s626.c revision 25436dc9d84f1be60ff549c9ab712bba2835f284
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63                            //during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66                                                        //to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/interrupt.h>
72#include <linux/kernel.h>
73#include <linux/types.h>
74
75#include "../comedidev.h"
76
77#include "comedi_pci.h"
78
79#include "comedi_fc.h"
80#include "s626.h"
81
82MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
83MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
84MODULE_LICENSE("GPL");
85
86struct s626_board {
87	const char *name;
88	int ai_chans;
89	int ai_bits;
90	int ao_chans;
91	int ao_bits;
92	int dio_chans;
93	int dio_banks;
94	int enc_chans;
95};
96
97static const struct s626_board s626_boards[] = {
98	{
99	.name = "s626",
100	.ai_chans = S626_ADC_CHANNELS,
101	.ai_bits = 14,
102	.ao_chans = S626_DAC_CHANNELS,
103	.ao_bits = 13,
104	.dio_chans = S626_DIO_CHANNELS,
105	.dio_banks = S626_DIO_BANKS,
106	.enc_chans = S626_ENCODER_CHANNELS,
107		}
108};
109
110#define thisboard ((const struct s626_board *)dev->board_ptr)
111#define PCI_VENDOR_ID_S626 0x1131
112#define PCI_DEVICE_ID_S626 0x7146
113
114static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
115	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
116		0},
117	{0}
118};
119
120MODULE_DEVICE_TABLE(pci, s626_pci_table);
121
122static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
123static int s626_detach(struct comedi_device *dev);
124
125static struct comedi_driver driver_s626 = {
126	.driver_name = "s626",
127	.module = THIS_MODULE,
128	.attach = s626_attach,
129	.detach = s626_detach,
130};
131
132struct s626_private {
133	struct pci_dev *pdev;
134	void *base_addr;
135	int got_regions;
136	short allocatedBuf;
137	uint8_t ai_cmd_running;	/*  ai_cmd is running */
138	uint8_t ai_continous;	/*  continous aquisition */
139	int ai_sample_count;	/*  number of samples to aquire */
140	unsigned int ai_sample_timer;
141	/*  time between samples in  units of the timer */
142	int ai_convert_count;	/*  conversion counter */
143	unsigned int ai_convert_timer;
144	/*  time between conversion in  units of the timer */
145	uint16_t CounterIntEnabs;
146	/* Counter interrupt enable  mask for MISC2 register. */
147	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
148	struct bufferDMA RPSBuf;		/* DMA buffer used to hold ADC (RPS1) program. */
149	struct bufferDMA ANABuf;
150	/* DMA buffer used to receive ADC data and hold DAC data. */
151	uint32_t *pDacWBuf;
152	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
153	uint16_t Dacpol;	/* Image of DAC polarity register. */
154	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
155	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
156	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
157	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
158	uint32_t I2CAdrs;
159	/* I2C device address for onboard EEPROM (board rev dependent). */
160	/*   short         I2Cards; */
161	unsigned int ao_readback[S626_DAC_CHANNELS];
162};
163
164struct dio_private {
165	uint16_t RDDIn;
166	uint16_t WRDOut;
167	uint16_t RDEdgSel;
168	uint16_t WREdgSel;
169	uint16_t RDCapSel;
170	uint16_t WRCapSel;
171	uint16_t RDCapFlg;
172	uint16_t RDIntSel;
173	uint16_t WRIntSel;
174};
175
176static struct dio_private dio_private_A = {
177	.RDDIn = LP_RDDINA,
178	.WRDOut = LP_WRDOUTA,
179	.RDEdgSel = LP_RDEDGSELA,
180	.WREdgSel = LP_WREDGSELA,
181	.RDCapSel = LP_RDCAPSELA,
182	.WRCapSel = LP_WRCAPSELA,
183	.RDCapFlg = LP_RDCAPFLGA,
184	.RDIntSel = LP_RDINTSELA,
185	.WRIntSel = LP_WRINTSELA,
186};
187
188static struct dio_private dio_private_B = {
189	.RDDIn = LP_RDDINB,
190	.WRDOut = LP_WRDOUTB,
191	.RDEdgSel = LP_RDEDGSELB,
192	.WREdgSel = LP_WREDGSELB,
193	.RDCapSel = LP_RDCAPSELB,
194	.WRCapSel = LP_WRCAPSELB,
195	.RDCapFlg = LP_RDCAPFLGB,
196	.RDIntSel = LP_RDINTSELB,
197	.WRIntSel = LP_WRINTSELB,
198};
199
200static struct dio_private dio_private_C = {
201	.RDDIn = LP_RDDINC,
202	.WRDOut = LP_WRDOUTC,
203	.RDEdgSel = LP_RDEDGSELC,
204	.WREdgSel = LP_WREDGSELC,
205	.RDCapSel = LP_RDCAPSELC,
206	.WRCapSel = LP_WRCAPSELC,
207	.RDCapFlg = LP_RDCAPFLGC,
208	.RDIntSel = LP_RDINTSELC,
209	.WRIntSel = LP_WRINTSELC,
210};
211
212/* to group dio devices (48 bits mask and data are not allowed ???)
