s626.c revision 197c82bf25b9e379cb5646561be1a727ab9e84a7
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63                            //during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66                                                        //to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/kernel.h>
72#include <linux/types.h>
73
74#include "../comedidev.h"
75
76#include "comedi_pci.h"
77
78#include "comedi_fc.h"
79#include "s626.h"
80
81MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83MODULE_LICENSE("GPL");
84
85typedef struct s626_board_struct {
86	const char *name;
87	int ai_chans;
88	int ai_bits;
89	int ao_chans;
90	int ao_bits;
91	int dio_chans;
92	int dio_banks;
93	int enc_chans;
94} s626_board;
95
96static const s626_board s626_boards[] = {
97	{
98	      name:	"s626",
99	      ai_chans : S626_ADC_CHANNELS,
100	      ai_bits:	14,
101	      ao_chans : S626_DAC_CHANNELS,
102	      ao_bits:	13,
103	      dio_chans : S626_DIO_CHANNELS,
104	      dio_banks : S626_DIO_BANKS,
105	      enc_chans : S626_ENCODER_CHANNELS,
106		}
107};
108
109#define thisboard ((const s626_board *)dev->board_ptr)
110#define PCI_VENDOR_ID_S626 0x1131
111#define PCI_DEVICE_ID_S626 0x7146
112
113static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
115		0},
116	{0}
117};
118
119MODULE_DEVICE_TABLE(pci, s626_pci_table);
120
121static int s626_attach(comedi_device *dev, comedi_devconfig *it);
122static int s626_detach(comedi_device *dev);
123
124static comedi_driver driver_s626 = {
125      driver_name:"s626",
126      module : THIS_MODULE,
127      attach : s626_attach,
128      detach : s626_detach,
129};
130
131typedef struct {
132	struct pci_dev *pdev;
133	void *base_addr;
134	int got_regions;
135	short allocatedBuf;
136	uint8_t ai_cmd_running;	/*  ai_cmd is running */
137	uint8_t ai_continous;	/*  continous aquisition */
138	int ai_sample_count;	/*  number of samples to aquire */
139	unsigned int ai_sample_timer;
140	/*  time between samples in  units of the timer */
141	int ai_convert_count;	/*  conversion counter */
142	unsigned int ai_convert_timer;
143	/*  time between conversion in  units of the timer */
144	uint16_t CounterIntEnabs;
145	/* Counter interrupt enable  mask for MISC2 register. */
146	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
147	DMABUF RPSBuf;		/* DMA buffer used to hold ADC (RPS1) program. */
148	DMABUF ANABuf;
149	/* DMA buffer used to receive ADC data and hold DAC data. */
150	uint32_t *pDacWBuf;
151	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
152	uint16_t Dacpol;	/* Image of DAC polarity register. */
153	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
154	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
155	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
156	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
157	uint32_t I2CAdrs;
158	/* I2C device address for onboard EEPROM (board rev dependent). */
159	/*   short         I2Cards; */
160	lsampl_t ao_readback[S626_DAC_CHANNELS];
161} s626_private;
162
163typedef struct {
164	uint16_t RDDIn;
165	uint16_t WRDOut;
166	uint16_t RDEdgSel;
167	uint16_t WREdgSel;
168	uint16_t RDCapSel;
169	uint16_t WRCapSel;
170	uint16_t RDCapFlg;
171	uint16_t RDIntSel;
172	uint16_t WRIntSel;
173} dio_private;
174
175static dio_private dio_private_A = {
176      RDDIn:LP_RDDINA,
177      WRDOut : LP_WRDOUTA,
178      RDEdgSel : LP_RDEDGSELA,
179      WREdgSel : LP_WREDGSELA,
180      RDCapSel : LP_RDCAPSELA,
181      WRCapSel : LP_WRCAPSELA,
182      RDCapFlg : LP_RDCAPFLGA,
183      RDIntSel : LP_RDINTSELA,
184      WRIntSel : LP_WRINTSELA,
185};
186
187static dio_private dio_private_B = {
188      RDDIn:LP_RDDINB,
189      WRDOut : LP_WRDOUTB,
190      RDEdgSel : LP_RDEDGSELB,
191      WREdgSel : LP_WREDGSELB,
192      RDCapSel : LP_RDCAPSELB,
193      WRCapSel : LP_WRCAPSELB,
194      RDCapFlg : LP_RDCAPFLGB,
195      RDIntSel : LP_RDINTSELB,
196      WRIntSel : LP_WRINTSELB,
197};
198
199static dio_private dio_private_C = {
200      RDDIn:LP_RDDINC,
201      WRDOut : LP_WRDOUTC,
202      RDEdgSel : LP_RDEDGSELC,
203      WREdgSel : LP_WREDGSELC,
204      RDCapSel : LP_RDCAPSELC,
205      WRCapSel : LP_WRCAPSELC,
206      RDCapFlg : LP_RDCAPFLGC,
207      RDIntSel : LP_RDINTSELC,
208      WRIntSel : LP_WRINTSELC,
209};
210
211/* to group dio devices (48 bits mask and data are not allowed ???)
212static dio_private *dio_private_word[]={
213  &dio_private_A,
214  &dio_private_B,
215  &dio_private_C,
216};
217*/
218
219#define devpriv ((s626_private *)dev->private)
220#define diopriv ((dio_private *)s->private)
221
222COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
223
224/* ioctl routines */
225static int s626_ai_insn_config(comedi_device *dev, comedi_subdevice *s,
226	comedi_insn *insn, lsampl_t *data);
227/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
228static int s626_ai_insn_read(comedi_device *dev, comedi_subdevice *s,
229	comedi_insn *insn, lsampl_t *data);
230static int s626_ai_cmd(comedi_device *dev, comedi_subdevice *s);
231static int s626_ai_cmdtest(comedi_device *dev, comedi_subdevice *s,
232	comedi_cmd *cmd);
233static int s626_ai_cancel(comedi_device *dev, comedi_subdevice *s);
234static int s626_ao_winsn(comedi_device *dev, comedi_subdevice *s,
235	comedi_insn *insn, lsampl_t *data);
236static int s626_ao_rinsn(comedi_device *dev, comedi_subdevice *s,
237	comedi_insn *insn, lsampl_t *data);
238static int s626_dio_insn_bits(comedi_device *dev, comedi_subdevice *s,
239	comedi_insn *insn, lsampl_t *data);
240static int s626_dio_insn_config(comedi_device *dev, comedi_subdevice *s,
241	comedi_insn *insn, lsampl_t *data);
242static int s626_dio_set_irq(comedi_device *dev, unsigned int chan);
243static int s626_dio_reset_irq(comedi_device *dev, unsigned int gruop,
244	unsigned int mask);
245static int s626_dio_clear_irq(comedi_device *dev);
246static int s626_enc_insn_config(comedi_device *dev, comedi_subdevice *s,
247	comedi_insn *insn, lsampl_t *data);
248static int s626_enc_insn_read(comedi_device *dev, comedi_subdevice *s,
249	comedi_insn *insn, lsampl_t *data);
250static int s626_enc_insn_write(comedi_device *dev, comedi_subdevice *s,
251	comedi_insn *insn, lsampl_t *data);
252static int s626_ns_to_timer(int *nanosec, int round_mode);
253static int s626_ai_load_polllist(uint8_t *ppl, comedi_cmd *cmd);
254static int s626_ai_inttrig(comedi_device *dev, comedi_subdevice *s,
255	unsigned int trignum);
256static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
257static lsampl_t s626_ai_reg_to_uint(int data);
258/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
259
260/* end ioctl routines */
261
262/* internal routines */
263static void s626_dio_init(comedi_device *dev);
264static void ResetADC(comedi_device *dev, uint8_t *ppl);
265static void LoadTrimDACs(comedi_device *dev);
266static void WriteTrimDAC(comedi_device *dev, uint8_t LogicalChan,
267	uint8_t DacData);
268static uint8_t I2Cread(comedi_device *dev, uint8_t addr);
269static uint32_t I2Chandshake(comedi_device *dev, uint32_t val);
270static void SetDAC(comedi_device *dev, uint16_t chan, short dacdata);
271static void SendDAC(comedi_device *dev, uint32_t val);
272static void WriteMISC2(comedi_device *dev, uint16_t NewImage);
273static void DEBItransfer(comedi_device *dev);
274static uint16_t DEBIread(comedi_device *dev, uint16_t addr);
275static void DEBIwrite(comedi_device *dev, uint16_t addr, uint16_t wdata);
276static void DEBIreplace(comedi_device *dev, uint16_t addr, uint16_t mask,
277	uint16_t wdata);
278static void CloseDMAB(comedi_device *dev, DMABUF *pdma, size_t bsize);
279
280/*  COUNTER OBJECT ------------------------------------------------ */
281typedef struct enc_private_struct {
282	/*  Pointers to functions that differ for A and B counters: */
283	uint16_t(*GetEnable) (comedi_device *dev, struct enc_private_struct *);	/* Return clock enable. */
284	uint16_t(*GetIntSrc) (comedi_device *dev, struct enc_private_struct *);	/* Return interrupt source. */
285	uint16_t(*GetLoadTrig) (comedi_device *dev, struct enc_private_struct *);	/* Return preload trigger source. */
286	uint16_t(*GetMode) (comedi_device *dev, struct enc_private_struct *);	/* Return standardized operating mode. */
287	void (*PulseIndex) (comedi_device *dev, struct enc_private_struct *);	/* Generate soft index strobe. */
288	void (*SetEnable) (comedi_device *dev, struct enc_private_struct *, uint16_t enab);	/* Program clock enable. */
289	void (*SetIntSrc) (comedi_device *dev, struct enc_private_struct *, uint16_t IntSource);	/* Program interrupt source. */
290	void (*SetLoadTrig) (comedi_device *dev, struct enc_private_struct *, uint16_t Trig);	/* Program preload trigger source. */
291	void (*SetMode) (comedi_device *dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
292	void (*ResetCapFlags) (comedi_device *dev, struct enc_private_struct *);	/* Reset event capture flags. */
293
294	uint16_t MyCRA;		/*    Address of CRA register. */
295	uint16_t MyCRB;		/*    Address of CRB register. */
296	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
297	/*    register. */
298	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
299} enc_private;			/* counter object */
300
301#define encpriv ((enc_private *)(dev->subdevices+5)->private)
302
303/* counters routines */
304static void s626_timer_load(comedi_device *dev, enc_private *k, int tick);
305static uint32_t ReadLatch(comedi_device *dev, enc_private *k);
306static void ResetCapFlags_A(comedi_device *dev, enc_private *k);
307static void ResetCapFlags_B(comedi_device *dev, enc_private *k);
308static uint16_t GetMode_A(comedi_device *dev, enc_private *k);
309static uint16_t GetMode_B(comedi_device *dev, enc_private *k);
310static void SetMode_A(comedi_device *dev, enc_private *k, uint16_t Setup,
311	uint16_t DisableIntSrc);
312static void SetMode_B(comedi_device *dev, enc_private *k, uint16_t Setup,
313	uint16_t DisableIntSrc);
314static void SetEnable_A(comedi_device *dev, enc_private *k, uint16_t enab);
315static void SetEnable_B(comedi_device *dev, enc_private *k, uint16_t enab);
316static uint16_t GetEnable_A(comedi_device *dev, enc_private *k);
317static uint16_t GetEnable_B(comedi_device *dev, enc_private *k);
318static void SetLatchSource(comedi_device *dev, enc_private *k,
319	uint16_t value);
320/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
321static void SetLoadTrig_A(comedi_device *dev, enc_private *k, uint16_t Trig);
322static void SetLoadTrig_B(comedi_device *dev, enc_private *k, uint16_t Trig);
323static uint16_t GetLoadTrig_A(comedi_device *dev, enc_private *k);
324static uint16_t GetLoadTrig_B(comedi_device *dev, enc_private *k);
325static void SetIntSrc_B(comedi_device *dev, enc_private *k,
326	uint16_t IntSource);
327static void SetIntSrc_A(comedi_device *dev, enc_private *k,
328	uint16_t IntSource);
329static uint16_t GetIntSrc_A(comedi_device *dev, enc_private *k);
330static uint16_t GetIntSrc_B(comedi_device *dev, enc_private *k);
331/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
332/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
333/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
334/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
335/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
336/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k );  */
337/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
338/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k );  */
339static void PulseIndex_A(comedi_device *dev, enc_private *k);
340static void PulseIndex_B(comedi_device *dev, enc_private *k);
341static void Preload(comedi_device *dev, enc_private *k, uint32_t value);
342static void CountersInit(comedi_device *dev);
343/* end internal routines */
