request.c revision f1f52e75939b56c40b3d153ae99faf2720250242
1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "scic_port.h"
58#include "task.h"
59#include "request.h"
60#include "sata.h"
61#include "scu_completion_codes.h"
62#include "sas.h"
63
64/**
65 * This method returns the sgl element pair for the specificed sgl_pair index.
66 * @sci_req: This parameter specifies the IO request for which to retrieve
67 *    the Scatter-Gather List element pair.
68 * @sgl_pair_index: This parameter specifies the index into the SGL element
69 *    pair to be retrieved.
70 *
71 * This method returns a pointer to an struct scu_sgl_element_pair.
72 */
73static struct scu_sgl_element_pair *scic_sds_request_get_sgl_element_pair(
74	struct scic_sds_request *sci_req,
75	u32 sgl_pair_index
76	) {
77	struct scu_task_context *task_context;
78
79	task_context = (struct scu_task_context *)sci_req->task_context_buffer;
80
81	if (sgl_pair_index == 0) {
82		return &task_context->sgl_pair_ab;
83	} else if (sgl_pair_index == 1) {
84		return &task_context->sgl_pair_cd;
85	}
86
87	return &sci_req->sg_table[sgl_pair_index - 2];
88}
89
90/**
91 * This function will build the SGL list for an IO request.
92 * @sci_req: This parameter specifies the IO request for which to build
93 *    the Scatter-Gather List.
94 *
95 */
96void scic_sds_request_build_sgl(struct scic_sds_request *sds_request)
97{
98	struct isci_request *isci_request = sci_req_to_ireq(sds_request);
99	struct isci_host *isci_host = isci_request->isci_host;
100	struct sas_task *task = isci_request_access_task(isci_request);
101	struct scatterlist *sg = NULL;
102	dma_addr_t dma_addr;
103	u32 sg_idx = 0;
104	struct scu_sgl_element_pair *scu_sg   = NULL;
105	struct scu_sgl_element_pair *prev_sg  = NULL;
106
107	if (task->num_scatter > 0) {
108		sg = task->scatter;
109
110		while (sg) {
111			scu_sg = scic_sds_request_get_sgl_element_pair(
112					sds_request,
113					sg_idx);
114
115			SCU_SGL_COPY(scu_sg->A, sg);
116
117			sg = sg_next(sg);
118
119			if (sg) {
120				SCU_SGL_COPY(scu_sg->B, sg);
121				sg = sg_next(sg);
122			} else
123				SCU_SGL_ZERO(scu_sg->B);
124
125			if (prev_sg) {
126				dma_addr =
127					scic_io_request_get_dma_addr(
128							sds_request,
129							scu_sg);
130
131				prev_sg->next_pair_upper =
132					upper_32_bits(dma_addr);
133				prev_sg->next_pair_lower =
134					lower_32_bits(dma_addr);
135			}
136
137			prev_sg = scu_sg;
138			sg_idx++;
139		}
140	} else {	/* handle when no sg */
141		scu_sg = scic_sds_request_get_sgl_element_pair(sds_request,
142							       sg_idx);
143
144		dma_addr = dma_map_single(&isci_host->pdev->dev,
145					  task->scatter,
146					  task->total_xfer_len,
147					  task->data_dir);
148
149		isci_request->zero_scatter_daddr = dma_addr;
150
151		scu_sg->A.length = task->total_xfer_len;
152		scu_sg->A.address_upper = upper_32_bits(dma_addr);
153		scu_sg->A.address_lower = lower_32_bits(dma_addr);
154	}
155
156	if (scu_sg) {
157		scu_sg->next_pair_upper = 0;
158		scu_sg->next_pair_lower = 0;
159	}
160}
161
162static void scic_sds_ssp_io_request_assign_buffers(struct scic_sds_request *sci_req)
163{
164	if (sci_req->was_tag_assigned_by_user == false)
165		sci_req->task_context_buffer = &sci_req->tc;
166}
167
168static void scic_sds_io_request_build_ssp_command_iu(struct scic_sds_request *sci_req)
169{
170	struct ssp_cmd_iu *cmd_iu;
171	struct isci_request *ireq = sci_req_to_ireq(sci_req);
172	struct sas_task *task = isci_request_access_task(ireq);
173
174	cmd_iu = &sci_req->ssp.cmd;
175
176	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
177	cmd_iu->add_cdb_len = 0;
178	cmd_iu->_r_a = 0;
179	cmd_iu->_r_b = 0;
180	cmd_iu->en_fburst = 0; /* unsupported */
181	cmd_iu->task_prio = task->ssp_task.task_prio;
182	cmd_iu->task_attr = task->ssp_task.task_attr;
183	cmd_iu->_r_c = 0;
184
185	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
186		       sizeof(task->ssp_task.cdb) / sizeof(u32));
187}
188
189static void scic_sds_task_request_build_ssp_task_iu(struct scic_sds_request *sci_req)
190{
191	struct ssp_task_iu *task_iu;
192	struct isci_request *ireq = sci_req_to_ireq(sci_req);
193	struct sas_task *task = isci_request_access_task(ireq);
194	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
195
196	task_iu = &sci_req->ssp.tmf;
197
198	memset(task_iu, 0, sizeof(struct ssp_task_iu));
199
200	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
201
202	task_iu->task_func = isci_tmf->tmf_code;
203	task_iu->task_tag =
204		(ireq->ttype == tmf_task) ?
205		isci_tmf->io_tag :
206		SCI_CONTROLLER_INVALID_IO_TAG;
207}
208
209/**
210 * This method is will fill in the SCU Task Context for any type of SSP request.
211 * @sci_req:
212 * @task_context:
213 *
214 */
215static void scu_ssp_reqeust_construct_task_context(
216	struct scic_sds_request *sds_request,
217	struct scu_task_context *task_context)
218{
219	dma_addr_t dma_addr;
220	struct scic_sds_controller *controller;
221	struct scic_sds_remote_device *target_device;
222	struct scic_sds_port *target_port;
223
224	controller = scic_sds_request_get_controller(sds_request);
225	target_device = scic_sds_request_get_device(sds_request);
226	target_port = scic_sds_request_get_port(sds_request);
227
228	/* Fill in the TC with the its required data */
229	task_context->abort = 0;
230	task_context->priority = 0;
231	task_context->initiator_request = 1;
232	task_context->connection_rate = target_device->connection_rate;
233	task_context->protocol_engine_index =
234		scic_sds_controller_get_protocol_engine_group(controller);
235	task_context->logical_port_index =
236		scic_sds_port_get_index(target_port);
237	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
238	task_context->valid = SCU_TASK_CONTEXT_VALID;
239	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
240
241	task_context->remote_node_index =
242		scic_sds_remote_device_get_index(sds_request->target_device);
243	task_context->command_code = 0;
244
245	task_context->link_layer_control = 0;
246	task_context->do_not_dma_ssp_good_response = 1;
247	task_context->strict_ordering = 0;
248	task_context->control_frame = 0;
249	task_context->timeout_enable = 0;
250	task_context->block_guard_enable = 0;
251
252	task_context->address_modifier = 0;
253
254	/* task_context->type.ssp.tag = sci_req->io_tag; */
255	task_context->task_phase = 0x01;
256
257	if (sds_request->was_tag_assigned_by_user) {
258		/*
259		 * Build the task context now since we have already read
260		 * the data
261		 */
262		sds_request->post_context =
263			(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
264			 (scic_sds_controller_get_protocol_engine_group(
265							controller) <<
266			  SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
267			 (scic_sds_port_get_index(target_port) <<
268			  SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
269			 scic_sds_io_tag_get_index(sds_request->io_tag));
270	} else {
271		/*
272		 * Build the task context now since we have already read
273		 * the data
274		 *
275		 * I/O tag index is not assigned because we have to wait
276		 * until we get a TCi
277		 */
278		sds_request->post_context =
279			(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
280			 (scic_sds_controller_get_protocol_engine_group(
281							owning_controller) <<
282			  SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
283			 (scic_sds_port_get_index(target_port) <<
284			  SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
285	}
286
287	/*
288	 * Copy the physical address for the command buffer to the
289	 * SCU Task Context
290	 */
291	dma_addr = scic_io_request_get_dma_addr(sds_request,
292						&sds_request->ssp.cmd);
293
294	task_context->command_iu_upper = upper_32_bits(dma_addr);
295	task_context->command_iu_lower = lower_32_bits(dma_addr);
296
297	/*
298	 * Copy the physical address for the response buffer to the
299	 * SCU Task Context
300	 */
301	dma_addr = scic_io_request_get_dma_addr(sds_request,
302						&sds_request->ssp.rsp);
303
304	task_context->response_iu_upper = upper_32_bits(dma_addr);
305	task_context->response_iu_lower = lower_32_bits(dma_addr);
306}
307
308/**
309 * This method is will fill in the SCU Task Context for a SSP IO request.
310 * @sci_req:
311 *
312 */
313static void scu_ssp_io_request_construct_task_context(
314	struct scic_sds_request *sci_req,
315	enum dma_data_direction dir,
316	u32 len)
317{
318	struct scu_task_context *task_context;
319
320	task_context = scic_sds_request_get_task_context(sci_req);
321
322	scu_ssp_reqeust_construct_task_context(sci_req, task_context);
323
324	task_context->ssp_command_iu_length =
325		sizeof(struct ssp_cmd_iu) / sizeof(u32);
326	task_context->type.ssp.frame_type = SSP_COMMAND;
327
328	switch (dir) {
329	case DMA_FROM_DEVICE:
330	case DMA_NONE:
331	default:
332		task_context->task_type = SCU_TASK_TYPE_IOREAD;
333		break;
334	case DMA_TO_DEVICE:
335		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
336		break;
337	}
338
339	task_context->transfer_length_bytes = len;
340
341	if (task_context->transfer_length_bytes > 0)
342		scic_sds_request_build_sgl(sci_req);
343}
344
345static void scic_sds_ssp_task_request_assign_buffers(struct scic_sds_request *sci_req)
346{
347	if (sci_req->was_tag_assigned_by_user == false)
348		sci_req->task_context_buffer = &sci_req->tc;
349}
350
351/**
352 * This method will fill in the SCU Task Context for a SSP Task request.  The
353 *    following important settings are utilized: -# priority ==
354 *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
355 *    ahead of other task destined for the same Remote Node. -# task_type ==
356 *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
357 *    (i.e. non-raw frame) is being utilized to perform task management. -#
358 *    control_frame == 1.  This ensures that the proper endianess is set so
359 *    that the bytes are transmitted in the right order for a task frame.
360 * @sci_req: This parameter specifies the task request object being
361 *    constructed.
