
1449		.abort_handler		= scic_sds_request_started_state_abort_handler,
1450		.tc_completion_handler	= scic_sds_request_started_state_tc_completion_handler,
1451		.frame_handler		= scic_sds_request_started_state_frame_handler,
1452	},
1453	[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION] = {
1454		.abort_handler		= scic_sds_request_started_state_abort_handler,
1455		.tc_completion_handler	= scic_sds_ssp_task_request_await_tc_completion_tc_completion_handler,
1456	},
1457	[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE] = {
1458		.abort_handler		= scic_sds_ssp_task_request_await_tc_response_abort_handler,
1459		.frame_handler		= scic_sds_ssp_task_request_await_tc_response_frame_handler,
1460	},
1461	[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE] = {
1462		.abort_handler		= scic_sds_request_started_state_abort_handler,
1463		.tc_completion_handler	= scic_sds_smp_request_await_response_tc_completion_handler,
1464		.frame_handler		= scic_sds_smp_request_await_response_frame_handler,
1465	},
1466	[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION] = {
1467		.abort_handler		= scic_sds_request_started_state_abort_handler,
1468		.tc_completion_handler	=  scic_sds_smp_request_await_tc_completion_tc_completion_handler,
1469	},
1470	[SCI_BASE_REQUEST_STATE_COMPLETED] = {
1471		.complete_handler	= scic_sds_request_completed_state_complete_handler,
1472	},
1473	[SCI_BASE_REQUEST_STATE_ABORTING] = {
1474		.abort_handler		= scic_sds_request_aborting_state_abort_handler,
1475		.tc_completion_handler	= scic_sds_request_aborting_state_tc_completion_handler,
1476		.frame_handler		= scic_sds_request_aborting_state_frame_handler,
1477	},
1478	[SCI_BASE_REQUEST_STATE_FINAL] = { },
1479};
1480
1481
1482/**
1483 * isci_request_process_response_iu() - This function sets the status and
1484 *    response iu, in the task struct, from the request object for the upper
1485 *    layer driver.
1486 * @sas_task: This parameter is the task struct from the upper layer driver.
1487 * @resp_iu: This parameter points to the response iu of the completed request.
1488 * @dev: This parameter specifies the linux device struct.
1489 *
1490 * none.
1491 */
1492static void isci_request_process_response_iu(
1493	struct sas_task *task,
1494	struct ssp_response_iu *resp_iu,
1495	struct device *dev)
1496{
1497	dev_dbg(dev,
1498		"%s: resp_iu = %p "
1499		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
1500		"resp_iu->response_data_len = %x, "
1501		"resp_iu->sense_data_len = %x\nrepsonse data: ",
1502		__func__,
1503		resp_iu,
1504		resp_iu->status,
1505		resp_iu->datapres,
1506		resp_iu->response_data_len,
1507		resp_iu->sense_data_len);
1508
1509	task->task_status.stat = resp_iu->status;
1510
1511	/* libsas updates the task status fields based on the response iu. */
1512	sas_ssp_task_response(dev, task, resp_iu);
1513}
1514
1515/**
1516 * isci_request_set_open_reject_status() - This function prepares the I/O
1517 *    completion for OPEN_REJECT conditions.
1518 * @request: This parameter is the completed isci_request object.
1519 * @response_ptr: This parameter specifies the service response for the I/O.
1520 * @status_ptr: This parameter specifies the exec status for the I/O.
1521 * @complete_to_host_ptr: This parameter specifies the action to be taken by
1522 *    the LLDD with respect to completing this request or forcing an abort
1523 *    condition on the I/O.
1524 * @open_rej_reason: This parameter specifies the encoded reason for the
1525 *    abandon-class reject.
1526 *
1527 * none.
1528 */
1529static void isci_request_set_open_reject_status(
1530	struct isci_request *request,
1531	struct sas_task *task,
1532	enum service_response *response_ptr,
1533	enum exec_status *status_ptr,
1534	enum isci_completion_selection *complete_to_host_ptr,
1535	enum sas_open_rej_reason open_rej_reason)
1536{
1537	/* Task in the target is done. */
1538	request->complete_in_target       = true;
1539	*response_ptr                     = SAS_TASK_UNDELIVERED;
1540	*status_ptr                       = SAS_OPEN_REJECT;
1541	*complete_to_host_ptr             = isci_perform_normal_io_completion;
1542	task->task_status.open_rej_reason = open_rej_reason;
1543}
1544
1545/**
1546 * isci_request_handle_controller_specific_errors() - This function decodes
1547 *    controller-specific I/O completion error conditions.
1548 * @request: This parameter is the completed isci_request object.
1549 * @response_ptr: This parameter specifies the service response for the I/O.
1550 * @status_ptr: This parameter specifies the exec status for the I/O.
1551 * @complete_to_host_ptr: This parameter specifies the action to be taken by
1552 *    the LLDD with respect to completing this request or forcing an abort
1553 *    condition on the I/O.
1554 *
1555 * none.
1556 */
1557static void isci_request_handle_controller_specific_errors(
1558	struct isci_remote_device *isci_device,
1559	struct isci_request *request,
1560	struct sas_task *task,
1561	enum service_response *response_ptr,
1562	enum exec_status *status_ptr,
1563	enum isci_completion_selection *complete_to_host_ptr)
1564{
1565	unsigned int cstatus;
1566
1567	cstatus = request->sci.scu_status;
1568
1569	dev_dbg(&request->isci_host->pdev->dev,
1570		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
1571		"- controller status = 0x%x\n",
1572		__func__, request, cstatus);
1573
1574	/* Decode the controller-specific errors; most
1575	 * important is to recognize those conditions in which
1576	 * the target may still have a task outstanding that
1577	 * must be aborted.
1578	 *
1579	 * Note that there are SCU completion codes being
1580	 * named in the decode below for which SCIC has already
1581	 * done work to handle them in a way other than as
1582	 * a controller-specific completion code; these are left
1583	 * in the decode below for completeness sake.
1584	 */
1585	switch (cstatus) {
1586	case SCU_TASK_DONE_DMASETUP_DIRERR:
1587	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
1588	case SCU_TASK_DONE_XFERCNT_ERR:
1589		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
1590		if (task->task_proto == SAS_PROTOCOL_SMP) {
1591			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
1592			*response_ptr = SAS_TASK_COMPLETE;
1593
1594			/* See if the device has been/is being stopped. Note
1595			 * that we ignore the quiesce state, since we are
1596			 * concerned about the actual device state.
1597			 */
1598			if ((isci_device->status == isci_stopping) ||
1599			    (isci_device->status == isci_stopped))
1600				*status_ptr = SAS_DEVICE_UNKNOWN;
1601			else
1602				*status_ptr = SAS_ABORTED_TASK;
1603
1604			request->complete_in_target = true;
1605
1606			*complete_to_host_ptr =
1607				isci_perform_normal_io_completion;
1608		} else {
1609			/* Task in the target is not done. */
1610			*response_ptr = SAS_TASK_UNDELIVERED;
1611
1612			if ((isci_device->status == isci_stopping) ||
1613			    (isci_device->status == isci_stopped))
1614				*status_ptr = SAS_DEVICE_UNKNOWN;
1615			else
1616				*status_ptr = SAM_STAT_TASK_ABORTED;
1617
1618			request->complete_in_target = false;
1619
1620			*complete_to_host_ptr =
1621				isci_perform_error_io_completion;
1622		}
1623
1624		break;
1625
1626	case SCU_TASK_DONE_CRC_ERR:
1627	case SCU_TASK_DONE_NAK_CMD_ERR:
1628	case SCU_TASK_DONE_EXCESS_DATA:
1629	case SCU_TASK_DONE_UNEXP_FIS:
1630	/* Also SCU_TASK_DONE_UNEXP_RESP: */
1631	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
1632	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
1633	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
1634		/* These are conditions in which the target
1635		 * has completed the task, so that no cleanup
1636		 * is necessary.