344
345/*  Counter objects constructor. */
346
347/*  Counter overflow/index event flag masks for RDMISC2. */
348#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
349#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
350#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
351
352/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
353/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
354
355/* enc_private; */
356static enc_private enc_private_data[] = {
357	{
358	      GetEnable:GetEnable_A,
359	      GetIntSrc : GetIntSrc_A,
360	      GetLoadTrig : GetLoadTrig_A,
361	      GetMode:	GetMode_A,
362	      PulseIndex : PulseIndex_A,
363	      SetEnable : SetEnable_A,
364	      SetIntSrc : SetIntSrc_A,
365	      SetLoadTrig : SetLoadTrig_A,
366	      SetMode:	SetMode_A,
367	      ResetCapFlags : ResetCapFlags_A,
368	      MyCRA:	LP_CR0A,
369	      MyCRB:	LP_CR0B,
370	      MyLatchLsw : LP_CNTR0ALSW,
371	      MyEventBits : EVBITS(0),
372		},
373	{
374	      GetEnable:GetEnable_A,
375	      GetIntSrc : GetIntSrc_A,
376	      GetLoadTrig : GetLoadTrig_A,
377	      GetMode:	GetMode_A,
378	      PulseIndex : PulseIndex_A,
379	      SetEnable : SetEnable_A,
380	      SetIntSrc : SetIntSrc_A,
381	      SetLoadTrig : SetLoadTrig_A,
382	      SetMode:	SetMode_A,
383	      ResetCapFlags : ResetCapFlags_A,
384	      MyCRA:	LP_CR1A,
385	      MyCRB:	LP_CR1B,
386	      MyLatchLsw : LP_CNTR1ALSW,
387	      MyEventBits : EVBITS(1),
388		},
389	{
390	      GetEnable:GetEnable_A,
391	      GetIntSrc : GetIntSrc_A,
392	      GetLoadTrig : GetLoadTrig_A,
393	      GetMode:	GetMode_A,
394	      PulseIndex : PulseIndex_A,
395	      SetEnable : SetEnable_A,
396	      SetIntSrc : SetIntSrc_A,
397	      SetLoadTrig : SetLoadTrig_A,
398	      SetMode:	SetMode_A,
399	      ResetCapFlags : ResetCapFlags_A,
400	      MyCRA:	LP_CR2A,
401	      MyCRB:	LP_CR2B,
402	      MyLatchLsw : LP_CNTR2ALSW,
403	      MyEventBits : EVBITS(2),
404		},
405	{
406	      GetEnable:GetEnable_B,
407	      GetIntSrc : GetIntSrc_B,
408	      GetLoadTrig : GetLoadTrig_B,
409	      GetMode:	GetMode_B,
410	      PulseIndex : PulseIndex_B,
411	      SetEnable : SetEnable_B,
412	      SetIntSrc : SetIntSrc_B,
413	      SetLoadTrig : SetLoadTrig_B,
414	      SetMode:	SetMode_B,
415	      ResetCapFlags : ResetCapFlags_B,
416	      MyCRA:	LP_CR0A,
417	      MyCRB:	LP_CR0B,
418	      MyLatchLsw : LP_CNTR0BLSW,
419	      MyEventBits : EVBITS(3),
420		},
421	{
422	      GetEnable:GetEnable_B,
423	      GetIntSrc : GetIntSrc_B,
424	      GetLoadTrig : GetLoadTrig_B,
425	      GetMode:	GetMode_B,
426	      PulseIndex : PulseIndex_B,
427	      SetEnable : SetEnable_B,
428	      SetIntSrc : SetIntSrc_B,
429	      SetLoadTrig : SetLoadTrig_B,
430	      SetMode:	SetMode_B,
431	      ResetCapFlags : ResetCapFlags_B,
432	      MyCRA:	LP_CR1A,
433	      MyCRB:	LP_CR1B,
434	      MyLatchLsw : LP_CNTR1BLSW,
435	      MyEventBits : EVBITS(4),
436		},
437	{
438	      GetEnable:GetEnable_B,
439	      GetIntSrc : GetIntSrc_B,
440	      GetLoadTrig : GetLoadTrig_B,
441	      GetMode:	GetMode_B,
442	      PulseIndex : PulseIndex_B,
443	      SetEnable : SetEnable_B,
444	      SetIntSrc : SetIntSrc_B,
445	      SetLoadTrig : SetLoadTrig_B,
446	      SetMode:	SetMode_B,
447	      ResetCapFlags : ResetCapFlags_B,
448	      MyCRA:	LP_CR2A,
449	      MyCRB:	LP_CR2B,
450	      MyLatchLsw : LP_CNTR2BLSW,
451	      MyEventBits : EVBITS(5),
452		},
453};
454
455/*  enab/disable a function or test status bit(s) that are accessed */
456/*  through Main Control Registers 1 or 2. */
457#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
458
459#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
460
461#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
462
463/* #define WR7146(REGARDS,CTRLWORD)
464    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
465#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
466
467/* #define RR7146(REGARDS)
468    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
469#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
470
471#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
472
473/*  Write a time slot control record to TSL2. */
474#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
475#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
476
477/*  Code macros used for constructing I2C command bytes. */
478#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
479#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
480#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
481
482static const comedi_lrange s626_range_table = { 2, {
483			RANGE(-5, 5),
484			RANGE(-10, 10),
485	}
486};
487
488static int s626_attach(comedi_device *dev, comedi_devconfig *it)
489{
490/*   uint8_t	PollList; */
491/*   uint16_t	AdcData; */
492/*   uint16_t	StartVal; */
493/*   uint16_t	index; */
494/*   unsigned int data[16]; */
495	int result;
496	int i;
497	int ret;
498	resource_size_t resourceStart;
499	dma_addr_t appdma;
500	comedi_subdevice *s;
501	struct pci_dev *pdev;
502
503	if (alloc_private(dev, sizeof(s626_private)) < 0)
504		return -ENOMEM;
505
506	for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
507			NULL); pdev != NULL;
508		pdev = pci_get_device(PCI_VENDOR_ID_S626,
509			PCI_DEVICE_ID_S626, pdev)) {
510		if (it->options[0] || it->options[1]) {
511			if (pdev->bus->number == it->options[0] &&
512				PCI_SLOT(pdev->devfn) == it->options[1]) {
513				/* matches requested bus/slot */
514				break;
515			}
516		} else {
517			/* no bus/slot specified */
518			break;
519		}
520	}
521	devpriv->pdev = pdev;
522
523	if (pdev == NULL) {
524		printk("s626_attach: Board not present!!!\n");
525		return -ENODEV;
526	}
527
528	result = comedi_pci_enable(pdev, "s626");
529	if (result < 0) {
530		printk("s626_attach: comedi_pci_enable fails\n");
531		return -ENODEV;
532	}
533	devpriv->got_regions = 1;
534
535	resourceStart = pci_resource_start(devpriv->pdev, 0);
536
537	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
538	if (devpriv->base_addr == NULL) {
539		printk("s626_attach: IOREMAP failed\n");
540		return -ENODEV;
541	}
542
543	if (devpriv->base_addr) {
544		/* disable master interrupt */
545		writel(0, devpriv->base_addr + P_IER);
546
547		/* soft reset */
548		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
549
550		/* DMA FIXME DMA// */
551		DEBUG("s626_attach: DMA ALLOCATION\n");
552
553		/* adc buffer allocation */
554		devpriv->allocatedBuf = 0;
555
556		devpriv->ANABuf.LogicalBase =
557			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
558
559		if (devpriv->ANABuf.LogicalBase == NULL) {
560			printk("s626_attach: DMA Memory mapping error\n");
561			return -ENOMEM;
562		}
563
564		devpriv->ANABuf.PhysicalBase = appdma;
565
566		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
567
568		devpriv->allocatedBuf++;
569
570		devpriv->RPSBuf.LogicalBase =
571			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,  &appdma);
572
573		if (devpriv->RPSBuf.LogicalBase == NULL) {
574			printk("s626_attach: DMA Memory mapping error\n");
575			return -ENOMEM;
576		}
577
578		devpriv->RPSBuf.PhysicalBase = appdma;
579
580		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
581
582		devpriv->allocatedBuf++;
583
584	}
585
586	dev->board_ptr = s626_boards;
587	dev->board_name = thisboard->name;
588
589	if (alloc_subdevices(dev, 6) < 0)
590		return -ENOMEM;
591
592	dev->iobase = (unsigned long)devpriv->base_addr;
593	dev->irq = devpriv->pdev->irq;
594
595	/* set up interrupt handler */
596	if (dev->irq == 0) {
597		printk(" unknown irq (bad)\n");
598	} else {
599		ret = comedi_request_irq(dev->irq, s626_irq_handler,
600					 IRQF_SHARED, "s626", dev);
601
602		if (ret < 0) {
603			printk(" irq not available\n");
604			dev->irq = 0;
605		}
606	}
607
608	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
609		it->options[0], it->options[1]);
610
611	s = dev->subdevices + 0;
612	/* analog input subdevice */
613	dev->read_subdev = s;
614	/* we support single-ended (ground) and differential */
615	s->type = COMEDI_SUBD_AI;
616	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
617	s->n_chan = thisboard->ai_chans;
618	s->maxdata = (0xffff >> 2);
619	s->range_table = &s626_range_table;
620	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
621						   length that the board can
622						   handle */
623	s->insn_config = s626_ai_insn_config;
624	s->insn_read = s626_ai_insn_read;
625	s->do_cmd = s626_ai_cmd;
626	s->do_cmdtest = s626_ai_cmdtest;
627	s->cancel = s626_ai_cancel;
628
629	s = dev->subdevices + 1;
630	/* analog output subdevice */
631	s->type = COMEDI_SUBD_AO;
632	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
633	s->n_chan = thisboard->ao_chans;
634	s->maxdata = (0x3fff);
635	s->range_table = &range_bipolar10;
636	s->insn_write = s626_ao_winsn;
637	s->insn_read = s626_ao_rinsn;
638
639	s = dev->subdevices + 2;
640	/* digital I/O subdevice */
641	s->type = COMEDI_SUBD_DIO;
642	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
643	s->n_chan = S626_DIO_CHANNELS;
644	s->maxdata = 1;
645	s->io_bits = 0xffff;
646	s->private = &dio_private_A;
647	s->range_table = &range_digital;
648	s->insn_config = s626_dio_insn_config;
649	s->insn_bits = s626_dio_insn_bits;
650
651	s = dev->subdevices + 3;
652	/* digital I/O subdevice */
653	s->type = COMEDI_SUBD_DIO;
654	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
655	s->n_chan = 16;
656	s->maxdata = 1;
657	s->io_bits = 0xffff;
658	s->private = &dio_private_B;
659	s->range_table = &range_digital;
660	s->insn_config = s626_dio_insn_config;
661	s->insn_bits = s626_dio_insn_bits;
662
663	s = dev->subdevices + 4;
664	/* digital I/O subdevice */
665	s->type = COMEDI_SUBD_DIO;
666	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
667	s->n_chan = 16;
668	s->maxdata = 1;
669	s->io_bits = 0xffff;
670	s->private = &dio_private_C;
671	s->range_table = &range_digital;
672	s->insn_config = s626_dio_insn_config;
673	s->insn_bits = s626_dio_insn_bits;
674
675	s = dev->subdevices + 5;
676	/* encoder (counter) subdevice */
677	s->type = COMEDI_SUBD_COUNTER;
678	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
679	s->n_chan = thisboard->enc_chans;
680	s->private = enc_private_data;
681	s->insn_config = s626_enc_insn_config;
682	s->insn_read = s626_enc_insn_read;
683	s->insn_write = s626_enc_insn_write;
684	s->maxdata = 0xffffff;
685	s->range_table = &range_unknown;
686
687	/* stop ai_command */
688	devpriv->ai_cmd_running = 0;
689
690	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
691		dma_addr_t pPhysBuf;
692		uint16_t chan;
693
694		/*  enab DEBI and audio pins, enable I2C interface. */
695		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
696		/*  Configure DEBI operating mode. */
697		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
698			/*  bits wide. */
699			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	/*  Declare DEBI */
700			/*  transfer timeout */
701			/*  interval. */
702			| DEBI_SWAP	/*  Set up byte lane */
703			/*  steering. */
704			| DEBI_CFG_INTEL);	/*  Intel-compatible */
705		/*  local bus (DEBI */
706		/*  never times out). */
707		DEBUG("s626_attach: %d debi init -- %d\n",
708			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
709			DEBI_SWAP | DEBI_CFG_INTEL,
710			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
711			DEBI_CFG_16Q);
712
713		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
714		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
715
716		/*  Paging is disabled. */
717		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
718
719		/*  Init GPIO so that ADC Start* is negated. */
720		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
721
722    /* IsBoardRevA is a boolean that indicates whether the board is RevA.