213static struct dio_private *dio_private_word[]={
214  &dio_private_A,
215  &dio_private_B,
216  &dio_private_C,
217};
218*/
219
220#define devpriv ((struct s626_private *)dev->private)
221#define diopriv ((struct dio_private *)s->private)
222
223COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
224
225/* ioctl routines */
226static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
227	struct comedi_insn *insn, unsigned int *data);
228/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
229static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
230	struct comedi_insn *insn, unsigned int *data);
231static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
232static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
233	struct comedi_cmd *cmd);
234static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
235static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
236	struct comedi_insn *insn, unsigned int *data);
237static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
238	struct comedi_insn *insn, unsigned int *data);
239static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
240	struct comedi_insn *insn, unsigned int *data);
241static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
242	struct comedi_insn *insn, unsigned int *data);
243static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
244static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
245	unsigned int mask);
246static int s626_dio_clear_irq(struct comedi_device *dev);
247static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
248	struct comedi_insn *insn, unsigned int *data);
249static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
250	struct comedi_insn *insn, unsigned int *data);
251static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
252	struct comedi_insn *insn, unsigned int *data);
253static int s626_ns_to_timer(int *nanosec, int round_mode);
254static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
255static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
256	unsigned int trignum);
257static irqreturn_t s626_irq_handler(int irq, void *d);
258static unsigned int s626_ai_reg_to_uint(int data);
259/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
260
261/* end ioctl routines */
262
263/* internal routines */
264static void s626_dio_init(struct comedi_device *dev);
265static void ResetADC(struct comedi_device *dev, uint8_t *ppl);
266static void LoadTrimDACs(struct comedi_device *dev);
267static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
268	uint8_t DacData);
269static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
270static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
271static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
272static void SendDAC(struct comedi_device *dev, uint32_t val);
273static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
274static void DEBItransfer(struct comedi_device *dev);
275static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
276static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
277static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
278	uint16_t wdata);
279static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize);
280
281/*  COUNTER OBJECT ------------------------------------------------ */
282struct enc_private {
283	/*  Pointers to functions that differ for A and B counters: */
284	uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *);	/* Return clock enable. */
285	uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *);	/* Return interrupt source. */
286	uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *);	/* Return preload trigger source. */
287	uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *);	/* Return standardized operating mode. */
288	void (*PulseIndex) (struct comedi_device *dev, struct enc_private *);	/* Generate soft index strobe. */
289	void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab);	/* Program clock enable. */
290	void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource);	/* Program interrupt source. */
291	void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig);	/* Program preload trigger source. */
292	void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
293	void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *);	/* Reset event capture flags. */
294
295	uint16_t MyCRA;		/*    Address of CRA register. */
296	uint16_t MyCRB;		/*    Address of CRB register. */
297	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
298	/*    register. */
299	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
300};
301
302#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
303
304/* counters routines */
305static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick);
306static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
307static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
308static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
309static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
310static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
311static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
312	uint16_t DisableIntSrc);
313static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
314	uint16_t DisableIntSrc);
315static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
316static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
317static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
318static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
319static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
320	uint16_t value);
321/* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
322static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
323static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
324static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
325static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
326static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
327	uint16_t IntSource);
328static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
329	uint16_t IntSource);
330static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
331static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
332/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
333/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
334/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
335/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
336/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
337/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k );  */
338/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
339/* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k );  */
340static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
341static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
342static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value);
343static void CountersInit(struct comedi_device *dev);
344/* end internal routines */
345
346/*  Counter objects constructor. */
347
348/*  Counter overflow/index event flag masks for RDMISC2. */
349#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
350#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
351#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
352
353/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
354/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
355
356/* struct enc_private; */
357static struct enc_private enc_private_data[] = {
358	{
359	.GetEnable = GetEnable_A,
360	.GetIntSrc = GetIntSrc_A,
361	.GetLoadTrig = GetLoadTrig_A,
362	.GetMode = GetMode_A,
363	.PulseIndex = PulseIndex_A,
364	.SetEnable = SetEnable_A,
365	.SetIntSrc = SetIntSrc_A,
366	.SetLoadTrig = SetLoadTrig_A,
367	.SetMode = SetMode_A,
368	.ResetCapFlags = ResetCapFlags_A,
369	.MyCRA = LP_CR0A,
370	.MyCRB = LP_CR0B,
371	.MyLatchLsw = LP_CNTR0ALSW,
372	.MyEventBits = EVBITS(0),
373		},
374	{
375	.GetEnable = GetEnable_A,
376	.GetIntSrc = GetIntSrc_A,
377	.GetLoadTrig = GetLoadTrig_A,
378	.GetMode = GetMode_A,
379	.PulseIndex = PulseIndex_A,
380	.SetEnable = SetEnable_A,
381	.SetIntSrc = SetIntSrc_A,
382	.SetLoadTrig = SetLoadTrig_A,
383	.SetMode = SetMode_A,
384	.ResetCapFlags = ResetCapFlags_A,
385	.MyCRA = LP_CR1A,
386	.MyCRB = LP_CR1B,
387	.MyLatchLsw = LP_CNTR1ALSW,
388	.MyEventBits = EVBITS(1),
389		},
390	{
391	.GetEnable = GetEnable_A,
392	.GetIntSrc = GetIntSrc_A,
393	.GetLoadTrig = GetLoadTrig_A,
394	.GetMode = GetMode_A,
395	.PulseIndex = PulseIndex_A,
396	.SetEnable = SetEnable_A,
397	.SetIntSrc = SetIntSrc_A,
398	.SetLoadTrig = SetLoadTrig_A,
399	.SetMode = SetMode_A,
400	.ResetCapFlags = ResetCapFlags_A,
401	.MyCRA = LP_CR2A,
402	.MyCRB = LP_CR2B,
403	.MyLatchLsw = LP_CNTR2ALSW,
404	.MyEventBits = EVBITS(2),
405		},
406	{
407	.GetEnable = GetEnable_B,
408	.GetIntSrc = GetIntSrc_B,
409	.GetLoadTrig = GetLoadTrig_B,
410	.GetMode = GetMode_B,
411	.PulseIndex = PulseIndex_B,
412	.SetEnable = SetEnable_B,
413	.SetIntSrc = SetIntSrc_B,
414	.SetLoadTrig = SetLoadTrig_B,
415	.SetMode = SetMode_B,
416	.ResetCapFlags = ResetCapFlags_B,
417	.MyCRA = LP_CR0A,
418	.MyCRB = LP_CR0B,
419	.MyLatchLsw = LP_CNTR0BLSW,
420	.MyEventBits = EVBITS(3),
421		},
422	{
423	.GetEnable = GetEnable_B,
424	.GetIntSrc = GetIntSrc_B,
425	.GetLoadTrig = GetLoadTrig_B,
426	.GetMode = GetMode_B,
427	.PulseIndex = PulseIndex_B,
428	.SetEnable = SetEnable_B,
429	.SetIntSrc = SetIntSrc_B,
430	.SetLoadTrig = SetLoadTrig_B,
431	.SetMode = SetMode_B,
432	.ResetCapFlags = ResetCapFlags_B,
433	.MyCRA = LP_CR1A,
434	.MyCRB = LP_CR1B,
435	.MyLatchLsw = LP_CNTR1BLSW,
436	.MyEventBits = EVBITS(4),
437		},
438	{
