quatech_daqp_cs.c revision da91b2692e0939b307f9047192d2b9fe07793e7a
1/*======================================================================
2
3    comedi/drivers/quatech_daqp_cs.c
4
5    Quatech DAQP PCMCIA data capture cards COMEDI client driver
6    Copyright (C) 2000, 2003 Brent Baccala <baccala@freesoft.org>
7    The DAQP interface code in this file is released into the public domain.
8
9    COMEDI - Linux Control and Measurement Device Interface
10    Copyright (C) 1998 David A. Schleef <ds@schleef.org>
11    http://www.comedi.org/
12
13    quatech_daqp_cs.c 1.10
14
15    Documentation for the DAQP PCMCIA cards can be found on Quatech's site:
16
17                ftp://ftp.quatech.com/Manuals/daqp-208.pdf
18
19    This manual is for both the DAQP-208 and the DAQP-308.
20
21    What works:
22
23	- A/D conversion
24	    - 8 channels
25	    - 4 gain ranges
26	    - ground ref or differential
27	    - single-shot and timed both supported
28	- D/A conversion, single-shot
29	- digital I/O
30
31    What doesn't:
32
33	- any kind of triggering - external or D/A channel 1
34	- the card's optional expansion board
35	- the card's timer (for anything other than A/D conversion)
36	- D/A update modes other than immediate (i.e, timed)
37	- fancier timing modes
38	- setting card's FIFO buffer thresholds to anything but default
39
40======================================================================*/
41
42/*
43Driver: quatech_daqp_cs
44Description: Quatech DAQP PCMCIA data capture cards
45Author: Brent Baccala <baccala@freesoft.org>
46Status: works
47Devices: [Quatech] DAQP-208 (daqp), DAQP-308
48*/
49
50#include "../comedidev.h"
51
52#include <pcmcia/cs_types.h>
53#include <pcmcia/cs.h>
54#include <pcmcia/cistpl.h>
55#include <pcmcia/cisreg.h>
56#include <pcmcia/ds.h>
57
58/*
59   All the PCMCIA modules use PCMCIA_DEBUG to control debugging.  If
60   you do not define PCMCIA_DEBUG at all, all the debug code will be
61   left out.  If you compile with PCMCIA_DEBUG=0, the debug code will
62   be present but disabled -- but it can then be enabled for specific
63   modules at load time with a 'pc_debug=#' option to insmod.
64*/
65
66#ifdef PCMCIA_DEBUG
67static int pc_debug = PCMCIA_DEBUG;
68module_param(pc_debug, int, 0644);
69#define DEBUG(n, args...) if (pc_debug>(n)) printk(KERN_DEBUG args)
70static char *version = "quatech_daqp_cs.c 1.10 2003/04/21 (Brent Baccala)";
71#else
72#define DEBUG(n, args...)
73#endif
74
75/* Maximum number of separate DAQP devices we'll allow */
76#define MAX_DEV         4
77
78struct local_info_t {
79	struct pcmcia_device *link;
80	dev_node_t node;
81	int stop;
82	int table_index;
83	char board_name[32];
84
85	enum { semaphore, buffer } interrupt_mode;
86
87	struct semaphore eos;
88
89	struct comedi_device *dev;
90	struct comedi_subdevice *s;
91	int count;
92};
93
94/* A list of "instances" of the device. */
95
96static struct local_info_t *dev_table[MAX_DEV] = { NULL, /* ... */  };
97
98/* The DAQP communicates with the system through a 16 byte I/O window. */
99
100#define DAQP_FIFO_SIZE		4096
101
102#define DAQP_FIFO		0
103#define DAQP_SCANLIST		1
104#define DAQP_CONTROL		2
105#define DAQP_STATUS		2
106#define DAQP_DIGITAL_IO		3
107#define DAQP_PACER_LOW		4
108#define DAQP_PACER_MID		5
109#define DAQP_PACER_HIGH		6
110#define DAQP_COMMAND		7
111#define DAQP_DA			8
112#define DAQP_TIMER		10
113#define DAQP_AUX		15
114
115#define DAQP_SCANLIST_DIFFERENTIAL	0x4000
116#define DAQP_SCANLIST_GAIN(x)		((x)<<12)
117#define DAQP_SCANLIST_CHANNEL(x)	((x)<<8)
118#define DAQP_SCANLIST_START		0x0080
119#define DAQP_SCANLIST_EXT_GAIN(x)	((x)<<4)
120#define DAQP_SCANLIST_EXT_CHANNEL(x)	(x)
121
122#define DAQP_CONTROL_PACER_100kHz	0xc0
123#define DAQP_CONTROL_PACER_1MHz		0x80
124#define DAQP_CONTROL_PACER_5MHz		0x40
125#define DAQP_CONTROL_PACER_EXTERNAL	0x00
126#define DAQP_CONTORL_EXPANSION		0x20
127#define DAQP_CONTROL_EOS_INT_ENABLE	0x10
128#define DAQP_CONTROL_FIFO_INT_ENABLE	0x08
129#define DAQP_CONTROL_TRIGGER_ONESHOT	0x00
130#define DAQP_CONTROL_TRIGGER_CONTINUOUS	0x04
131#define DAQP_CONTROL_TRIGGER_INTERNAL	0x00
132#define DAQP_CONTROL_TRIGGER_EXTERNAL	0x02
133#define DAQP_CONTROL_TRIGGER_RISING	0x00
134#define DAQP_CONTROL_TRIGGER_FALLING	0x01
135
136#define DAQP_STATUS_IDLE		0x80
137#define DAQP_STATUS_RUNNING		0x40
138#define DAQP_STATUS_EVENTS		0x38
139#define DAQP_STATUS_DATA_LOST		0x20
140#define DAQP_STATUS_END_OF_SCAN		0x10
141#define DAQP_STATUS_FIFO_THRESHOLD	0x08