1637		 */
1638		*response_ptr = SAS_TASK_COMPLETE;
1639
1640		/* See if the device has been/is being stopped. Note
1641		 * that we ignore the quiesce state, since we are
1642		 * concerned about the actual device state.
1643		 */
1644		if ((isci_device->status == isci_stopping) ||
1645		    (isci_device->status == isci_stopped))
1646			*status_ptr = SAS_DEVICE_UNKNOWN;
1647		else
1648			*status_ptr = SAS_ABORTED_TASK;
1649
1650		request->complete_in_target = true;
1651
1652		*complete_to_host_ptr = isci_perform_normal_io_completion;
1653		break;
1654
1655
1656	/* Note that the only open reject completion codes seen here will be
1657	 * abandon-class codes; all others are automatically retried in the SCU.
1658	 */
1659	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
1660
1661		isci_request_set_open_reject_status(
1662			request, task, response_ptr, status_ptr,
1663			complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
1664		break;
1665
1666	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
1667
1668		/* Note - the return of AB0 will change when
1669		 * libsas implements detection of zone violations.
1670		 */
1671		isci_request_set_open_reject_status(
1672			request, task, response_ptr, status_ptr,
1673			complete_to_host_ptr, SAS_OREJ_RESV_AB0);
1674		break;
1675
1676	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
1677
1678		isci_request_set_open_reject_status(
1679			request, task, response_ptr, status_ptr,
1680			complete_to_host_ptr, SAS_OREJ_RESV_AB1);
1681		break;
1682
1683	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
1684
1685		isci_request_set_open_reject_status(
1686			request, task, response_ptr, status_ptr,
1687			complete_to_host_ptr, SAS_OREJ_RESV_AB2);
1688		break;
1689
1690	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
1691
1692		isci_request_set_open_reject_status(
1693			request, task, response_ptr, status_ptr,
1694			complete_to_host_ptr, SAS_OREJ_RESV_AB3);
1695		break;
1696
1697	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
1698
1699		isci_request_set_open_reject_status(
1700			request, task, response_ptr, status_ptr,
1701			complete_to_host_ptr, SAS_OREJ_BAD_DEST);
1702		break;
1703
1704	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
1705
1706		isci_request_set_open_reject_status(
1707			request, task, response_ptr, status_ptr,
1708			complete_to_host_ptr, SAS_OREJ_STP_NORES);
1709		break;
1710
1711	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
1712
1713		isci_request_set_open_reject_status(
1714			request, task, response_ptr, status_ptr,
1715			complete_to_host_ptr, SAS_OREJ_EPROTO);
1716		break;
1717
1718	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
1719
1720		isci_request_set_open_reject_status(
1721			request, task, response_ptr, status_ptr,
1722			complete_to_host_ptr, SAS_OREJ_CONN_RATE);
1723		break;
1724
1725	case SCU_TASK_DONE_LL_R_ERR:
1726	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
1727	case SCU_TASK_DONE_LL_PERR:
1728	case SCU_TASK_DONE_LL_SY_TERM:
1729	/* Also SCU_TASK_DONE_NAK_ERR:*/
1730	case SCU_TASK_DONE_LL_LF_TERM:
1731	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
1732	case SCU_TASK_DONE_LL_ABORT_ERR:
1733	case SCU_TASK_DONE_SEQ_INV_TYPE:
1734	/* Also SCU_TASK_DONE_UNEXP_XR: */
1735	case SCU_TASK_DONE_XR_IU_LEN_ERR:
1736	case SCU_TASK_DONE_INV_FIS_LEN:
1737	/* Also SCU_TASK_DONE_XR_WD_LEN: */
1738	case SCU_TASK_DONE_SDMA_ERR:
1739	case SCU_TASK_DONE_OFFSET_ERR:
1740	case SCU_TASK_DONE_MAX_PLD_ERR:
1741	case SCU_TASK_DONE_LF_ERR:
1742	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
1743	case SCU_TASK_DONE_SMP_LL_RX_ERR:
1744	case SCU_TASK_DONE_UNEXP_DATA:
1745	case SCU_TASK_DONE_UNEXP_SDBFIS:
1746	case SCU_TASK_DONE_REG_ERR:
1747	case SCU_TASK_DONE_SDB_ERR:
1748	case SCU_TASK_DONE_TASK_ABORT:
1749	default:
1750		/* Task in the target is not done. */
1751		*response_ptr = SAS_TASK_UNDELIVERED;
1752		*status_ptr = SAM_STAT_TASK_ABORTED;
1753		request->complete_in_target = false;
1754
1755		*complete_to_host_ptr = isci_perform_error_io_completion;
1756		break;
1757	}
1758}
1759
1760/**
1761 * isci_task_save_for_upper_layer_completion() - This function saves the
1762 *    request for later completion to the upper layer driver.
1763 * @host: This parameter is a pointer to the host on which the the request
1764 *    should be queued (either as an error or success).
1765 * @request: This parameter is the completed request.
1766 * @response: This parameter is the response code for the completed task.
1767 * @status: This parameter is the status code for the completed task.
1768 *
1769 * none.
1770 */
1771static void isci_task_save_for_upper_layer_completion(
1772	struct isci_host *host,
1773	struct isci_request *request,
1774	enum service_response response,
1775	enum exec_status status,
1776	enum isci_completion_selection task_notification_selection)
1777{
1778	struct sas_task *task = isci_request_access_task(request);
1779
1780	task_notification_selection
1781		= isci_task_set_completion_status(task, response, status,
1782						  task_notification_selection);
1783
1784	/* Tasks aborted specifically by a call to the lldd_abort_task
1785	 * function should not be completed to the host in the regular path.
1786	 */
1787	switch (task_notification_selection) {
1788
1789	case isci_perform_normal_io_completion:
1790
1791		/* Normal notification (task_done) */
1792		dev_dbg(&host->pdev->dev,
1793			"%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
1794			__func__,
1795			task,
1796			task->task_status.resp, response,
1797			task->task_status.stat, status);
1798		/* Add to the completed list. */
1799		list_add(&request->completed_node,
1800			 &host->requests_to_complete);
1801
1802		/* Take the request off the device's pending request list. */
1803		list_del_init(&request->dev_node);
1804		break;
1805
1806	case isci_perform_aborted_io_completion:
1807		/* No notification to libsas because this request is
1808		 * already in the abort path.
1809		 */
1810		dev_warn(&host->pdev->dev,
1811			 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
1812			 __func__,
1813			 task,
1814			 task->task_status.resp, response,
1815			 task->task_status.stat, status);
1816
1817		/* Wake up whatever process was waiting for this
1818		 * request to complete.
1819		 */
1820		WARN_ON(request->io_request_completion == NULL);
1821
1822		if (request->io_request_completion != NULL) {
1823
1824			/* Signal whoever is waiting that this
1825			* request is complete.