439	.GetEnable = GetEnable_B,
440	.GetIntSrc = GetIntSrc_B,
441	.GetLoadTrig = GetLoadTrig_B,
442	.GetMode = GetMode_B,
443	.PulseIndex = PulseIndex_B,
444	.SetEnable = SetEnable_B,
445	.SetIntSrc = SetIntSrc_B,
446	.SetLoadTrig = SetLoadTrig_B,
447	.SetMode = SetMode_B,
448	.ResetCapFlags = ResetCapFlags_B,
449	.MyCRA = LP_CR2A,
450	.MyCRB = LP_CR2B,
451	.MyLatchLsw = LP_CNTR2BLSW,
452	.MyEventBits = EVBITS(5),
453		},
454};
455
456/*  enab/disable a function or test status bit(s) that are accessed */
457/*  through Main Control Registers 1 or 2. */
458#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
459
460#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
461
462#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
463
464/* #define WR7146(REGARDS,CTRLWORD)
465    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
466#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
467
468/* #define RR7146(REGARDS)
469    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
470#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
471
472#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
473
474/*  Write a time slot control record to TSL2. */
475#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
476#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
477
478/*  Code macros used for constructing I2C command bytes. */
479#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
480#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
481#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
482
483static const struct comedi_lrange s626_range_table = { 2, {
484			RANGE(-5, 5),
485			RANGE(-10, 10),
486	}
487};
488
489static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
490{
491/*   uint8_t	PollList; */
492/*   uint16_t	AdcData; */
493/*   uint16_t	StartVal; */
494/*   uint16_t	index; */
495/*   unsigned int data[16]; */
496	int result;
497	int i;
498	int ret;
499	resource_size_t resourceStart;
500	dma_addr_t appdma;
501	struct comedi_subdevice *s;
502	struct pci_dev *pdev;
503
504	if (alloc_private(dev, sizeof(struct s626_private)) < 0)
505		return -ENOMEM;
506
507	for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
508			NULL); pdev != NULL;
509		pdev = pci_get_device(PCI_VENDOR_ID_S626,
510			PCI_DEVICE_ID_S626, pdev)) {
511		if (it->options[0] || it->options[1]) {
512			if (pdev->bus->number == it->options[0] &&
513				PCI_SLOT(pdev->devfn) == it->options[1]) {
514				/* matches requested bus/slot */
515				break;
516			}
517		} else {
518			/* no bus/slot specified */
519			break;
520		}
521	}
522	devpriv->pdev = pdev;
523
524	if (pdev == NULL) {
525		printk("s626_attach: Board not present!!!\n");
526		return -ENODEV;
527	}
528
529	result = comedi_pci_enable(pdev, "s626");
530	if (result < 0) {
531		printk("s626_attach: comedi_pci_enable fails\n");
532		return -ENODEV;
533	}
534	devpriv->got_regions = 1;
535
536	resourceStart = pci_resource_start(devpriv->pdev, 0);
537
538	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
539	if (devpriv->base_addr == NULL) {
540		printk("s626_attach: IOREMAP failed\n");
541		return -ENODEV;
542	}
543
544	if (devpriv->base_addr) {
545		/* disable master interrupt */
546		writel(0, devpriv->base_addr + P_IER);
547
548		/* soft reset */
549		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
550
551		/* DMA FIXME DMA// */
552		DEBUG("s626_attach: DMA ALLOCATION\n");
553
554		/* adc buffer allocation */
555		devpriv->allocatedBuf = 0;
556
557		devpriv->ANABuf.LogicalBase =
558			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
559
560		if (devpriv->ANABuf.LogicalBase == NULL) {
561			printk("s626_attach: DMA Memory mapping error\n");
562			return -ENOMEM;
563		}
564
565		devpriv->ANABuf.PhysicalBase = appdma;
566
567		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
568
569		devpriv->allocatedBuf++;
570
571		devpriv->RPSBuf.LogicalBase =
572			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,  &appdma);
573
574		if (devpriv->RPSBuf.LogicalBase == NULL) {
575			printk("s626_attach: DMA Memory mapping error\n");
576			return -ENOMEM;
577		}
578
579		devpriv->RPSBuf.PhysicalBase = appdma;
580
581		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
582
583		devpriv->allocatedBuf++;
584
585	}
586
587	dev->board_ptr = s626_boards;
588	dev->board_name = thisboard->name;
589
590	if (alloc_subdevices(dev, 6) < 0)
591		return -ENOMEM;
592
593	dev->iobase = (unsigned long)devpriv->base_addr;
594	dev->irq = devpriv->pdev->irq;
595
596	/* set up interrupt handler */
597	if (dev->irq == 0) {
598		printk(" unknown irq (bad)\n");
599	} else {
600		ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
601				  "s626", dev);
602
603		if (ret < 0) {
604			printk(" irq not available\n");
605			dev->irq = 0;
606		}
607	}
608
609	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
610		it->options[0], it->options[1]);
611
612	s = dev->subdevices + 0;
613	/* analog input subdevice */
614	dev->read_subdev = s;
615	/* we support single-ended (ground) and differential */
616	s->type = COMEDI_SUBD_AI;
617	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
618	s->n_chan = thisboard->ai_chans;
619	s->maxdata = (0xffff >> 2);
620	s->range_table = &s626_range_table;
621	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
622						   length that the board can
623						   handle */
624	s->insn_config = s626_ai_insn_config;
625	s->insn_read = s626_ai_insn_read;
626	s->do_cmd = s626_ai_cmd;
627	s->do_cmdtest = s626_ai_cmdtest;
628	s->cancel = s626_ai_cancel;
629
630	s = dev->subdevices + 1;
631	/* analog output subdevice */
632	s->type = COMEDI_SUBD_AO;
633	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
634	s->n_chan = thisboard->ao_chans;
635	s->maxdata = (0x3fff);
636	s->range_table = &range_bipolar10;
637	s->insn_write = s626_ao_winsn;
638	s->insn_read = s626_ao_rinsn;
639
640	s = dev->subdevices + 2;
641	/* digital I/O subdevice */
642	s->type = COMEDI_SUBD_DIO;
643	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
644	s->n_chan = S626_DIO_CHANNELS;
645	s->maxdata = 1;
646	s->io_bits = 0xffff;
647	s->private = &dio_private_A;
648	s->range_table = &range_digital;
649	s->insn_config = s626_dio_insn_config;
650	s->insn_bits = s626_dio_insn_bits;
651
652	s = dev->subdevices + 3;
653	/* digital I/O subdevice */
654	s->type = COMEDI_SUBD_DIO;
655	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
656	s->n_chan = 16;
657	s->maxdata = 1;
658	s->io_bits = 0xffff;
659	s->private = &dio_private_B;
660	s->range_table = &range_digital;
661	s->insn_config = s626_dio_insn_config;
662	s->insn_bits = s626_dio_insn_bits;
663
664	s = dev->subdevices + 4;
665	/* digital I/O subdevice */
666	s->type = COMEDI_SUBD_DIO;
667	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
668	s->n_chan = 16;
669	s->maxdata = 1;
670	s->io_bits = 0xffff;
671	s->private = &dio_private_C;
672	s->range_table = &range_digital;
673	s->insn_config = s626_dio_insn_config;
674	s->insn_bits = s626_dio_insn_bits;
675
676	s = dev->subdevices + 5;
677	/* encoder (counter) subdevice */
678	s->type = COMEDI_SUBD_COUNTER;
679	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
680	s->n_chan = thisboard->enc_chans;
681	s->private = enc_private_data;
682	s->insn_config = s626_enc_insn_config;
683	s->insn_read = s626_enc_insn_read;
684	s->insn_write = s626_enc_insn_write;
685	s->maxdata = 0xffffff;
686	s->range_table = &range_unknown;
687
688	/* stop ai_command */
689	devpriv->ai_cmd_running = 0;
690
691	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
692		dma_addr_t pPhysBuf;
693		uint16_t chan;
694
695		/*  enab DEBI and audio pins, enable I2C interface. */
696		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
697		/*  Configure DEBI operating mode. */
698		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
699			/*  bits wide. */
700			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	/*  Declare DEBI */
701			/*  transfer timeout */
702			/*  interval. */
703			| DEBI_SWAP	/*  Set up byte lane */
704			/*  steering. */
705			| DEBI_CFG_INTEL);	/*  Intel-compatible */
706		/*  local bus (DEBI */
707		/*  never times out). */
708		DEBUG("s626_attach: %d debi init -- %d\n",
709			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
710			DEBI_SWAP | DEBI_CFG_INTEL,
711			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
712			DEBI_CFG_16Q);
713
714		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
715		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
716
717		/*  Paging is disabled. */
718		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
719
720		/*  Init GPIO so that ADC Start* is negated. */
721		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
722
723    /* IsBoardRevA is a boolean that indicates whether the board is RevA.
724     *
725     * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
726     * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
727     * is used to access the onboard serial EEPROM.  The EEPROM's I2C
728     * DeviceAddress is hardwired to a value that is dependent on the
729     * 626 board revision.  On all board revisions, the EEPROM stores
730     * TrimDAC calibration constants for analog I/O.  On RevB and
731     * higher boards, the DeviceAddress is hardwired to 0 to enable
732     * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
733     * this is the address at which the SAA7146 expects a
734     * configuration EEPROM to reside.  On RevA boards, the EEPROM
735     * device address, which is hardwired to 4, prevents the SAA7146
736     * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
737     * default values, instead.