142#define DAQP_STATUS_FIFO_FULL		0x04
143#define DAQP_STATUS_FIFO_NEARFULL	0x02
144#define DAQP_STATUS_FIFO_EMPTY		0x01
145
146#define DAQP_COMMAND_ARM		0x80
147#define DAQP_COMMAND_RSTF		0x40
148#define DAQP_COMMAND_RSTQ		0x20
149#define DAQP_COMMAND_STOP		0x10
150#define DAQP_COMMAND_LATCH		0x08
151#define DAQP_COMMAND_100kHz		0x00
152#define DAQP_COMMAND_50kHz		0x02
153#define DAQP_COMMAND_25kHz		0x04
154#define DAQP_COMMAND_FIFO_DATA		0x01
155#define DAQP_COMMAND_FIFO_PROGRAM	0x00
156
157#define DAQP_AUX_TRIGGER_TTL		0x00
158#define DAQP_AUX_TRIGGER_ANALOG		0x80
159#define DAQP_AUX_TRIGGER_PRETRIGGER	0x40
160#define DAQP_AUX_TIMER_INT_ENABLE	0x20
161#define DAQP_AUX_TIMER_RELOAD		0x00
162#define DAQP_AUX_TIMER_PAUSE		0x08
163#define DAQP_AUX_TIMER_GO		0x10
164#define DAQP_AUX_TIMER_GO_EXTERNAL	0x18
165#define DAQP_AUX_TIMER_EXTERNAL_SRC	0x04
166#define DAQP_AUX_TIMER_INTERNAL_SRC	0x00
167#define DAQP_AUX_DA_DIRECT		0x00
168#define DAQP_AUX_DA_OVERFLOW		0x01
169#define DAQP_AUX_DA_EXTERNAL		0x02
170#define DAQP_AUX_DA_PACER		0x03
171
172#define DAQP_AUX_RUNNING		0x80
173#define DAQP_AUX_TRIGGERED		0x40
174#define DAQP_AUX_DA_BUFFER		0x20
175#define DAQP_AUX_TIMER_OVERFLOW		0x10
176#define DAQP_AUX_CONVERSION		0x08
177#define DAQP_AUX_DATA_LOST		0x04
178#define DAQP_AUX_FIFO_NEARFULL		0x02
179#define DAQP_AUX_FIFO_EMPTY		0x01
180
181/* These range structures tell COMEDI how the sample values map to
182 * voltages.  The A/D converter has four ranges: +/- 10V through
183 * +/- 1.25V, and the D/A converter has only one: +/- 5V.
184 */
185
186static const struct comedi_lrange range_daqp_ai = { 4, {
187			BIP_RANGE(10),
188			BIP_RANGE(5),
189			BIP_RANGE(2.5),
190			BIP_RANGE(1.25)
191	}
192};
193
194static const struct comedi_lrange range_daqp_ao = { 1, {BIP_RANGE(5)} };
195
196/*====================================================================*/
197
198/* comedi interface code */
199
200static int daqp_attach(struct comedi_device *dev, struct comedi_devconfig *it);
201static int daqp_detach(struct comedi_device *dev);
202static struct comedi_driver driver_daqp = {
203      driver_name:"quatech_daqp_cs",
204      module:THIS_MODULE,
205      attach:daqp_attach,
206      detach:daqp_detach,
207};
208
209#ifdef DAQP_DEBUG
210
211static void daqp_dump(struct comedi_device *dev)
212{
213	printk("DAQP: status %02x; aux status %02x\n",
214		inb(dev->iobase + DAQP_STATUS), inb(dev->iobase + DAQP_AUX));
215}
216
217static void hex_dump(char *str, void *ptr, int len)
218{
219	unsigned char *cptr = ptr;
220	int i;
221
222	printk(str);
223
224	for (i = 0; i < len; i++) {
225		if (i % 16 == 0) {
226			printk("\n0x%08x:", (unsigned int)cptr);
227		}
228		printk(" %02x", *(cptr++));
229	}
230	printk("\n");
231}
232
233#endif
234
235/* Cancel a running acquisition */
236
237static int daqp_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
238{
239	struct local_info_t *local = (struct local_info_t *) s->private;
240
241	if (local->stop) {
242		return -EIO;
243	}
244
245	outb(DAQP_COMMAND_STOP, dev->iobase + DAQP_COMMAND);
246
247	/* flush any linguring data in FIFO - superfluous here */
248	/* outb(DAQP_COMMAND_RSTF, dev->iobase+DAQP_COMMAND); */
249
250	local->interrupt_mode = semaphore;
251
252	return 0;
253}
254
255/* Interrupt handler
256 *
257 * Operates in one of two modes.  If local->interrupt_mode is
258 * 'semaphore', just signal the local->eos semaphore and return
259 * (one-shot mode).  Otherwise (continuous mode), read data in from
260 * the card, transfer it to the buffer provided by the higher-level
261 * comedi kernel module, and signal various comedi callback routines,
262 * which run pretty quick.
263 */
264
265static void daqp_interrupt(int irq, void *dev_id)
266{
267	struct local_info_t *local = (struct local_info_t *) dev_id;
268	struct comedi_device *dev;
269	struct comedi_subdevice *s;
270	int loop_limit = 10000;
271	int status;
272
273	if (local == NULL) {
274		printk(KERN_WARNING
275			"daqp_interrupt(): irq %d for unknown device.\n", irq);
276		return;
277	}
278
279	dev = local->dev;
280	if (dev == NULL) {
281		printk(KERN_WARNING "daqp_interrupt(): NULL comedi_device.\n");
282		return;
283	}
284
285	if (!dev->attached) {
286		printk(KERN_WARNING
287			"daqp_interrupt(): struct comedi_device not yet attached.\n");
288		return;
289	}
290
291	s = local->s;
292	if (s == NULL) {
293		printk(KERN_WARNING
294			"daqp_interrupt(): NULL comedi_subdevice.\n");
295		return;
296	}
297