723     *
724     * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
725     * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
726     * is used to access the onboard serial EEPROM.  The EEPROM's I2C
727     * DeviceAddress is hardwired to a value that is dependent on the
728     * 626 board revision.  On all board revisions, the EEPROM stores
729     * TrimDAC calibration constants for analog I/O.  On RevB and
730     * higher boards, the DeviceAddress is hardwired to 0 to enable
731     * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
732     * this is the address at which the SAA7146 expects a
733     * configuration EEPROM to reside.  On RevA boards, the EEPROM
734     * device address, which is hardwired to 4, prevents the SAA7146
735     * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
736     * default values, instead.
737     */
738
739		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
740		/*  DeviceType (0xA0) */
741		/*  and DeviceAddress<<1. */
742
743		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
744		/*  eeprom(revb) */
745
746		/*  Issue an I2C ABORT command to halt any I2C operation in */
747		/* progress and reset BUSY flag. */
748		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
749		/*  Write I2C control: abort any I2C activity. */
750		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
751		/*  Invoke command  upload */
752		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0);
753		/*  and wait for upload to complete. */
754
755		/* Per SAA7146 data sheet, write to STATUS reg twice to
756		 * reset all  I2C error flags. */
757		for (i = 0; i < 2; i++) {
758			WR7146(P_I2CSTAT, I2C_CLKSEL);
759			/*  Write I2C control: reset  error flags. */
760			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
761			while (!MC_TEST(P_MC2, MC2_UPLD_IIC));
762			/* and wait for upload to complete. */
763		}
764
765		/* Init audio interface functional attributes: set DAC/ADC
766		 * serial clock rates, invert DAC serial clock so that
767		 * DAC data setup times are satisfied, enable DAC serial
768		 * clock out.
769		 */
770
771		WR7146(P_ACON2, ACON2_INIT);
772
773		/* Set up TSL1 slot list, which is used to control the
774		 * accumulation of ADC data: RSD1 = shift data in on SD1.
775		 * SIB_A1  = store data uint8_t at next available location in
776		 * FB BUFFER1  register. */
777		WR7146(P_TSL1, RSD1 | SIB_A1);
778		/*  Fetch ADC high data uint8_t. */
779		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
780		/*  Fetch ADC low data uint8_t; end of TSL1. */
781
782		/*  enab TSL1 slot list so that it executes all the time. */
783		WR7146(P_ACON1, ACON1_ADCSTART);
784
785		/*  Initialize RPS registers used for ADC. */
786
787		/* Physical start of RPS program. */
788		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
789
790		WR7146(P_RPSPAGE1, 0);
791		/*  RPS program performs no explicit mem writes. */
792		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
793
794		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
795		 * to a known state by invoking ADCs until FB BUFFER 1
796		 * register shows that it is correctly receiving ADC data.
797		 * This is necessary because the SAA7146 ADC interface does
798		 * not start up in a defined state after a PCI reset.
799		 */
800
801/*     PollList = EOPL;			// Create a simple polling */
802/* 					// list for analog input */
803/* 					// channel 0. */
804/*     ResetADC( dev, &PollList ); */
805
806/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
807/* 						  //Get initial ADC */
808/* 						  //value. */
809
810/*     StartVal = data[0]; */
811
812/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
813/*     // Invoke ADCs until the new ADC value differs from the initial */
814/*     // value or a timeout occurs.  The timeout protects against the */
815/*     // possibility that the driver is restarting and the ADC data is a */
816/*     // fixed value resulting from the applied ADC analog input being */
817/*     // unusually quiet or at the rail. */
818
819/*     for ( index = 0; index < 500; index++ ) */
820/*       { */
821/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
822/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
823/* 	if ( AdcData != StartVal ) */
824/* 	  break; */
825/*       } */
826
827		/*  end initADC */
828
829		/*  init the DAC interface */
830
831		/* Init Audio2's output DMAC attributes: burst length = 1
832		 * DWORD,  threshold = 1 DWORD.
833		 */
834		WR7146(P_PCI_BT_A, 0);
835
836		/* Init Audio2's output DMA physical addresses.  The protection
837		 * address is set to 1 DWORD past the base address so that a
838		 * single DWORD will be transferred each time a DMA transfer is
839		 * enabled. */
840
841		pPhysBuf =
842			devpriv->ANABuf.PhysicalBase +
843			(DAC_WDMABUF_OS * sizeof(uint32_t));
844
845		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
846		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
847
848		/* Cache Audio2's output DMA buffer logical address.  This is
849		 * where DAC data is buffered for A2 output DMA transfers. */
850		devpriv->pDacWBuf =
851			(uint32_t *) devpriv->ANABuf.LogicalBase +
852			DAC_WDMABUF_OS;
853
854		/* Audio2's output channels does not use paging.  The protection
855		 * violation handling bit is set so that the DMAC will
856		 * automatically halt and its PCI address pointer will be reset
857		 * when the protection address is reached. */
858
859		WR7146(P_PAGEA2_OUT, 8);
860
861		/* Initialize time slot list 2 (TSL2), which is used to control
862		 * the clock generation for and serialization of data to be sent
863		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
864		 * execution; this permits other slots to be safely modified
865		 * without first turning off the TSL sequencer (which is
866		 * apparently impossible to do).  Also, SD3 (which is driven by a
867		 * pull-up resistor) is shifted in and stored to the MSB of
868		 * FB_BUFFER2 to be used as evidence that the slot sequence has
869		 * not yet finished executing.
870		 */
871
872		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
873		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
874
875		/* Initialize slot 1, which is constant.  Slot 1 causes a
876		 * DWORD to be transferred from audio channel 2's output FIFO
877		 * to the FIFO's output buffer so that it can be serialized
878		 * and sent to the DAC during subsequent slots.  All remaining
879		 * slots are dynamically populated as required by the target
880		 * DAC device.
881		 */
882		SETVECT(1, LF_A2);
883		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
884
885		/*  Start DAC's audio interface (TSL2) running. */
886		WR7146(P_ACON1, ACON1_DACSTART);
887
888		/* end init DAC interface */
889
890		/* Init Trim DACs to calibrated values.  Do it twice because the
891		 * SAA7146 audio channel does not always reset properly and
892		 * sometimes causes the first few TrimDAC writes to malfunction.
893		 */
894
895		LoadTrimDACs(dev);
896		LoadTrimDACs(dev);	/*  Insurance. */
897
898		/* Manually init all gate array hardware in case this is a soft
899		 * reset (we have no way of determining whether this is a warm
900		 * or cold start).  This is necessary because the gate array will
901		 * reset only in response to a PCI hard reset; there is no soft
902		 * reset function. */
903
904		/* Init all DAC outputs to 0V and init all DAC setpoint and
905		 * polarity images.
906		 */
907		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
908			SetDAC(dev, chan, 0);
909
910		/* Init image of WRMISC2 Battery Charger Enabled control bit.
911		 * This image is used when the state of the charger control bit,
912		 * which has no direct hardware readback mechanism, is queried.
913		 */
914		devpriv->ChargeEnabled = 0;
915
916		/* Init image of watchdog timer interval in WRMISC2.  This image
917		 * maintains the value of the control bits of MISC2 are
918		 * continuously reset to zero as long as the WD timer is disabled.
919		 */
920		devpriv->WDInterval = 0;
921
922		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
923		 * applied against MISC2 when testing to determine which timer
924		 * events are requesting interrupt service.
925		 */
926		devpriv->CounterIntEnabs = 0;
927
928		/*  Init counters. */
929		CountersInit(dev);
930
931		/* Without modifying the state of the Battery Backup enab, disable
932		 * the watchdog timer, set DIO channels 0-5 to operate in the
933		 * standard DIO (vs. counter overflow) mode, disable the battery
934		 * charger, and reset the watchdog interval selector to zero.
935		 */
936		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
937					LP_RDMISC2) & MISC2_BATT_ENABLE));
938
939		/*  Initialize the digital I/O subsystem. */
940		s626_dio_init(dev);
941
942		/* enable interrupt test */
943		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
944	}
945
946	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
947		(uint32_t) devpriv->base_addr);
948
949	return 1;
950}
951
952static lsampl_t s626_ai_reg_to_uint(int data)
953{
954	lsampl_t tempdata;
955
956	tempdata = (data >> 18);
957	if (tempdata & 0x2000)
958		tempdata &= 0x1fff;
959	else
960		tempdata += (1 << 13);
961
962	return tempdata;
963}
964
965/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
966/*   return 0; */
967/* } */
968
969static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
970{
971	comedi_device *dev = d;
972	comedi_subdevice *s;
973	comedi_cmd *cmd;
974	enc_private *k;
975	unsigned long flags;
976	int32_t *readaddr;
977	uint32_t irqtype, irqstatus;
978	int i = 0;
979	sampl_t tempdata;
980	uint8_t group;
981	uint16_t irqbit;
982
983	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
984
985	if (dev->attached == 0)
986		return IRQ_NONE;
987	/*  lock to avoid race with comedi_poll */
988	comedi_spin_lock_irqsave(&dev->spinlock, flags);
989
990	/* save interrupt enable register state */
991	irqstatus = readl(devpriv->base_addr + P_IER);
992
993	/* read interrupt type */
994	irqtype = readl(devpriv->base_addr + P_ISR);
995
996	/* disable master interrupt */
997	writel(0, devpriv->base_addr + P_IER);
998
999	/* clear interrupt */
1000	writel(irqtype, devpriv->base_addr + P_ISR);
1001
1002	/* do somethings */
1003	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1004
1005	switch (irqtype) {
1006	case IRQ_RPS1:		/*  end_of_scan occurs */
1007
1008		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1009
1010		/*  manage ai subdevice */
1011		s = dev->subdevices;
1012		cmd = &(s->async->cmd);
1013
1014		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1015		 * first uint16_t in the buffer because it contains junk data from
1016		 * the final ADC of the previous poll list scan.