1826			*/
1827			complete(request->io_request_completion);
1828		}
1829		break;
1830
1831	case isci_perform_error_io_completion:
1832		/* Use sas_task_abort */
1833		dev_warn(&host->pdev->dev,
1834			 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
1835			 __func__,
1836			 task,
1837			 task->task_status.resp, response,
1838			 task->task_status.stat, status);
1839		/* Add to the aborted list. */
1840		list_add(&request->completed_node,
1841			 &host->requests_to_errorback);
1842		break;
1843
1844	default:
1845		dev_warn(&host->pdev->dev,
1846			 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
1847			 __func__,
1848			 task,
1849			 task->task_status.resp, response,
1850			 task->task_status.stat, status);
1851
1852		/* Add to the error to libsas list. */
1853		list_add(&request->completed_node,
1854			 &host->requests_to_errorback);
1855		break;
1856	}
1857}
1858
1859static void isci_request_io_request_complete(struct isci_host *isci_host,
1860					     struct isci_request *request,
1861					     enum sci_io_status completion_status)
1862{
1863	struct sas_task *task = isci_request_access_task(request);
1864	struct ssp_response_iu *resp_iu;
1865	void *resp_buf;
1866	unsigned long task_flags;
1867	struct isci_remote_device *isci_device   = request->isci_device;
1868	enum service_response response       = SAS_TASK_UNDELIVERED;
1869	enum exec_status status         = SAS_ABORTED_TASK;
1870	enum isci_request_status request_status;
1871	enum isci_completion_selection complete_to_host
1872		= isci_perform_normal_io_completion;
1873
1874	dev_dbg(&isci_host->pdev->dev,
1875		"%s: request = %p, task = %p,\n"
1876		"task->data_dir = %d completion_status = 0x%x\n",
1877		__func__,
1878		request,
1879		task,
1880		task->data_dir,
1881		completion_status);
1882
1883	spin_lock(&request->state_lock);
1884	request_status = isci_request_get_state(request);
1885
1886	/* Decode the request status.  Note that if the request has been
1887	 * aborted by a task management function, we don't care
1888	 * what the status is.
1889	 */
1890	switch (request_status) {
1891
1892	case aborted:
1893		/* "aborted" indicates that the request was aborted by a task
1894		 * management function, since once a task management request is
1895		 * perfomed by the device, the request only completes because
1896		 * of the subsequent driver terminate.
1897		 *
1898		 * Aborted also means an external thread is explicitly managing
1899		 * this request, so that we do not complete it up the stack.
1900		 *
1901		 * The target is still there (since the TMF was successful).
1902		 */
1903		request->complete_in_target = true;
1904		response = SAS_TASK_COMPLETE;
1905
1906		/* See if the device has been/is being stopped. Note
1907		 * that we ignore the quiesce state, since we are
1908		 * concerned about the actual device state.
1909		 */
1910		if ((isci_device->status == isci_stopping)
1911		    || (isci_device->status == isci_stopped)
1912		    )
1913			status = SAS_DEVICE_UNKNOWN;
1914		else
1915			status = SAS_ABORTED_TASK;
1916
1917		complete_to_host = isci_perform_aborted_io_completion;
1918		/* This was an aborted request. */
1919
1920		spin_unlock(&request->state_lock);
1921		break;
1922
1923	case aborting:
1924		/* aborting means that the task management function tried and
1925		 * failed to abort the request. We need to note the request
1926		 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
1927		 * target as down.
1928		 *
1929		 * Aborting also means an external thread is explicitly managing
1930		 * this request, so that we do not complete it up the stack.
1931		 */
1932		request->complete_in_target = true;
1933		response = SAS_TASK_UNDELIVERED;
1934
1935		if ((isci_device->status == isci_stopping) ||
1936		    (isci_device->status == isci_stopped))
1937			/* The device has been /is being stopped. Note that
1938			 * we ignore the quiesce state, since we are
1939			 * concerned about the actual device state.
1940			 */
1941			status = SAS_DEVICE_UNKNOWN;
1942		else
1943			status = SAS_PHY_DOWN;
1944
1945		complete_to_host = isci_perform_aborted_io_completion;
1946
1947		/* This was an aborted request. */
1948
1949		spin_unlock(&request->state_lock);
1950		break;
1951
1952	case terminating:
1953
1954		/* This was an terminated request.  This happens when
1955		 * the I/O is being terminated because of an action on
1956		 * the device (reset, tear down, etc.), and the I/O needs
1957		 * to be completed up the stack.
1958		 */
1959		request->complete_in_target = true;
1960		response = SAS_TASK_UNDELIVERED;
1961
1962		/* See if the device has been/is being stopped. Note
1963		 * that we ignore the quiesce state, since we are
1964		 * concerned about the actual device state.
1965		 */
1966		if ((isci_device->status == isci_stopping) ||
1967		    (isci_device->status == isci_stopped))
1968			status = SAS_DEVICE_UNKNOWN;
1969		else
1970			status = SAS_ABORTED_TASK;
1971
1972		complete_to_host = isci_perform_aborted_io_completion;
1973
1974		/* This was a terminated request. */
1975
1976		spin_unlock(&request->state_lock);
1977		break;
1978
1979	default:
1980
1981		/* The request is done from an SCU HW perspective. */
1982		request->status = completed;
1983
1984		spin_unlock(&request->state_lock);
1985
1986		/* This is an active request being completed from the core. */
1987		switch (completion_status) {
1988
1989		case SCI_IO_FAILURE_RESPONSE_VALID:
1990			dev_dbg(&isci_host->pdev->dev,
1991				"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
1992				__func__,
1993				request,
1994				task);
1995
1996			if (sas_protocol_ata(task->task_proto)) {
1997				resp_buf = &request->sci.stp.rsp;
1998				isci_request_process_stp_response(task,
1999								  resp_buf);
2000			} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2001
2002				/* crack the iu response buffer. */
2003				resp_iu = &request->sci.ssp.rsp;
2004				isci_request_process_response_iu(task, resp_iu,
2005								 &isci_host->pdev->dev);
2006
2007			} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2008
2009				dev_err(&isci_host->pdev->dev,
2010					"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2011					"SAS_PROTOCOL_SMP protocol\n",
2012					__func__);
2013
2014			} else
2015				dev_err(&isci_host->pdev->dev,
2016					"%s: unknown protocol\n", __func__);
2017
2018			/* use the task status set in the task struct by the
2019			 * isci_request_process_response_iu call.
2020			 */
2021			request->complete_in_target = true;
2022			response = task->task_status.resp;
2023			status = task->task_status.stat;
2024			break;
2025
2026		case SCI_IO_SUCCESS:
2027		case SCI_IO_SUCCESS_IO_DONE_EARLY:
2028
2029			response = SAS_TASK_COMPLETE;
2030			status   = SAM_STAT_GOOD;
2031			request->complete_in_target = true;
2032
2033			if (task->task_proto == SAS_PROTOCOL_SMP) {
2034				void *rsp = &request->sci.smp.rsp;
2035
2036				dev_dbg(&isci_host->pdev->dev,
2037					"%s: SMP protocol completion\n",
2038					__func__);
2039
2040				sg_copy_from_buffer(
2041					&task->smp_task.smp_resp, 1,
2042					rsp, sizeof(struct smp_resp));
2043			} else if (completion_status
2044				   == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2045
2046				/* This was an SSP / STP / SATA transfer.
2047				 * There is a possibility that less data than
2048				 * the maximum was transferred.