298	if ((struct local_info_t *) s->private != local) {
299		printk(KERN_WARNING
300			"daqp_interrupt(): invalid comedi_subdevice.\n");
301		return;
302	}
303
304	switch (local->interrupt_mode) {
305
306	case semaphore:
307
308		up(&local->eos);
309		break;
310
311	case buffer:
312
313		while (!((status = inb(dev->iobase + DAQP_STATUS))
314				& DAQP_STATUS_FIFO_EMPTY)) {
315
316			short data;
317
318			if (status & DAQP_STATUS_DATA_LOST) {
319				s->async->events |=
320					COMEDI_CB_EOA | COMEDI_CB_OVERFLOW;
321				printk("daqp: data lost\n");
322				daqp_ai_cancel(dev, s);
323				break;
324			}
325
326			data = inb(dev->iobase + DAQP_FIFO);
327			data |= inb(dev->iobase + DAQP_FIFO) << 8;
328			data ^= 0x8000;
329
330			comedi_buf_put(s->async, data);
331
332			/* If there's a limit, decrement it
333			 * and stop conversion if zero
334			 */
335
336			if (local->count > 0) {
337				local->count--;
338				if (local->count == 0) {
339					daqp_ai_cancel(dev, s);
340					s->async->events |= COMEDI_CB_EOA;
341					break;
342				}
343			}
344
345			if ((loop_limit--) <= 0)
346				break;
347		}
348
349		if (loop_limit <= 0) {
350			printk(KERN_WARNING
351				"loop_limit reached in daqp_interrupt()\n");
352			daqp_ai_cancel(dev, s);
353			s->async->events |= COMEDI_CB_EOA | COMEDI_CB_ERROR;
354		}
355
356		s->async->events |= COMEDI_CB_BLOCK;
357
358		comedi_event(dev, s);
359	}
360}
361
362/* One-shot analog data acquisition routine */
363
364static int daqp_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
365	struct comedi_insn *insn, unsigned int *data)
366{
367	struct local_info_t *local = (struct local_info_t *) s->private;
368	int i;
369	int v;
370	int counter = 10000;
371
372	if (local->stop) {
373		return -EIO;
374	}
375
376	/* Stop any running conversion */
377	daqp_ai_cancel(dev, s);
378
379	outb(0, dev->iobase + DAQP_AUX);
380
381	/* Reset scan list queue */
382	outb(DAQP_COMMAND_RSTQ, dev->iobase + DAQP_COMMAND);
383
384	/* Program one scan list entry */
385
386	v = DAQP_SCANLIST_CHANNEL(CR_CHAN(insn->chanspec))
387		| DAQP_SCANLIST_GAIN(CR_RANGE(insn->chanspec));
388
389	if (CR_AREF(insn->chanspec) == AREF_DIFF) {
390		v |= DAQP_SCANLIST_DIFFERENTIAL;
391	}
392
393	v |= DAQP_SCANLIST_START;
394
395	outb(v & 0xff, dev->iobase + DAQP_SCANLIST);
396	outb(v >> 8, dev->iobase + DAQP_SCANLIST);
397
398	/* Reset data FIFO (see page 28 of DAQP User's Manual) */
399
400	outb(DAQP_COMMAND_RSTF, dev->iobase + DAQP_COMMAND);
401
402	/* Set trigger */
403
404	v = DAQP_CONTROL_TRIGGER_ONESHOT | DAQP_CONTROL_TRIGGER_INTERNAL
405		| DAQP_CONTROL_PACER_100kHz | DAQP_CONTROL_EOS_INT_ENABLE;
406
407	outb(v, dev->iobase + DAQP_CONTROL);
408
409	/* Reset any pending interrupts (my card has a tendancy to require
410	 * require multiple reads on the status register to achieve this)
411	 */
412
413	while (--counter
414		&& (inb(dev->iobase + DAQP_STATUS) & DAQP_STATUS_EVENTS)) ;
415	if (!counter) {
416		printk("daqp: couldn't clear interrupts in status register\n");
417		return -1;
418	}
419
420	/* Make sure semaphore is blocked */
421	sema_init(&local->eos, 0);
422	local->interrupt_mode = semaphore;
423	local->dev = dev;
424	local->s = s;
425
426	for (i = 0; i < insn->n; i++) {
427
428		/* Start conversion */
429		outb(DAQP_COMMAND_ARM | DAQP_COMMAND_FIFO_DATA,
430			dev->iobase + DAQP_COMMAND);
431
432		/* Wait for interrupt service routine to unblock semaphore */
433		/* Maybe could use a timeout here, but it's interruptible */
434		if (down_interruptible(&local->eos))
435			return -EINTR;
436
437		data[i] = inb(dev->iobase + DAQP_FIFO);
438		data[i] |= inb(dev->iobase + DAQP_FIFO) << 8;
439		data[i] ^= 0x8000;
440	}
441
442	return insn->n;
443}
444
445/* This function converts ns nanoseconds to a counter value suitable
446 * for programming the device.  We always use the DAQP's 5 MHz clock,
447 * which with its 24-bit counter, allows values up to 84 seconds.
448 * Also, the function adjusts ns so that it cooresponds to the actual
449 * time that the device will use.
450 */
451
452static int daqp_ns_to_timer(unsigned int *ns, int round)
453{
454	int timer;
455
456	timer = *ns / 200;
457	*ns = timer * 200;
458
459	return timer;
460}
461
462/* cmdtest tests a particular command to see if it is valid.
463 * Using the cmdtest ioctl, a user can create a valid cmd
464 * and then have it executed by the cmd ioctl.
465 *
466 * cmdtest returns 1,2,3,4 or 0, depending on which tests
467 * the command passes.