1017		 */
1018		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1019
1020		/*  get the data and hand it over to comedi */
1021		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1022			/*  Convert ADC data to 16-bit integer values and copy to application */
1023			/*  buffer. */
1024			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1025			readaddr++;
1026
1027			/* put data into read buffer */
1028			/*  comedi_buf_put(s->async, tempdata); */
1029			if (cfc_write_to_buffer(s, tempdata) == 0)
1030				printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1031
1032			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1033				i, tempdata);
1034		}
1035
1036		/* end of scan occurs */
1037		s->async->events |= COMEDI_CB_EOS;
1038
1039		if (!(devpriv->ai_continous))
1040			devpriv->ai_sample_count--;
1041		if (devpriv->ai_sample_count <= 0) {
1042			devpriv->ai_cmd_running = 0;
1043
1044			/*  Stop RPS program. */
1045			MC_DISABLE(P_MC1, MC1_ERPS1);
1046
1047			/* send end of acquisition */
1048			s->async->events |= COMEDI_CB_EOA;
1049
1050			/* disable master interrupt */
1051			irqstatus = 0;
1052		}
1053
1054		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1055			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1056
1057			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1058
1059			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1060		}
1061		/*  tell comedi that data is there */
1062		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1063		comedi_event(dev, s);
1064		break;
1065	case IRQ_GPIO3:	/* check dio and conter interrupt */
1066
1067		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1068
1069		/*  manage ai subdevice */
1070		s = dev->subdevices;
1071		cmd = &(s->async->cmd);
1072
1073		/* s626_dio_clear_irq(dev); */
1074
1075		for (group = 0; group < S626_DIO_BANKS; group++) {
1076			irqbit = 0;
1077			/* read interrupt type */
1078			irqbit = DEBIread(dev,
1079				((dio_private *) (dev->subdevices + 2 +
1080						group)->private)->RDCapFlg);
1081
1082			/* check if interrupt is generated from dio channels */
1083			if (irqbit) {
1084				s626_dio_reset_irq(dev, group, irqbit);
1085				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1086				if (devpriv->ai_cmd_running) {
1087					/* check if interrupt is an ai acquisition start trigger */
1088					if ((irqbit >> (cmd->start_arg -
1089								(16 * group)))
1090						== 1
1091						&& cmd->start_src == TRIG_EXT) {
1092						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1093
1094						/*  Start executing the RPS program. */
1095						MC_ENABLE(P_MC1, MC1_ERPS1);
1096
1097						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1098
1099						if (cmd->scan_begin_src ==
1100							TRIG_EXT) {
1101							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1102
1103							s626_dio_set_irq(dev,
1104								cmd->
1105								scan_begin_arg);
1106
1107							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1108						}
1109					}
1110					if ((irqbit >> (cmd->scan_begin_arg -
1111								(16 * group)))
1112						== 1
1113						&& cmd->scan_begin_src ==
1114						TRIG_EXT) {
1115						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1116
1117						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1118						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1119
1120						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1121						if (cmd->convert_src ==
1122							TRIG_EXT) {
1123
1124							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1125
1126							devpriv->
1127								ai_convert_count
1128								=
1129								cmd->
1130								chanlist_len;
1131
1132							s626_dio_set_irq(dev,
1133								cmd->
1134								convert_arg);
1135
1136							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1137						}
1138
1139						if (cmd->convert_src ==
1140							TRIG_TIMER) {
1141							k = &encpriv[5];
1142							devpriv->
1143								ai_convert_count
1144								=
1145								cmd->
1146								chanlist_len;
1147							k->SetEnable(dev, k,
1148								CLKENAB_ALWAYS);
1149						}
1150					}
1151					if ((irqbit >> (cmd->convert_arg -
1152								(16 * group)))
1153						== 1
1154						&& cmd->convert_src ==
1155						TRIG_EXT) {
1156						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1157
1158						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1159						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1160
1161						DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1162
1163						devpriv->ai_convert_count--;
1164
1165						if (devpriv->ai_convert_count >
1166							0) {
1167
1168							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1169
1170							s626_dio_set_irq(dev,
1171								cmd->
1172								convert_arg);
1173
1174							DEBUG("s626_irq_handler: External trigger is set!!!\n");
1175						}
1176					}
1177				}
1178				break;
1179			}
1180		}
1181
1182		/* read interrupt type */
1183		irqbit = DEBIread(dev, LP_RDMISC2);
1184
1185		/* check interrupt on counters */
1186		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1187			irqbit);
1188
1189		if (irqbit & IRQ_COINT1A) {
1190			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1191			k = &encpriv[0];
1192
1193			/* clear interrupt capture flag */
1194			k->ResetCapFlags(dev, k);
1195		}
1196		if (irqbit & IRQ_COINT2A) {
1197			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1198			k = &encpriv[1];
1199
1200			/* clear interrupt capture flag */
1201			k->ResetCapFlags(dev, k);
1202		}
1203		if (irqbit & IRQ_COINT3A) {
1204			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1205			k = &encpriv[2];
1206
1207			/* clear interrupt capture flag */
1208			k->ResetCapFlags(dev, k);
1209		}
1210		if (irqbit & IRQ_COINT1B) {
1211			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1212			k = &encpriv[3];
1213
1214			/* clear interrupt capture flag */
1215			k->ResetCapFlags(dev, k);
1216		}
1217		if (irqbit & IRQ_COINT2B) {
1218			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1219			k = &encpriv[4];
1220
1221			/* clear interrupt capture flag */
1222			k->ResetCapFlags(dev, k);
1223
1224			if (devpriv->ai_convert_count > 0) {
1225				devpriv->ai_convert_count--;
1226				if (devpriv->ai_convert_count == 0)
1227					k->SetEnable(dev, k, CLKENAB_INDEX);
1228
1229				if (cmd->convert_src == TRIG_TIMER) {
1230					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1231
1232					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1233					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1234				}
1235			}
1236		}
1237		if (irqbit & IRQ_COINT3B) {
1238			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1239			k = &encpriv[5];
1240
1241			/* clear interrupt capture flag */
1242			k->ResetCapFlags(dev, k);
1243
1244			if (cmd->scan_begin_src == TRIG_TIMER) {
1245				DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1246
1247				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1248				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1249			}
1250
1251			if (cmd->convert_src == TRIG_TIMER) {
1252				DEBUG("s626_irq_handler: convert timer trigger is set\n");
1253				k = &encpriv[4];
1254				devpriv->ai_convert_count = cmd->chanlist_len;
1255				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1256			}
1257		}
1258	}
1259
1260	/* enable interrupt */
1261	writel(irqstatus, devpriv->base_addr + P_IER);
1262
1263	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1264
1265	comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
1266	return IRQ_HANDLED;
1267}
1268
1269static int s626_detach(comedi_device *dev)
1270{
1271	if (devpriv) {
1272		/* stop ai_command */
1273		devpriv->ai_cmd_running = 0;
1274
1275		if (devpriv->base_addr) {
1276			/* interrupt mask */
1277			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1278			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1279
1280			/*  Disable the watchdog timer and battery charger. */
1281			WriteMISC2(dev, 0);
1282
1283			/*  Close all interfaces on 7146 device. */
1284			WR7146(P_MC1, MC1_SHUTDOWN);
1285			WR7146(P_ACON1, ACON1_BASE);
1286
1287			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1288			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1289		}
1290
1291		if (dev->irq) {
1292			comedi_free_irq(dev->irq, dev);
1293		}
1294
1295		if (devpriv->base_addr) {
1296			iounmap(devpriv->base_addr);
1297		}
1298
1299		if (devpriv->pdev) {
1300			if (devpriv->got_regions) {
1301				comedi_pci_disable(devpriv->pdev);
1302			}
1303			pci_dev_put(devpriv->pdev);
1304		}
1305	}
1306
1307	DEBUG("s626_detach: S626 detached!\n");
1308
1309	return 0;
1310}
1311
1312/*
1313 * this functions build the RPS program for hardware driven acquistion
1314 */
1315void ResetADC(comedi_device *dev, uint8_t *ppl)
1316{
1317	register uint32_t *pRPS;
1318	uint32_t JmpAdrs;
1319	uint16_t i;
1320	uint16_t n;
1321	uint32_t LocalPPL;
1322	comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1323
1324	/*  Stop RPS program in case it is currently running. */
1325	MC_DISABLE(P_MC1, MC1_ERPS1);
1326
1327	/*  Set starting logical address to write RPS commands. */
1328	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1329
1330	/*  Initialize RPS instruction pointer. */
1331	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1332
1333	/*  Construct RPS program in RPSBuf DMA buffer */
1334
1335	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1336		DEBUG("ResetADC: scan_begin pause inserted\n");
1337		/*  Wait for Start trigger. */
1338		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1339		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1340	}
1341
1342	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1343	 * because the first RPS DEBI Write following a non-RPS DEBI write
1344	 * seems to always fail.  If we don't do this dummy write, the ADC
1345	 * gain might not be set to the value required for the first slot in
1346	 * the poll list; the ADC gain would instead remain unchanged from
1347	 * the previously programmed value.
1348	 */
1349	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1350	/* Write DEBI Write command and address to shadow RAM. */
1351
1352	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1353	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1354	/*  Write DEBI immediate data  to shadow RAM: */
1355
1356	*pRPS++ = GSEL_BIPOLAR5V;
1357	/*  arbitrary immediate data  value. */
1358
1359	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1360	/*  Reset "shadow RAM  uploaded" flag. */
1361	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1362	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1363
1364	/* Digitize all slots in the poll list. This is implemented as a
1365	 * for loop to limit the slot count to 16 in case the application
1366	 * forgot to set the EOPL flag in the final slot.
1367	 */
1368	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1369	 /* Convert application's poll list item to private board class
1370	  * format.  Each app poll list item is an uint8_t with form
1371	  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1372	  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1373	  */
1374		LocalPPL =
1375			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1376			GSEL_BIPOLAR10V);
1377
1378		/*  Switch ADC analog gain. */
1379		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1380		/*  and address to */
1381		/*  shadow RAM. */
1382		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1383		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1384		/*  immediate data to */
1385		/*  shadow RAM. */
1386		*pRPS++ = LocalPPL;
1387		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1388		/*  flag. */
1389		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1390		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1391		/*  finish. */
1392
1393		/*  Select ADC analog input channel. */
1394		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1395		/*  Write DEBI command and address to  shadow RAM. */
1396		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1397		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1398		/*  Write DEBI immediate data to shadow RAM. */
1399		*pRPS++ = LocalPPL;
1400		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1401		/*  Reset "shadow RAM uploaded"  flag. */
1402
1403		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1404		/*  Invoke shadow RAM upload. */
1405
1406		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1407		/*  Wait for shadow upload to finish. */
1408
1409		/* Delay at least 10 microseconds for analog input settling.
1410		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1411		 * here; this allows us to produce a longer delay than is
1412		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1413		 * instruction prefetch pipeline.
1414		 */
1415		JmpAdrs =
1416			(uint32_t) devpriv->RPSBuf.PhysicalBase +
1417			(uint32_t) ((unsigned long)pRPS -
1418			(unsigned long)devpriv->RPSBuf.LogicalBase);
1419		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1420			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1421			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1422			*pRPS++ = JmpAdrs;
1423		}
1424
1425		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1426			DEBUG("ResetADC: convert pause inserted\n");
1427			/*  Wait for Start trigger. */
1428			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1429			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1430		}
1431		/*  Start ADC by pulsing GPIO1. */
1432		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1433		*pRPS++ = GPIO_BASE | GPIO1_LO;
1434		*pRPS++ = RPS_NOP;
1435		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1436		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1437		*pRPS++ = GPIO_BASE | GPIO1_HI;
1438
1439		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1440		 * busy) and for data from previous conversion to shift into FB
1441		 * BUFFER 1 register.
1442		 */
1443		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1444
1445		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1446		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1447		*pRPS++ =
1448			(uint32_t) devpriv->ANABuf.PhysicalBase +
1449			(devpriv->AdcItems << 2);
1450
1451		/*  If this slot's EndOfPollList flag is set, all channels have */
1452		/*  now been processed. */
1453		if (*ppl++ & EOPL) {
1454			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1455			break;	/*  Exit poll list processing loop. */
1456		}
1457	}
1458	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1459
1460	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1461	 * ADC to stabilize for 2 microseconds before starting the final
1462	 * (dummy) conversion.  This delay is necessary to allow sufficient
1463	 * time between last conversion finished and the start of the dummy
1464	 * conversion.  Without this delay, the last conversion's data value
1465	 * is sometimes set to the previous conversion's data value.
1466	 */
1467	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1468		*pRPS++ = RPS_NOP;
1469
1470	/* Start a dummy conversion to cause the data from the last
1471	 * conversion of interest to be shifted in.
1472	 */
1473	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1474	*pRPS++ = GPIO_BASE | GPIO1_LO;
1475	*pRPS++ = RPS_NOP;
1476	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1477	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1478	*pRPS++ = GPIO_BASE | GPIO1_HI;
1479
1480	/* Wait for the data from the last conversion of interest to arrive
1481	 * in FB BUFFER 1 register.
1482	 */
1483	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1484
1485	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1486	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1487	*pRPS++ =
1488		(uint32_t) devpriv->ANABuf.PhysicalBase +
1489		(devpriv->AdcItems << 2);
1490
1491	/*  Indicate ADC scan loop is finished. */
1492	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1493
1494	/* invoke interrupt */
1495	if (devpriv->ai_cmd_running == 1) {
1496		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1497		*pRPS++ = RPS_IRQ;
1498	}
1499	/*  Restart RPS program at its beginning. */
1500	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1501	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1502
1503	/*  End of RPS program build */
1504}
1505
1506/* TO COMPLETE, IF NECESSARY */
1507static int s626_ai_insn_config(comedi_device *dev, comedi_subdevice *s,
1508	comedi_insn *insn, lsampl_t *data)
1509{
1510
1511	return -EINVAL;
1512}
1513
1514/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
1515/* { */
1516/*   register uint8_t	i; */
1517/*   register int32_t	*readaddr; */
1518
1519/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
1520
1521/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1522/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1523
1524/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1525/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1526
1527/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1528 * first uint16_t in the buffer because it contains junk data from
1529 * the final ADC of the previous poll list scan.