362 *
363 */
364static void scu_ssp_task_request_construct_task_context(
365	struct scic_sds_request *sci_req)
366{
367	struct scu_task_context *task_context;
368
369	task_context = scic_sds_request_get_task_context(sci_req);
370
371	scu_ssp_reqeust_construct_task_context(sci_req, task_context);
372
373	task_context->control_frame                = 1;
374	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
375	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
376	task_context->transfer_length_bytes        = 0;
377	task_context->type.ssp.frame_type          = SSP_TASK;
378	task_context->ssp_command_iu_length =
379		sizeof(struct ssp_task_iu) / sizeof(u32);
380}
381
382
383/**
384 * This method constructs the SSP Command IU data for this ssp passthrough
385 *    comand request object.
386 * @sci_req: This parameter specifies the request object for which the SSP
387 *    command information unit is being built.
388 *
389 * enum sci_status, returns invalid parameter is cdb > 16
390 */
391
392
393/**
394 * This method constructs the SATA request object.
395 * @sci_req:
396 * @sat_protocol:
397 * @transfer_length:
398 * @data_direction:
399 * @copy_rx_frame:
400 *
401 * enum sci_status
402 */
403static enum sci_status
404scic_io_request_construct_sata(struct scic_sds_request *sci_req,
405			       u32 len,
406			       enum dma_data_direction dir,
407			       bool copy)
408{
409	enum sci_status status = SCI_SUCCESS;
410	struct isci_request *ireq = sci_req_to_ireq(sci_req);
411	struct sas_task *task = isci_request_access_task(ireq);
412
413	/* check for management protocols */
414	if (ireq->ttype == tmf_task) {
415		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
416
417		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
418		    tmf->tmf_code == isci_tmf_sata_srst_low)
419			return scic_sds_stp_soft_reset_request_construct(sci_req);
420		else {
421			dev_err(scic_to_dev(sci_req->owning_controller),
422				"%s: Request 0x%p received un-handled SAT "
423				"management protocol 0x%x.\n",
424				__func__, sci_req, tmf->tmf_code);
425
426			return SCI_FAILURE;
427		}
428	}
429
430	if (!sas_protocol_ata(task->task_proto)) {
431		dev_err(scic_to_dev(sci_req->owning_controller),
432			"%s: Non-ATA protocol in SATA path: 0x%x\n",
433			__func__,
434			task->task_proto);
435		return SCI_FAILURE;
436
437	}
438
439	/* non data */
440	if (task->data_dir == DMA_NONE)
441		return scic_sds_stp_non_data_request_construct(sci_req);
442
443	/* NCQ */
444	if (task->ata_task.use_ncq)
445		return scic_sds_stp_ncq_request_construct(sci_req, len, dir);
446
447	/* DMA */
448	if (task->ata_task.dma_xfer)
449		return scic_sds_stp_udma_request_construct(sci_req, len, dir);
450	else /* PIO */
451		return scic_sds_stp_pio_request_construct(sci_req, copy);
452
453	return status;
454}
455
456static enum sci_status scic_io_request_construct_basic_ssp(struct scic_sds_request *sci_req)
457{
458	struct isci_request *ireq = sci_req_to_ireq(sci_req);
459	struct sas_task *task = isci_request_access_task(ireq);
460
461	sci_req->protocol = SCIC_SSP_PROTOCOL;
462
463	scu_ssp_io_request_construct_task_context(sci_req,
464						  task->data_dir,
465						  task->total_xfer_len);
466
467	scic_sds_io_request_build_ssp_command_iu(sci_req);
468
469	sci_base_state_machine_change_state(
470			&sci_req->state_machine,
471			SCI_BASE_REQUEST_STATE_CONSTRUCTED);
472
473	return SCI_SUCCESS;
474}
475
476enum sci_status scic_task_request_construct_ssp(
477	struct scic_sds_request *sci_req)
478{
479	/* Construct the SSP Task SCU Task Context */
480	scu_ssp_task_request_construct_task_context(sci_req);
481
482	/* Fill in the SSP Task IU */
483	scic_sds_task_request_build_ssp_task_iu(sci_req);
484
485	sci_base_state_machine_change_state(&sci_req->state_machine,
486		SCI_BASE_REQUEST_STATE_CONSTRUCTED);
487
488	return SCI_SUCCESS;
489}
490
491
492static enum sci_status scic_io_request_construct_basic_sata(struct scic_sds_request *sci_req)
493{
494	enum sci_status status;
495	struct scic_sds_stp_request *stp_req;
496	bool copy = false;
497	struct isci_request *isci_request = sci_req_to_ireq(sci_req);
498	struct sas_task *task = isci_request_access_task(isci_request);
499
500	stp_req = &sci_req->stp.req;
501	sci_req->protocol = SCIC_STP_PROTOCOL;
502
503	copy = (task->data_dir == DMA_NONE) ? false : true;
504
505	status = scic_io_request_construct_sata(sci_req,
506						task->total_xfer_len,
507						task->data_dir,
508						copy);
509
510	if (status == SCI_SUCCESS)
511		sci_base_state_machine_change_state(&sci_req->state_machine,
512			SCI_BASE_REQUEST_STATE_CONSTRUCTED);
513
514	return status;
515}
516
517
518enum sci_status scic_task_request_construct_sata(struct scic_sds_request *sci_req)
519{
520	enum sci_status status = SCI_SUCCESS;
521	struct isci_request *ireq = sci_req_to_ireq(sci_req);
522
523	/* check for management protocols */
524	if (ireq->ttype == tmf_task) {
525		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
526
527		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
528		    tmf->tmf_code == isci_tmf_sata_srst_low) {
529			status = scic_sds_stp_soft_reset_request_construct(sci_req);
530		} else {
531			dev_err(scic_to_dev(sci_req->owning_controller),
532				"%s: Request 0x%p received un-handled SAT "
533				"Protocol 0x%x.\n",
534				__func__, sci_req, tmf->tmf_code);
535
536			return SCI_FAILURE;
537		}
538	}
539
540	if (status == SCI_SUCCESS)
541		sci_base_state_machine_change_state(
542				&sci_req->state_machine,
543				SCI_BASE_REQUEST_STATE_CONSTRUCTED);
544
545	return status;
546}
547
548/**
549 * sci_req_tx_bytes - bytes transferred when reply underruns request
550 * @sci_req: request that was terminated early
551 */
552#define SCU_TASK_CONTEXT_SRAM 0x200000
553static u32 sci_req_tx_bytes(struct scic_sds_request *sci_req)
554{
555	struct scic_sds_controller *scic = sci_req->owning_controller;
556	u32 ret_val = 0;
557
558	if (readl(&scic->smu_registers->address_modifier) == 0) {
559		void __iomem *scu_reg_base = scic->scu_registers;
560
561		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
562		 *   BAR1 is the scu_registers
563		 *   0x20002C = 0x200000 + 0x2c
564		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
565		 *   TCi is the io_tag of struct scic_sds_request
566		 */
567		ret_val = readl(scu_reg_base +
568				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
569				((sizeof(struct scu_task_context)) * scic_sds_io_tag_get_index(sci_req->io_tag)));
570	}
571
572	return ret_val;
573}
574
575enum sci_status
576scic_sds_request_start(struct scic_sds_request *request)
577{
578	if (request->device_sequence !=
579	    scic_sds_remote_device_get_sequence(request->target_device))
580		return SCI_FAILURE;
581
582	if (request->state_handlers->start_handler)
583		return request->state_handlers->start_handler(request);
584
585	dev_warn(scic_to_dev(request->owning_controller),
586		 "%s: SCIC IO Request requested to start while in wrong "
587		 "state %d\n",
588		 __func__,
589		 sci_base_state_machine_get_state(&request->state_machine));
590
591	return SCI_FAILURE_INVALID_STATE;
592}
593
594enum sci_status
595scic_sds_io_request_terminate(struct scic_sds_request *request)
596{
597	if (request->state_handlers->abort_handler)
598		return request->state_handlers->abort_handler(request);
599
600	dev_warn(scic_to_dev(request->owning_controller),
601		"%s: SCIC IO Request requested to abort while in wrong "
602		"state %d\n",
603		__func__,
604		sci_base_state_machine_get_state(&request->state_machine));
605
606	return SCI_FAILURE_INVALID_STATE;
607}
608
609enum sci_status scic_sds_io_request_event_handler(
610	struct scic_sds_request *request,
611	u32 event_code)
612{
613	if (request->state_handlers->event_handler)
614		return request->state_handlers->event_handler(request, event_code);
615
616	dev_warn(scic_to_dev(request->owning_controller),
617		 "%s: SCIC IO Request given event code notification %x while "
618		 "in wrong state %d\n",
619		 __func__,
620		 event_code,
621		 sci_base_state_machine_get_state(&request->state_machine));
622
623	return SCI_FAILURE_INVALID_STATE;
624}
625
626/**
627 *
628 * @sci_req: The SCIC_SDS_IO_REQUEST_T object for which the start
629 *    operation is to be executed.
630 * @frame_index: The frame index returned by the hardware for the reqeust
631 *    object.
632 *
633 * This method invokes the core state frame handler for the
634 * SCIC_SDS_IO_REQUEST_T object. enum sci_status
635 */
636enum sci_status scic_sds_io_request_frame_handler(
637	struct scic_sds_request *request,
638	u32 frame_index)
639{
640	if (request->state_handlers->frame_handler)
641		return request->state_handlers->frame_handler(request, frame_index);
642
643	dev_warn(scic_to_dev(request->owning_controller),
644		 "%s: SCIC IO Request given unexpected frame %x while in "
645		 "state %d\n",
646		 __func__,
647		 frame_index,
648		 sci_base_state_machine_get_state(&request->state_machine));
649
650	scic_sds_controller_release_frame(request->owning_controller, frame_index);
651	return SCI_FAILURE_INVALID_STATE;
652}
653
654/*
655 * This function copies response data for requests returning response data
656 *    instead of sense data.
657 * @sci_req: This parameter specifies the request object for which to copy
658 *    the response data.
659 */
660void scic_sds_io_request_copy_response(struct scic_sds_request *sci_req)
661{
662	void *resp_buf;
663	u32 len;
664	struct ssp_response_iu *ssp_response;
665	struct isci_request *ireq = sci_req_to_ireq(sci_req);
666	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
667
668	ssp_response = &sci_req->ssp.rsp;
669
670	resp_buf = &isci_tmf->resp.resp_iu;
671
672	len = min_t(u32,
673		    SSP_RESP_IU_MAX_SIZE,
674		    be32_to_cpu(ssp_response->response_data_len));
675
676	memcpy(resp_buf, ssp_response->resp_data, len);
677}
678
679/*
680 * This method implements the action taken when a constructed
681 * SCIC_SDS_IO_REQUEST_T object receives a scic_sds_request_start() request.