2049				 */
2050				u32 transferred_length = sci_req_tx_bytes(&request->sci);
2051
2052				task->task_status.residual
2053					= task->total_xfer_len - transferred_length;
2054
2055				/* If there were residual bytes, call this an
2056				 * underrun.
2057				 */
2058				if (task->task_status.residual != 0)
2059					status = SAS_DATA_UNDERRUN;
2060
2061				dev_dbg(&isci_host->pdev->dev,
2062					"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2063					__func__,
2064					status);
2065
2066			} else
2067				dev_dbg(&isci_host->pdev->dev,
2068					"%s: SCI_IO_SUCCESS\n",
2069					__func__);
2070
2071			break;
2072
2073		case SCI_IO_FAILURE_TERMINATED:
2074			dev_dbg(&isci_host->pdev->dev,
2075				"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2076				__func__,
2077				request,
2078				task);
2079
2080			/* The request was terminated explicitly.  No handling
2081			 * is needed in the SCSI error handler path.
2082			 */
2083			request->complete_in_target = true;
2084			response = SAS_TASK_UNDELIVERED;
2085
2086			/* See if the device has been/is being stopped. Note
2087			 * that we ignore the quiesce state, since we are
2088			 * concerned about the actual device state.
2089			 */
2090			if ((isci_device->status == isci_stopping) ||
2091			    (isci_device->status == isci_stopped))
2092				status = SAS_DEVICE_UNKNOWN;
2093			else
2094				status = SAS_ABORTED_TASK;
2095
2096			complete_to_host = isci_perform_normal_io_completion;
2097			break;
2098
2099		case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2100
2101			isci_request_handle_controller_specific_errors(
2102				isci_device, request, task, &response, &status,
2103				&complete_to_host);
2104
2105			break;
2106
2107		case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2108			/* This is a special case, in that the I/O completion
2109			 * is telling us that the device needs a reset.
2110			 * In order for the device reset condition to be
2111			 * noticed, the I/O has to be handled in the error
2112			 * handler.  Set the reset flag and cause the
2113			 * SCSI error thread to be scheduled.
2114			 */
2115			spin_lock_irqsave(&task->task_state_lock, task_flags);
2116			task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2117			spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2118
2119			/* Fail the I/O. */
2120			response = SAS_TASK_UNDELIVERED;
2121			status = SAM_STAT_TASK_ABORTED;
2122
2123			complete_to_host = isci_perform_error_io_completion;
2124			request->complete_in_target = false;
2125			break;
2126
2127		default:
2128			/* Catch any otherwise unhandled error codes here. */
2129			dev_warn(&isci_host->pdev->dev,
2130				 "%s: invalid completion code: 0x%x - "
2131				 "isci_request = %p\n",
2132				 __func__, completion_status, request);
2133
2134			response = SAS_TASK_UNDELIVERED;
2135
2136			/* See if the device has been/is being stopped. Note
2137			 * that we ignore the quiesce state, since we are
2138			 * concerned about the actual device state.
2139			 */
2140			if ((isci_device->status == isci_stopping) ||
2141			    (isci_device->status == isci_stopped))
2142				status = SAS_DEVICE_UNKNOWN;
2143			else
2144				status = SAS_ABORTED_TASK;
2145
2146			complete_to_host = isci_perform_error_io_completion;
2147			request->complete_in_target = false;
2148			break;
2149		}
2150		break;
2151	}
2152
2153	isci_request_unmap_sgl(request, isci_host->pdev);
2154
2155	/* Put the completed request on the correct list */
2156	isci_task_save_for_upper_layer_completion(isci_host, request, response,
2157						  status, complete_to_host
2158						  );
2159
2160	/* complete the io request to the core. */
2161	scic_controller_complete_io(&isci_host->sci,
2162				    &isci_device->sci,
2163				    &request->sci);
2164	/* set terminated handle so it cannot be completed or
2165	 * terminated again, and to cause any calls into abort
2166	 * task to recognize the already completed case.
2167	 */
2168	request->terminated = true;
2169
2170	isci_host_can_dequeue(isci_host, 1);
2171}
2172
2173/**
2174 * scic_sds_request_initial_state_enter() -
2175 * @object: This parameter specifies the base object for which the state
2176 *    transition is occurring.
2177 *
2178 * This method implements the actions taken when entering the
2179 * SCI_BASE_REQUEST_STATE_INITIAL state. This state is entered when the initial
2180 * base request is constructed. Entry into the initial state sets all handlers
2181 * for the io request object to their default handlers. none
2182 */
2183static void scic_sds_request_initial_state_enter(void *object)
2184{
2185	struct scic_sds_request *sci_req = object;
2186
2187	SET_STATE_HANDLER(
2188		sci_req,
2189		scic_sds_request_state_handler_table,
2190		SCI_BASE_REQUEST_STATE_INITIAL
2191		);
2192}
2193
2194/**
2195 * scic_sds_request_constructed_state_enter() -
2196 * @object: The io request object that is to enter the constructed state.
2197 *
2198 * This method implements the actions taken when entering the
2199 * SCI_BASE_REQUEST_STATE_CONSTRUCTED state. The method sets the state handlers
2200 * for the the constructed state. none
2201 */
2202static void scic_sds_request_constructed_state_enter(void *object)
2203{
2204	struct scic_sds_request *sci_req = object;
2205
2206	SET_STATE_HANDLER(
2207		sci_req,
2208		scic_sds_request_state_handler_table,
2209		SCI_BASE_REQUEST_STATE_CONSTRUCTED
2210		);
2211}
2212
2213/**
2214 * scic_sds_request_started_state_enter() -
2215 * @object: This parameter specifies the base object for which the state
2216 *    transition is occurring.  This is cast into a SCIC_SDS_IO_REQUEST object.
2217 *
2218 * This method implements the actions taken when entering the
2219 * SCI_BASE_REQUEST_STATE_STARTED state. If the io request object type is a
2220 * SCSI Task request we must enter the started substate machine. none
2221 */
2222static void scic_sds_request_started_state_enter(void *object)
2223{
2224	struct scic_sds_request *sci_req = object;
2225	struct sci_base_state_machine *sm = &sci_req->state_machine;
2226	struct isci_request *ireq = sci_req_to_ireq(sci_req);
2227	struct domain_device *dev = sci_dev_to_domain(sci_req->target_device);
2228	struct sas_task *task;
2229
2230	/* XXX as hch said always creating an internal sas_task for tmf
2231	 * requests would simplify the driver
2232	 */
2233	task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
2234
2235	SET_STATE_HANDLER(
2236		sci_req,
2237		scic_sds_request_state_handler_table,
2238		SCI_BASE_REQUEST_STATE_STARTED
2239		);
2240
2241	/* Most of the request state machines have a started substate machine so
2242	 * start its execution on the entry to the started state.
2243	 */
2244	if (sci_req->has_started_substate_machine == true)
2245		sci_base_state_machine_start(&sci_req->started_substate_machine);
2246
2247	if (!task && dev->dev_type == SAS_END_DEV) {
2248		sci_base_state_machine_change_state(sm,
2249			SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION);
2250	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2251		sci_base_state_machine_change_state(sm,
2252			SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE);
2253	}
2254}
2255
2256/**
2257 * scic_sds_request_started_state_exit() -
2258 * @object: This parameter specifies the base object for which the state
2259 *    transition is occurring.  This object is cast into a SCIC_SDS_IO_REQUEST
2260 *    object.