1530 */
1531/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1532
1533/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1534/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1535/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1536/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
1537/*     data++; */
1538/*   } */
1539
1540/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1541/*   return i; */
1542/* } */
1543
1544static int s626_ai_insn_read(comedi_device *dev, comedi_subdevice *s,
1545	comedi_insn *insn, lsampl_t *data)
1546{
1547	uint16_t chan = CR_CHAN(insn->chanspec);
1548	uint16_t range = CR_RANGE(insn->chanspec);
1549	uint16_t AdcSpec = 0;
1550	uint32_t GpioImage;
1551	int n;
1552
1553 /* interrupt call test  */
1554/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1555	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1556	 * corresponding interrupt to be generated if enabled
1557	 */
1558
1559	DEBUG("s626_ai_insn_read: entering\n");
1560
1561	/* Convert application's ADC specification into form
1562	 *  appropriate for register programming.
1563	 */
1564	if (range == 0)
1565		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1566	else
1567		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1568
1569	/*  Switch ADC analog gain. */
1570	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1571
1572	/*  Select ADC analog input channel. */
1573	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1574
1575	for (n = 0; n < insn->n; n++) {
1576
1577		/*  Delay 10 microseconds for analog input settling. */
1578		comedi_udelay(10);
1579
1580		/*  Start ADC by pulsing GPIO1 low. */
1581		GpioImage = RR7146(P_GPIO);
1582		/*  Assert ADC Start command */
1583		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1584		/*    and stretch it out. */
1585		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1586		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1587		/*  Negate ADC Start command. */
1588		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1589
1590		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1591		/*  ADC not busy) and for data from previous conversion to */
1592		/*  shift into FB BUFFER 1 register. */
1593
1594		/*  Wait for ADC done. */
1595		while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1596
1597		/*  Fetch ADC data. */
1598		if (n != 0)
1599			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1600
1601		/* Allow the ADC to stabilize for 4 microseconds before
1602		 * starting the next (final) conversion.  This delay is
1603		 * necessary to allow sufficient time between last
1604		 * conversion finished and the start of the next
1605		 * conversion.  Without this delay, the last conversion's
1606		 * data value is sometimes set to the previous
1607		 * conversion's data value.
1608		 */
1609		comedi_udelay(4);
1610	}
1611
1612	/* Start a dummy conversion to cause the data from the
1613	 * previous conversion to be shifted in. */
1614	GpioImage = RR7146(P_GPIO);
1615
1616	/* Assert ADC Start command */
1617	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1618	/*    and stretch it out. */
1619	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1620	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1621	/*  Negate ADC Start command. */
1622	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1623
1624	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1625
1626	/*  Wait for ADC done. */
1627	while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1628
1629	/*  Fetch ADC data from audio interface's input shift register. */
1630
1631	/*  Fetch ADC data. */
1632	if (n != 0)
1633		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1634
1635	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1636
1637	return n;
1638}
1639
1640static int s626_ai_load_polllist(uint8_t *ppl, comedi_cmd *cmd)
1641{
1642
1643	int n;
1644
1645	for (n = 0; n < cmd->chanlist_len; n++) {
1646		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1647			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1648		else
1649			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1650	}
1651	ppl[n - 1] |= EOPL;
1652
1653	return n;
1654}
1655
1656static int s626_ai_inttrig(comedi_device *dev, comedi_subdevice *s,
1657	unsigned int trignum)
1658{
1659	if (trignum != 0)
1660		return -EINVAL;
1661
1662	DEBUG("s626_ai_inttrig: trigger adc start...");
1663
1664	/*  Start executing the RPS program. */
1665	MC_ENABLE(P_MC1, MC1_ERPS1);
1666
1667	s->async->inttrig = NULL;
1668
1669	DEBUG(" done\n");
1670
1671	return 1;
1672}
1673
1674/*  TO COMPLETE  */
1675static int s626_ai_cmd(comedi_device *dev, comedi_subdevice *s)
1676{
1677
1678	uint8_t ppl[16];
1679	comedi_cmd *cmd = &s->async->cmd;
1680	enc_private *k;
1681	int tick;
1682
1683	DEBUG("s626_ai_cmd: entering command function\n");
1684
1685	if (devpriv->ai_cmd_running) {
1686		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1687			dev->minor);
1688		return -EBUSY;
1689	}
1690	/* disable interrupt */
1691	writel(0, devpriv->base_addr + P_IER);
1692
1693	/* clear interrupt request */
1694	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1695
1696	/* clear any pending interrupt */
1697	s626_dio_clear_irq(dev);
1698	/*   s626_enc_clear_irq(dev); */
1699
1700	/* reset ai_cmd_running flag */
1701	devpriv->ai_cmd_running = 0;
1702
1703	/*  test if cmd is valid */
1704	if (cmd == NULL) {
1705		DEBUG("s626_ai_cmd: NULL command\n");
1706		return -EINVAL;
1707	} else {
1708		DEBUG("s626_ai_cmd: command recieved!!!\n");
1709	}
1710
1711	if (dev->irq == 0) {
1712		comedi_error(dev,
1713			"s626_ai_cmd: cannot run command without an irq");
1714		return -EIO;
1715	}
1716
1717	s626_ai_load_polllist(ppl, cmd);
1718	devpriv->ai_cmd_running = 1;
1719	devpriv->ai_convert_count = 0;
1720
1721	switch (cmd->scan_begin_src) {
1722	case TRIG_FOLLOW:
1723		break;
1724	case TRIG_TIMER:
1725		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1726		k = &encpriv[5];
1727		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1728			cmd->flags & TRIG_ROUND_MASK);
1729
1730		/* load timer value and enable interrupt */
1731		s626_timer_load(dev, k, tick);
1732		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1733
1734		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1735			tick);
1736
1737		break;
1738	case TRIG_EXT:
1739		/*  set the digital line and interrupt for scan trigger */
1740		if (cmd->start_src != TRIG_EXT)
1741			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1742
1743		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1744
1745		break;
1746	}
1747
1748	switch (cmd->convert_src) {
1749	case TRIG_NOW:
1750		break;
1751	case TRIG_TIMER:
1752		/*  set a conter to generate adc trigger at convert_arg interval */
1753		k = &encpriv[4];
1754		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1755			cmd->flags & TRIG_ROUND_MASK);
1756
1757		/* load timer value and enable interrupt */
1758		s626_timer_load(dev, k, tick);
1759		k->SetEnable(dev, k, CLKENAB_INDEX);
1760
1761		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1762		break;
1763	case TRIG_EXT:
1764		/*  set the digital line and interrupt for convert trigger */
1765		if (cmd->scan_begin_src != TRIG_EXT
1766			&& cmd->start_src == TRIG_EXT)
1767			s626_dio_set_irq(dev, cmd->convert_arg);
1768
1769		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1770
1771		break;
1772	}
1773
1774	switch (cmd->stop_src) {
1775	case TRIG_COUNT:
1776		/*  data arrives as one packet */
1777		devpriv->ai_sample_count = cmd->stop_arg;
1778		devpriv->ai_continous = 0;
1779		break;
1780	case TRIG_NONE:
1781		/*  continous aquisition */
1782		devpriv->ai_continous = 1;
1783		devpriv->ai_sample_count = 0;
1784		break;
1785	}
1786
1787	ResetADC(dev, ppl);
1788
1789	switch (cmd->start_src) {
1790	case TRIG_NOW:
1791		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1792		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1793
1794		/*  Start executing the RPS program. */
1795		MC_ENABLE(P_MC1, MC1_ERPS1);
1796
1797		DEBUG("s626_ai_cmd: ADC triggered\n");
1798		s->async->inttrig = NULL;
1799		break;
1800	case TRIG_EXT:
1801		/* configure DIO channel for acquisition trigger */
1802		s626_dio_set_irq(dev, cmd->start_arg);
1803
1804		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1805
1806		s->async->inttrig = NULL;
1807		break;
1808	case TRIG_INT:
1809		s->async->inttrig = s626_ai_inttrig;
1810		break;
1811	}
1812
1813	/* enable interrupt */
1814	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1815
1816	DEBUG("s626_ai_cmd: command function terminated\n");
1817
1818	return 0;
1819}
1820
1821static int s626_ai_cmdtest(comedi_device *dev, comedi_subdevice *s,
1822	comedi_cmd *cmd)
1823{
1824	int err = 0;
1825	int tmp;
1826
1827	/* cmdtest tests a particular command to see if it is valid.  Using
1828	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1829	 * executes by the cmd ioctl.
1830	 *
1831	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1832	 * command passes. */
1833
1834	/* step 1: make sure trigger sources are trivially valid */
1835
1836	tmp = cmd->start_src;
1837	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1838	if (!cmd->start_src || tmp != cmd->start_src)
1839		err++;
1840
1841	tmp = cmd->scan_begin_src;
1842	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1843	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1844		err++;
1845
1846	tmp = cmd->convert_src;
1847	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1848	if (!cmd->convert_src || tmp != cmd->convert_src)
1849		err++;
1850
1851	tmp = cmd->scan_end_src;
1852	cmd->scan_end_src &= TRIG_COUNT;
1853	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1854		err++;
1855
1856	tmp = cmd->stop_src;
1857	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1858	if (!cmd->stop_src || tmp != cmd->stop_src)
1859		err++;
1860
1861	if (err)
1862		return 1;
1863
1864	/* step 2: make sure trigger sources are unique and mutually
1865	   compatible */
1866
1867	/* note that mutual compatiblity is not an issue here */
1868	if (cmd->scan_begin_src != TRIG_TIMER &&
1869		cmd->scan_begin_src != TRIG_EXT
1870		&& cmd->scan_begin_src != TRIG_FOLLOW)
1871		err++;
1872	if (cmd->convert_src != TRIG_TIMER &&
1873		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1874		err++;
1875	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1876		err++;
1877
1878	if (err)
1879		return 2;
1880
1881	/* step 3: make sure arguments are trivially compatible */
1882
1883	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1884		cmd->start_arg = 0;
1885		err++;
1886	}
1887
1888	if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
1889		cmd->start_arg = 0;
1890		err++;
1891	}
1892
1893	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1894		cmd->start_arg = 39;
1895		err++;
1896	}
1897
1898	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
1899		cmd->scan_begin_arg = 0;
1900		err++;
1901	}
1902
1903	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1904		cmd->scan_begin_arg = 39;
1905		err++;
1906	}
1907
1908	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
1909		cmd->convert_arg = 0;
1910		err++;
1911	}
1912
1913	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1914		cmd->convert_arg = 39;
1915		err++;
1916	}
1917#define MAX_SPEED	200000	/* in nanoseconds */
1918#define MIN_SPEED	2000000000	/* in nanoseconds */
1919
1920	if (cmd->scan_begin_src == TRIG_TIMER) {
1921		if (cmd->scan_begin_arg < MAX_SPEED) {
1922			cmd->scan_begin_arg = MAX_SPEED;
1923			err++;
1924		}
1925		if (cmd->scan_begin_arg > MIN_SPEED) {
1926			cmd->scan_begin_arg = MIN_SPEED;
1927			err++;
1928		}
1929	} else {
1930		/* external trigger */
1931		/* should be level/edge, hi/lo specification here */
1932		/* should specify multiple external triggers */
1933/*     if(cmd->scan_begin_arg>9){ */
1934/*       cmd->scan_begin_arg=9; */
1935/*       err++; */
1936/*     } */
1937	}
1938	if (cmd->convert_src == TRIG_TIMER) {
1939		if (cmd->convert_arg < MAX_SPEED) {
1940			cmd->convert_arg = MAX_SPEED;
1941			err++;
1942		}
1943		if (cmd->convert_arg > MIN_SPEED) {
1944			cmd->convert_arg = MIN_SPEED;
1945			err++;
1946		}
1947	} else {
1948		/* external trigger */
1949		/* see above */
1950/*     if(cmd->convert_arg>9){ */
1951/*       cmd->convert_arg=9; */
1952/*       err++; */
1953/*     } */
1954	}
1955
1956	if (cmd->scan_end_arg != cmd->chanlist_len) {
1957		cmd->scan_end_arg = cmd->chanlist_len;
1958		err++;
1959	}
1960	if (cmd->stop_src == TRIG_COUNT) {
1961		if (cmd->stop_arg > 0x00ffffff) {
1962			cmd->stop_arg = 0x00ffffff;
1963			err++;
1964		}
1965	} else {
1966		/* TRIG_NONE */
1967		if (cmd->stop_arg != 0) {
1968			cmd->stop_arg = 0;
1969			err++;
1970		}
1971	}
1972
1973	if (err)
1974		return 3;
1975
1976	/* step 4: fix up any arguments */
1977
1978	if (cmd->scan_begin_src == TRIG_TIMER) {
1979		tmp = cmd->scan_begin_arg;
1980		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1981			cmd->flags & TRIG_ROUND_MASK);
1982		if (tmp != cmd->scan_begin_arg)
1983			err++;
1984	}
1985	if (cmd->convert_src == TRIG_TIMER) {
1986		tmp = cmd->convert_arg;
1987		s626_ns_to_timer((int *)&cmd->convert_arg,
1988			cmd->flags & TRIG_ROUND_MASK);
1989		if (tmp != cmd->convert_arg)
1990			err++;
1991		if (cmd->scan_begin_src == TRIG_TIMER &&
1992			cmd->scan_begin_arg <
1993			cmd->convert_arg * cmd->scan_end_arg) {
1994			cmd->scan_begin_arg =
1995				cmd->convert_arg * cmd->scan_end_arg;
1996			err++;
1997		}
1998	}
1999
2000	if (err)
2001		return 4;
2002
2003	return 0;
2004}
2005
2006static int s626_ai_cancel(comedi_device *dev, comedi_subdevice *s)
2007{
2008	/*  Stop RPS program in case it is currently running. */
2009	MC_DISABLE(P_MC1, MC1_ERPS1);
2010
2011	/* disable master interrupt */
2012	writel(0, devpriv->base_addr + P_IER);
2013
2014	devpriv->ai_cmd_running = 0;
2015
2016	return 0;
2017}
2018
2019/* This function doesn't require a particular form, this is just what
2020 * happens to be used in some of the drivers.  It should convert ns
2021 * nanoseconds to a counter value suitable for programming the device.