682 * This method will, if necessary, allocate a TCi for the io request object and
683 * then will, if necessary, copy the constructed TC data into the actual TC
684 * buffer.  If everything is successful the post context field is updated with
685 * the TCi so the controller can post the request to the hardware. enum sci_status
686 * SCI_SUCCESS SCI_FAILURE_INSUFFICIENT_RESOURCES
687 */
688static enum sci_status scic_sds_request_constructed_state_start_handler(
689	struct scic_sds_request *request)
690{
691	struct scu_task_context *task_context;
692
693	if (request->io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
694		request->io_tag =
695			scic_controller_allocate_io_tag(request->owning_controller);
696	}
697
698	/* Record the IO Tag in the request */
699	if (request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) {
700		task_context = request->task_context_buffer;
701
702		task_context->task_index = scic_sds_io_tag_get_index(request->io_tag);
703
704		switch (task_context->protocol_type) {
705		case SCU_TASK_CONTEXT_PROTOCOL_SMP:
706		case SCU_TASK_CONTEXT_PROTOCOL_SSP:
707			/* SSP/SMP Frame */
708			task_context->type.ssp.tag = request->io_tag;
709			task_context->type.ssp.target_port_transfer_tag = 0xFFFF;
710			break;
711
712		case SCU_TASK_CONTEXT_PROTOCOL_STP:
713			/*
714			 * STP/SATA Frame
715			 * task_context->type.stp.ncq_tag = request->ncq_tag; */
716			break;
717
718		case SCU_TASK_CONTEXT_PROTOCOL_NONE:
719			/* / @todo When do we set no protocol type? */
720			break;
721
722		default:
723			/* This should never happen since we build the IO requests */
724			break;
725		}
726
727		/*
728		 * Check to see if we need to copy the task context buffer
729		 * or have been building into the task context buffer */
730		if (request->was_tag_assigned_by_user == false) {
731			scic_sds_controller_copy_task_context(
732				request->owning_controller, request);
733		}
734
735		/* Add to the post_context the io tag value */
736		request->post_context |= scic_sds_io_tag_get_index(request->io_tag);
737
738		/* Everything is good go ahead and change state */
739		sci_base_state_machine_change_state(&request->state_machine,
740			SCI_BASE_REQUEST_STATE_STARTED);
741
742		return SCI_SUCCESS;
743	}
744
745	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
746}
747
748/*
749 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
750 * object receives a scic_sds_request_terminate() request. Since the request
751 * has not yet been posted to the hardware the request transitions to the
752 * completed state. enum sci_status SCI_SUCCESS
753 */
754static enum sci_status scic_sds_request_constructed_state_abort_handler(
755	struct scic_sds_request *request)
756{
757	/*
758	 * This request has been terminated by the user make sure that the correct
759	 * status code is returned */
760	scic_sds_request_set_status(request,
761		SCU_TASK_DONE_TASK_ABORT,
762		SCI_FAILURE_IO_TERMINATED);
763
764	sci_base_state_machine_change_state(&request->state_machine,
765		SCI_BASE_REQUEST_STATE_COMPLETED);
766	return SCI_SUCCESS;
767}
768
769/*
770 * *****************************************************************************
771 * *  STARTED STATE HANDLERS
772 * ***************************************************************************** */
773
774/*
775 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
776 * object receives a scic_sds_request_terminate() request. Since the request
777 * has been posted to the hardware the io request state is changed to the
778 * aborting state. enum sci_status SCI_SUCCESS
779 */
780enum sci_status scic_sds_request_started_state_abort_handler(
781	struct scic_sds_request *request)
782{
783	if (request->has_started_substate_machine)
784		sci_base_state_machine_stop(&request->started_substate_machine);
785
786	sci_base_state_machine_change_state(&request->state_machine,
787		SCI_BASE_REQUEST_STATE_ABORTING);
788	return SCI_SUCCESS;
789}
790
791/*
792 * scic_sds_request_started_state_tc_completion_handler() - This method process
793 *    TC (task context) completions for normal IO request (i.e. Task/Abort
794 *    Completions of type 0).  This method will update the
795 *    SCIC_SDS_IO_REQUEST_T::status field.
796 * @sci_req: This parameter specifies the request for which a completion
797 *    occurred.
798 * @completion_code: This parameter specifies the completion code received from
799 *    the SCU.
800 *
801 */
802static enum sci_status
803scic_sds_request_started_state_tc_completion_handler(struct scic_sds_request *sci_req,
804						     u32 completion_code)
805{
806	u8 datapres;
807	struct ssp_response_iu *resp_iu;
808
809	/*
810	 * TODO: Any SDMA return code of other than 0 is bad
811	 *       decode 0x003C0000 to determine SDMA status
812	 */
813	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
814	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
815		scic_sds_request_set_status(sci_req,
816					    SCU_TASK_DONE_GOOD,
817					    SCI_SUCCESS);
818		break;
819
820	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP):
821	{
822		/*
823		 * There are times when the SCU hardware will return an early
824		 * response because the io request specified more data than is
825		 * returned by the target device (mode pages, inquiry data,
826		 * etc.).  We must check the response stats to see if this is
827		 * truly a failed request or a good request that just got
828		 * completed early.
829		 */
830		struct ssp_response_iu *resp = &sci_req->ssp.rsp;
831		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
832
833		sci_swab32_cpy(&sci_req->ssp.rsp,
834			       &sci_req->ssp.rsp,
835			       word_cnt);
836
837		if (resp->status == 0) {
838			scic_sds_request_set_status(
839				sci_req,
840				SCU_TASK_DONE_GOOD,
841				SCI_SUCCESS_IO_DONE_EARLY);
842		} else {
843			scic_sds_request_set_status(
844				sci_req,
845				SCU_TASK_DONE_CHECK_RESPONSE,
846				SCI_FAILURE_IO_RESPONSE_VALID);
847		}
848	}
849	break;
850
851	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE):
852	{
853		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
854
855		sci_swab32_cpy(&sci_req->ssp.rsp,
856			       &sci_req->ssp.rsp,
857			       word_cnt);
858
859		scic_sds_request_set_status(sci_req,
860					    SCU_TASK_DONE_CHECK_RESPONSE,
861					    SCI_FAILURE_IO_RESPONSE_VALID);
862		break;
863	}
864
865	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
866		/*
867		 * / @todo With TASK_DONE_RESP_LEN_ERR is the response frame
868		 * guaranteed to be received before this completion status is
869		 * posted?
870		 */
871		resp_iu = &sci_req->ssp.rsp;
872		datapres = resp_iu->datapres;
873
874		if ((datapres == 0x01) || (datapres == 0x02)) {
875			scic_sds_request_set_status(
876				sci_req,
877				SCU_TASK_DONE_CHECK_RESPONSE,
878				SCI_FAILURE_IO_RESPONSE_VALID);
879		} else
880			scic_sds_request_set_status(
881				sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
882		break;
883
884	/* only stp device gets suspended. */
885	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
886	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
887	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
888	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
889	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
890	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
891	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
892	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
893	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
894	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
895	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
896		if (sci_req->protocol == SCIC_STP_PROTOCOL) {
897			scic_sds_request_set_status(
898				sci_req,
899				SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
900				SCU_COMPLETION_TL_STATUS_SHIFT,
901				SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
902		} else {
903			scic_sds_request_set_status(
904				sci_req,
905				SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
906				SCU_COMPLETION_TL_STATUS_SHIFT,
907				SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
908		}
909		break;
910
911	/* both stp/ssp device gets suspended */
912	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
913	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
914	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
915	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
916	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
917	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
918	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
919	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
920	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
921	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
922		scic_sds_request_set_status(
923			sci_req,
924			SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
925			SCU_COMPLETION_TL_STATUS_SHIFT,
926			SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
927		break;
928
929	/* neither ssp nor stp gets suspended. */
930	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
931	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
932	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
933	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
934	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
935	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
936	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
937	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
938	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
939	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
940	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
941	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
942	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
943	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
944	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
945	default:
946		scic_sds_request_set_status(
947			sci_req,
948			SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
949			SCU_COMPLETION_TL_STATUS_SHIFT,
950			SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
951		break;
952	}
953
954	/*
955	 * TODO: This is probably wrong for ACK/NAK timeout conditions
956	 */
957
958	/* In all cases we will treat this as the completion of the IO req. */
959	sci_base_state_machine_change_state(
960			&sci_req->state_machine,
961			SCI_BASE_REQUEST_STATE_COMPLETED);
962	return SCI_SUCCESS;
963}
964
965enum sci_status
966scic_sds_io_request_tc_completion(struct scic_sds_request *request, u32 completion_code)
967{
968	if (request->state_machine.current_state_id == SCI_BASE_REQUEST_STATE_STARTED &&
969	    request->has_started_substate_machine == false)
970		return scic_sds_request_started_state_tc_completion_handler(request, completion_code);
971	else if (request->state_handlers->tc_completion_handler)
972		return request->state_handlers->tc_completion_handler(request, completion_code);
973
974	dev_warn(scic_to_dev(request->owning_controller),
975		"%s: SCIC IO Request given task completion notification %x "
976		"while in wrong state %d\n",
977		__func__,
978		completion_code,
979		sci_base_state_machine_get_state(&request->state_machine));
980
981	return SCI_FAILURE_INVALID_STATE;
982
983}
984
985/*
986 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
987 * object receives a scic_sds_request_frame_handler() request. This method
988 * first determines the frame type received.  If this is a response frame then
989 * the response data is copied to the io request response buffer for processing
990 * at completion time. If the frame type is not a response buffer an error is
991 * logged. enum sci_status SCI_SUCCESS SCI_FAILURE_INVALID_PARAMETER_VALUE
992 */
993static enum sci_status
994scic_sds_request_started_state_frame_handler(struct scic_sds_request *sci_req,
995					     u32 frame_index)
996{
997	enum sci_status status;
998	u32 *frame_header;
999	struct ssp_frame_hdr ssp_hdr;
1000	ssize_t word_cnt;
1001
1002	status = scic_sds_unsolicited_frame_control_get_header(
1003		&(scic_sds_request_get_controller(sci_req)->uf_control),
1004		frame_index,
1005		(void **)&frame_header);
1006
1007	word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1008	sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1009
1010	if (ssp_hdr.frame_type == SSP_RESPONSE) {
1011		struct ssp_response_iu *resp_iu;
1012		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1013
1014		status = scic_sds_unsolicited_frame_control_get_buffer(
1015			&(scic_sds_request_get_controller(sci_req)->uf_control),
1016			frame_index,
1017			(void **)&resp_iu);
1018
1019		sci_swab32_cpy(&sci_req->ssp.rsp,
1020			       resp_iu, word_cnt);
1021
1022		resp_iu = &sci_req->ssp.rsp;
1023
1024		if ((resp_iu->datapres == 0x01) ||
1025		    (resp_iu->datapres == 0x02)) {
1026			scic_sds_request_set_status(
1027				sci_req,
1028				SCU_TASK_DONE_CHECK_RESPONSE,
1029				SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
1030		} else
1031			scic_sds_request_set_status(
1032				sci_req, SCU_TASK_DONE_GOOD, SCI_SUCCESS);
1033	} else {
1034		/* This was not a response frame why did it get forwarded? */
1035		dev_err(scic_to_dev(sci_req->owning_controller),
1036			"%s: SCIC IO Request 0x%p received unexpected "
1037			"frame %d type 0x%02x\n",
1038			__func__,
1039			sci_req,
1040			frame_index,
1041			ssp_hdr.frame_type);
1042	}
1043
1044	/*
1045	 * In any case we are done with this frame buffer return it to the
1046	 * controller
1047	 */
1048	scic_sds_controller_release_frame(
1049		sci_req->owning_controller, frame_index);
1050
1051	return SCI_SUCCESS;
1052}
1053
1054/*
1055 * *****************************************************************************
1056 * *  COMPLETED STATE HANDLERS
1057 * ***************************************************************************** */
1058
1059
1060/*
1061 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1062 * object receives a scic_sds_request_complete() request. This method frees up
1063 * any io request resources that have been allocated and transitions the
1064 * request to its final state. Consider stopping the state machine instead of
1065 * transitioning to the final state? enum sci_status SCI_SUCCESS
1066 */
1067static enum sci_status scic_sds_request_completed_state_complete_handler(
1068	struct scic_sds_request *request)
1069{
1070	if (request->was_tag_assigned_by_user != true) {
1071		scic_controller_free_io_tag(
1072			request->owning_controller, request->io_tag);
1073	}
1074
1075	if (request->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX) {
1076		scic_sds_controller_release_frame(
1077			request->owning_controller, request->saved_rx_frame_index);
1078	}
1079
1080	sci_base_state_machine_change_state(&request->state_machine,
1081		SCI_BASE_REQUEST_STATE_FINAL);
1082	return SCI_SUCCESS;
1083}
1084
1085/*
1086 * *****************************************************************************
1087 * *  ABORTING STATE HANDLERS
1088 * ***************************************************************************** */
1089
1090/*
1091 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1092 * object receives a scic_sds_request_terminate() request. This method is the
1093 * io request aborting state abort handlers.  On receipt of a multiple
1094 * terminate requests the io request will transition to the completed state.