2261 *
2262 * This method implements the actions taken when exiting the
2263 * SCI_BASE_REQUEST_STATE_STARTED state. For task requests the action will be
2264 * to stop the started substate machine. none
2265 */
2266static void scic_sds_request_started_state_exit(void *object)
2267{
2268	struct scic_sds_request *sci_req = object;
2269
2270	if (sci_req->has_started_substate_machine == true)
2271		sci_base_state_machine_stop(&sci_req->started_substate_machine);
2272}
2273
2274/**
2275 * scic_sds_request_completed_state_enter() -
2276 * @object: This parameter specifies the base object for which the state
2277 *    transition is occurring.  This object is cast into a SCIC_SDS_IO_REQUEST
2278 *    object.
2279 *
2280 * This method implements the actions taken when entering the
2281 * SCI_BASE_REQUEST_STATE_COMPLETED state.  This state is entered when the
2282 * SCIC_SDS_IO_REQUEST has completed.  The method will decode the request
2283 * completion status and convert it to an enum sci_status to return in the
2284 * completion callback function. none
2285 */
2286static void scic_sds_request_completed_state_enter(void *object)
2287{
2288	struct scic_sds_request *sci_req = object;
2289	struct scic_sds_controller *scic =
2290		scic_sds_request_get_controller(sci_req);
2291	struct isci_host *ihost = scic_to_ihost(scic);
2292	struct isci_request *ireq = sci_req_to_ireq(sci_req);
2293
2294	SET_STATE_HANDLER(sci_req,
2295			  scic_sds_request_state_handler_table,
2296			  SCI_BASE_REQUEST_STATE_COMPLETED);
2297
2298	/* Tell the SCI_USER that the IO request is complete */
2299	if (sci_req->is_task_management_request == false)
2300		isci_request_io_request_complete(ihost, ireq,
2301						 sci_req->sci_status);
2302	else
2303		isci_task_request_complete(ihost, ireq, sci_req->sci_status);
2304}
2305
2306/**
2307 * scic_sds_request_aborting_state_enter() -
2308 * @object: This parameter specifies the base object for which the state
2309 *    transition is occurring.  This object is cast into a SCIC_SDS_IO_REQUEST
2310 *    object.
2311 *
2312 * This method implements the actions taken when entering the
2313 * SCI_BASE_REQUEST_STATE_ABORTING state. none
2314 */
2315static void scic_sds_request_aborting_state_enter(void *object)
2316{
2317	struct scic_sds_request *sci_req = object;
2318
2319	/* Setting the abort bit in the Task Context is required by the silicon. */
2320	sci_req->task_context_buffer->abort = 1;
2321
2322	SET_STATE_HANDLER(
2323		sci_req,
2324		scic_sds_request_state_handler_table,
2325		SCI_BASE_REQUEST_STATE_ABORTING
2326		);
2327}
2328
2329/**
2330 * scic_sds_request_final_state_enter() -
2331 * @object: This parameter specifies the base object for which the state
2332 *    transition is occurring.  This is cast into a SCIC_SDS_IO_REQUEST object.
2333 *
2334 * This method implements the actions taken when entering the
2335 * SCI_BASE_REQUEST_STATE_FINAL state. The only action required is to put the
2336 * state handlers in place. none
2337 */
2338static void scic_sds_request_final_state_enter(void *object)
2339{
2340	struct scic_sds_request *sci_req = object;
2341
2342	SET_STATE_HANDLER(
2343		sci_req,
2344		scic_sds_request_state_handler_table,
2345		SCI_BASE_REQUEST_STATE_FINAL
2346		);
2347}
2348
2349static void scic_sds_io_request_started_task_mgmt_await_tc_completion_substate_enter(
2350	void *object)
2351{
2352	struct scic_sds_request *sci_req = object;
2353
2354	SET_STATE_HANDLER(
2355		sci_req,
2356		scic_sds_request_state_handler_table,
2357		SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION
2358		);
2359}
2360
2361static void scic_sds_io_request_started_task_mgmt_await_task_response_substate_enter(
2362	void *object)
2363{
2364	struct scic_sds_request *sci_req = object;
2365
2366	SET_STATE_HANDLER(
2367		sci_req,
2368		scic_sds_request_state_handler_table,
2369		SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE
2370		);
2371}
2372
2373static void scic_sds_smp_request_started_await_response_substate_enter(void *object)
2374{
2375	struct scic_sds_request *sci_req = object;
2376
2377	SET_STATE_HANDLER(
2378		sci_req,
2379		scic_sds_request_state_handler_table,
2380		SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE
2381		);
2382}
2383
2384static void scic_sds_smp_request_started_await_tc_completion_substate_enter(void *object)
2385{
2386	struct scic_sds_request *sci_req = object;
2387
2388	SET_STATE_HANDLER(
2389		sci_req,
2390		scic_sds_request_state_handler_table,
2391		SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION
2392		);
2393}
2394
2395static const struct sci_base_state scic_sds_request_state_table[] = {
2396	[SCI_BASE_REQUEST_STATE_INITIAL] = {
2397		.enter_state = scic_sds_request_initial_state_enter,
2398	},
2399	[SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
2400		.enter_state = scic_sds_request_constructed_state_enter,
2401	},
2402	[SCI_BASE_REQUEST_STATE_STARTED] = {
2403		.enter_state = scic_sds_request_started_state_enter,
2404		.exit_state  = scic_sds_request_started_state_exit
2405	},
2406	[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION] = {
2407		.enter_state = scic_sds_io_request_started_task_mgmt_await_tc_completion_substate_enter,
2408	},
2409	[SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_RESPONSE] = {
2410		.enter_state = scic_sds_io_request_started_task_mgmt_await_task_response_substate_enter,
2411	},
2412	[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_RESPONSE] = {
2413		.enter_state = scic_sds_smp_request_started_await_response_substate_enter,
2414	},
2415	[SCIC_SDS_SMP_REQUEST_STARTED_SUBSTATE_AWAIT_TC_COMPLETION] = {
2416		.enter_state = scic_sds_smp_request_started_await_tc_completion_substate_enter,
2417	},
2418	[SCI_BASE_REQUEST_STATE_COMPLETED] = {
2419		.enter_state = scic_sds_request_completed_state_enter,
2420	},
2421	[SCI_BASE_REQUEST_STATE_ABORTING] = {
2422		.enter_state = scic_sds_request_aborting_state_enter,
2423	},
2424	[SCI_BASE_REQUEST_STATE_FINAL] = {
2425		.enter_state = scic_sds_request_final_state_enter,
2426	},
2427};
2428
2429static void scic_sds_general_request_construct(struct scic_sds_controller *scic,
2430					       struct scic_sds_remote_device *sci_dev,
2431					       u16 io_tag, struct scic_sds_request *sci_req)
2432{
2433	sci_base_state_machine_construct(&sci_req->state_machine, sci_req,
2434			scic_sds_request_state_table, SCI_BASE_REQUEST_STATE_INITIAL);
2435	sci_base_state_machine_start(&sci_req->state_machine);
2436
2437	sci_req->io_tag = io_tag;
2438	sci_req->owning_controller = scic;
2439	sci_req->target_device = sci_dev;
2440	sci_req->has_started_substate_machine = false;
2441	sci_req->protocol = SCIC_NO_PROTOCOL;
2442	sci_req->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2443	sci_req->device_sequence = scic_sds_remote_device_get_sequence(sci_dev);
2444
2445	sci_req->sci_status   = SCI_SUCCESS;
2446	sci_req->scu_status   = 0;
2447	sci_req->post_context = 0xFFFFFFFF;
2448
2449	sci_req->is_task_management_request = false;
2450