738     */
739
740		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
741		/*  DeviceType (0xA0) */
742		/*  and DeviceAddress<<1. */
743
744		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
745		/*  eeprom(revb) */
746
747		/*  Issue an I2C ABORT command to halt any I2C operation in */
748		/* progress and reset BUSY flag. */
749		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
750		/*  Write I2C control: abort any I2C activity. */
751		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
752		/*  Invoke command  upload */
753		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
754			;
755		/*  and wait for upload to complete. */
756
757		/* Per SAA7146 data sheet, write to STATUS reg twice to
758		 * reset all  I2C error flags. */
759		for (i = 0; i < 2; i++) {
760			WR7146(P_I2CSTAT, I2C_CLKSEL);
761			/*  Write I2C control: reset  error flags. */
762			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
763			while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
764				;
765			/* and wait for upload to complete. */
766		}
767
768		/* Init audio interface functional attributes: set DAC/ADC
769		 * serial clock rates, invert DAC serial clock so that
770		 * DAC data setup times are satisfied, enable DAC serial
771		 * clock out.
772		 */
773
774		WR7146(P_ACON2, ACON2_INIT);
775
776		/* Set up TSL1 slot list, which is used to control the
777		 * accumulation of ADC data: RSD1 = shift data in on SD1.
778		 * SIB_A1  = store data uint8_t at next available location in
779		 * FB BUFFER1  register. */
780		WR7146(P_TSL1, RSD1 | SIB_A1);
781		/*  Fetch ADC high data uint8_t. */
782		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
783		/*  Fetch ADC low data uint8_t; end of TSL1. */
784
785		/*  enab TSL1 slot list so that it executes all the time. */
786		WR7146(P_ACON1, ACON1_ADCSTART);
787
788		/*  Initialize RPS registers used for ADC. */
789
790		/* Physical start of RPS program. */
791		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
792
793		WR7146(P_RPSPAGE1, 0);
794		/*  RPS program performs no explicit mem writes. */
795		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
796
797		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
798		 * to a known state by invoking ADCs until FB BUFFER 1
799		 * register shows that it is correctly receiving ADC data.
800		 * This is necessary because the SAA7146 ADC interface does
801		 * not start up in a defined state after a PCI reset.
802		 */
803
804/*     PollList = EOPL;			// Create a simple polling */
805/* 					// list for analog input */
806/* 					// channel 0. */
807/*     ResetADC( dev, &PollList ); */
808
809/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
810/* 						  //Get initial ADC */
811/* 						  //value. */
812
813/*     StartVal = data[0]; */
814
815/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
816/*     // Invoke ADCs until the new ADC value differs from the initial */
817/*     // value or a timeout occurs.  The timeout protects against the */
818/*     // possibility that the driver is restarting and the ADC data is a */
819/*     // fixed value resulting from the applied ADC analog input being */
820/*     // unusually quiet or at the rail. */
821
822/*     for ( index = 0; index < 500; index++ ) */
823/*       { */
824/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
825/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
826/* 	if ( AdcData != StartVal ) */
827/* 	  break; */
828/*       } */
829
830		/*  end initADC */
831
832		/*  init the DAC interface */
833
834		/* Init Audio2's output DMAC attributes: burst length = 1
835		 * DWORD,  threshold = 1 DWORD.
836		 */
837		WR7146(P_PCI_BT_A, 0);
838
839		/* Init Audio2's output DMA physical addresses.  The protection
840		 * address is set to 1 DWORD past the base address so that a
841		 * single DWORD will be transferred each time a DMA transfer is
842		 * enabled. */
843
844		pPhysBuf =
845			devpriv->ANABuf.PhysicalBase +
846			(DAC_WDMABUF_OS * sizeof(uint32_t));
847
848		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
849		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
850
851		/* Cache Audio2's output DMA buffer logical address.  This is
852		 * where DAC data is buffered for A2 output DMA transfers. */
853		devpriv->pDacWBuf =
854			(uint32_t *) devpriv->ANABuf.LogicalBase +
855			DAC_WDMABUF_OS;
856
857		/* Audio2's output channels does not use paging.  The protection
858		 * violation handling bit is set so that the DMAC will
859		 * automatically halt and its PCI address pointer will be reset
860		 * when the protection address is reached. */
861
862		WR7146(P_PAGEA2_OUT, 8);
863
864		/* Initialize time slot list 2 (TSL2), which is used to control
865		 * the clock generation for and serialization of data to be sent
866		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
867		 * execution; this permits other slots to be safely modified
868		 * without first turning off the TSL sequencer (which is
869		 * apparently impossible to do).  Also, SD3 (which is driven by a
870		 * pull-up resistor) is shifted in and stored to the MSB of
871		 * FB_BUFFER2 to be used as evidence that the slot sequence has
872		 * not yet finished executing.
873		 */
874
875		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
876		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
877
878		/* Initialize slot 1, which is constant.  Slot 1 causes a
879		 * DWORD to be transferred from audio channel 2's output FIFO
880		 * to the FIFO's output buffer so that it can be serialized
881		 * and sent to the DAC during subsequent slots.  All remaining
882		 * slots are dynamically populated as required by the target
883		 * DAC device.
884		 */
885		SETVECT(1, LF_A2);
886		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
887
888		/*  Start DAC's audio interface (TSL2) running. */
889		WR7146(P_ACON1, ACON1_DACSTART);
890
891		/* end init DAC interface */
892
893		/* Init Trim DACs to calibrated values.  Do it twice because the
894		 * SAA7146 audio channel does not always reset properly and
895		 * sometimes causes the first few TrimDAC writes to malfunction.
896		 */
897
898		LoadTrimDACs(dev);
899		LoadTrimDACs(dev);	/*  Insurance. */
900
901		/* Manually init all gate array hardware in case this is a soft
902		 * reset (we have no way of determining whether this is a warm
903		 * or cold start).  This is necessary because the gate array will
904		 * reset only in response to a PCI hard reset; there is no soft
905		 * reset function. */
906
907		/* Init all DAC outputs to 0V and init all DAC setpoint and
908		 * polarity images.
909		 */
910		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
911			SetDAC(dev, chan, 0);
912
913		/* Init image of WRMISC2 Battery Charger Enabled control bit.
914		 * This image is used when the state of the charger control bit,
915		 * which has no direct hardware readback mechanism, is queried.
916		 */
917		devpriv->ChargeEnabled = 0;
918
919		/* Init image of watchdog timer interval in WRMISC2.  This image
920		 * maintains the value of the control bits of MISC2 are
921		 * continuously reset to zero as long as the WD timer is disabled.
922		 */
923		devpriv->WDInterval = 0;
924
925		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
926		 * applied against MISC2 when testing to determine which timer
927		 * events are requesting interrupt service.
928		 */
929		devpriv->CounterIntEnabs = 0;
930
931		/*  Init counters. */
932		CountersInit(dev);
933
934		/* Without modifying the state of the Battery Backup enab, disable
935		 * the watchdog timer, set DIO channels 0-5 to operate in the
936		 * standard DIO (vs. counter overflow) mode, disable the battery
937		 * charger, and reset the watchdog interval selector to zero.