1095 * This should not happen in normal operation. enum sci_status SCI_SUCCESS
1096 */
1097static enum sci_status scic_sds_request_aborting_state_abort_handler(
1098	struct scic_sds_request *request)
1099{
1100	sci_base_state_machine_change_state(&request->state_machine,
1101		SCI_BASE_REQUEST_STATE_COMPLETED);
1102	return SCI_SUCCESS;
1103}
1104
1105/*
1106 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1107 * object receives a scic_sds_request_task_completion() request. This method
1108 * decodes the completion type waiting for the abort task complete
1109 * notification. When the abort task complete is received the io request
1110 * transitions to the completed state. enum sci_status SCI_SUCCESS
1111 */
1112static enum sci_status scic_sds_request_aborting_state_tc_completion_handler(
1113	struct scic_sds_request *sci_req,
1114	u32 completion_code)
1115{
1116	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1117	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1118	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1119		scic_sds_request_set_status(
1120			sci_req, SCU_TASK_DONE_TASK_ABORT, SCI_FAILURE_IO_TERMINATED
1121			);
1122
1123		sci_base_state_machine_change_state(&sci_req->state_machine,
1124			SCI_BASE_REQUEST_STATE_COMPLETED);
1125		break;
1126
1127	default:
1128		/*
1129		 * Unless we get some strange error wait for the task abort to complete
1130		 * TODO: Should there be a state change for this completion? */
1131		break;
1132	}
1133
1134	return SCI_SUCCESS;
1135}
1136
1137/*
1138 * This method implements the action to be taken when an SCIC_SDS_IO_REQUEST_T
1139 * object receives a scic_sds_request_frame_handler() request. This method
1140 * discards the unsolicited frame since we are waiting for the abort task
1141 * completion. enum sci_status SCI_SUCCESS
1142 */
1143static enum sci_status scic_sds_request_aborting_state_frame_handler(
1144	struct scic_sds_request *sci_req,
1145	u32 frame_index)
1146{
1147	/* TODO: Is it even possible to get an unsolicited frame in the aborting state? */
1148
1149	scic_sds_controller_release_frame(
1150		sci_req->owning_controller, frame_index);
1151
1152	return SCI_SUCCESS;
1153}
1154
1155static const struct scic_sds_io_request_state_handler scic_sds_request_state_handler_table[] = {
1156	[SCI_BASE_REQUEST_STATE_INITIAL] = {
1157	},
1158	[SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
1159		.start_handler		= scic_sds_request_constructed_state_start_handler,
1160		.abort_handler		= scic_sds_request_constructed_state_abort_handler,
1161	},
1162	[SCI_BASE_REQUEST_STATE_STARTED] = {
1163		.abort_handler		= scic_sds_request_started_state_abort_handler,
1164		.tc_completion_handler	= scic_sds_request_started_state_tc_completion_handler,
1165		.frame_handler		= scic_sds_request_started_state_frame_handler,
1166	},
1167	[SCI_BASE_REQUEST_STATE_COMPLETED] = {
1168		.complete_handler	= scic_sds_request_completed_state_complete_handler,
1169	},
1170	[SCI_BASE_REQUEST_STATE_ABORTING] = {
1171		.abort_handler		= scic_sds_request_aborting_state_abort_handler,
1172		.tc_completion_handler	= scic_sds_request_aborting_state_tc_completion_handler,
1173		.frame_handler		= scic_sds_request_aborting_state_frame_handler,
1174	},
1175	[SCI_BASE_REQUEST_STATE_FINAL] = {
1176	},
1177};
1178
1179
1180/**
1181 * isci_request_process_response_iu() - This function sets the status and
1182 *    response iu, in the task struct, from the request object for the upper
1183 *    layer driver.
1184 * @sas_task: This parameter is the task struct from the upper layer driver.
1185 * @resp_iu: This parameter points to the response iu of the completed request.
1186 * @dev: This parameter specifies the linux device struct.
1187 *
1188 * none.
1189 */
1190static void isci_request_process_response_iu(
1191	struct sas_task *task,
1192	struct ssp_response_iu *resp_iu,
1193	struct device *dev)
1194{
1195	dev_dbg(dev,
1196		"%s: resp_iu = %p "
1197		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
1198		"resp_iu->response_data_len = %x, "
1199		"resp_iu->sense_data_len = %x\nrepsonse data: ",
1200		__func__,
1201		resp_iu,
1202		resp_iu->status,
1203		resp_iu->datapres,
1204		resp_iu->response_data_len,
1205		resp_iu->sense_data_len);
1206
1207	task->task_status.stat = resp_iu->status;
1208
1209	/* libsas updates the task status fields based on the response iu. */
1210	sas_ssp_task_response(dev, task, resp_iu);
1211}
1212
1213/**
1214 * isci_request_set_open_reject_status() - This function prepares the I/O
1215 *    completion for OPEN_REJECT conditions.
1216 * @request: This parameter is the completed isci_request object.
1217 * @response_ptr: This parameter specifies the service response for the I/O.
1218 * @status_ptr: This parameter specifies the exec status for the I/O.
1219 * @complete_to_host_ptr: This parameter specifies the action to be taken by
1220 *    the LLDD with respect to completing this request or forcing an abort
1221 *    condition on the I/O.
1222 * @open_rej_reason: This parameter specifies the encoded reason for the
1223 *    abandon-class reject.
1224 *
1225 * none.
1226 */
1227static void isci_request_set_open_reject_status(
1228	struct isci_request *request,
1229	struct sas_task *task,
1230	enum service_response *response_ptr,
1231	enum exec_status *status_ptr,
1232	enum isci_completion_selection *complete_to_host_ptr,
1233	enum sas_open_rej_reason open_rej_reason)
1234{
1235	/* Task in the target is done. */
1236	request->complete_in_target       = true;
1237	*response_ptr                     = SAS_TASK_UNDELIVERED;
1238	*status_ptr                       = SAS_OPEN_REJECT;
1239	*complete_to_host_ptr             = isci_perform_normal_io_completion;
1240	task->task_status.open_rej_reason = open_rej_reason;
1241}
1242
1243/**
1244 * isci_request_handle_controller_specific_errors() - This function decodes
1245 *    controller-specific I/O completion error conditions.
1246 * @request: This parameter is the completed isci_request object.
1247 * @response_ptr: This parameter specifies the service response for the I/O.
1248 * @status_ptr: This parameter specifies the exec status for the I/O.
1249 * @complete_to_host_ptr: This parameter specifies the action to be taken by
1250 *    the LLDD with respect to completing this request or forcing an abort
1251 *    condition on the I/O.
1252 *
1253 * none.
1254 */
1255static void isci_request_handle_controller_specific_errors(
1256	struct isci_remote_device *isci_device,
1257	struct isci_request *request,
1258	struct sas_task *task,
1259	enum service_response *response_ptr,
1260	enum exec_status *status_ptr,
1261	enum isci_completion_selection *complete_to_host_ptr)
1262{
1263	unsigned int cstatus;
1264
1265	cstatus = request->sci.scu_status;
1266
1267	dev_dbg(&request->isci_host->pdev->dev,
1268		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
1269		"- controller status = 0x%x\n",
1270		__func__, request, cstatus);
1271
1272	/* Decode the controller-specific errors; most
1273	 * important is to recognize those conditions in which
1274	 * the target may still have a task outstanding that
1275	 * must be aborted.
1276	 *
1277	 * Note that there are SCU completion codes being
1278	 * named in the decode below for which SCIC has already
1279	 * done work to handle them in a way other than as
1280	 * a controller-specific completion code; these are left
1281	 * in the decode below for completeness sake.
1282	 */
1283	switch (cstatus) {
1284	case SCU_TASK_DONE_DMASETUP_DIRERR:
1285	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
1286	case SCU_TASK_DONE_XFERCNT_ERR:
1287		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
1288		if (task->task_proto == SAS_PROTOCOL_SMP) {
1289			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
1290			*response_ptr = SAS_TASK_COMPLETE;
1291
1292			/* See if the device has been/is being stopped. Note
1293			 * that we ignore the quiesce state, since we are
1294			 * concerned about the actual device state.
1295			 */
1296			if ((isci_device->status == isci_stopping) ||
1297			    (isci_device->status == isci_stopped))
1298				*status_ptr = SAS_DEVICE_UNKNOWN;
1299			else
1300				*status_ptr = SAS_ABORTED_TASK;
1301
1302			request->complete_in_target = true;
1303
1304			*complete_to_host_ptr =
1305				isci_perform_normal_io_completion;
1306		} else {
1307			/* Task in the target is not done. */
1308			*response_ptr = SAS_TASK_UNDELIVERED;
1309
1310			if ((isci_device->status == isci_stopping) ||
1311			    (isci_device->status == isci_stopped))
1312				*status_ptr = SAS_DEVICE_UNKNOWN;
1313			else
1314				*status_ptr = SAM_STAT_TASK_ABORTED;
1315
1316			request->complete_in_target = false;
1317
1318			*complete_to_host_ptr =
1319				isci_perform_error_io_completion;
1320		}
1321
1322		break;
1323
1324	case SCU_TASK_DONE_CRC_ERR:
1325	case SCU_TASK_DONE_NAK_CMD_ERR:
1326	case SCU_TASK_DONE_EXCESS_DATA:
1327	case SCU_TASK_DONE_UNEXP_FIS:
1328	/* Also SCU_TASK_DONE_UNEXP_RESP: */
1329	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
1330	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
1331	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
1332		/* These are conditions in which the target
1333		 * has completed the task, so that no cleanup
1334		 * is necessary.