2022 * Also, it should adjust ns so that it cooresponds to the actual time
2023 * that the device will use. */
2024static int s626_ns_to_timer(int *nanosec, int round_mode)
2025{
2026	int divider, base;
2027
2028	base = 500;		/* 2MHz internal clock */
2029
2030	switch (round_mode) {
2031	case TRIG_ROUND_NEAREST:
2032	default:
2033		divider = (*nanosec + base / 2) / base;
2034		break;
2035	case TRIG_ROUND_DOWN:
2036		divider = (*nanosec) / base;
2037		break;
2038	case TRIG_ROUND_UP:
2039		divider = (*nanosec + base - 1) / base;
2040		break;
2041	}
2042
2043	*nanosec = base * divider;
2044	return divider - 1;
2045}
2046
2047static int s626_ao_winsn(comedi_device *dev, comedi_subdevice *s,
2048	comedi_insn *insn, lsampl_t *data)
2049{
2050
2051	int i;
2052	uint16_t chan = CR_CHAN(insn->chanspec);
2053	int16_t dacdata;
2054
2055	for (i = 0; i < insn->n; i++) {
2056		dacdata = (int16_t) data[i];
2057		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2058		dacdata -= (0x1fff);
2059
2060		SetDAC(dev, chan, dacdata);
2061	}
2062
2063	return i;
2064}
2065
2066static int s626_ao_rinsn(comedi_device *dev, comedi_subdevice *s,
2067	comedi_insn *insn, lsampl_t *data)
2068{
2069	int i;
2070
2071	for (i = 0; i < insn->n; i++) {
2072		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2073	}
2074
2075	return i;
2076}
2077
2078/* *************** DIGITAL I/O FUNCTIONS ***************
2079 * All DIO functions address a group of DIO channels by means of
2080 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2081 * ports A, B and C, respectively.
2082 */
2083
2084static void s626_dio_init(comedi_device *dev)
2085{
2086	uint16_t group;
2087	comedi_subdevice *s;
2088
2089	/*  Prepare to treat writes to WRCapSel as capture disables. */
2090	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2091
2092	/*  For each group of sixteen channels ... */
2093	for (group = 0; group < S626_DIO_BANKS; group++) {
2094		s = dev->subdevices + 2 + group;
2095		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2096		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2097		/*  captures. */
2098		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2099		/*  default edge */
2100		/*  polarity. */
2101		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2102		/*  to inactive state. */
2103	}
2104	DEBUG("s626_dio_init: DIO initialized \n");
2105}
2106
2107/* DIO devices are slightly special.  Although it is possible to
2108 * implement the insn_read/insn_write interface, it is much more
2109 * useful to applications if you implement the insn_bits interface.
2110 * This allows packed reading/writing of the DIO channels.  The comedi
2111 * core can convert between insn_bits and insn_read/write */
2112
2113static int s626_dio_insn_bits(comedi_device *dev, comedi_subdevice *s,
2114	comedi_insn *insn, lsampl_t *data)
2115{
2116
2117	/* Length of data must be 2 (mask and new data, see below) */
2118	if (insn->n == 0) {
2119		return 0;
2120	}
2121	if (insn->n != 2) {
2122		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2123		return -EINVAL;
2124	}
2125
2126	/*
2127	 * The insn data consists of a mask in data[0] and the new data in
2128	 * data[1]. The mask defines which bits we are concerning about.
2129	 * The new data must be anded with the mask.  Each channel
2130	 * corresponds to a bit.
2131	 */
2132	if (data[0]) {
2133		/* Check if requested ports are configured for output */
2134		if ((s->io_bits & data[0]) != data[0])
2135			return -EIO;
2136
2137		s->state &= ~data[0];
2138		s->state |= data[0] & data[1];
2139
2140		/* Write out the new digital output lines */
2141
2142		DEBIwrite(dev, diopriv->WRDOut, s->state);
2143	}
2144	data[1] = DEBIread(dev, diopriv->RDDIn);
2145
2146	return 2;
2147}
2148
2149static int s626_dio_insn_config(comedi_device *dev, comedi_subdevice *s,
2150	comedi_insn *insn, lsampl_t *data)
2151{
2152
2153	switch (data[0]) {
2154	case INSN_CONFIG_DIO_QUERY:
2155		data[1] =
2156			(s->io_bits & (1 << CR_CHAN(insn->
2157					chanspec))) ? COMEDI_OUTPUT :
2158			COMEDI_INPUT;
2159		return insn->n;
2160		break;
2161	case COMEDI_INPUT:
2162		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2163		break;
2164	case COMEDI_OUTPUT:
2165		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2166		break;
2167	default:
2168		return -EINVAL;
2169		break;
2170	}
2171	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2172
2173	return 1;
2174}
2175
2176static int s626_dio_set_irq(comedi_device *dev, unsigned int chan)
2177{
2178	unsigned int group;
2179	unsigned int bitmask;
2180	unsigned int status;
2181
2182	/* select dio bank */
2183	group = chan / 16;
2184	bitmask = 1 << (chan - (16 * group));
2185	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2186		chan - (16 * group), group);
2187
2188	/* set channel to capture positive edge */
2189	status = DEBIread(dev,
2190		((dio_private *) (dev->subdevices + 2 +
2191				group)->private)->RDEdgSel);
2192	DEBIwrite(dev,
2193		((dio_private *) (dev->subdevices + 2 +
2194				group)->private)->WREdgSel, bitmask | status);
2195
2196	/* enable interrupt on selected channel */
2197	status = DEBIread(dev,
2198		((dio_private *) (dev->subdevices + 2 +
2199				group)->private)->RDIntSel);
2200	DEBIwrite(dev,
2201		((dio_private *) (dev->subdevices + 2 +
2202				group)->private)->WRIntSel, bitmask | status);
2203
2204	/* enable edge capture write command */
2205	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2206
2207	/* enable edge capture on selected channel */
2208	status = DEBIread(dev,
2209		((dio_private *) (dev->subdevices + 2 +
2210				group)->private)->RDCapSel);
2211	DEBIwrite(dev,
2212		((dio_private *) (dev->subdevices + 2 +
2213				group)->private)->WRCapSel, bitmask | status);
2214
2215	return 0;
2216}
2217
2218static int s626_dio_reset_irq(comedi_device *dev, unsigned int group,
2219	unsigned int mask)
2220{
2221	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);
2222
2223	/* disable edge capture write command */
2224	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2225
2226	/* enable edge capture on selected channel */
2227	DEBIwrite(dev,
2228		((dio_private *) (dev->subdevices + 2 +
2229				group)->private)->WRCapSel, mask);
2230
2231	return 0;
2232}
2233
2234static int s626_dio_clear_irq(comedi_device *dev)
2235{
2236	unsigned int group;
2237
2238	/* disable edge capture write command */
2239	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2240
2241	for (group = 0; group < S626_DIO_BANKS; group++) {
2242		/* clear pending events and interrupt */
2243		DEBIwrite(dev,
2244			((dio_private *) (dev->subdevices + 2 +
2245					group)->private)->WRCapSel, 0xffff);
2246	}
2247
2248	return 0;
2249}
2250
2251/* Now this function initializes the value of the counter (data[0])
2252   and set the subdevice. To complete with trigger and interrupt
2253   configuration */
2254static int s626_enc_insn_config(comedi_device *dev, comedi_subdevice *s,
2255	comedi_insn *insn, lsampl_t *data)
2256{
2257	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2258		/*  index. */
2259		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2260		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2261		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2262		/* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2263		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2264		(CLKENAB_INDEX << BF_CLKENAB);
2265	/*   uint16_t DisableIntSrc=TRUE; */
2266	/*  uint32_t Preloadvalue;              //Counter initial value */
2267	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2268	uint16_t enab = CLKENAB_ALWAYS;
2269	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2270
2271	DEBUG("s626_enc_insn_config: encoder config\n");
2272
2273	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2274
2275	k->SetMode(dev, k, Setup, TRUE);
2276	Preload(dev, k, *(insn->data));
2277	k->PulseIndex(dev, k);
2278	SetLatchSource(dev, k, valueSrclatch);
2279	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2280
2281	return insn->n;
2282}
2283
2284static int s626_enc_insn_read(comedi_device *dev, comedi_subdevice *s,
2285	comedi_insn *insn, lsampl_t *data)
2286{
2287
2288	int n;
2289	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2290
2291	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2292		CR_CHAN(insn->chanspec));
2293
2294	for (n = 0; n < insn->n; n++)
2295		data[n] = ReadLatch(dev, k);
2296
2297	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2298
2299	return n;
2300}
2301
2302static int s626_enc_insn_write(comedi_device *dev, comedi_subdevice *s,
2303	comedi_insn *insn, lsampl_t *data)
2304{
2305
2306	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2307
2308	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2309		CR_CHAN(insn->chanspec));
2310
2311	/*  Set the preload register */
2312	Preload(dev, k, data[0]);
2313
2314	/*  Software index pulse forces the preload register to load */
2315	/*  into the counter */
2316	k->SetLoadTrig(dev, k, 0);
2317	k->PulseIndex(dev, k);
2318	k->SetLoadTrig(dev, k, 2);
2319
2320	DEBUG("s626_enc_insn_write: End encoder write\n");
2321
2322	return 1;
2323}
2324
2325static void s626_timer_load(comedi_device *dev, enc_private *k, int tick)
2326{
2327	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2328		/*  index. */
2329		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2330		(CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2331		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2332		(CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2333		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2334		(CLKENAB_INDEX << BF_CLKENAB);
2335	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2336	/*   uint16_t enab=CLKENAB_ALWAYS; */
2337
2338	k->SetMode(dev, k, Setup, FALSE);
2339
2340	/*  Set the preload register */
2341	Preload(dev, k, tick);
2342
2343	/*  Software index pulse forces the preload register to load */
2344	/*  into the counter */
2345	k->SetLoadTrig(dev, k, 0);
2346	k->PulseIndex(dev, k);
2347
2348	/* set reload on counter overflow */
2349	k->SetLoadTrig(dev, k, 1);
2350
2351	/* set interrupt on overflow */
2352	k->SetIntSrc(dev, k, INTSRC_OVER);
2353
2354	SetLatchSource(dev, k, valueSrclatch);
2355	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2356}
2357
2358/* ***********  DAC FUNCTIONS *********** */
2359
2360/*  Slot 0 base settings. */
2361#define VECT0	(XSD2 | RSD3 | SIB_A2)
2362/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2363
2364/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2365static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2366
2367/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2368static uint8_t trimadrs[] =
2369	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2370
2371static void LoadTrimDACs(comedi_device *dev)
2372{
2373	register uint8_t i;
2374
2375	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2376	for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
2377		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2378}
2379
2380static void WriteTrimDAC(comedi_device *dev, uint8_t LogicalChan,
2381	uint8_t DacData)
2382{
2383	uint32_t chan;
2384
2385	/*  Save the new setpoint in case the application needs to read it back later. */
2386	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2387
2388	/*  Map logical channel number to physical channel number. */
2389	chan = (uint32_t) trimchan[LogicalChan];
2390
2391	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2392	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2393	 * can be detected.