468 */
469
470static int daqp_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
471	struct comedi_cmd *cmd)
472{
473	int err = 0;
474	int tmp;
475
476	/* step 1: make sure trigger sources are trivially valid */
477
478	tmp = cmd->start_src;
479	cmd->start_src &= TRIG_NOW;
480	if (!cmd->start_src || tmp != cmd->start_src)
481		err++;
482
483	tmp = cmd->scan_begin_src;
484	cmd->scan_begin_src &= TRIG_TIMER | TRIG_FOLLOW;
485	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
486		err++;
487
488	tmp = cmd->convert_src;
489	cmd->convert_src &= TRIG_TIMER | TRIG_NOW;
490	if (!cmd->convert_src || tmp != cmd->convert_src)
491		err++;
492
493	tmp = cmd->scan_end_src;
494	cmd->scan_end_src &= TRIG_COUNT;
495	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
496		err++;
497
498	tmp = cmd->stop_src;
499	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
500	if (!cmd->stop_src || tmp != cmd->stop_src)
501		err++;
502
503	if (err)
504		return 1;
505
506	/* step 2: make sure trigger sources are unique and mutually compatible */
507
508	/* note that mutual compatiblity is not an issue here */
509	if (cmd->scan_begin_src != TRIG_TIMER &&
510		cmd->scan_begin_src != TRIG_FOLLOW)
511		err++;
512	if (cmd->convert_src != TRIG_NOW && cmd->convert_src != TRIG_TIMER)
513		err++;
514	if (cmd->scan_begin_src == TRIG_FOLLOW && cmd->convert_src == TRIG_NOW)
515		err++;
516	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
517		err++;
518
519	if (err)
520		return 2;
521
522	/* step 3: make sure arguments are trivially compatible */
523
524	if (cmd->start_arg != 0) {
525		cmd->start_arg = 0;
526		err++;
527	}
528#define MAX_SPEED	10000	/* 100 kHz - in nanoseconds */
529
530	if (cmd->scan_begin_src == TRIG_TIMER
531		&& cmd->scan_begin_arg < MAX_SPEED) {
532		cmd->scan_begin_arg = MAX_SPEED;
533		err++;
534	}
535
536	/* If both scan_begin and convert are both timer values, the only
537	 * way that can make sense is if the scan time is the number of
538	 * conversions times the convert time
539	 */
540
541	if (cmd->scan_begin_src == TRIG_TIMER && cmd->convert_src == TRIG_TIMER
542		&& cmd->scan_begin_arg !=
543		cmd->convert_arg * cmd->scan_end_arg) {
544		err++;
545	}
546
547	if (cmd->convert_src == TRIG_TIMER && cmd->convert_arg < MAX_SPEED) {
548		cmd->convert_arg = MAX_SPEED;
549		err++;
550	}
551
552	if (cmd->scan_end_arg != cmd->chanlist_len) {
553		cmd->scan_end_arg = cmd->chanlist_len;
554		err++;
555	}
556	if (cmd->stop_src == TRIG_COUNT) {
557		if (cmd->stop_arg > 0x00ffffff) {
558			cmd->stop_arg = 0x00ffffff;
559			err++;
560		}
561	} else {
562		/* TRIG_NONE */
563		if (cmd->stop_arg != 0) {
564			cmd->stop_arg = 0;
565			err++;
566		}
567	}
568
569	if (err)
570		return 3;
571
572	/* step 4: fix up any arguments */
573
574	if (cmd->scan_begin_src == TRIG_TIMER) {
575		tmp = cmd->scan_begin_arg;
576		daqp_ns_to_timer(&cmd->scan_begin_arg,
577			cmd->flags & TRIG_ROUND_MASK);
578		if (tmp != cmd->scan_begin_arg)
579			err++;
580	}
581
582	if (cmd->convert_src == TRIG_TIMER) {
583		tmp = cmd->convert_arg;
584		daqp_ns_to_timer(&cmd->convert_arg,
585			cmd->flags & TRIG_ROUND_MASK);
586		if (tmp != cmd->convert_arg)
587			err++;
588	}
589
590	if (err)
591		return 4;
592
593	return 0;
594}
595
596static int daqp_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
597{
598	struct local_info_t *local = (struct local_info_t *) s->private;
599	struct comedi_cmd *cmd = &s->async->cmd;
600	int counter = 100;
601	int scanlist_start_on_every_entry;
602	int threshold;
603
604	int i;
605	int v;
606
607	if (local->stop) {
608		return -EIO;
609	}
610
611	/* Stop any running conversion */
612	daqp_ai_cancel(dev, s);
613
614	outb(0, dev->iobase + DAQP_AUX);
615
616	/* Reset scan list queue */
617	outb(DAQP_COMMAND_RSTQ, dev->iobase + DAQP_COMMAND);
618
619	/* Program pacer clock
620	 *
621	 * There's two modes we can operate in.  If convert_src is
622	 * TRIG_TIMER, then convert_arg specifies the time between
623	 * each conversion, so we program the pacer clock to that
624	 * frequency and set the SCANLIST_START bit on every scanlist
625	 * entry.  Otherwise, convert_src is TRIG_NOW, which means
626	 * we want the fastest possible conversions, scan_begin_src
627	 * is TRIG_TIMER, and scan_begin_arg specifies the time between
628	 * each scan, so we program the pacer clock to this frequency
629	 * and only set the SCANLIST_START bit on the first entry.
630	 */
631
632	if (cmd->convert_src == TRIG_TIMER) {
633		int counter = daqp_ns_to_timer(&cmd->convert_arg,
634			cmd->flags & TRIG_ROUND_MASK);
635		outb(counter & 0xff, dev->iobase + DAQP_PACER_LOW);
636		outb((counter >> 8) & 0xff, dev->iobase + DAQP_PACER_MID);
637		outb((counter >> 16) & 0xff, dev->iobase + DAQP_PACER_HIGH);
638		scanlist_start_on_every_entry = 1;
639	} else {
640		int counter = daqp_ns_to_timer(&cmd->scan_begin_arg,
641			cmd->flags & TRIG_ROUND_MASK);
642		outb(counter & 0xff, dev->iobase + DAQP_PACER_LOW);
643		outb((counter >> 8) & 0xff, dev->iobase + DAQP_PACER_MID);
644		outb((counter >> 16) & 0xff, dev->iobase + DAQP_PACER_HIGH);
645		scanlist_start_on_every_entry = 0;
646	}
647
648	/* Program scan list */
649
650	for (i = 0; i < cmd->chanlist_len; i++) {
651
652		int chanspec = cmd->chanlist[i];
653
654		/* Program one scan list entry */
655
656		v = DAQP_SCANLIST_CHANNEL(CR_CHAN(chanspec))
657			| DAQP_SCANLIST_GAIN(CR_RANGE(chanspec));
658
659		if (CR_AREF(chanspec) == AREF_DIFF) {
660			v |= DAQP_SCANLIST_DIFFERENTIAL;
661		}
662
663		if (i == 0 || scanlist_start_on_every_entry) {
664			v |= DAQP_SCANLIST_START;
665		}
666
667		outb(v & 0xff, dev->iobase + DAQP_SCANLIST);
668		outb(v >> 8, dev->iobase + DAQP_SCANLIST);
669	}
670
671	/* Now it's time to program the FIFO threshold, basically the
672	 * number of samples the card will buffer before it interrupts
673	 * the CPU.
674	 *
675	 * If we don't have a stop count, then use half the size of
676	 * the FIFO (the manufacturer's recommendation).  Consider
677	 * that the FIFO can hold 2K samples (4K bytes).  With the
678	 * threshold set at half the FIFO size, we have a margin of
679	 * error of 1024 samples.  At the chip's maximum sample rate
680	 * of 100,000 Hz, the CPU would have to delay interrupt
681	 * service for a full 10 milliseconds in order to lose data
682	 * here (as opposed to higher up in the kernel).  I've never
683	 * seen it happen.  However, for slow sample rates it may
684	 * buffer too much data and introduce too much delay for the
685	 * user application.
686	 *
687	 * If we have a stop count, then things get more interesting.