938		 */
939		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
940					LP_RDMISC2) & MISC2_BATT_ENABLE));
941
942		/*  Initialize the digital I/O subsystem. */
943		s626_dio_init(dev);
944
945		/* enable interrupt test */
946		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
947	}
948
949	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
950		(uint32_t) devpriv->base_addr);
951
952	return 1;
953}
954
955static unsigned int s626_ai_reg_to_uint(int data)
956{
957	unsigned int tempdata;
958
959	tempdata = (data >> 18);
960	if (tempdata & 0x2000)
961		tempdata &= 0x1fff;
962	else
963		tempdata += (1 << 13);
964
965	return tempdata;
966}
967
968/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
969/*   return 0; */
970/* } */
971
972static irqreturn_t s626_irq_handler(int irq, void *d)
973{
974	struct comedi_device *dev = d;
975	struct comedi_subdevice *s;
976	struct comedi_cmd *cmd;
977	struct enc_private *k;
978	unsigned long flags;
979	int32_t *readaddr;
980	uint32_t irqtype, irqstatus;
981	int i = 0;
982	short tempdata;
983	uint8_t group;
984	uint16_t irqbit;
985
986	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
987
988	if (dev->attached == 0)
989		return IRQ_NONE;
990	/*  lock to avoid race with comedi_poll */
991	spin_lock_irqsave(&dev->spinlock, flags);
992
993	/* save interrupt enable register state */
994	irqstatus = readl(devpriv->base_addr + P_IER);
995
996	/* read interrupt type */
997	irqtype = readl(devpriv->base_addr + P_ISR);
998
999	/* disable master interrupt */
1000	writel(0, devpriv->base_addr + P_IER);
1001
1002	/* clear interrupt */
1003	writel(irqtype, devpriv->base_addr + P_ISR);
1004
1005	/* do somethings */
1006	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1007
1008	switch (irqtype) {
1009	case IRQ_RPS1:		/*  end_of_scan occurs */
1010
1011		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1012
1013		/*  manage ai subdevice */
1014		s = dev->subdevices;
1015		cmd = &(s->async->cmd);
1016
1017		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1018		 * first uint16_t in the buffer because it contains junk data from
1019		 * the final ADC of the previous poll list scan.
1020		 */
1021		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1022
1023		/*  get the data and hand it over to comedi */
1024		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1025			/*  Convert ADC data to 16-bit integer values and copy to application */
1026			/*  buffer. */
1027			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1028			readaddr++;
1029
1030			/* put data into read buffer */
1031			/*  comedi_buf_put(s->async, tempdata); */
1032			if (cfc_write_to_buffer(s, tempdata) == 0)
1033				printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1034
1035			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1036				i, tempdata);
1037		}
1038
1039		/* end of scan occurs */
1040		s->async->events |= COMEDI_CB_EOS;
1041
1042		if (!(devpriv->ai_continous))
1043			devpriv->ai_sample_count--;
1044		if (devpriv->ai_sample_count <= 0) {
1045			devpriv->ai_cmd_running = 0;
1046
1047			/*  Stop RPS program. */
1048			MC_DISABLE(P_MC1, MC1_ERPS1);
1049
1050			/* send end of acquisition */
1051			s->async->events |= COMEDI_CB_EOA;
1052
1053			/* disable master interrupt */
1054			irqstatus = 0;
1055		}
1056
1057		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1058			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1059
1060			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1061
1062			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1063		}
1064		/*  tell comedi that data is there */
1065		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1066		comedi_event(dev, s);
1067		break;
1068	case IRQ_GPIO3:	/* check dio and conter interrupt */
1069
1070		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1071
1072		/*  manage ai subdevice */
1073		s = dev->subdevices;
1074		cmd = &(s->async->cmd);
1075
1076		/* s626_dio_clear_irq(dev); */
1077
1078		for (group = 0; group < S626_DIO_BANKS; group++) {
1079			irqbit = 0;
1080			/* read interrupt type */
1081			irqbit = DEBIread(dev,
1082				((struct dio_private *) (dev->subdevices + 2 +
1083						group)->private)->RDCapFlg);
1084
1085			/* check if interrupt is generated from dio channels */
1086			if (irqbit) {
1087				s626_dio_reset_irq(dev, group, irqbit);
1088				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1089				if (devpriv->ai_cmd_running) {
1090					/* check if interrupt is an ai acquisition start trigger */
1091					if ((irqbit >> (cmd->start_arg -
1092								(16 * group)))
1093						== 1
1094						&& cmd->start_src == TRIG_EXT) {
1095						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1096
1097						/*  Start executing the RPS program. */
1098						MC_ENABLE(P_MC1, MC1_ERPS1);
1099
1100						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1101
1102						if (cmd->scan_begin_src ==
1103							TRIG_EXT) {
1104							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1105
1106							s626_dio_set_irq(dev,
1107								cmd->
1108								scan_begin_arg);
1109
1110							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1111						}
1112					}
1113					if ((irqbit >> (cmd->scan_begin_arg -
1114								(16 * group)))
1115						== 1
1116						&& cmd->scan_begin_src ==
1117						TRIG_EXT) {
1118						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1119
1120						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1121						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1122
1123						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1124						if (cmd->convert_src ==
1125							TRIG_EXT) {
1126
1127							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1128
1129							devpriv->
1130								ai_convert_count
1131								=
1132								cmd->
1133								chanlist_len;
1134
1135							s626_dio_set_irq(dev,
1136								cmd->
1137								convert_arg);
1138
1139							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1140						}
1141
1142						if (cmd->convert_src ==
1143							TRIG_TIMER) {
1144							k = &encpriv[5];
1145							devpriv->
1146								ai_convert_count
1147								=
1148								cmd->
1149								chanlist_len;
1150							k->SetEnable(dev, k,
1151								CLKENAB_ALWAYS);
1152						}
1153					}
1154					if ((irqbit >> (cmd->convert_arg -
1155								(16 * group)))
1156						== 1
1157						&& cmd->convert_src ==
1158						TRIG_EXT) {
1159						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1160
1161						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1162						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1163
1164						DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1165
1166						devpriv->ai_convert_count--;
1167
1168						if (devpriv->ai_convert_count >
1169							0) {
1170
1171							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1172
1173							s626_dio_set_irq(dev,
1174								cmd->
1175								convert_arg);
1176
1177							DEBUG("s626_irq_handler: External trigger is set!!!\n");
1178						}
1179					}
1180				}
1181				break;
1182			}
1183		}
1184
1185		/* read interrupt type */
1186		irqbit = DEBIread(dev, LP_RDMISC2);
1187
1188		/* check interrupt on counters */
1189		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1190			irqbit);
1191
1192		if (irqbit & IRQ_COINT1A) {
1193			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1194			k = &encpriv[0];
1195
1196			/* clear interrupt capture flag */
1197			k->ResetCapFlags(dev, k);
1198		}
1199		if (irqbit & IRQ_COINT2A) {
1200			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1201			k = &encpriv[1];
1202
1203			/* clear interrupt capture flag */
1204			k->ResetCapFlags(dev, k);
1205		}
1206		if (irqbit & IRQ_COINT3A) {
1207			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1208			k = &encpriv[2];
1209
1210			/* clear interrupt capture flag */
1211			k->ResetCapFlags(dev, k);
1212		}
1213		if (irqbit & IRQ_COINT1B) {
1214			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1215			k = &encpriv[3];
1216
1217			/* clear interrupt capture flag */