2394	 */
2395
2396	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2397	/* Slot 2: Send high uint8_t to target TrimDac. */
2398	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2399	/* Slot 3: Send low uint8_t to target TrimDac. */
2400	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2401	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2402	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2403	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2404
2405	/* Construct and transmit target DAC's serial packet:
2406	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2407	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2408	 * WORD value (that writes a channel 0 NOP command to a non-existent
2409	 * main DAC channel) that serves to keep the clock running after the
2410	 * packet has been sent to the target DAC.
2411	 */
2412
2413	/*  Address the DAC channel within the trimdac device. */
2414	SendDAC(dev, ((uint32_t) chan << 8)
2415		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2416}
2417
2418/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2419/*  Read uint8_t from EEPROM. */
2420
2421static uint8_t I2Cread(comedi_device *dev, uint8_t addr)
2422{
2423	uint8_t rtnval;
2424
2425	/*  Send EEPROM target address. */
2426	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2427			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2428			| I2C_B1(I2C_ATTRSTOP, addr)
2429			 /* Byte1 = EEPROM internal target address. */
2430			| I2C_B0(I2C_ATTRNOP, 0)))	/*  Byte0 = Not sent. */
2431	{
2432		/*  Abort function and declare error if handshake failed. */
2433		DEBUG("I2Cread: error handshake I2Cread  a\n");
2434		return 0;
2435	}
2436	/*  Execute EEPROM read. */
2437	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	/*  Byte2 = I2C */
2438			/*  command: read */
2439			/*  from I2C EEPROM */
2440			/*  device. */
2441			| I2C_B1(I2C_ATTRSTOP, 0)	/*  Byte1 receives */
2442			/*  uint8_t from */
2443			/*  EEPROM. */
2444			| I2C_B0(I2C_ATTRNOP, 0)))	/*  Byte0 = Not */
2445		/*  sent. */
2446	{
2447		/*  Abort function and declare error if handshake failed. */
2448		DEBUG("I2Cread: error handshake I2Cread b\n");
2449		return 0;
2450	}
2451	/*  Return copy of EEPROM value. */
2452	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2453	return rtnval;
2454}
2455
2456static uint32_t I2Chandshake(comedi_device *dev, uint32_t val)
2457{
2458	/*  Write I2C command to I2C Transfer Control shadow register. */
2459	WR7146(P_I2CCTRL, val);
2460
2461	/*  Upload I2C shadow registers into working registers and wait for */
2462	/*  upload confirmation. */
2463
2464	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2465	while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
2466
2467	/*  Wait until I2C bus transfer is finished or an error occurs. */
2468	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
2469
2470	/*  Return non-zero if I2C error occured. */
2471	return RR7146(P_I2CCTRL) & I2C_ERR;
2472
2473}
2474
2475/*  Private helper function: Write setpoint to an application DAC channel. */
2476
2477static void SetDAC(comedi_device *dev, uint16_t chan, short dacdata)
2478{
2479	register uint16_t signmask;
2480	register uint32_t WSImage;
2481
2482	/*  Adjust DAC data polarity and set up Polarity Control Register */
2483	/*  image. */
2484	signmask = 1 << chan;
2485	if (dacdata < 0) {
2486		dacdata = -dacdata;
2487		devpriv->Dacpol |= signmask;
2488	} else
2489		devpriv->Dacpol &= ~signmask;
2490
2491	/*  Limit DAC setpoint value to valid range. */
2492	if ((uint16_t) dacdata > 0x1FFF)
2493		dacdata = 0x1FFF;
2494
2495	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2496	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2497	 * data to a non-existent TrimDac channel just to keep the clock
2498	 * running after sending data to the target DAC.  This is necessary
2499	 * to eliminate the clock glitch that would otherwise occur at the
2500	 * end of the target DAC's serial data stream.  When the sequence
2501	 * restarts at V0 (after executing V5), the gate array automatically
2502	 * disables gating for the DAC clock and all DAC chip selects.
2503	 */
2504
2505	WSImage = (chan & 2) ? WS1 : WS2;
2506	/* Choose DAC chip select to be asserted. */
2507	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2508	/* Slot 2: Transmit high data byte to target DAC. */
2509	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2510	/* Slot 3: Transmit low data byte to target DAC. */
2511	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2512	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2513	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2514	/* Slot 5: running after writing target DAC's low data byte. */
2515
2516	/*  Construct and transmit target DAC's serial packet:
2517	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2518	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2519	 * to a  non-existent TrimDac channel) that serves to keep the clock
2520	 * running after the packet has been sent to the target DAC.
2521	 */
2522	SendDAC(dev, 0x0F000000
2523		/* Continue clock after target DAC data (write to non-existent trimdac). */
2524		| 0x00004000
2525		/* Address the two main dual-DAC devices (TSL's chip select enables
2526		 * target device). */
2527		| ((uint32_t) (chan & 1) << 15)
2528		/*  Address the DAC channel within the  device. */
2529		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2530
2531}
2532
2533/* Private helper function: Transmit serial data to DAC via Audio
2534 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2535 * Dacpol contains valid target image.
2536 */
2537
2538static void SendDAC(comedi_device *dev, uint32_t val)
2539{
2540
2541	/* START THE SERIAL CLOCK RUNNING ------------- */
2542
2543	/* Assert DAC polarity control and enable gating of DAC serial clock
2544	 * and audio bit stream signals.  At this point in time we must be
2545	 * assured of being in time slot 0.  If we are not in slot 0, the
2546	 * serial clock and audio stream signals will be disabled; this is
2547	 * because the following DEBIwrite statement (which enables signals
2548	 * to be passed through the gate array) would execute before the
2549	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2550	 * causing the signals to be inactive during the DAC write.
2551	 */
2552	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2553
2554	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2555
2556	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2557
2558	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2559	*devpriv->pDacWBuf = val;
2560
2561	/* enab the output DMA transfer.  This will cause the DMAC to copy
2562	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2563	 * then immediately terminate because the protection address is
2564	 * reached upon transfer of the first DWORD value.
2565	 */
2566	MC_ENABLE(P_MC1, MC1_A2OUT);
2567
2568	/*  While the DMA transfer is executing ... */
2569
2570	/* Reset Audio2 output FIFO's underflow flag (along with any other
2571	 * FIFO underflow/overflow flags).  When set, this flag will
2572	 * indicate that we have emerged from slot 0.
2573	 */
2574	WR7146(P_ISR, ISR_AFOU);
2575
2576	/* Wait for the DMA transfer to finish so that there will be data
2577	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2578	 * from the FIFO to the output buffer register.  We test for DMA
2579	 * Done by polling the DMAC enable flag; this flag is automatically
2580	 * cleared when the transfer has finished.
2581	 */
2582	while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
2583
2584	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2585
2586	/* FIFO data is now available, so we enable execution of time slots
2587	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2588	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2589	 * detection.
2590	 */
2591	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2592
2593	/* Wait for slot 1 to execute to ensure that the Packet will be
2594	 * transmitted.  This is detected by polling the Audio2 output FIFO
2595	 * underflow flag, which will be set when slot 1 execution has
2596	 * finished transferring the DAC's data DWORD from the output FIFO
2597	 * to the output buffer register.
2598	 */
2599	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
2600
2601	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2602	 * back to slot 0 after executing the EOS in slot 5.  Also,
2603	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2604	 * stored in the last byte to be shifted out of the FIFO's DWORD
2605	 * buffer register.
2606	 */
2607	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2608
2609	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2610
2611	/* Wait for the TSL to finish executing all time slots before
2612	 * exiting this function.  We must do this so that the next DAC
2613	 * write doesn't start, thereby enabling clock/chip select signals:
2614	 *
2615	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2616	 *    the clock/cs signal gating and traps slot // list execution.
2617	 *    we have not yet finished slot 5 then the clock/cs signals are
2618	 *    still gated and we have not finished transmitting the stream.
2619	 *
2620	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2621	 *    this case, the slot sequence is currently repeating, but with
2622	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2623	 *    execution before setting up the next DAC setpoint DMA transfer
2624	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2625	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2626	 *    the TSL has not yet finished executing slot 5 ...
2627	 */
2628	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2629		/* The trap was set on time and we are still executing somewhere
2630		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2631		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2632		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2633		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2634		 */
2635		 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
2636	}
2637	/* Either (1) we were too late setting the slot 0 trap; the TSL
2638	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2639	 * or (2) we were not late and execution is now trapped at slot 0.
2640	 * In either case, we must now change slot 0 so that it will store
2641	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2642	 * In order to do this, we reprogram slot 0 so that it will shift in
2643	 * SD3, which is driven only by a pull-up resistor.
2644	 */
2645	SETVECT(0, RSD3 | SIB_A2 | EOS);
2646
2647	/* Wait for slot 0 to execute, at which time the TSL is setup for
2648	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2649	 * from 0x00 to 0xFF.
2650	 */
2651	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
2652}
2653
2654static void WriteMISC2(comedi_device *dev, uint16_t NewImage)
2655{
2656	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2657	/*  MISC2 register. */
2658	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2659	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2660}
2661
2662/*  Initialize the DEBI interface for all transfers. */
2663
2664static uint16_t DEBIread(comedi_device *dev, uint16_t addr)
2665{
2666	uint16_t retval;
2667
2668	/*  Set up DEBI control register value in shadow RAM. */
2669	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2670
2671	/*  Execute the DEBI transfer. */
2672	DEBItransfer(dev);
2673
2674	/*  Fetch target register value. */
2675	retval = (uint16_t) RR7146(P_DEBIAD);
2676
2677	/*  Return register value. */
2678	return retval;
2679}
2680
2681/*  Execute a DEBI transfer.  This must be called from within a */
2682/*  critical section. */
2683static void DEBItransfer(comedi_device *dev)
2684{
2685	/*  Initiate upload of shadow RAM to DEBI control register. */
2686	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2687
2688	/*  Wait for completion of upload from shadow RAM to DEBI control */
2689	/*  register. */
2690	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
2691
2692	/*  Wait until DEBI transfer is done. */
2693	while (RR7146(P_PSR) & PSR_DEBI_S) ;
2694}
2695
2696/*  Write a value to a gate array register. */
2697static void DEBIwrite(comedi_device *dev, uint16_t addr, uint16_t wdata)
2698{
2699
2700	/*  Set up DEBI control register value in shadow RAM. */
2701	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2702	WR7146(P_DEBIAD, wdata);
2703
2704	/*  Execute the DEBI transfer. */
2705	DEBItransfer(dev);
2706}
2707
2708/* Replace the specified bits in a gate array register.  Imports: mask
2709 * specifies bits that are to be preserved, wdata is new value to be
2710 * or'd with the masked original.
2711 */
2712static void DEBIreplace(comedi_device *dev, uint16_t addr, uint16_t mask,
2713	uint16_t wdata)
2714{
2715
2716	/*  Copy target gate array register into P_DEBIAD register. */
2717	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2718	/* Set up DEBI control reg value in shadow RAM. */
2719	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2720
2721	/*  Write back the modified image. */
2722	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2723	/* Set up DEBI control reg value in shadow  RAM. */
2724
2725	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2726	/* Modify the register image. */
2727	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2728}
2729
2730static void CloseDMAB(comedi_device *dev, DMABUF *pdma, size_t bsize)
2731{
2732	void *vbptr;
2733	dma_addr_t vpptr;
2734
2735	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2736	if (pdma == NULL)
2737		return;
2738	/* find the matching allocation from the board struct */
2739
2740	vbptr = pdma->LogicalBase;
2741	vpptr = pdma->PhysicalBase;
2742	if (vbptr) {
2743		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2744		pdma->LogicalBase = 0;
2745		pdma->PhysicalBase = 0;
2746
2747		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2748			vbptr, bsize, (uint32_t) vpptr);
2749	}
2750}
2751
2752/* ******  COUNTER FUNCTIONS  ******* */
2753/* All counter functions address a specific counter by means of the
2754 * "Counter" argument, which is a logical counter number.  The Counter
2755 * argument may have any of the following legal values: 0=0A, 1=1A,
2756 * 2=2A, 3=0B, 4=1B, 5=2B.