1335		 */
1336		*response_ptr = SAS_TASK_COMPLETE;
1337
1338		/* See if the device has been/is being stopped. Note
1339		 * that we ignore the quiesce state, since we are
1340		 * concerned about the actual device state.
1341		 */
1342		if ((isci_device->status == isci_stopping) ||
1343		    (isci_device->status == isci_stopped))
1344			*status_ptr = SAS_DEVICE_UNKNOWN;
1345		else
1346			*status_ptr = SAS_ABORTED_TASK;
1347
1348		request->complete_in_target = true;
1349
1350		*complete_to_host_ptr = isci_perform_normal_io_completion;
1351		break;
1352
1353
1354	/* Note that the only open reject completion codes seen here will be
1355	 * abandon-class codes; all others are automatically retried in the SCU.
1356	 */
1357	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
1358
1359		isci_request_set_open_reject_status(
1360			request, task, response_ptr, status_ptr,
1361			complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
1362		break;
1363
1364	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
1365
1366		/* Note - the return of AB0 will change when
1367		 * libsas implements detection of zone violations.
1368		 */
1369		isci_request_set_open_reject_status(
1370			request, task, response_ptr, status_ptr,
1371			complete_to_host_ptr, SAS_OREJ_RESV_AB0);
1372		break;
1373
1374	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
1375
1376		isci_request_set_open_reject_status(
1377			request, task, response_ptr, status_ptr,
1378			complete_to_host_ptr, SAS_OREJ_RESV_AB1);
1379		break;
1380
1381	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
1382
1383		isci_request_set_open_reject_status(
1384			request, task, response_ptr, status_ptr,
1385			complete_to_host_ptr, SAS_OREJ_RESV_AB2);
1386		break;
1387
1388	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
1389
1390		isci_request_set_open_reject_status(
1391			request, task, response_ptr, status_ptr,
1392			complete_to_host_ptr, SAS_OREJ_RESV_AB3);
1393		break;
1394
1395	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
1396
1397		isci_request_set_open_reject_status(
1398			request, task, response_ptr, status_ptr,
1399			complete_to_host_ptr, SAS_OREJ_BAD_DEST);
1400		break;
1401
1402	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
1403
1404		isci_request_set_open_reject_status(
1405			request, task, response_ptr, status_ptr,
1406			complete_to_host_ptr, SAS_OREJ_STP_NORES);
1407		break;
1408
1409	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
1410
1411		isci_request_set_open_reject_status(
1412			request, task, response_ptr, status_ptr,
1413			complete_to_host_ptr, SAS_OREJ_EPROTO);
1414		break;
1415
1416	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
1417
1418		isci_request_set_open_reject_status(
1419			request, task, response_ptr, status_ptr,
1420			complete_to_host_ptr, SAS_OREJ_CONN_RATE);
1421		break;
1422
1423	case SCU_TASK_DONE_LL_R_ERR:
1424	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
1425	case SCU_TASK_DONE_LL_PERR:
1426	case SCU_TASK_DONE_LL_SY_TERM:
1427	/* Also SCU_TASK_DONE_NAK_ERR:*/
1428	case SCU_TASK_DONE_LL_LF_TERM:
1429	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
1430	case SCU_TASK_DONE_LL_ABORT_ERR:
1431	case SCU_TASK_DONE_SEQ_INV_TYPE:
1432	/* Also SCU_TASK_DONE_UNEXP_XR: */
1433	case SCU_TASK_DONE_XR_IU_LEN_ERR:
1434	case SCU_TASK_DONE_INV_FIS_LEN:
1435	/* Also SCU_TASK_DONE_XR_WD_LEN: */
1436	case SCU_TASK_DONE_SDMA_ERR:
1437	case SCU_TASK_DONE_OFFSET_ERR:
1438	case SCU_TASK_DONE_MAX_PLD_ERR:
1439	case SCU_TASK_DONE_LF_ERR:
1440	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
1441	case SCU_TASK_DONE_SMP_LL_RX_ERR:
1442	case SCU_TASK_DONE_UNEXP_DATA:
1443	case SCU_TASK_DONE_UNEXP_SDBFIS:
1444	case SCU_TASK_DONE_REG_ERR:
1445	case SCU_TASK_DONE_SDB_ERR:
1446	case SCU_TASK_DONE_TASK_ABORT:
1447	default:
1448		/* Task in the target is not done. */
1449		*response_ptr = SAS_TASK_UNDELIVERED;
1450		*status_ptr = SAM_STAT_TASK_ABORTED;
1451		request->complete_in_target = false;
1452
1453		*complete_to_host_ptr = isci_perform_error_io_completion;
1454		break;
1455	}
1456}
1457
1458/**
1459 * isci_task_save_for_upper_layer_completion() - This function saves the
1460 *    request for later completion to the upper layer driver.
1461 * @host: This parameter is a pointer to the host on which the the request
1462 *    should be queued (either as an error or success).
1463 * @request: This parameter is the completed request.
1464 * @response: This parameter is the response code for the completed task.
1465 * @status: This parameter is the status code for the completed task.
1466 *
1467 * none.
1468 */
1469static void isci_task_save_for_upper_layer_completion(
1470	struct isci_host *host,
1471	struct isci_request *request,
1472	enum service_response response,
1473	enum exec_status status,
1474	enum isci_completion_selection task_notification_selection)
1475{
1476	struct sas_task *task = isci_request_access_task(request);
1477
1478	task_notification_selection
1479		= isci_task_set_completion_status(task, response, status,
1480						  task_notification_selection);
1481
1482	/* Tasks aborted specifically by a call to the lldd_abort_task
1483	 * function should not be completed to the host in the regular path.
1484	 */
1485	switch (task_notification_selection) {
1486
1487	case isci_perform_normal_io_completion:
1488
1489		/* Normal notification (task_done) */
1490		dev_dbg(&host->pdev->dev,
1491			"%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
1492			__func__,
1493			task,
1494			task->task_status.resp, response,
1495			task->task_status.stat, status);
1496		/* Add to the completed list. */
1497		list_add(&request->completed_node,
1498			 &host->requests_to_complete);
1499
1500		/* Take the request off the device's pending request list. */
1501		list_del_init(&request->dev_node);
1502		break;
1503
1504	case isci_perform_aborted_io_completion:
1505		/* No notification to libsas because this request is
1506		 * already in the abort path.
1507		 */
1508		dev_warn(&host->pdev->dev,
1509			 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
1510			 __func__,
1511			 task,
1512			 task->task_status.resp, response,
1513			 task->task_status.stat, status);
1514
1515		/* Wake up whatever process was waiting for this
1516		 * request to complete.
1517		 */
1518		WARN_ON(request->io_request_completion == NULL);
1519
1520		if (request->io_request_completion != NULL) {
1521
1522			/* Signal whoever is waiting that this
1523			* request is complete.
1524			*/
1525			complete(request->io_request_completion);
1526		}
1527		break;
1528
1529	case isci_perform_error_io_completion:
1530		/* Use sas_task_abort */
1531		dev_warn(&host->pdev->dev,
1532			 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
1533			 __func__,
1534			 task,
1535			 task->task_status.resp, response,
1536			 task->task_status.stat, status);
1537		/* Add to the aborted list. */
1538		list_add(&request->completed_node,
1539			 &host->requests_to_errorback);
1540		break;
1541
1542	default:
1543		dev_warn(&host->pdev->dev,
1544			 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
1545			 __func__,
1546			 task,
1547			 task->task_status.resp, response,
1548			 task->task_status.stat, status);
1549
1550		/* Add to the error to libsas list. */
1551		list_add(&request->completed_node,
1552			 &host->requests_to_errorback);
1553		break;
1554	}
1555}
1556
1557static void isci_request_io_request_complete(struct isci_host *isci_host,
1558					     struct isci_request *request,
1559					     enum sci_io_status completion_status)
1560{
1561	struct sas_task *task = isci_request_access_task(request);
1562	struct ssp_response_iu *resp_iu;
1563	void *resp_buf;
1564	unsigned long task_flags;
1565	struct isci_remote_device *isci_device   = request->isci_device;
1566	enum service_response response       = SAS_TASK_UNDELIVERED;
1567	enum exec_status status         = SAS_ABORTED_TASK;
1568	enum isci_request_status request_status;
1569	enum isci_completion_selection complete_to_host
1570		= isci_perform_normal_io_completion;
1571
1572	dev_dbg(&isci_host->pdev->dev,
1573		"%s: request = %p, task = %p,\n"
1574		"task->data_dir = %d completion_status = 0x%x\n",
1575		__func__,
1576		request,
1577		task,
1578		task->data_dir,
1579		completion_status);
1580
1581	spin_lock(&request->state_lock);
1582	request_status = isci_request_get_state(request);
1583
1584	/* Decode the request status.  Note that if the request has been
1585	 * aborted by a task management function, we don't care
1586	 * what the status is.
1587	 */
1588	switch (request_status) {
1589
1590	case aborted:
1591		/* "aborted" indicates that the request was aborted by a task
1592		 * management function, since once a task management request is
1593		 * perfomed by the device, the request only completes because
1594		 * of the subsequent driver terminate.
1595		 *
1596		 * Aborted also means an external thread is explicitly managing
1597		 * this request, so that we do not complete it up the stack.
1598		 *
1599		 * The target is still there (since the TMF was successful).
1600		 */
1601		request->complete_in_target = true;
1602		response = SAS_TASK_COMPLETE;
1603
1604		/* See if the device has been/is being stopped. Note
1605		 * that we ignore the quiesce state, since we are
1606		 * concerned about the actual device state.
1607		 */
1608		if ((isci_device->status == isci_stopping)
1609		    || (isci_device->status == isci_stopped)
1610		    )
1611			status = SAS_DEVICE_UNKNOWN;
1612		else
1613			status = SAS_ABORTED_TASK;
1614
1615		complete_to_host = isci_perform_aborted_io_completion;
1616		/* This was an aborted request. */
1617
1618		spin_unlock(&request->state_lock);
1619		break;
1620
1621	case aborting:
1622		/* aborting means that the task management function tried and
1623		 * failed to abort the request. We need to note the request
1624		 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
1625		 * target as down.
1626		 *
1627		 * Aborting also means an external thread is explicitly managing
1628		 * this request, so that we do not complete it up the stack.
1629		 */
1630		request->complete_in_target = true;
1631		response = SAS_TASK_UNDELIVERED;
1632
1633		if ((isci_device->status == isci_stopping) ||
1634		    (isci_device->status == isci_stopped))
1635			/* The device has been /is being stopped. Note that
1636			 * we ignore the quiesce state, since we are
1637			 * concerned about the actual device state.