1218			k->ResetCapFlags(dev, k);
1219		}
1220		if (irqbit & IRQ_COINT2B) {
1221			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1222			k = &encpriv[4];
1223
1224			/* clear interrupt capture flag */
1225			k->ResetCapFlags(dev, k);
1226
1227			if (devpriv->ai_convert_count > 0) {
1228				devpriv->ai_convert_count--;
1229				if (devpriv->ai_convert_count == 0)
1230					k->SetEnable(dev, k, CLKENAB_INDEX);
1231
1232				if (cmd->convert_src == TRIG_TIMER) {
1233					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1234
1235					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1236					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1237				}
1238			}
1239		}
1240		if (irqbit & IRQ_COINT3B) {
1241			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1242			k = &encpriv[5];
1243
1244			/* clear interrupt capture flag */
1245			k->ResetCapFlags(dev, k);
1246
1247			if (cmd->scan_begin_src == TRIG_TIMER) {
1248				DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1249
1250				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1251				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1252			}
1253
1254			if (cmd->convert_src == TRIG_TIMER) {
1255				DEBUG("s626_irq_handler: convert timer trigger is set\n");
1256				k = &encpriv[4];
1257				devpriv->ai_convert_count = cmd->chanlist_len;
1258				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1259			}
1260		}
1261	}
1262
1263	/* enable interrupt */
1264	writel(irqstatus, devpriv->base_addr + P_IER);
1265
1266	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1267
1268	spin_unlock_irqrestore(&dev->spinlock, flags);
1269	return IRQ_HANDLED;
1270}
1271
1272static int s626_detach(struct comedi_device *dev)
1273{
1274	if (devpriv) {
1275		/* stop ai_command */
1276		devpriv->ai_cmd_running = 0;
1277
1278		if (devpriv->base_addr) {
1279			/* interrupt mask */
1280			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1281			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1282
1283			/*  Disable the watchdog timer and battery charger. */
1284			WriteMISC2(dev, 0);
1285
1286			/*  Close all interfaces on 7146 device. */
1287			WR7146(P_MC1, MC1_SHUTDOWN);
1288			WR7146(P_ACON1, ACON1_BASE);
1289
1290			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1291			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1292		}
1293
1294		if (dev->irq)
1295			free_irq(dev->irq, dev);
1296
1297		if (devpriv->base_addr)
1298			iounmap(devpriv->base_addr);
1299
1300		if (devpriv->pdev) {
1301			if (devpriv->got_regions)
1302				comedi_pci_disable(devpriv->pdev);
1303			pci_dev_put(devpriv->pdev);
1304		}
1305	}
1306
1307	DEBUG("s626_detach: S626 detached!\n");
1308
1309	return 0;
1310}
1311
1312/*
1313 * this functions build the RPS program for hardware driven acquistion
1314 */
1315void ResetADC(struct comedi_device *dev, uint8_t *ppl)
1316{
1317	register uint32_t *pRPS;
1318	uint32_t JmpAdrs;
1319	uint16_t i;
1320	uint16_t n;
1321	uint32_t LocalPPL;
1322	struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1323
1324	/*  Stop RPS program in case it is currently running. */
1325	MC_DISABLE(P_MC1, MC1_ERPS1);
1326
1327	/*  Set starting logical address to write RPS commands. */
1328	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1329
1330	/*  Initialize RPS instruction pointer. */
1331	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1332
1333	/*  Construct RPS program in RPSBuf DMA buffer */
1334
1335	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1336		DEBUG("ResetADC: scan_begin pause inserted\n");
1337		/*  Wait for Start trigger. */
1338		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1339		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1340	}
1341
1342	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1343	 * because the first RPS DEBI Write following a non-RPS DEBI write
1344	 * seems to always fail.  If we don't do this dummy write, the ADC
1345	 * gain might not be set to the value required for the first slot in
1346	 * the poll list; the ADC gain would instead remain unchanged from
1347	 * the previously programmed value.
1348	 */
1349	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1350	/* Write DEBI Write command and address to shadow RAM. */
1351
1352	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1353	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1354	/*  Write DEBI immediate data  to shadow RAM: */
1355
1356	*pRPS++ = GSEL_BIPOLAR5V;
1357	/*  arbitrary immediate data  value. */
1358
1359	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1360	/*  Reset "shadow RAM  uploaded" flag. */
1361	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1362	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1363
1364	/* Digitize all slots in the poll list. This is implemented as a
1365	 * for loop to limit the slot count to 16 in case the application
1366	 * forgot to set the EOPL flag in the final slot.
1367	 */
1368	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1369	 /* Convert application's poll list item to private board class
1370	  * format.  Each app poll list item is an uint8_t with form
1371	  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1372	  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1373	  */
1374		LocalPPL =
1375			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1376			GSEL_BIPOLAR10V);
1377
1378		/*  Switch ADC analog gain. */
1379		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1380		/*  and address to */
1381		/*  shadow RAM. */
1382		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1383		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1384		/*  immediate data to */
1385		/*  shadow RAM. */
1386		*pRPS++ = LocalPPL;
1387		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1388		/*  flag. */
1389		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1390		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1391		/*  finish. */
1392
1393		/*  Select ADC analog input channel. */
1394		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1395		/*  Write DEBI command and address to  shadow RAM. */
1396		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1397		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1398		/*  Write DEBI immediate data to shadow RAM. */
1399		*pRPS++ = LocalPPL;
1400		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1401		/*  Reset "shadow RAM uploaded"  flag. */
1402
1403		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1404		/*  Invoke shadow RAM upload. */
1405
1406		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1407		/*  Wait for shadow upload to finish. */
1408
1409		/* Delay at least 10 microseconds for analog input settling.
1410		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1411		 * here; this allows us to produce a longer delay than is
1412		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1413		 * instruction prefetch pipeline.
1414		 */
1415		JmpAdrs =
1416			(uint32_t) devpriv->RPSBuf.PhysicalBase +
1417			(uint32_t) ((unsigned long)pRPS -
1418			(unsigned long)devpriv->RPSBuf.LogicalBase);
1419		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1420			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1421			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1422			*pRPS++ = JmpAdrs;
1423		}
1424
1425		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1426			DEBUG("ResetADC: convert pause inserted\n");
1427			/*  Wait for Start trigger. */
1428			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1429			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1430		}
1431		/*  Start ADC by pulsing GPIO1. */
1432		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1433		*pRPS++ = GPIO_BASE | GPIO1_LO;
1434		*pRPS++ = RPS_NOP;
1435		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1436		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1437		*pRPS++ = GPIO_BASE | GPIO1_HI;
1438
1439		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1440		 * busy) and for data from previous conversion to shift into FB
1441		 * BUFFER 1 register.