2757 */
2758
2759/* Forward declarations for functions that are common to both A and B counters: */
2760
2761/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2762
2763/*  Read a counter's output latch. */
2764
2765static uint32_t ReadLatch(comedi_device *dev, enc_private *k)
2766{
2767	register uint32_t value;
2768	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2769
2770	/*  Latch counts and fetch LSW of latched counts value. */
2771	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2772
2773	/*  Fetch MSW of latched counts and combine with LSW. */
2774	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2775
2776	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2777
2778	/*  Return latched counts. */
2779	return value;
2780}
2781
2782/*  Reset a counter's index and overflow event capture flags. */
2783
2784static void ResetCapFlags_A(comedi_device *dev, enc_private *k)
2785{
2786	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2787		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2788}
2789
2790static void ResetCapFlags_B(comedi_device *dev, enc_private *k)
2791{
2792	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2793		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2794}
2795
2796/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2797/*  for both A and B counters. */
2798
2799static uint16_t GetMode_A(comedi_device *dev, enc_private *k)
2800{
2801	register uint16_t cra;
2802	register uint16_t crb;
2803	register uint16_t setup;
2804
2805	/*  Fetch CRA and CRB register images. */
2806	cra = DEBIread(dev, k->MyCRA);
2807	crb = DEBIread(dev, k->MyCRB);
2808
2809	/*  Populate the standardized counter setup bit fields.  Note: */
2810	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2811	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2812		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2813		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2814		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2815		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2816		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2817
2818	/*  Adjust mode-dependent parameters. */
2819	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2820		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2821			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2822			| (MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2823
2824	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2825		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2826			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2827			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2828				(MULT_X1 << STDBIT_CLKMULT) :
2829				((cra >> (CRABIT_CLKMULT_A -
2830							STDBIT_CLKMULT)) &
2831					STDMSK_CLKMULT)));
2832
2833	/*  Return adjusted counter setup. */
2834	return setup;
2835}
2836
2837static uint16_t GetMode_B(comedi_device *dev, enc_private *k)
2838{
2839	register uint16_t cra;
2840	register uint16_t crb;
2841	register uint16_t setup;
2842
2843	/*  Fetch CRA and CRB register images. */
2844	cra = DEBIread(dev, k->MyCRA);
2845	crb = DEBIread(dev, k->MyCRB);
2846
2847	/*  Populate the standardized counter setup bit fields.  Note: */
2848	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2849	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2850		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2851		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2852		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2853		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2854		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2855
2856	/*  Adjust mode-dependent parameters. */
2857	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2858		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2859			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2860			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2861
2862	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2863		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2864			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2865			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2866
2867	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2868		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2869			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2870			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2871
2872	/*  Return adjusted counter setup. */
2873	return setup;
2874}
2875
2876/*
2877 * Set the operating mode for the specified counter.  The setup
2878 * parameter is treated as a COUNTER_SETUP data type.  The following
2879 * parameters are programmable (all other parms are ignored): ClkMult,
2880 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2881 */
2882
2883static void SetMode_A(comedi_device *dev, enc_private *k, uint16_t Setup,
2884	uint16_t DisableIntSrc)
2885{
2886	register uint16_t cra;
2887	register uint16_t crb;
2888	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2889
2890	/*  Initialize CRA and CRB images. */
2891	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
2892		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2893
2894	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
2895		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
2896
2897	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2898	if (!DisableIntSrc)
2899		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2900				CRABIT_INTSRC_A));
2901
2902	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2903	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2904	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
2905		/*  (Extender valid only for B counters). */
2906
2907	case CLKSRC_TIMER:	/*  Timer Mode: */
2908		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
2909			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
2910			| (1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
2911			| (MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
2912		break;
2913
2914	default:		/*  Counter Mode: */
2915		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2916			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
2917			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
2918				(MULT_X1 << CRABIT_CLKMULT_A) :
2919				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2920						STDBIT_CLKMULT))));
2921	}
2922
2923	/*  Force positive index polarity if IndxSrc is software-driven only, */
2924	/*  otherwise pass it through. */
2925	if (~setup & STDMSK_INDXSRC)
2926		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2927				STDBIT_INDXPOL));
2928
2929	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2930	/*  enable mask to indicate the counter interrupt is disabled. */
2931	if (DisableIntSrc)
2932		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2933
2934	/*  While retaining CounterB and LatchSrc configurations, program the */
2935	/*  new counter operating mode. */
2936	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2937	DEBIreplace(dev, k->MyCRB,
2938		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2939}
2940
2941static void SetMode_B(comedi_device *dev, enc_private *k, uint16_t Setup,
2942	uint16_t DisableIntSrc)
2943{
2944	register uint16_t cra;
2945	register uint16_t crb;
2946	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2947
2948	/*  Initialize CRA and CRB images. */
2949	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
2950
2951	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
2952		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
2953		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
2954
2955	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2956	if (!DisableIntSrc)
2957		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2958				CRBBIT_INTSRC_B));
2959
2960	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2961	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2962	case CLKSRC_TIMER:	/*  Timer Mode: */
2963		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
2964			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
2965		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
2966			| (MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
2967		break;
2968
2969	case CLKSRC_EXTENDER:	/*  Extender Mode: */
2970		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
2971			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
2972		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
2973			| (MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
2974		break;
2975
2976	default:		/*  Counter Mode: */
2977		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2978		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
2979			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
2980				(MULT_X1 << CRBBIT_CLKMULT_B) :
2981				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2982						STDBIT_CLKMULT))));
2983	}
2984
2985	/*  Force positive index polarity if IndxSrc is software-driven only, */
2986	/*  otherwise pass it through. */
2987	if (~setup & STDMSK_INDXSRC)
2988		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2989				CRBBIT_INDXPOL_B));
2990
2991	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2992	/*  enable mask to indicate the counter interrupt is disabled. */
2993	if (DisableIntSrc)
2994		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2995
2996	/*  While retaining CounterA and LatchSrc configurations, program the */
2997	/*  new counter operating mode. */
2998	DEBIreplace(dev, k->MyCRA,
2999		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
3000	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
3001}
3002
3003/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
3004
3005static void SetEnable_A(comedi_device *dev, enc_private *k, uint16_t enab)
3006{
3007	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3008	DEBIreplace(dev, k->MyCRB,
3009		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3010		(uint16_t) (enab << CRBBIT_CLKENAB_A));
3011}
3012
3013static void SetEnable_B(comedi_device *dev, enc_private *k, uint16_t enab)
3014{
3015	DEBIreplace(dev, k->MyCRB,
3016		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3017		(uint16_t) (enab << CRBBIT_CLKENAB_B));
3018}
3019
3020static uint16_t GetEnable_A(comedi_device *dev, enc_private *k)
3021{
3022	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3023}
3024
3025static uint16_t GetEnable_B(comedi_device *dev, enc_private *k)
3026{
3027	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3028}
3029
3030/* Return/set a counter pair's latch trigger source.  0: On read
3031 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3032 * latches B.
3033 */
3034
3035static void SetLatchSource(comedi_device *dev, enc_private *k, uint16_t value)
3036{
3037	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3038	DEBIreplace(dev, k->MyCRB,
3039		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3040		(uint16_t) (value << CRBBIT_LATCHSRC));
3041
3042	DEBUG("SetLatchSource: SetLatchSource exit \n");
3043}
3044
3045/*
3046 * static uint16_t GetLatchSource(comedi_device *dev, enc_private *k )
3047 * {
3048 * 	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3049 * }
3050 */
3051
3052/*
3053 * Return/set the event that will trigger transfer of the preload
3054 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3055 * 2=OverflowA (B counters only), 3=disabled.
3056 */
3057
3058static void SetLoadTrig_A(comedi_device *dev, enc_private *k, uint16_t Trig)
3059{
3060	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3061		(uint16_t) (Trig << CRABIT_LOADSRC_A));
3062}
3063
3064static void SetLoadTrig_B(comedi_device *dev, enc_private *k, uint16_t Trig)
3065{
3066	DEBIreplace(dev, k->MyCRB,
3067		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3068		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
3069}
3070
3071static uint16_t GetLoadTrig_A(comedi_device *dev, enc_private *k)
3072{
3073	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3074}
3075
3076static uint16_t GetLoadTrig_B(comedi_device *dev, enc_private *k)
3077{
3078	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3079}
3080
3081/* Return/set counter interrupt source and clear any captured
3082 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3083 * 2=IndexOnly, 3=IndexAndOverflow.
3084 */
3085
3086static void SetIntSrc_A(comedi_device *dev, enc_private *k,
3087	uint16_t IntSource)
3088{
3089	/*  Reset any pending counter overflow or index captures. */
3090	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3091		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3092
3093	/*  Program counter interrupt source. */
3094	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3095		(uint16_t) (IntSource << CRABIT_INTSRC_A));
3096
3097	/*  Update MISC2 interrupt enable mask. */
3098	devpriv->CounterIntEnabs =
3099		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3100		MyEventBits[IntSource];
3101}
3102
3103static void SetIntSrc_B(comedi_device *dev, enc_private *k,
3104	uint16_t IntSource)
3105{
3106	uint16_t crb;
3107
3108	/*  Cache writeable CRB register image. */
3109	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3110
3111	/*  Reset any pending counter overflow or index captures. */
3112	DEBIwrite(dev, k->MyCRB,
3113		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3114
3115	/*  Program counter interrupt source. */
3116	DEBIwrite(dev, k->MyCRB,
3117		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3118				CRBBIT_INTSRC_B)));
3119
3120	/*  Update MISC2 interrupt enable mask. */
3121	devpriv->CounterIntEnabs =
3122		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3123		MyEventBits[IntSource];
3124}
3125
3126static uint16_t GetIntSrc_A(comedi_device *dev, enc_private *k)
3127{
3128	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3129}
3130
3131static uint16_t GetIntSrc_B(comedi_device *dev, enc_private *k)
3132{
3133	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3134}
3135
3136/*  Return/set the clock multiplier. */
3137
3138/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value )  */
3139/* { */
3140/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3141/* } */
3142
3143/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k )  */
3144/* { */
3145/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3146/* } */
3147
3148/* Return/set the clock polarity. */
3149
3150/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value )  */
3151/* { */
3152/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3153/* } */
3154
3155/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k )  */
3156/* { */
3157/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3158/* } */
3159
3160/* Return/set the clock source.  */
3161
3162/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value )  */
3163/* { */
3164/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3165/* } */
3166
3167/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k )  */
3168/* { */
3169/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3170/* } */
3171
3172/* Return/set the index polarity. */
3173
3174/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value )  */
3175/* { */
3176/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3177/* } */
3178
3179/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k )  */
3180/* { */
3181/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3182/* } */
3183
3184/*  Return/set the index source. */
3185
3186/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value )  */
3187/* { */
3188/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3189/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3190/* } */
3191
3192/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k )  */
3193/* { */
3194/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3195/* } */
3196
3197/*  Generate an index pulse. */
3198
3199static void PulseIndex_A(comedi_device *dev, enc_private *k)
3200{
3201	register uint16_t cra;
3202
3203	DEBUG("PulseIndex_A: pulse index enter\n");
3204
3205	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3206	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3207	DEBUG("PulseIndex_A: pulse index step1\n");
3208	DEBIwrite(dev, k->MyCRA, cra);
3209}
3210
3211static void PulseIndex_B(comedi_device *dev, enc_private *k)
3212{
3213	register uint16_t crb;
3214
3215	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3216	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3217	DEBIwrite(dev, k->MyCRB, crb);
3218}
3219
3220/*  Write value into counter preload register. */
3221
3222static void Preload(comedi_device *dev, enc_private *k, uint32_t value)
3223{
3224	DEBUG("Preload: preload enter\n");
3225	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3226	DEBUG("Preload: preload step 1\n");
3227	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3228		(uint16_t) (value >> 16));
3229}
3230
3231static void CountersInit(comedi_device *dev)
3232{
3233	int chan;
3234	enc_private *k;
3235	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3236		/*  index. */
3237		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3238		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3239		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3240		(CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3241		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3242		(CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3243
3244	/*  Disable all counter interrupts and clear any captured counter events. */
3245	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3246		k = &encpriv[chan];
3247		k->SetMode(dev, k, Setup, TRUE);
3248		k->SetIntSrc(dev, k, 0);
3249		k->ResetCapFlags(dev, k);
3250		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3251	}
3252	DEBUG("CountersInit: counters initialized \n");
3253
3254}
3255