688	 * If the stop count is less than the FIFO size (actually
689	 * three-quarters of the FIFO size - see below), we just use
690	 * the stop count itself as the threshold, the card interrupts
691	 * us when that many samples have been taken, and we kill the
692	 * acquisition at that point and are done.  If the stop count
693	 * is larger than that, then we divide it by 2 until it's less
694	 * than three quarters of the FIFO size (we always leave the
695	 * top quarter of the FIFO as protection against sluggish CPU
696	 * interrupt response) and use that as the threshold.  So, if
697	 * the stop count is 4000 samples, we divide by two twice to
698	 * get 1000 samples, use that as the threshold, take four
699	 * interrupts to get our 4000 samples and are done.
700	 *
701	 * The algorithm could be more clever.  For example, if 81000
702	 * samples are requested, we could set the threshold to 1500
703	 * samples and take 54 interrupts to get 81000.  But 54 isn't
704	 * a power of two, so this algorithm won't find that option.
705	 * Instead, it'll set the threshold at 1266 and take 64
706	 * interrupts to get 81024 samples, of which the last 24 will
707	 * be discarded... but we won't get the last interrupt until
708	 * they've been collected.  To find the first option, the
709	 * computer could look at the prime decomposition of the
710	 * sample count (81000 = 3^4 * 5^3 * 2^3) and factor it into a
711	 * threshold (1500 = 3 * 5^3 * 2^2) and an interrupt count (54
712	 * = 3^3 * 2).  Hmmm... a one-line while loop or prime
713	 * decomposition of integers... I'll leave it the way it is.
714	 *
715	 * I'll also note a mini-race condition before ignoring it in
716	 * the code.  Let's say we're taking 4000 samples, as before.
717	 * After 1000 samples, we get an interrupt.  But before that
718	 * interrupt is completely serviced, another sample is taken
719	 * and loaded into the FIFO.  Since the interrupt handler
720	 * empties the FIFO before returning, it will read 1001 samples.
721	 * If that happens four times, we'll end up taking 4004 samples,
722	 * not 4000.  The interrupt handler will discard the extra four
723	 * samples (by halting the acquisition with four samples still
724	 * in the FIFO), but we will have to wait for them.
725	 *
726	 * In short, this code works pretty well, but for either of
727	 * the two reasons noted, might end up waiting for a few more
728	 * samples than actually requested.  Shouldn't make too much
729	 * of a difference.
730	 */
731
732	/* Save away the number of conversions we should perform, and
733	 * compute the FIFO threshold (in bytes, not samples - that's
734	 * why we multiple local->count by 2 = sizeof(sample))
735	 */
736
737	if (cmd->stop_src == TRIG_COUNT) {
738		local->count = cmd->stop_arg * cmd->scan_end_arg;
739		threshold = 2 * local->count;
740		while (threshold > DAQP_FIFO_SIZE * 3 / 4)
741			threshold /= 2;
742	} else {
743		local->count = -1;
744		threshold = DAQP_FIFO_SIZE / 2;
745	}
746
747	/* Reset data FIFO (see page 28 of DAQP User's Manual) */
748
749	outb(DAQP_COMMAND_RSTF, dev->iobase + DAQP_COMMAND);
750
751	/* Set FIFO threshold.  First two bytes are near-empty
752	 * threshold, which is unused; next two bytes are near-full
753	 * threshold.  We computed the number of bytes we want in the
754	 * FIFO when the interrupt is generated, what the card wants
755	 * is actually the number of available bytes left in the FIFO
756	 * when the interrupt is to happen.
757	 */
758
759	outb(0x00, dev->iobase + DAQP_FIFO);
760	outb(0x00, dev->iobase + DAQP_FIFO);
761
762	outb((DAQP_FIFO_SIZE - threshold) & 0xff, dev->iobase + DAQP_FIFO);
763	outb((DAQP_FIFO_SIZE - threshold) >> 8, dev->iobase + DAQP_FIFO);
764
765	/* Set trigger */
766
767	v = DAQP_CONTROL_TRIGGER_CONTINUOUS | DAQP_CONTROL_TRIGGER_INTERNAL
768		| DAQP_CONTROL_PACER_5MHz | DAQP_CONTROL_FIFO_INT_ENABLE;
769
770	outb(v, dev->iobase + DAQP_CONTROL);
771
772	/* Reset any pending interrupts (my card has a tendancy to require
773	 * require multiple reads on the status register to achieve this)
774	 */
775
776	while (--counter
777		&& (inb(dev->iobase + DAQP_STATUS) & DAQP_STATUS_EVENTS)) ;
778	if (!counter) {
779		printk("daqp: couldn't clear interrupts in status register\n");
780		return -1;
781	}
782
783	local->interrupt_mode = buffer;
784	local->dev = dev;
785	local->s = s;
786
787	/* Start conversion */
788	outb(DAQP_COMMAND_ARM | DAQP_COMMAND_FIFO_DATA,
789		dev->iobase + DAQP_COMMAND);
790
791	return 0;
792}
793
794/* Single-shot analog output routine */
795
796static int daqp_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
797	struct comedi_insn *insn, unsigned int *data)
798{
799	struct local_info_t *local = (struct local_info_t *) s->private;
800	int d;
801	unsigned int chan;
802
803	if (local->stop) {
804		return -EIO;
805	}
806
807	chan = CR_CHAN(insn->chanspec);
808	d = data[0];
809	d &= 0x0fff;
810	d ^= 0x0800;		/* Flip the sign */
811	d |= chan << 12;
812
813	/* Make sure D/A update mode is direct update */
814	outb(0, dev->iobase + DAQP_AUX);
815
816	outw(d, dev->iobase + DAQP_DA);
817
818	return 1;
819}
820
821/* Digital input routine */
822
823static int daqp_di_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
824	struct comedi_insn *insn, unsigned int *data)
825{
826	struct local_info_t *local = (struct local_info_t *) s->private;
827
828	if (local->stop) {
829		return -EIO;
830	}
831
832	data[0] = inb(dev->iobase + DAQP_DIGITAL_IO);
833
834	return 1;
835}
836
837/* Digital output routine */
838
839static int daqp_do_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
840	struct comedi_insn *insn, unsigned int *data)
841{
842	struct local_info_t *local = (struct local_info_t *) s->private;
843
844	if (local->stop) {
845		return -EIO;
846	}
847
848	outw(data[0] & 0xf, dev->iobase + DAQP_DIGITAL_IO);
849
850	return 1;
851}
852
853/* daqp_attach is called via comedi_config to attach a comedi device
854 * to a /dev/comedi*.  Note that this is different from daqp_cs_attach()
855 * which is called by the pcmcia subsystem to attach the PCMCIA card
856 * when it is inserted.