1638			 */
1639			status = SAS_DEVICE_UNKNOWN;
1640		else
1641			status = SAS_PHY_DOWN;
1642
1643		complete_to_host = isci_perform_aborted_io_completion;
1644
1645		/* This was an aborted request. */
1646
1647		spin_unlock(&request->state_lock);
1648		break;
1649
1650	case terminating:
1651
1652		/* This was an terminated request.  This happens when
1653		 * the I/O is being terminated because of an action on
1654		 * the device (reset, tear down, etc.), and the I/O needs
1655		 * to be completed up the stack.
1656		 */
1657		request->complete_in_target = true;
1658		response = SAS_TASK_UNDELIVERED;
1659
1660		/* See if the device has been/is being stopped. Note
1661		 * that we ignore the quiesce state, since we are
1662		 * concerned about the actual device state.
1663		 */
1664		if ((isci_device->status == isci_stopping) ||
1665		    (isci_device->status == isci_stopped))
1666			status = SAS_DEVICE_UNKNOWN;
1667		else
1668			status = SAS_ABORTED_TASK;
1669
1670		complete_to_host = isci_perform_aborted_io_completion;
1671
1672		/* This was a terminated request. */
1673
1674		spin_unlock(&request->state_lock);
1675		break;
1676
1677	default:
1678
1679		/* The request is done from an SCU HW perspective. */
1680		request->status = completed;
1681
1682		spin_unlock(&request->state_lock);
1683
1684		/* This is an active request being completed from the core. */
1685		switch (completion_status) {
1686
1687		case SCI_IO_FAILURE_RESPONSE_VALID:
1688			dev_dbg(&isci_host->pdev->dev,
1689				"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
1690				__func__,
1691				request,
1692				task);
1693
1694			if (sas_protocol_ata(task->task_proto)) {
1695				resp_buf = &request->sci.stp.rsp;
1696				isci_request_process_stp_response(task,
1697								  resp_buf);
1698			} else if (SAS_PROTOCOL_SSP == task->task_proto) {
1699
1700				/* crack the iu response buffer. */
1701				resp_iu = &request->sci.ssp.rsp;
1702				isci_request_process_response_iu(task, resp_iu,
1703								 &isci_host->pdev->dev);
1704
1705			} else if (SAS_PROTOCOL_SMP == task->task_proto) {
1706
1707				dev_err(&isci_host->pdev->dev,
1708					"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
1709					"SAS_PROTOCOL_SMP protocol\n",
1710					__func__);
1711
1712			} else
1713				dev_err(&isci_host->pdev->dev,
1714					"%s: unknown protocol\n", __func__);
1715
1716			/* use the task status set in the task struct by the
1717			 * isci_request_process_response_iu call.
1718			 */
1719			request->complete_in_target = true;
1720			response = task->task_status.resp;
1721			status = task->task_status.stat;
1722			break;
1723
1724		case SCI_IO_SUCCESS:
1725		case SCI_IO_SUCCESS_IO_DONE_EARLY:
1726
1727			response = SAS_TASK_COMPLETE;
1728			status   = SAM_STAT_GOOD;
1729			request->complete_in_target = true;
1730
1731			if (task->task_proto == SAS_PROTOCOL_SMP) {
1732				void *rsp = &request->sci.smp.rsp;
1733
1734				dev_dbg(&isci_host->pdev->dev,
1735					"%s: SMP protocol completion\n",
1736					__func__);
1737
1738				sg_copy_from_buffer(
1739					&task->smp_task.smp_resp, 1,
1740					rsp, sizeof(struct smp_resp));
1741			} else if (completion_status
1742				   == SCI_IO_SUCCESS_IO_DONE_EARLY) {
1743
1744				/* This was an SSP / STP / SATA transfer.
1745				 * There is a possibility that less data than
1746				 * the maximum was transferred.
1747				 */
1748				u32 transferred_length = sci_req_tx_bytes(&request->sci);
1749
1750				task->task_status.residual
1751					= task->total_xfer_len - transferred_length;
1752
1753				/* If there were residual bytes, call this an
1754				 * underrun.
1755				 */
1756				if (task->task_status.residual != 0)
1757					status = SAS_DATA_UNDERRUN;
1758
1759				dev_dbg(&isci_host->pdev->dev,
1760					"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
1761					__func__,
1762					status);
1763
1764			} else
1765				dev_dbg(&isci_host->pdev->dev,
1766					"%s: SCI_IO_SUCCESS\n",
1767					__func__);
1768
1769			break;
1770
1771		case SCI_IO_FAILURE_TERMINATED:
1772			dev_dbg(&isci_host->pdev->dev,
1773				"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
1774				__func__,
1775				request,
1776				task);
1777
1778			/* The request was terminated explicitly.  No handling
1779			 * is needed in the SCSI error handler path.
1780			 */
1781			request->complete_in_target = true;
1782			response = SAS_TASK_UNDELIVERED;
1783
1784			/* See if the device has been/is being stopped. Note
1785			 * that we ignore the quiesce state, since we are
1786			 * concerned about the actual device state.
1787			 */
1788			if ((isci_device->status == isci_stopping) ||
1789			    (isci_device->status == isci_stopped))
1790				status = SAS_DEVICE_UNKNOWN;
1791			else
1792				status = SAS_ABORTED_TASK;
1793
1794			complete_to_host = isci_perform_normal_io_completion;
1795			break;
1796
1797		case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
1798
1799			isci_request_handle_controller_specific_errors(
1800				isci_device, request, task, &response, &status,
1801				&complete_to_host);
1802
1803			break;
1804
1805		case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
1806			/* This is a special case, in that the I/O completion
1807			 * is telling us that the device needs a reset.
1808			 * In order for the device reset condition to be
1809			 * noticed, the I/O has to be handled in the error
1810			 * handler.  Set the reset flag and cause the
1811			 * SCSI error thread to be scheduled.
1812			 */
1813			spin_lock_irqsave(&task->task_state_lock, task_flags);
1814			task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
1815			spin_unlock_irqrestore(&task->task_state_lock, task_flags);
1816
1817			/* Fail the I/O. */
1818			response = SAS_TASK_UNDELIVERED;
1819			status = SAM_STAT_TASK_ABORTED;
1820
1821			complete_to_host = isci_perform_error_io_completion;
1822			request->complete_in_target = false;
1823			break;
1824
1825		default:
1826			/* Catch any otherwise unhandled error codes here. */
1827			dev_warn(&isci_host->pdev->dev,
1828				 "%s: invalid completion code: 0x%x - "
1829				 "isci_request = %p\n",
1830				 __func__, completion_status, request);
1831
1832			response = SAS_TASK_UNDELIVERED;
1833
1834			/* See if the device has been/is being stopped. Note
1835			 * that we ignore the quiesce state, since we are
1836			 * concerned about the actual device state.
1837			 */
1838			if ((isci_device->status == isci_stopping) ||
1839			    (isci_device->status == isci_stopped))
1840				status = SAS_DEVICE_UNKNOWN;
1841			else
1842				status = SAS_ABORTED_TASK;
1843
1844			complete_to_host = isci_perform_error_io_completion;
1845			request->complete_in_target = false;
1846			break;
1847		}
1848		break;
1849	}
1850
1851	isci_request_unmap_sgl(request, isci_host->pdev);
1852
1853	/* Put the completed request on the correct list */
1854	isci_task_save_for_upper_layer_completion(isci_host, request, response,
1855						  status, complete_to_host
1856						  );
1857
1858	/* complete the io request to the core. */
1859	scic_controller_complete_io(&isci_host->sci,
1860				    &isci_device->sci,
1861				    &request->sci);
1862	/* set terminated handle so it cannot be completed or
1863	 * terminated again, and to cause any calls into abort
1864	 * task to recognize the already completed case.
1865	 */
1866	request->terminated = true;
1867
1868	isci_host_can_dequeue(isci_host, 1);
1869}
1870
1871/**
1872 * scic_sds_request_initial_state_enter() -
1873 * @object: This parameter specifies the base object for which the state
1874 *    transition is occurring.
1875 *
1876 * This method implements the actions taken when entering the
1877 * SCI_BASE_REQUEST_STATE_INITIAL state. This state is entered when the initial
1878 * base request is constructed. Entry into the initial state sets all handlers
1879 * for the io request object to their default handlers. none
1880 */
1881static void scic_sds_request_initial_state_enter(void *object)
1882{
1883	struct scic_sds_request *sci_req = object;
1884
1885	SET_STATE_HANDLER(
1886		sci_req,
1887		scic_sds_request_state_handler_table,
1888		SCI_BASE_REQUEST_STATE_INITIAL
1889		);
1890}
1891
1892/**
1893 * scic_sds_request_constructed_state_enter() -
1894 * @object: The io request object that is to enter the constructed state.
1895 *
1896 * This method implements the actions taken when entering the
1897 * SCI_BASE_REQUEST_STATE_CONSTRUCTED state. The method sets the state handlers
1898 * for the the constructed state. none
1899 */
1900static void scic_sds_request_constructed_state_enter(void *object)
1901{
1902	struct scic_sds_request *sci_req = object;
1903
1904	SET_STATE_HANDLER(
1905		sci_req,
1906		scic_sds_request_state_handler_table,
1907		SCI_BASE_REQUEST_STATE_CONSTRUCTED
1908		);
1909}
1910
1911/**
1912 * scic_sds_request_started_state_enter() -
1913 * @object: This parameter specifies the base object for which the state
1914 *    transition is occurring.  This is cast into a SCIC_SDS_IO_REQUEST object.
1915 *
1916 * This method implements the actions taken when entering the
1917 * SCI_BASE_REQUEST_STATE_STARTED state. If the io request object type is a
1918 * SCSI Task request we must enter the started substate machine. none
1919 */
1920static void scic_sds_request_started_state_enter(void *object)
1921{
1922	struct scic_sds_request *sci_req = object;
1923
1924	SET_STATE_HANDLER(
1925		sci_req,
1926		scic_sds_request_state_handler_table,
1927		SCI_BASE_REQUEST_STATE_STARTED
1928		);
1929
1930	/*
1931	 * Most of the request state machines have a started substate machine so
1932	 * start its execution on the entry to the started state. */
1933	if (sci_req->has_started_substate_machine == true)
1934		sci_base_state_machine_start(&sci_req->started_substate_machine);
1935}
1936
1937/**
1938 * scic_sds_request_started_state_exit() -
1939 * @object: This parameter specifies the base object for which the state
1940 *    transition is occurring.  This object is cast into a SCIC_SDS_IO_REQUEST
1941 *    object.
1942 *
1943 * This method implements the actions taken when exiting the
1944 * SCI_BASE_REQUEST_STATE_STARTED state. For task requests the action will be
1945 * to stop the started substate machine. none
1946 */
1947static void scic_sds_request_started_state_exit(void *object)
1948{
1949	struct scic_sds_request *sci_req = object;
1950
1951	if (sci_req->has_started_substate_machine == true)
1952		sci_base_state_machine_stop(&sci_req->started_substate_machine);
1953}
1954
1955/**
1956 * scic_sds_request_completed_state_enter() -
1957 * @object: This parameter specifies the base object for which the state
1958 *    transition is occurring.  This object is cast into a SCIC_SDS_IO_REQUEST
1959 *    object.