1442		 */
1443		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1444
1445		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1446		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1447		*pRPS++ =
1448			(uint32_t) devpriv->ANABuf.PhysicalBase +
1449			(devpriv->AdcItems << 2);
1450
1451		/*  If this slot's EndOfPollList flag is set, all channels have */
1452		/*  now been processed. */
1453		if (*ppl++ & EOPL) {
1454			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1455			break;	/*  Exit poll list processing loop. */
1456		}
1457	}
1458	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1459
1460	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1461	 * ADC to stabilize for 2 microseconds before starting the final
1462	 * (dummy) conversion.  This delay is necessary to allow sufficient
1463	 * time between last conversion finished and the start of the dummy
1464	 * conversion.  Without this delay, the last conversion's data value
1465	 * is sometimes set to the previous conversion's data value.
1466	 */
1467	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1468		*pRPS++ = RPS_NOP;
1469
1470	/* Start a dummy conversion to cause the data from the last
1471	 * conversion of interest to be shifted in.
1472	 */
1473	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1474	*pRPS++ = GPIO_BASE | GPIO1_LO;
1475	*pRPS++ = RPS_NOP;
1476	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1477	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1478	*pRPS++ = GPIO_BASE | GPIO1_HI;
1479
1480	/* Wait for the data from the last conversion of interest to arrive
1481	 * in FB BUFFER 1 register.
1482	 */
1483	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1484
1485	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1486	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1487	*pRPS++ =
1488		(uint32_t) devpriv->ANABuf.PhysicalBase +
1489		(devpriv->AdcItems << 2);
1490
1491	/*  Indicate ADC scan loop is finished. */
1492	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1493
1494	/* invoke interrupt */
1495	if (devpriv->ai_cmd_running == 1) {
1496		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1497		*pRPS++ = RPS_IRQ;
1498	}
1499	/*  Restart RPS program at its beginning. */
1500	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1501	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1502
1503	/*  End of RPS program build */
1504}
1505
1506/* TO COMPLETE, IF NECESSARY */
1507static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
1508	struct comedi_insn *insn, unsigned int *data)
1509{
1510
1511	return -EINVAL;
1512}
1513
1514/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1515/* { */
1516/*   register uint8_t	i; */
1517/*   register int32_t	*readaddr; */
1518
1519/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
1520
1521/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1522/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1523
1524/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1525/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1526
1527/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1528 * first uint16_t in the buffer because it contains junk data from
1529 * the final ADC of the previous poll list scan.
1530 */
1531/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1532
1533/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1534/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1535/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1536/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
1537/*     data++; */
1538/*   } */
1539
1540/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1541/*   return i; */
1542/* } */
1543
1544static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
1545	struct comedi_insn *insn, unsigned int *data)
1546{
1547	uint16_t chan = CR_CHAN(insn->chanspec);
1548	uint16_t range = CR_RANGE(insn->chanspec);
1549	uint16_t AdcSpec = 0;
1550	uint32_t GpioImage;
1551	int n;
1552
1553 /* interrupt call test  */
1554/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1555	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1556	 * corresponding interrupt to be generated if enabled
1557	 */
1558
1559	DEBUG("s626_ai_insn_read: entering\n");
1560
1561	/* Convert application's ADC specification into form
1562	 *  appropriate for register programming.
1563	 */
1564	if (range == 0)
1565		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1566	else
1567		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1568
1569	/*  Switch ADC analog gain. */
1570	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1571
1572	/*  Select ADC analog input channel. */
1573	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1574
1575	for (n = 0; n < insn->n; n++) {
1576
1577		/*  Delay 10 microseconds for analog input settling. */
1578		udelay(10);
1579
1580		/*  Start ADC by pulsing GPIO1 low. */
1581		GpioImage = RR7146(P_GPIO);
1582		/*  Assert ADC Start command */
1583		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1584		/*    and stretch it out. */
1585		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1586		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1587		/*  Negate ADC Start command. */
1588		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1589
1590		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1591		/*  ADC not busy) and for data from previous conversion to */
1592		/*  shift into FB BUFFER 1 register. */
1593
1594		/*  Wait for ADC done. */
1595		while (!(RR7146(P_PSR) & PSR_GPIO2))
1596			;
1597
1598		/*  Fetch ADC data. */
1599		if (n != 0)
1600			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1601
1602		/* Allow the ADC to stabilize for 4 microseconds before
1603		 * starting the next (final) conversion.  This delay is
1604		 * necessary to allow sufficient time between last
1605		 * conversion finished and the start of the next
1606		 * conversion.  Without this delay, the last conversion's
1607		 * data value is sometimes set to the previous
1608		 * conversion's data value.
1609		 */
1610		udelay(4);
1611	}
1612
1613	/* Start a dummy conversion to cause the data from the
1614	 * previous conversion to be shifted in. */
1615	GpioImage = RR7146(P_GPIO);
1616
1617	/* Assert ADC Start command */
1618	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1619	/*    and stretch it out. */
1620	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1621	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1622	/*  Negate ADC Start command. */
1623	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1624
1625	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1626
1627	/*  Wait for ADC done. */
1628	while (!(RR7146(P_PSR) & PSR_GPIO2))
1629		;
1630
1631	/*  Fetch ADC data from audio interface's input shift register. */
1632
1633	/*  Fetch ADC data. */
1634	if (n != 0)
1635		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1636
1637	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1638
1639	return n;
1640}
1641
1642static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1643{
1644
1645	int n;
1646
1647	for (n = 0; n < cmd->chanlist_len; n++) {
1648		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1649			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1650		else
1651			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1652	}
1653	ppl[n - 1] |= EOPL;
1654
1655	return n;
1656}
1657
1658static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
1659	unsigned int trignum)
1660{
1661	if (trignum != 0)
1662		return -EINVAL;
1663
1664	DEBUG("s626_ai_inttrig: trigger adc start...");
1665
1666	/*  Start executing the RPS program. */
1667	MC_ENABLE(P_MC1, MC1_ERPS1);
1668
1669	s->async->inttrig = NULL;
1670
1671	DEBUG(" done\n");
1672
1673	return 1;
1674}
1675
1676/*  TO COMPLETE  */