857 */
858
859static int daqp_attach(struct comedi_device *dev, struct comedi_devconfig *it)
860{
861	int ret;
862	struct local_info_t *local = dev_table[it->options[0]];
863	tuple_t tuple;
864	int i;
865	struct comedi_subdevice *s;
866
867	if (it->options[0] < 0 || it->options[0] >= MAX_DEV || !local) {
868		printk("comedi%d: No such daqp device %d\n",
869			dev->minor, it->options[0]);
870		return -EIO;
871	}
872
873	/* Typically brittle code that I don't completely understand,
874	 * but "it works on my card".  The intent is to pull the model
875	 * number of the card out the PCMCIA CIS and stash it away as
876	 * the COMEDI board_name.  Looks like the third field in
877	 * CISTPL_VERS_1 (offset 2) holds what we're looking for.  If
878	 * it doesn't work, who cares, just leave it as "DAQP".
879	 */
880
881	strcpy(local->board_name, "DAQP");
882	dev->board_name = local->board_name;
883
884	tuple.DesiredTuple = CISTPL_VERS_1;
885	if (pcmcia_get_first_tuple(local->link, &tuple) == 0) {
886		u_char buf[128];
887
888		buf[0] = buf[sizeof(buf) - 1] = 0;
889		tuple.TupleData = buf;
890		tuple.TupleDataMax = sizeof(buf);
891		tuple.TupleOffset = 2;
892		if (pcmcia_get_tuple_data(local->link, &tuple) == 0) {
893
894			for (i = 0; i < tuple.TupleDataLen - 4; i++)
895				if (buf[i] == 0)
896					break;
897			for (i++; i < tuple.TupleDataLen - 4; i++)
898				if (buf[i] == 0)
899					break;
900			i++;
901			if ((i < tuple.TupleDataLen - 4)
902				&& (strncmp(buf + i, "DAQP", 4) == 0)) {
903				strncpy(local->board_name, buf + i,
904					sizeof(local->board_name));
905			}
906		}
907	}
908
909	dev->iobase = local->link->io.BasePort1;
910
911	if ((ret = alloc_subdevices(dev, 4)) < 0)
912		return ret;
913
914	printk("comedi%d: attaching daqp%d (io 0x%04lx)\n",
915		dev->minor, it->options[0], dev->iobase);
916
917	s = dev->subdevices + 0;
918	dev->read_subdev = s;
919	s->private = local;
920	s->type = COMEDI_SUBD_AI;
921	s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF | SDF_CMD_READ;
922	s->n_chan = 8;
923	s->len_chanlist = 2048;
924	s->maxdata = 0xffff;
925	s->range_table = &range_daqp_ai;
926	s->insn_read = daqp_ai_insn_read;
927	s->do_cmdtest = daqp_ai_cmdtest;
928	s->do_cmd = daqp_ai_cmd;
929	s->cancel = daqp_ai_cancel;
930
931	s = dev->subdevices + 1;
932	dev->write_subdev = s;
933	s->private = local;
934	s->type = COMEDI_SUBD_AO;
935	s->subdev_flags = SDF_WRITEABLE;
936	s->n_chan = 2;
937	s->len_chanlist = 1;
938	s->maxdata = 0x0fff;
939	s->range_table = &range_daqp_ao;
940	s->insn_write = daqp_ao_insn_write;
941
942	s = dev->subdevices + 2;
943	s->private = local;
944	s->type = COMEDI_SUBD_DI;
945	s->subdev_flags = SDF_READABLE;
946	s->n_chan = 1;
947	s->len_chanlist = 1;
948	s->insn_read = daqp_di_insn_read;
949
950	s = dev->subdevices + 3;
951	s->private = local;
952	s->type = COMEDI_SUBD_DO;
953	s->subdev_flags = SDF_WRITEABLE;
954	s->n_chan = 1;
955	s->len_chanlist = 1;
956	s->insn_write = daqp_do_insn_write;
957
958	return 1;
959}
960
961/* daqp_detach (called from comedi_comdig) does nothing. If the PCMCIA
962 * card is removed, daqp_cs_detach() is called by the pcmcia subsystem.
963 */
964
965static int daqp_detach(struct comedi_device *dev)
966{
967	printk("comedi%d: detaching daqp\n", dev->minor);
968
969	return 0;
970}
971
972/*====================================================================
973
974    PCMCIA interface code
975
976    The rest of the code in this file is based on dummy_cs.c v1.24
977    from the Linux pcmcia_cs distribution v3.1.8 and is subject
978    to the following license agreement.
979
980    The remaining contents of this file are subject to the Mozilla Public
981    License Version 1.1 (the "License"); you may not use this file
982    except in compliance with the License. You may obtain a copy of
983    the License at http://www.mozilla.org/MPL/
984
985    Software distributed under the License is distributed on an "AS
986    IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
987    implied. See the License for the specific language governing
988    rights and limitations under the License.
989
990    The initial developer of the original code is David A. Hinds
991    <dhinds@pcmcia.sourceforge.org>.  Portions created by David A. Hinds
992    are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
993
994    Alternatively, the contents of this file may be used under the
995    terms of the GNU Public License version 2 (the "GPL"), in which
996    case the provisions of the GPL are applicable instead of the
997    above.  If you wish to allow the use of your version of this file
998    only under the terms of the GPL and not to allow others to use
999    your version of this file under the MPL, indicate your decision
1000    by deleting the provisions above and replace them with the notice
1001    and other provisions required by the GPL.  If you do not delete
1002    the provisions above, a recipient may use your version of this
1003    file under either the MPL or the GPL.
1004
1005======================================================================*/
1006
1007/*
1008   The event() function is this driver's Card Services event handler.
1009   It will be called by Card Services when an appropriate card status
1010   event is received.  The config() and release() entry points are
1011   used to configure or release a socket, in response to card
1012   insertion and ejection events.
1013
1014   Kernel version 2.6.16 upwards uses suspend() and resume() functions
1015   instead of an event() function.