1960 *
1961 * This method implements the actions taken when entering the
1962 * SCI_BASE_REQUEST_STATE_COMPLETED state.  This state is entered when the
1963 * SCIC_SDS_IO_REQUEST has completed.  The method will decode the request
1964 * completion status and convert it to an enum sci_status to return in the
1965 * completion callback function. none
1966 */
1967static void scic_sds_request_completed_state_enter(void *object)
1968{
1969	struct scic_sds_request *sci_req = object;
1970	struct scic_sds_controller *scic =
1971		scic_sds_request_get_controller(sci_req);
1972	struct isci_host *ihost = scic_to_ihost(scic);
1973	struct isci_request *ireq = sci_req_to_ireq(sci_req);
1974
1975	SET_STATE_HANDLER(sci_req,
1976			  scic_sds_request_state_handler_table,
1977			  SCI_BASE_REQUEST_STATE_COMPLETED);
1978
1979	/* Tell the SCI_USER that the IO request is complete */
1980	if (sci_req->is_task_management_request == false)
1981		isci_request_io_request_complete(ihost, ireq,
1982						 sci_req->sci_status);
1983	else
1984		isci_task_request_complete(ihost, ireq, sci_req->sci_status);
1985}
1986
1987/**
1988 * scic_sds_request_aborting_state_enter() -
1989 * @object: This parameter specifies the base object for which the state
1990 *    transition is occurring.  This object is cast into a SCIC_SDS_IO_REQUEST
1991 *    object.
1992 *
1993 * This method implements the actions taken when entering the
1994 * SCI_BASE_REQUEST_STATE_ABORTING state. none
1995 */
1996static void scic_sds_request_aborting_state_enter(void *object)
1997{
1998	struct scic_sds_request *sci_req = object;
1999
2000	/* Setting the abort bit in the Task Context is required by the silicon. */
2001	sci_req->task_context_buffer->abort = 1;
2002
2003	SET_STATE_HANDLER(
2004		sci_req,
2005		scic_sds_request_state_handler_table,
2006		SCI_BASE_REQUEST_STATE_ABORTING
2007		);
2008}
2009
2010/**
2011 * scic_sds_request_final_state_enter() -
2012 * @object: This parameter specifies the base object for which the state
2013 *    transition is occurring.  This is cast into a SCIC_SDS_IO_REQUEST object.
2014 *
2015 * This method implements the actions taken when entering the
2016 * SCI_BASE_REQUEST_STATE_FINAL state. The only action required is to put the
2017 * state handlers in place. none
2018 */
2019static void scic_sds_request_final_state_enter(void *object)
2020{
2021	struct scic_sds_request *sci_req = object;
2022
2023	SET_STATE_HANDLER(
2024		sci_req,
2025		scic_sds_request_state_handler_table,
2026		SCI_BASE_REQUEST_STATE_FINAL
2027		);
2028}
2029
2030static const struct sci_base_state scic_sds_request_state_table[] = {
2031	[SCI_BASE_REQUEST_STATE_INITIAL] = {
2032		.enter_state = scic_sds_request_initial_state_enter,
2033	},
2034	[SCI_BASE_REQUEST_STATE_CONSTRUCTED] = {
2035		.enter_state = scic_sds_request_constructed_state_enter,
2036	},
2037	[SCI_BASE_REQUEST_STATE_STARTED] = {
2038		.enter_state = scic_sds_request_started_state_enter,
2039		.exit_state  = scic_sds_request_started_state_exit
2040	},
2041	[SCI_BASE_REQUEST_STATE_COMPLETED] = {
2042		.enter_state = scic_sds_request_completed_state_enter,
2043	},
2044	[SCI_BASE_REQUEST_STATE_ABORTING] = {
2045		.enter_state = scic_sds_request_aborting_state_enter,
2046	},
2047	[SCI_BASE_REQUEST_STATE_FINAL] = {
2048		.enter_state = scic_sds_request_final_state_enter,
2049	},
2050};
2051
2052static void scic_sds_general_request_construct(struct scic_sds_controller *scic,
2053					       struct scic_sds_remote_device *sci_dev,
2054					       u16 io_tag, struct scic_sds_request *sci_req)
2055{
2056	sci_base_state_machine_construct(&sci_req->state_machine, sci_req,
2057			scic_sds_request_state_table, SCI_BASE_REQUEST_STATE_INITIAL);
2058	sci_base_state_machine_start(&sci_req->state_machine);
2059
2060	sci_req->io_tag = io_tag;
2061	sci_req->owning_controller = scic;
2062	sci_req->target_device = sci_dev;
2063	sci_req->has_started_substate_machine = false;
2064	sci_req->protocol = SCIC_NO_PROTOCOL;
2065	sci_req->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2066	sci_req->device_sequence = scic_sds_remote_device_get_sequence(sci_dev);
2067
2068	sci_req->sci_status   = SCI_SUCCESS;
2069	sci_req->scu_status   = 0;
2070	sci_req->post_context = 0xFFFFFFFF;
2071
2072	sci_req->is_task_management_request = false;
2073
2074	if (io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
2075		sci_req->was_tag_assigned_by_user = false;
2076		sci_req->task_context_buffer = NULL;
2077	} else {
2078		sci_req->was_tag_assigned_by_user = true;
2079
2080		sci_req->task_context_buffer =
2081			scic_sds_controller_get_task_context_buffer(scic, io_tag);
2082	}
2083}
2084
2085static enum sci_status
2086scic_io_request_construct(struct scic_sds_controller *scic,
2087			  struct scic_sds_remote_device *sci_dev,
2088			  u16 io_tag, struct scic_sds_request *sci_req)
2089{
2090	struct domain_device *dev = sci_dev_to_domain(sci_dev);
2091	enum sci_status status = SCI_SUCCESS;
2092
2093	/* Build the common part of the request */
2094	scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
2095
2096	if (sci_dev->rnc.remote_node_index ==
2097			SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2098		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2099
2100	if (dev->dev_type == SAS_END_DEV)
2101		scic_sds_ssp_io_request_assign_buffers(sci_req);
2102	else if ((dev->dev_type == SATA_DEV) ||
2103		 (dev->tproto & SAS_PROTOCOL_STP)) {
2104		scic_sds_stp_request_assign_buffers(sci_req);
2105		memset(&sci_req->stp.cmd, 0, sizeof(sci_req->stp.cmd));
2106	} else if (dev_is_expander(dev)) {
2107		scic_sds_smp_request_assign_buffers(sci_req);
2108		memset(&sci_req->smp.cmd, 0, sizeof(sci_req->smp.cmd));
2109	} else
2110		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2111
2112	if (status == SCI_SUCCESS) {
2113		memset(sci_req->task_context_buffer, 0,
2114		       offsetof(struct scu_task_context, sgl_pair_ab));
2115	}
2116
2117	return status;
2118}
2119
2120enum sci_status scic_task_request_construct(struct scic_sds_controller *scic,
2121					    struct scic_sds_remote_device *sci_dev,
2122					    u16 io_tag, struct scic_sds_request *sci_req)
2123{
2124	struct domain_device *dev = sci_dev_to_domain(sci_dev);
2125	enum sci_status status = SCI_SUCCESS;
2126
2127	/* Build the common part of the request */
2128	scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
2129
2130	if (dev->dev_type == SAS_END_DEV) {
2131		scic_sds_ssp_task_request_assign_buffers(sci_req);
2132
2133		sci_req->has_started_substate_machine = true;
2134
2135		/* Construct the started sub-state machine. */
2136		sci_base_state_machine_construct(
2137			&sci_req->started_substate_machine,
2138			sci_req,
2139			scic_sds_io_request_started_task_mgmt_substate_table,
2140			SCIC_SDS_IO_REQUEST_STARTED_TASK_MGMT_SUBSTATE_AWAIT_TC_COMPLETION
2141			);
2142	} else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2143		scic_sds_stp_request_assign_buffers(sci_req);
2144	else
2145		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2146
2147	if (status == SCI_SUCCESS) {
2148		sci_req->is_task_management_request = true;
2149		memset(sci_req->task_context_buffer, 0, sizeof(struct scu_task_context));
2150	}
2151
2152	return status;
2153}
2154
2155static enum sci_status isci_request_ssp_request_construct(
2156	struct isci_request *request)
2157{
2158	enum sci_status status;
2159
2160	dev_dbg(&request->isci_host->pdev->dev,
2161		"%s: request = %p\n",
2162		__func__,
2163		request);
2164	status = scic_io_request_construct_basic_ssp(&request->sci);
2165	return status;
2166}
2167
2168static enum sci_status isci_request_stp_request_construct(
2169	struct isci_request *request)
2170{
2171	struct sas_task *task = isci_request_access_task(request);
2172	enum sci_status status;
2173	struct host_to_dev_fis *register_fis;
2174
2175	dev_dbg(&request->isci_host->pdev->dev,
2176		"%s: request = %p\n",
2177		__func__,
2178		request);
2179
2180	/* Get the host_to_dev_fis from the core and copy
2181	 * the fis from the task into it.
2182	 */
2183	register_fis = isci_sata_task_to_fis_copy(task);
2184
2185	status = scic_io_request_construct_basic_sata(&request->sci);
2186
2187	/* Set the ncq tag in the fis, from the queue
2188	 * command in the task.
2189	 */
2190	if (isci_sata_is_task_ncq(task)) {
2191
2192		isci_sata_set_ncq_tag(
2193			register_fis,
2194			task
2195			);
2196	}
2197
2198	return status;
2199}
2200
2201/*
2202 * isci_smp_request_build() - This function builds the smp request.
2203 * @ireq: This parameter points to the isci_request allocated in the
2204 *    request construct function.
2205 *
2206 * SCI_SUCCESS on successfull completion, or specific failure code.
2207 */
2208static enum sci_status isci_smp_request_build(struct isci_request *ireq)
2209{
2210	enum sci_status status = SCI_FAILURE;
2211	struct sas_task *task = isci_request_access_task(ireq);
2212	struct scic_sds_request *sci_req = &ireq->sci;
2213
2214	dev_dbg(&ireq->isci_host->pdev->dev,
2215		"%s: request = %p\n", __func__, ireq);
2216
2217	dev_dbg(&ireq->isci_host->pdev->dev,
2218		"%s: smp_req len = %d\n",
2219		__func__,
2220		task->smp_task.smp_req.length);
2221
2222	/* copy the smp_command to the address; */
2223	sg_copy_to_buffer(&task->smp_task.smp_req, 1,
2224			  &sci_req->smp.cmd,
2225			  sizeof(struct smp_req));
2226
2227	status = scic_io_request_construct_smp(sci_req);
2228	if (status != SCI_SUCCESS)
2229		dev_warn(&ireq->isci_host->pdev->dev,
2230			 "%s: failed with status = %d\n",
2231			 __func__,
2232			 status);
2233
2234	return status;
2235}
2236
2237/**
2238 * isci_io_request_build() - This function builds the io request object.