2451	if (io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
2452		sci_req->was_tag_assigned_by_user = false;
2453		sci_req->task_context_buffer = &sci_req->tc;
2454	} else {
2455		sci_req->was_tag_assigned_by_user = true;
2456
2457		sci_req->task_context_buffer =
2458			scic_sds_controller_get_task_context_buffer(scic, io_tag);
2459	}
2460}
2461
2462static enum sci_status
2463scic_io_request_construct(struct scic_sds_controller *scic,
2464			  struct scic_sds_remote_device *sci_dev,
2465			  u16 io_tag, struct scic_sds_request *sci_req)
2466{
2467	struct domain_device *dev = sci_dev_to_domain(sci_dev);
2468	enum sci_status status = SCI_SUCCESS;
2469
2470	/* Build the common part of the request */
2471	scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
2472
2473	if (sci_dev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2474		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2475
2476	if (dev->dev_type == SAS_END_DEV)
2477		/* pass */;
2478	else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2479		memset(&sci_req->stp.cmd, 0, sizeof(sci_req->stp.cmd));
2480	else if (dev_is_expander(dev))
2481		memset(&sci_req->smp.cmd, 0, sizeof(sci_req->smp.cmd));
2482	else
2483		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2484
2485	memset(sci_req->task_context_buffer, 0,
2486	       offsetof(struct scu_task_context, sgl_pair_ab));
2487
2488	return status;
2489}
2490
2491enum sci_status scic_task_request_construct(struct scic_sds_controller *scic,
2492					    struct scic_sds_remote_device *sci_dev,
2493					    u16 io_tag, struct scic_sds_request *sci_req)
2494{
2495	struct domain_device *dev = sci_dev_to_domain(sci_dev);
2496	enum sci_status status = SCI_SUCCESS;
2497
2498	/* Build the common part of the request */
2499	scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
2500
2501	if (dev->dev_type == SAS_END_DEV ||
2502	    dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
2503		sci_req->is_task_management_request = true;
2504		memset(sci_req->task_context_buffer, 0, sizeof(struct scu_task_context));
2505	} else
2506		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2507
2508	return status;
2509}
2510
2511static enum sci_status isci_request_ssp_request_construct(
2512	struct isci_request *request)
2513{
2514	enum sci_status status;
2515
2516	dev_dbg(&request->isci_host->pdev->dev,
2517		"%s: request = %p\n",
2518		__func__,
2519		request);
2520	status = scic_io_request_construct_basic_ssp(&request->sci);
2521	return status;
2522}
2523
2524static enum sci_status isci_request_stp_request_construct(
2525	struct isci_request *request)
2526{
2527	struct sas_task *task = isci_request_access_task(request);
2528	enum sci_status status;
2529	struct host_to_dev_fis *register_fis;
2530
2531	dev_dbg(&request->isci_host->pdev->dev,
2532		"%s: request = %p\n",
2533		__func__,
2534		request);
2535
2536	/* Get the host_to_dev_fis from the core and copy
2537	 * the fis from the task into it.
2538	 */
2539	register_fis = isci_sata_task_to_fis_copy(task);
2540
2541	status = scic_io_request_construct_basic_sata(&request->sci);
2542
2543	/* Set the ncq tag in the fis, from the queue
2544	 * command in the task.
2545	 */
2546	if (isci_sata_is_task_ncq(task)) {
2547
2548		isci_sata_set_ncq_tag(
2549			register_fis,
2550			task
2551			);
2552	}
2553
2554	return status;
2555}
2556
2557/*
2558 * This function will fill in the SCU Task Context for a SMP request. The
2559 *    following important settings are utilized: -# task_type ==
2560 *    SCU_TASK_TYPE_SMP.  This simply indicates that a normal request type
2561 *    (i.e. non-raw frame) is being utilized to perform task management. -#
2562 *    control_frame == 1.  This ensures that the proper endianess is set so
2563 *    that the bytes are transmitted in the right order for a smp request frame.
2564 * @sci_req: This parameter specifies the smp request object being
2565 *    constructed.
2566 *
2567 */
2568static void
2569scu_smp_request_construct_task_context(struct scic_sds_request *sci_req,
2570				       struct smp_req *smp_req)
2571{
2572	dma_addr_t dma_addr;
2573	struct scic_sds_controller *scic;
2574	struct scic_sds_remote_device *sci_dev;
2575	struct scic_sds_port *sci_port;
2576	struct scu_task_context *task_context;
2577	ssize_t word_cnt = sizeof(struct smp_req) / sizeof(u32);
2578
2579	/* byte swap the smp request. */
2580	sci_swab32_cpy(&sci_req->smp.cmd, smp_req,
2581		       word_cnt);
2582
2583	task_context = scic_sds_request_get_task_context(sci_req);
2584
2585	scic = scic_sds_request_get_controller(sci_req);
2586	sci_dev = scic_sds_request_get_device(sci_req);
2587	sci_port = scic_sds_request_get_port(sci_req);
2588
2589	/*
2590	 * Fill in the TC with the its required data
2591	 * 00h
2592	 */
2593	task_context->priority = 0;
2594	task_context->initiator_request = 1;
2595	task_context->connection_rate = sci_dev->connection_rate;
2596	task_context->protocol_engine_index =
2597		scic_sds_controller_get_protocol_engine_group(scic);
2598	task_context->logical_port_index = scic_sds_port_get_index(sci_port);
2599	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
2600	task_context->abort = 0;
2601	task_context->valid = SCU_TASK_CONTEXT_VALID;
2602	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
2603
2604	/* 04h */
2605	task_context->remote_node_index = sci_dev->rnc.remote_node_index;
2606	task_context->command_code = 0;
2607	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
2608
2609	/* 08h */
2610	task_context->link_layer_control = 0;
2611	task_context->do_not_dma_ssp_good_response = 1;
2612	task_context->strict_ordering = 0;
2613	task_context->control_frame = 1;
2614	task_context->timeout_enable = 0;
2615	task_context->block_guard_enable = 0;
2616
2617	/* 0ch */
2618	task_context->address_modifier = 0;
2619
2620	/* 10h */
2621	task_context->ssp_command_iu_length = smp_req->req_len;
2622
2623	/* 14h */
2624	task_context->transfer_length_bytes = 0;
2625
2626	/*
2627	 * 18h ~ 30h, protocol specific
2628	 * since commandIU has been build by framework at this point, we just
2629	 * copy the frist DWord from command IU to this location. */
2630	memcpy(&task_context->type.smp, &sci_req->smp.cmd, sizeof(u32));
2631
2632	/*
2633	 * 40h
2634	 * "For SMP you could program it to zero. We would prefer that way
2635	 * so that done code will be consistent." - Venki
2636	 */
2637	task_context->task_phase = 0;
2638
2639	if (sci_req->was_tag_assigned_by_user) {
2640		/*
2641		 * Build the task context now since we have already read
2642		 * the data
2643		 */
2644		sci_req->post_context =
2645			(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
2646			 (scic_sds_controller_get_protocol_engine_group(scic) <<
2647			  SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
2648			 (scic_sds_port_get_index(sci_port) <<
2649			  SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
2650			 scic_sds_io_tag_get_index(sci_req->io_tag));
2651	} else {
2652		/*
2653		 * Build the task context now since we have already read
2654		 * the data.