1016*/
1017
1018static void daqp_cs_config(struct pcmcia_device *link);
1019static void daqp_cs_release(struct pcmcia_device *link);
1020static int daqp_cs_suspend(struct pcmcia_device *p_dev);
1021static int daqp_cs_resume(struct pcmcia_device *p_dev);
1022
1023/*
1024   The attach() and detach() entry points are used to create and destroy
1025   "instances" of the driver, where each instance represents everything
1026   needed to manage one actual PCMCIA card.
1027*/
1028
1029static int daqp_cs_attach(struct pcmcia_device *);
1030static void daqp_cs_detach(struct pcmcia_device *);
1031
1032/*
1033   The dev_info variable is the "key" that is used to match up this
1034   device driver with appropriate cards, through the card configuration
1035   database.
1036*/
1037
1038static const dev_info_t dev_info = "quatech_daqp_cs";
1039
1040/*======================================================================
1041
1042    daqp_cs_attach() creates an "instance" of the driver, allocating
1043    local data structures for one device.  The device is registered
1044    with Card Services.
1045
1046    The dev_link structure is initialized, but we don't actually
1047    configure the card at this point -- we wait until we receive a
1048    card insertion event.
1049
1050======================================================================*/
1051
1052static int daqp_cs_attach(struct pcmcia_device *link)
1053{
1054	struct local_info_t *local;
1055	int i;
1056
1057	DEBUG(0, "daqp_cs_attach()\n");
1058
1059	for (i = 0; i < MAX_DEV; i++)
1060		if (dev_table[i] == NULL)
1061			break;
1062	if (i == MAX_DEV) {
1063		printk(KERN_NOTICE "daqp_cs: no devices available\n");
1064		return -ENODEV;
1065	}
1066
1067	/* Allocate space for private device-specific data */
1068	local = kzalloc(sizeof(struct local_info_t), GFP_KERNEL);
1069	if (!local)
1070		return -ENOMEM;
1071
1072	local->table_index = i;
1073	dev_table[i] = local;
1074	local->link = link;
1075	link->priv = local;
1076
1077	/* Interrupt setup */
1078	link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
1079	link->irq.IRQInfo1 = IRQ_LEVEL_ID;
1080	link->irq.Handler = daqp_interrupt;
1081	link->irq.Instance = local;
1082
1083	/*
1084	   General socket configuration defaults can go here.  In this
1085	   client, we assume very little, and rely on the CIS for almost
1086	   everything.  In most clients, many details (i.e., number, sizes,
1087	   and attributes of IO windows) are fixed by the nature of the
1088	   device, and can be hard-wired here.
1089	 */
1090	link->conf.Attributes = 0;
1091	link->conf.IntType = INT_MEMORY_AND_IO;
1092
1093	daqp_cs_config(link);
1094
1095	return 0;
1096}				/* daqp_cs_attach */
1097
1098/*======================================================================
1099
1100    This deletes a driver "instance".  The device is de-registered
1101    with Card Services.  If it has been released, all local data
1102    structures are freed.  Otherwise, the structures will be freed
1103    when the device is released.
1104
1105======================================================================*/
1106
1107static void daqp_cs_detach(struct pcmcia_device *link)
1108{
1109	struct local_info_t *dev = link->priv;
1110
1111	DEBUG(0, "daqp_cs_detach(0x%p)\n", link);
1112
1113	if (link->dev_node) {
1114		dev->stop = 1;
1115		daqp_cs_release(link);
1116	}
1117
1118	/* Unlink device structure, and free it */
1119	dev_table[dev->table_index] = NULL;
1120	if (dev)
1121		kfree(dev);
1122
1123}				/* daqp_cs_detach */
1124
1125/*======================================================================
1126
1127    daqp_cs_config() is scheduled to run after a CARD_INSERTION event
1128    is received, to configure the PCMCIA socket, and to make the
1129    device available to the system.
1130
1131======================================================================*/
1132
1133static void daqp_cs_config(struct pcmcia_device *link)
1134{
1135	struct local_info_t *dev = link->priv;
1136	tuple_t tuple;
1137	cisparse_t parse;
1138	int last_ret;
1139	u_char buf[64];
1140
1141	DEBUG(0, "daqp_cs_config(0x%p)\n", link);
1142
1143	/*
1144	   This reads the card's CONFIG tuple to find its configuration
1145	   registers.
1146	 */
1147	tuple.DesiredTuple = CISTPL_CONFIG;
1148	tuple.Attributes = 0;
1149	tuple.TupleData = buf;
1150	tuple.TupleDataMax = sizeof(buf);
1151	tuple.TupleOffset = 0;
1152	if ((last_ret = pcmcia_get_first_tuple(link, &tuple))) {
1153		cs_error(link, GetFirstTuple, last_ret);
1154		goto cs_failed;
1155	}
1156	if ((last_ret = pcmcia_get_tuple_data(link, &tuple))) {
1157		cs_error(link, GetTupleData, last_ret);
1158		goto cs_failed;
1159	}
1160	if ((last_ret = pcmcia_parse_tuple(&tuple, &parse))) {
1161		cs_error(link, ParseTuple, last_ret);
1162		goto cs_failed;
1163	}
1164	link->conf.ConfigBase = parse.config.base;
1165	link->conf.Present = parse.config.rmask[0];
1166
1167	/*
1168	   In this loop, we scan the CIS for configuration table entries,
1169	   each of which describes a valid card configuration, including
1170	   voltage, IO window, memory window, and interrupt settings.
1171
1172	   We make no assumptions about the card to be configured: we use
1173	   just the information available in the CIS.  In an ideal world,
1174	   this would work for any PCMCIA card, but it requires a complete
1175	   and accurate CIS.  In practice, a driver usually "knows" most of
1176	   these things without consulting the CIS, and most client drivers
1177	   will only use the CIS to fill in implementation-defined details.