2239 * @isci_host: This parameter specifies the ISCI host object
2240 * @request: This parameter points to the isci_request object allocated in the
2241 *    request construct function.
2242 * @sci_device: This parameter is the handle for the sci core's remote device
2243 *    object that is the destination for this request.
2244 *
2245 * SCI_SUCCESS on successfull completion, or specific failure code.
2246 */
2247static enum sci_status isci_io_request_build(
2248	struct isci_host *isci_host,
2249	struct isci_request *request,
2250	struct isci_remote_device *isci_device)
2251{
2252	enum sci_status status = SCI_SUCCESS;
2253	struct sas_task *task = isci_request_access_task(request);
2254	struct scic_sds_remote_device *sci_device = &isci_device->sci;
2255
2256	dev_dbg(&isci_host->pdev->dev,
2257		"%s: isci_device = 0x%p; request = %p, "
2258		"num_scatter = %d\n",
2259		__func__,
2260		isci_device,
2261		request,
2262		task->num_scatter);
2263
2264	/* map the sgl addresses, if present.
2265	 * libata does the mapping for sata devices
2266	 * before we get the request.
2267	 */
2268	if (task->num_scatter &&
2269	    !sas_protocol_ata(task->task_proto) &&
2270	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
2271
2272		request->num_sg_entries = dma_map_sg(
2273			&isci_host->pdev->dev,
2274			task->scatter,
2275			task->num_scatter,
2276			task->data_dir
2277			);
2278
2279		if (request->num_sg_entries == 0)
2280			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2281	}
2282
2283	/* build the common request object. For now,
2284	 * we will let the core allocate the IO tag.
2285	 */
2286	status = scic_io_request_construct(&isci_host->sci, sci_device,
2287					   SCI_CONTROLLER_INVALID_IO_TAG,
2288					   &request->sci);
2289
2290	if (status != SCI_SUCCESS) {
2291		dev_warn(&isci_host->pdev->dev,
2292			 "%s: failed request construct\n",
2293			 __func__);
2294		return SCI_FAILURE;
2295	}
2296
2297	switch (task->task_proto) {
2298	case SAS_PROTOCOL_SMP:
2299		status = isci_smp_request_build(request);
2300		break;
2301	case SAS_PROTOCOL_SSP:
2302		status = isci_request_ssp_request_construct(request);
2303		break;
2304	case SAS_PROTOCOL_SATA:
2305	case SAS_PROTOCOL_STP:
2306	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
2307		status = isci_request_stp_request_construct(request);
2308		break;
2309	default:
2310		dev_warn(&isci_host->pdev->dev,
2311			 "%s: unknown protocol\n", __func__);
2312		return SCI_FAILURE;
2313	}
2314
2315	return SCI_SUCCESS;
2316}
2317
2318/**
2319 * isci_request_alloc_core() - This function gets the request object from the
2320 *    isci_host dma cache.
2321 * @isci_host: This parameter specifies the ISCI host object
2322 * @isci_request: This parameter will contain the pointer to the new
2323 *    isci_request object.
2324 * @isci_device: This parameter is the pointer to the isci remote device object
2325 *    that is the destination for this request.
2326 * @gfp_flags: This parameter specifies the os allocation flags.
2327 *
2328 * SCI_SUCCESS on successfull completion, or specific failure code.
2329 */
2330static int isci_request_alloc_core(
2331	struct isci_host *isci_host,
2332	struct isci_request **isci_request,
2333	struct isci_remote_device *isci_device,
2334	gfp_t gfp_flags)
2335{
2336	int ret = 0;
2337	dma_addr_t handle;
2338	struct isci_request *request;
2339
2340
2341	/* get pointer to dma memory. This actually points
2342	 * to both the isci_remote_device object and the
2343	 * sci object. The isci object is at the beginning
2344	 * of the memory allocated here.
2345	 */
2346	request = dma_pool_alloc(isci_host->dma_pool, gfp_flags, &handle);
2347	if (!request) {
2348		dev_warn(&isci_host->pdev->dev,
2349			 "%s: dma_pool_alloc returned NULL\n", __func__);
2350		return -ENOMEM;
2351	}
2352
2353	/* initialize the request object.	*/
2354	spin_lock_init(&request->state_lock);
2355	request->request_daddr = handle;
2356	request->isci_host = isci_host;
2357	request->isci_device = isci_device;
2358	request->io_request_completion = NULL;
2359	request->terminated = false;
2360
2361	request->num_sg_entries = 0;
2362
2363	request->complete_in_target = false;
2364
2365	INIT_LIST_HEAD(&request->completed_node);
2366	INIT_LIST_HEAD(&request->dev_node);
2367
2368	*isci_request = request;
2369	isci_request_change_state(request, allocated);
2370
2371	return ret;
2372}
2373
2374static int isci_request_alloc_io(
2375	struct isci_host *isci_host,
2376	struct sas_task *task,
2377	struct isci_request **isci_request,
2378	struct isci_remote_device *isci_device,
2379	gfp_t gfp_flags)
2380{
2381	int retval = isci_request_alloc_core(isci_host, isci_request,
2382					     isci_device, gfp_flags);
2383
2384	if (!retval) {
2385		(*isci_request)->ttype_ptr.io_task_ptr = task;
2386		(*isci_request)->ttype                 = io_task;
2387
2388		task->lldd_task = *isci_request;
2389	}
2390	return retval;
2391}
2392
2393/**
2394 * isci_request_alloc_tmf() - This function gets the request object from the
2395 *    isci_host dma cache and initializes the relevant fields as a sas_task.
2396 * @isci_host: This parameter specifies the ISCI host object
2397 * @sas_task: This parameter is the task struct from the upper layer driver.
2398 * @isci_request: This parameter will contain the pointer to the new
2399 *    isci_request object.
2400 * @isci_device: This parameter is the pointer to the isci remote device object
2401 *    that is the destination for this request.
2402 * @gfp_flags: This parameter specifies the os allocation flags.
2403 *
2404 * SCI_SUCCESS on successfull completion, or specific failure code.
2405 */
2406int isci_request_alloc_tmf(
2407	struct isci_host *isci_host,
2408	struct isci_tmf *isci_tmf,
2409	struct isci_request **isci_request,
2410	struct isci_remote_device *isci_device,
2411	gfp_t gfp_flags)
2412{
2413	int retval = isci_request_alloc_core(isci_host, isci_request,
2414					     isci_device, gfp_flags);
2415
2416	if (!retval) {
2417
2418		(*isci_request)->ttype_ptr.tmf_task_ptr = isci_tmf;
2419		(*isci_request)->ttype = tmf_task;
2420	}
2421	return retval;
2422}
2423
2424/**
2425 * isci_request_execute() - This function allocates the isci_request object,
2426 *    all fills in some common fields.
2427 * @isci_host: This parameter specifies the ISCI host object
2428 * @sas_task: This parameter is the task struct from the upper layer driver.
2429 * @isci_request: This parameter will contain the pointer to the new
2430 *    isci_request object.
2431 * @gfp_flags: This parameter specifies the os allocation flags.
2432 *
2433 * SCI_SUCCESS on successfull completion, or specific failure code.
2434 */
2435int isci_request_execute(
2436	struct isci_host *isci_host,
2437	struct sas_task *task,
2438	struct isci_request **isci_request,
2439	gfp_t gfp_flags)
2440{
2441	int ret = 0;
2442	struct scic_sds_remote_device *sci_device;
2443	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2444	struct isci_remote_device *isci_device;
2445	struct isci_request *request;
2446	unsigned long flags;
2447
2448	isci_device = task->dev->lldd_dev;
2449	sci_device = &isci_device->sci;
2450
2451	/* do common allocation and init of request object. */
2452	ret = isci_request_alloc_io(
2453		isci_host,
2454		task,
2455		&request,
2456		isci_device,
2457		gfp_flags
2458		);
2459
2460	if (ret)
2461		goto out;
2462
2463	status = isci_io_request_build(isci_host, request, isci_device);
2464	if (status != SCI_SUCCESS) {
2465		dev_warn(&isci_host->pdev->dev,
2466			 "%s: request_construct failed - status = 0x%x\n",
2467			 __func__,
2468			 status);
2469		goto out;
2470	}
2471
2472	spin_lock_irqsave(&isci_host->scic_lock, flags);
2473
2474	/* send the request, let the core assign the IO TAG.	*/
2475	status = scic_controller_start_io(&isci_host->sci, sci_device,
2476					  &request->sci,
2477					  SCI_CONTROLLER_INVALID_IO_TAG);
2478	if (status != SCI_SUCCESS &&
2479	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
2480		dev_warn(&isci_host->pdev->dev,
2481			 "%s: failed request start (0x%x)\n",
2482			 __func__, status);
2483		spin_unlock_irqrestore(&isci_host->scic_lock, flags);
2484		goto out;
2485	}
2486
2487	/* Either I/O started OK, or the core has signaled that
2488	 * the device needs a target reset.
2489	 *
2490	 * In either case, hold onto the I/O for later.
2491	 *
2492	 * Update it's status and add it to the list in the
2493	 * remote device object.
2494	 */
2495	isci_request_change_state(request, started);
2496	list_add(&request->dev_node, &isci_device->reqs_in_process);
2497
2498	if (status == SCI_SUCCESS) {
2499		/* Save the tag for possible task mgmt later. */
2500		request->io_tag = request->sci.io_tag;
2501	} else {
2502		/* The request did not really start in the
2503		 * hardware, so clear the request handle
2504		 * here so no terminations will be done.
2505		 */
2506		request->terminated = true;
2507	}
2508	spin_unlock_irqrestore(&isci_host->scic_lock, flags);
2509
2510	if (status ==
2511	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
2512		/* Signal libsas that we need the SCSI error
2513		* handler thread to work on this I/O and that
2514		* we want a device reset.
2515		*/
2516		spin_lock_irqsave(&task->task_state_lock, flags);
2517		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2518		spin_unlock_irqrestore(&task->task_state_lock, flags);
2519
2520		/* Cause this task to be scheduled in the SCSI error
2521		* handler thread.
2522		*/
2523		isci_execpath_callback(isci_host, task,
2524				       sas_task_abort);
2525
2526		/* Change the status, since we are holding
2527		* the I/O until it is managed by the SCSI
2528		* error handler.
2529		*/
2530		status = SCI_SUCCESS;
2531	}
2532
2533 out:
2534	if (status != SCI_SUCCESS) {
2535		/* release dma memory on failure. */
2536		isci_request_free(isci_host, request);
2537		request = NULL;
2538		ret = SCI_FAILURE;
2539	}
2540
2541	*isci_request = request;
2542	return ret;
2543}
2544
2545
2546
2547