2655		 * I/O tag index is not assigned because we have to wait
2656		 * until we get a TCi.
2657		 */
2658		sci_req->post_context =
2659			(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
2660			 (scic_sds_controller_get_protocol_engine_group(scic) <<
2661			  SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
2662			 (scic_sds_port_get_index(sci_port) <<
2663			  SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
2664	}
2665
2666	/*
2667	 * Copy the physical address for the command buffer to the SCU Task
2668	 * Context command buffer should not contain command header.
2669	 */
2670	dma_addr = scic_io_request_get_dma_addr(sci_req,
2671						((char *) &sci_req->smp.cmd) +
2672						sizeof(u32));
2673
2674	task_context->command_iu_upper = upper_32_bits(dma_addr);
2675	task_context->command_iu_lower = lower_32_bits(dma_addr);
2676
2677	/* SMP response comes as UF, so no need to set response IU address. */
2678	task_context->response_iu_upper = 0;
2679	task_context->response_iu_lower = 0;
2680}
2681
2682static enum sci_status scic_io_request_construct_smp(struct scic_sds_request *sci_req)
2683{
2684	struct smp_req *smp_req = kmalloc(sizeof(*smp_req), GFP_KERNEL);
2685
2686	if (!smp_req)
2687		return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2688
2689	sci_req->protocol = SCIC_SMP_PROTOCOL;
2690
2691	/* Construct the SMP SCU Task Context */
2692	memcpy(smp_req, &sci_req->smp.cmd, sizeof(*smp_req));
2693
2694	/*
2695	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
2696	 * functions under SAS 2.0, a zero request length really indicates
2697	 * a non-zero default length. */
2698	if (smp_req->req_len == 0) {
2699		switch (smp_req->func) {
2700		case SMP_DISCOVER:
2701		case SMP_REPORT_PHY_ERR_LOG:
2702		case SMP_REPORT_PHY_SATA:
2703		case SMP_REPORT_ROUTE_INFO:
2704			smp_req->req_len = 2;
2705			break;
2706		case SMP_CONF_ROUTE_INFO:
2707		case SMP_PHY_CONTROL:
2708		case SMP_PHY_TEST_FUNCTION:
2709			smp_req->req_len = 9;
2710			break;
2711			/* Default - zero is a valid default for 2.0. */
2712		}
2713	}
2714
2715	scu_smp_request_construct_task_context(sci_req, smp_req);
2716
2717	sci_base_state_machine_change_state(&sci_req->state_machine,
2718		SCI_BASE_REQUEST_STATE_CONSTRUCTED);
2719
2720	kfree(smp_req);
2721
2722	return SCI_SUCCESS;
2723}
2724
2725/*
2726 * isci_smp_request_build() - This function builds the smp request.
2727 * @ireq: This parameter points to the isci_request allocated in the
2728 *    request construct function.
2729 *
2730 * SCI_SUCCESS on successfull completion, or specific failure code.
2731 */
2732static enum sci_status isci_smp_request_build(struct isci_request *ireq)
2733{
2734	enum sci_status status = SCI_FAILURE;
2735	struct sas_task *task = isci_request_access_task(ireq);
2736	struct scic_sds_request *sci_req = &ireq->sci;
2737
2738	dev_dbg(&ireq->isci_host->pdev->dev,
2739		"%s: request = %p\n", __func__, ireq);
2740
2741	dev_dbg(&ireq->isci_host->pdev->dev,
2742		"%s: smp_req len = %d\n",
2743		__func__,
2744		task->smp_task.smp_req.length);
2745
2746	/* copy the smp_command to the address; */
2747	sg_copy_to_buffer(&task->smp_task.smp_req, 1,
2748			  &sci_req->smp.cmd,
2749			  sizeof(struct smp_req));
2750
2751	status = scic_io_request_construct_smp(sci_req);
2752	if (status != SCI_SUCCESS)
2753		dev_warn(&ireq->isci_host->pdev->dev,
2754			 "%s: failed with status = %d\n",
2755			 __func__,
2756			 status);
2757
2758	return status;
2759}
2760
2761/**
2762 * isci_io_request_build() - This function builds the io request object.
2763 * @isci_host: This parameter specifies the ISCI host object
2764 * @request: This parameter points to the isci_request object allocated in the
2765 *    request construct function.
2766 * @sci_device: This parameter is the handle for the sci core's remote device
2767 *    object that is the destination for this request.
2768 *
2769 * SCI_SUCCESS on successfull completion, or specific failure code.
2770 */
2771static enum sci_status isci_io_request_build(
2772	struct isci_host *isci_host,
2773	struct isci_request *request,
2774	struct isci_remote_device *isci_device)
2775{
2776	enum sci_status status = SCI_SUCCESS;
2777	struct sas_task *task = isci_request_access_task(request);
2778	struct scic_sds_remote_device *sci_device = &isci_device->sci;
2779
2780	dev_dbg(&isci_host->pdev->dev,
2781		"%s: isci_device = 0x%p; request = %p, "
2782		"num_scatter = %d\n",
2783		__func__,
2784		isci_device,
2785		request,
2786		task->num_scatter);
2787
2788	/* map the sgl addresses, if present.
2789	 * libata does the mapping for sata devices
2790	 * before we get the request.
2791	 */
2792	if (task->num_scatter &&
2793	    !sas_protocol_ata(task->task_proto) &&
2794	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
2795
2796		request->num_sg_entries = dma_map_sg(
2797			&isci_host->pdev->dev,
2798			task->scatter,
2799			task->num_scatter,
2800			task->data_dir
2801			);
2802
2803		if (request->num_sg_entries == 0)
2804			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2805	}
2806
2807	/* build the common request object. For now,
2808	 * we will let the core allocate the IO tag.
2809	 */
2810	status = scic_io_request_construct(&isci_host->sci, sci_device,
2811					   SCI_CONTROLLER_INVALID_IO_TAG,
2812					   &request->sci);
2813
2814	if (status != SCI_SUCCESS) {
2815		dev_warn(&isci_host->pdev->dev,
2816			 "%s: failed request construct\n",
2817			 __func__);
2818		return SCI_FAILURE;
2819	}
2820
2821	switch (task->task_proto) {
2822	case SAS_PROTOCOL_SMP:
2823		status = isci_smp_request_build(request);
2824		break;
2825	case SAS_PROTOCOL_SSP:
2826		status = isci_request_ssp_request_construct(request);
2827		break;
2828	case SAS_PROTOCOL_SATA:
2829	case SAS_PROTOCOL_STP:
2830	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
2831		status = isci_request_stp_request_construct(request);
2832		break;
2833	default:
2834		dev_warn(&isci_host->pdev->dev,
2835			 "%s: unknown protocol\n", __func__);
2836		return SCI_FAILURE;
2837	}
2838
2839	return SCI_SUCCESS;
2840}
2841
2842/**
2843 * isci_request_alloc_core() - This function gets the request object from the
2844 *    isci_host dma cache.
2845 * @isci_host: This parameter specifies the ISCI host object
2846 * @isci_request: This parameter will contain the pointer to the new
2847 *    isci_request object.
2848 * @isci_device: This parameter is the pointer to the isci remote device object
2849 *    that is the destination for this request.
2850 * @gfp_flags: This parameter specifies the os allocation flags.
2851 *
2852 * SCI_SUCCESS on successfull completion, or specific failure code.