1178	 */
1179	tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
1180	if ((last_ret = pcmcia_get_first_tuple(link, &tuple))) {
1181		cs_error(link, GetFirstTuple, last_ret);
1182		goto cs_failed;
1183	}
1184	while (1) {
1185		cistpl_cftable_entry_t dflt = { 0 };
1186		cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
1187		if (pcmcia_get_tuple_data(link, &tuple))
1188			goto next_entry;
1189		if (pcmcia_parse_tuple(&tuple, &parse))
1190			goto next_entry;
1191
1192		if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
1193			dflt = *cfg;
1194		if (cfg->index == 0)
1195			goto next_entry;
1196		link->conf.ConfigIndex = cfg->index;
1197
1198		/* Do we need to allocate an interrupt? */
1199		if (cfg->irq.IRQInfo1 || dflt.irq.IRQInfo1)
1200			link->conf.Attributes |= CONF_ENABLE_IRQ;
1201
1202		/* IO window settings */
1203		link->io.NumPorts1 = link->io.NumPorts2 = 0;
1204		if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
1205			cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io;
1206			link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
1207			if (!(io->flags & CISTPL_IO_8BIT))
1208				link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
1209			if (!(io->flags & CISTPL_IO_16BIT))
1210				link->io.Attributes1 = IO_DATA_PATH_WIDTH_8;
1211			link->io.IOAddrLines = io->flags & CISTPL_IO_LINES_MASK;
1212			link->io.BasePort1 = io->win[0].base;
1213			link->io.NumPorts1 = io->win[0].len;
1214			if (io->nwin > 1) {
1215				link->io.Attributes2 = link->io.Attributes1;
1216				link->io.BasePort2 = io->win[1].base;
1217				link->io.NumPorts2 = io->win[1].len;
1218			}
1219		}
1220
1221		/* This reserves IO space but doesn't actually enable it */
1222		if (pcmcia_request_io(link, &link->io))
1223			goto next_entry;
1224
1225		/* If we got this far, we're cool! */
1226		break;
1227
1228	      next_entry:
1229		if ((last_ret = pcmcia_get_next_tuple(link, &tuple))) {
1230			cs_error(link, GetNextTuple, last_ret);
1231			goto cs_failed;
1232		}
1233	}
1234
1235	/*
1236	   Allocate an interrupt line.  Note that this does not assign a
1237	   handler to the interrupt, unless the 'Handler' member of the
1238	   irq structure is initialized.
1239	 */
1240	if (link->conf.Attributes & CONF_ENABLE_IRQ)
1241		if ((last_ret = pcmcia_request_irq(link, &link->irq))) {
1242			cs_error(link, RequestIRQ, last_ret);
1243			goto cs_failed;
1244		}
1245
1246	/*
1247	   This actually configures the PCMCIA socket -- setting up
1248	   the I/O windows and the interrupt mapping, and putting the
1249	   card and host interface into "Memory and IO" mode.
1250	 */
1251	if ((last_ret = pcmcia_request_configuration(link, &link->conf))) {
1252		cs_error(link, RequestConfiguration, last_ret);
1253		goto cs_failed;
1254	}
1255
1256	/*
1257	   At this point, the dev_node_t structure(s) need to be
1258	   initialized and arranged in a linked list at link->dev.
1259	 */
1260	/* Comedi's PCMCIA script uses this device name (extracted
1261	 * from /var/lib/pcmcia/stab) to pass to comedi_config
1262	 */
1263	/* sprintf(dev->node.dev_name, "daqp%d", dev->table_index); */
1264	sprintf(dev->node.dev_name, "quatech_daqp_cs");
1265	dev->node.major = dev->node.minor = 0;
1266	link->dev_node = &dev->node;
1267
1268	/* Finally, report what we've done */
1269	printk(KERN_INFO "%s: index 0x%02x",
1270		dev->node.dev_name, link->conf.ConfigIndex);
1271	if (link->conf.Attributes & CONF_ENABLE_IRQ)
1272		printk(", irq %u", link->irq.AssignedIRQ);
1273	if (link->io.NumPorts1)
1274		printk(", io 0x%04x-0x%04x", link->io.BasePort1,
1275			link->io.BasePort1 + link->io.NumPorts1 - 1);
1276	if (link->io.NumPorts2)
1277		printk(" & 0x%04x-0x%04x", link->io.BasePort2,
1278			link->io.BasePort2 + link->io.NumPorts2 - 1);
1279	printk("\n");
1280
1281	return;
1282
1283      cs_failed:
1284	daqp_cs_release(link);
1285
1286}				/* daqp_cs_config */
1287
1288static void daqp_cs_release(struct pcmcia_device *link)
1289{
1290	DEBUG(0, "daqp_cs_release(0x%p)\n", link);
1291
1292	pcmcia_disable_device(link);
1293}				/* daqp_cs_release */
1294
1295/*======================================================================
1296
1297    The card status event handler.  Mostly, this schedules other
1298    stuff to run after an event is received.
1299
1300    When a CARD_REMOVAL event is received, we immediately set a
1301    private flag to block future accesses to this device.  All the
1302    functions that actually access the device should check this flag
1303    to make sure the card is still present.
1304
1305======================================================================*/
1306
1307static int daqp_cs_suspend(struct pcmcia_device *link)
1308{
1309	struct local_info_t *local = link->priv;
1310
1311	/* Mark the device as stopped, to block IO until later */
1312	local->stop = 1;
1313	return 0;
1314}
1315
1316static int daqp_cs_resume(struct pcmcia_device *link)
1317{
1318	struct local_info_t *local = link->priv;
1319
1320	local->stop = 0;
1321
1322	return 0;
1323}
1324
1325/*====================================================================*/
1326
1327#ifdef MODULE
1328
1329static struct pcmcia_device_id daqp_cs_id_table[] = {
1330	PCMCIA_DEVICE_MANF_CARD(0x0137, 0x0027),
1331	PCMCIA_DEVICE_NULL
1332};
1333
1334MODULE_DEVICE_TABLE(pcmcia, daqp_cs_id_table);
1335
1336struct pcmcia_driver daqp_cs_driver = {
1337	.probe = daqp_cs_attach,
1338	.remove = daqp_cs_detach,
1339	.suspend = daqp_cs_suspend,
1340	.resume = daqp_cs_resume,
1341	.id_table = daqp_cs_id_table,
1342	.owner = THIS_MODULE,
1343	.drv = {
1344			.name = dev_info,
1345		},
1346};
1347
1348int __init init_module(void)
1349{
1350	DEBUG(0, "%s\n", version);
1351	pcmcia_register_driver(&daqp_cs_driver);
1352	comedi_driver_register(&driver_daqp);
1353	return 0;
1354}
1355
1356void __exit cleanup_module(void)
1357{
1358	DEBUG(0, "daqp_cs: unloading\n");
1359	comedi_driver_unregister(&driver_daqp);
1360	pcmcia_unregister_driver(&daqp_cs_driver);
1361}
1362
1363#endif
1364