2853 */
2854static int isci_request_alloc_core(
2855	struct isci_host *isci_host,
2856	struct isci_request **isci_request,
2857	struct isci_remote_device *isci_device,
2858	gfp_t gfp_flags)
2859{
2860	int ret = 0;
2861	dma_addr_t handle;
2862	struct isci_request *request;
2863
2864
2865	/* get pointer to dma memory. This actually points
2866	 * to both the isci_remote_device object and the
2867	 * sci object. The isci object is at the beginning
2868	 * of the memory allocated here.
2869	 */
2870	request = dma_pool_alloc(isci_host->dma_pool, gfp_flags, &handle);
2871	if (!request) {
2872		dev_warn(&isci_host->pdev->dev,
2873			 "%s: dma_pool_alloc returned NULL\n", __func__);
2874		return -ENOMEM;
2875	}
2876
2877	/* initialize the request object.	*/
2878	spin_lock_init(&request->state_lock);
2879	request->request_daddr = handle;
2880	request->isci_host = isci_host;
2881	request->isci_device = isci_device;
2882	request->io_request_completion = NULL;
2883	request->terminated = false;
2884
2885	request->num_sg_entries = 0;
2886
2887	request->complete_in_target = false;
2888
2889	INIT_LIST_HEAD(&request->completed_node);
2890	INIT_LIST_HEAD(&request->dev_node);
2891
2892	*isci_request = request;
2893	isci_request_change_state(request, allocated);
2894
2895	return ret;
2896}
2897
2898static int isci_request_alloc_io(
2899	struct isci_host *isci_host,
2900	struct sas_task *task,
2901	struct isci_request **isci_request,
2902	struct isci_remote_device *isci_device,
2903	gfp_t gfp_flags)
2904{
2905	int retval = isci_request_alloc_core(isci_host, isci_request,
2906					     isci_device, gfp_flags);
2907
2908	if (!retval) {
2909		(*isci_request)->ttype_ptr.io_task_ptr = task;
2910		(*isci_request)->ttype                 = io_task;
2911
2912		task->lldd_task = *isci_request;
2913	}
2914	return retval;
2915}
2916
2917/**
2918 * isci_request_alloc_tmf() - This function gets the request object from the
2919 *    isci_host dma cache and initializes the relevant fields as a sas_task.
2920 * @isci_host: This parameter specifies the ISCI host object
2921 * @sas_task: This parameter is the task struct from the upper layer driver.
2922 * @isci_request: This parameter will contain the pointer to the new
2923 *    isci_request object.
2924 * @isci_device: This parameter is the pointer to the isci remote device object
2925 *    that is the destination for this request.
2926 * @gfp_flags: This parameter specifies the os allocation flags.
2927 *
2928 * SCI_SUCCESS on successfull completion, or specific failure code.
2929 */
2930int isci_request_alloc_tmf(
2931	struct isci_host *isci_host,
2932	struct isci_tmf *isci_tmf,
2933	struct isci_request **isci_request,
2934	struct isci_remote_device *isci_device,
2935	gfp_t gfp_flags)
2936{
2937	int retval = isci_request_alloc_core(isci_host, isci_request,
2938					     isci_device, gfp_flags);
2939
2940	if (!retval) {
2941
2942		(*isci_request)->ttype_ptr.tmf_task_ptr = isci_tmf;
2943		(*isci_request)->ttype = tmf_task;
2944	}
2945	return retval;
2946}
2947
2948/**
2949 * isci_request_execute() - This function allocates the isci_request object,
2950 *    all fills in some common fields.
2951 * @isci_host: This parameter specifies the ISCI host object
2952 * @sas_task: This parameter is the task struct from the upper layer driver.
2953 * @isci_request: This parameter will contain the pointer to the new
2954 *    isci_request object.
2955 * @gfp_flags: This parameter specifies the os allocation flags.
2956 *
2957 * SCI_SUCCESS on successfull completion, or specific failure code.
2958 */
2959int isci_request_execute(
2960	struct isci_host *isci_host,
2961	struct sas_task *task,
2962	struct isci_request **isci_request,
2963	gfp_t gfp_flags)
2964{
2965	int ret = 0;
2966	struct scic_sds_remote_device *sci_device;
2967	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2968	struct isci_remote_device *isci_device;
2969	struct isci_request *request;
2970	unsigned long flags;
2971
2972	isci_device = task->dev->lldd_dev;
2973	sci_device = &isci_device->sci;
2974
2975	/* do common allocation and init of request object. */
2976	ret = isci_request_alloc_io(
2977		isci_host,
2978		task,
2979		&request,
2980		isci_device,
2981		gfp_flags
2982		);
2983
2984	if (ret)
2985		goto out;
2986
2987	status = isci_io_request_build(isci_host, request, isci_device);
2988	if (status != SCI_SUCCESS) {
2989		dev_warn(&isci_host->pdev->dev,
2990			 "%s: request_construct failed - status = 0x%x\n",
2991			 __func__,
2992			 status);
2993		goto out;
2994	}
2995
2996	spin_lock_irqsave(&isci_host->scic_lock, flags);
2997
2998	/* send the request, let the core assign the IO TAG.	*/
2999	status = scic_controller_start_io(&isci_host->sci, sci_device,
3000					  &request->sci,
3001					  SCI_CONTROLLER_INVALID_IO_TAG);
3002	if (status != SCI_SUCCESS &&
3003	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3004		dev_warn(&isci_host->pdev->dev,
3005			 "%s: failed request start (0x%x)\n",
3006			 __func__, status);
3007		spin_unlock_irqrestore(&isci_host->scic_lock, flags);
3008		goto out;
3009	}
3010
3011	/* Either I/O started OK, or the core has signaled that
3012	 * the device needs a target reset.
3013	 *
3014	 * In either case, hold onto the I/O for later.
3015	 *
3016	 * Update it's status and add it to the list in the
3017	 * remote device object.
3018	 */
3019	isci_request_change_state(request, started);
3020	list_add(&request->dev_node, &isci_device->reqs_in_process);
3021
3022	if (status == SCI_SUCCESS) {
3023		/* Save the tag for possible task mgmt later. */
3024		request->io_tag = request->sci.io_tag;
3025	} else {
3026		/* The request did not really start in the
3027		 * hardware, so clear the request handle
3028		 * here so no terminations will be done.
3029		 */
3030		request->terminated = true;
3031	}
3032	spin_unlock_irqrestore(&isci_host->scic_lock, flags);
3033
3034	if (status ==
3035	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3036		/* Signal libsas that we need the SCSI error
3037		* handler thread to work on this I/O and that
3038		* we want a device reset.
3039		*/
3040		spin_lock_irqsave(&task->task_state_lock, flags);
3041		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3042		spin_unlock_irqrestore(&task->task_state_lock, flags);
3043
3044		/* Cause this task to be scheduled in the SCSI error
3045		* handler thread.
3046		*/
3047		isci_execpath_callback(isci_host, task,
3048				       sas_task_abort);
3049
3050		/* Change the status, since we are holding
3051		* the I/O until it is managed by the SCSI
3052		* error handler.
3053		*/
3054		status = SCI_SUCCESS;
3055	}
3056
3057 out:
3058	if (status != SCI_SUCCESS) {
3059		/* release dma memory on failure. */
3060		isci_request_free(isci_host, request);
3061		request = NULL;
3062		ret = SCI_FAILURE;
3063	}
3064
3065	*isci_request = request;
3066	return ret;
3067}
3068
3069
3070
3071