1677static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1678{
1679
1680	uint8_t ppl[16];
1681	struct comedi_cmd *cmd = &s->async->cmd;
1682	struct enc_private *k;
1683	int tick;
1684
1685	DEBUG("s626_ai_cmd: entering command function\n");
1686
1687	if (devpriv->ai_cmd_running) {
1688		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1689			dev->minor);
1690		return -EBUSY;
1691	}
1692	/* disable interrupt */
1693	writel(0, devpriv->base_addr + P_IER);
1694
1695	/* clear interrupt request */
1696	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1697
1698	/* clear any pending interrupt */
1699	s626_dio_clear_irq(dev);
1700	/*   s626_enc_clear_irq(dev); */
1701
1702	/* reset ai_cmd_running flag */
1703	devpriv->ai_cmd_running = 0;
1704
1705	/*  test if cmd is valid */
1706	if (cmd == NULL) {
1707		DEBUG("s626_ai_cmd: NULL command\n");
1708		return -EINVAL;
1709	} else {
1710		DEBUG("s626_ai_cmd: command recieved!!!\n");
1711	}
1712
1713	if (dev->irq == 0) {
1714		comedi_error(dev,
1715			"s626_ai_cmd: cannot run command without an irq");
1716		return -EIO;
1717	}
1718
1719	s626_ai_load_polllist(ppl, cmd);
1720	devpriv->ai_cmd_running = 1;
1721	devpriv->ai_convert_count = 0;
1722
1723	switch (cmd->scan_begin_src) {
1724	case TRIG_FOLLOW:
1725		break;
1726	case TRIG_TIMER:
1727		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1728		k = &encpriv[5];
1729		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1730			cmd->flags & TRIG_ROUND_MASK);
1731
1732		/* load timer value and enable interrupt */
1733		s626_timer_load(dev, k, tick);
1734		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1735
1736		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1737			tick);
1738
1739		break;
1740	case TRIG_EXT:
1741		/*  set the digital line and interrupt for scan trigger */
1742		if (cmd->start_src != TRIG_EXT)
1743			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1744
1745		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1746
1747		break;
1748	}
1749
1750	switch (cmd->convert_src) {
1751	case TRIG_NOW:
1752		break;
1753	case TRIG_TIMER:
1754		/*  set a conter to generate adc trigger at convert_arg interval */
1755		k = &encpriv[4];
1756		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1757			cmd->flags & TRIG_ROUND_MASK);
1758
1759		/* load timer value and enable interrupt */
1760		s626_timer_load(dev, k, tick);
1761		k->SetEnable(dev, k, CLKENAB_INDEX);
1762
1763		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1764		break;
1765	case TRIG_EXT:
1766		/*  set the digital line and interrupt for convert trigger */
1767		if (cmd->scan_begin_src != TRIG_EXT
1768			&& cmd->start_src == TRIG_EXT)
1769			s626_dio_set_irq(dev, cmd->convert_arg);
1770
1771		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1772
1773		break;
1774	}
1775
1776	switch (cmd->stop_src) {
1777	case TRIG_COUNT:
1778		/*  data arrives as one packet */
1779		devpriv->ai_sample_count = cmd->stop_arg;
1780		devpriv->ai_continous = 0;
1781		break;
1782	case TRIG_NONE:
1783		/*  continous aquisition */
1784		devpriv->ai_continous = 1;
1785		devpriv->ai_sample_count = 0;
1786		break;
1787	}
1788
1789	ResetADC(dev, ppl);
1790
1791	switch (cmd->start_src) {
1792	case TRIG_NOW:
1793		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1794		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1795
1796		/*  Start executing the RPS program. */
1797		MC_ENABLE(P_MC1, MC1_ERPS1);
1798
1799		DEBUG("s626_ai_cmd: ADC triggered\n");
1800		s->async->inttrig = NULL;
1801		break;
1802	case TRIG_EXT:
1803		/* configure DIO channel for acquisition trigger */
1804		s626_dio_set_irq(dev, cmd->start_arg);
1805
1806		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1807
1808		s->async->inttrig = NULL;
1809		break;
1810	case TRIG_INT:
1811		s->async->inttrig = s626_ai_inttrig;
1812		break;
1813	}
1814
1815	/* enable interrupt */
1816	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1817
1818	DEBUG("s626_ai_cmd: command function terminated\n");
1819
1820	return 0;
1821}
1822
1823static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
1824	struct comedi_cmd *cmd)
1825{
1826	int err = 0;
1827	int tmp;
1828
1829	/* cmdtest tests a particular command to see if it is valid.  Using
1830	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1831	 * executes by the cmd ioctl.
1832	 *
1833	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1834	 * command passes. */
1835
1836	/* step 1: make sure trigger sources are trivially valid */
1837
1838	tmp = cmd->start_src;
1839	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1840	if (!cmd->start_src || tmp != cmd->start_src)
1841		err++;
1842
1843	tmp = cmd->scan_begin_src;
1844	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1845	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1846		err++;
1847
1848	tmp = cmd->convert_src;
1849	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1850	if (!cmd->convert_src || tmp != cmd->convert_src)
1851		err++;
1852
1853	tmp = cmd->scan_end_src;
1854	cmd->scan_end_src &= TRIG_COUNT;
1855	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1856		err++;
1857
1858	tmp = cmd->stop_src;
1859	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1860	if (!cmd->stop_src || tmp != cmd->stop_src)
1861		err++;
1862
1863	if (err)
1864		return 1;
1865
1866	/* step 2: make sure trigger sources are unique and mutually
1867	   compatible */
1868
1869	/* note that mutual compatiblity is not an issue here */
1870	if (cmd->scan_begin_src != TRIG_TIMER &&
1871		cmd->scan_begin_src != TRIG_EXT
1872		&& cmd->scan_begin_src != TRIG_FOLLOW)
1873		err++;
1874	if (cmd->convert_src != TRIG_TIMER &&
1875		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1876		err++;
1877	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1878		err++;
1879
1880	if (err)
1881		return 2;
1882
1883	/* step 3: make sure arguments are trivially compatible */
1884
1885	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1886		cmd->start_arg = 0;
1887		err++;
1888	}
1889
1890	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1891		cmd->start_arg = 39;
1892		err++;
1893	}
1894
1895	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1896		cmd->scan_begin_arg = 39;
1897		err++;
1898	}
1899
1900	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1901		cmd->convert_arg = 39;
1902		err++;
1903	}
1904#define MAX_SPEED	200000	/* in nanoseconds */
1905#define MIN_SPEED	2000000000	/* in nanoseconds */
1906
1907	if (cmd->scan_begin_src == TRIG_TIMER) {
1908		if (cmd->scan_begin_arg < MAX_SPEED) {
1909			cmd->scan_begin_arg = MAX_SPEED;
1910			err++;
1911		}
1912		if (cmd->scan_begin_arg > MIN_SPEED) {
1913			cmd->scan_begin_arg = MIN_SPEED;
1914			err++;
1915		}
1916	} else {
1917		/* external trigger */
1918		/* should be level/edge, hi/lo specification here */
1919		/* should specify multiple external triggers */
1920/*     if(cmd->scan_begin_arg>9){ */
1921/*       cmd->scan_begin_arg=9; */
1922/*       err++; */
1923/*     } */
1924	}
1925	if (cmd->convert_src == TRIG_TIMER) {
1926		if (cmd->convert_arg < MAX_SPEED) {
1927			cmd->convert_arg = MAX_SPEED;
1928			err++;
1929		}
1930		if (cmd->convert_arg > MIN_SPEED) {
1931			cmd->convert_arg = MIN_SPEED;
1932			err++;
1933		}
1934	} else {
1935		/* external trigger */
1936		/* see above */
1937/*     if(cmd->convert_arg>9){ */
1938/*       cmd->convert_arg=9; */
1939/*       err++; */
1940/*     } */
1941	}
1942
1943	if (cmd->scan_end_arg != cmd->chanlist_len) {
1944		cmd->scan_end_arg = cmd->chanlist_len;
1945		err++;
1946	}
1947	if (cmd->stop_src == TRIG_COUNT) {
1948		if (cmd->stop_arg > 0x00ffffff) {
1949			cmd->stop_arg = 0x00ffffff;
1950			err++;
1951		}
1952	} else {
1953		/* TRIG_NONE */
1954		if (cmd->stop_arg != 0) {
1955			cmd->stop_arg = 0;
1956			err++;
1957		}
1958	}
1959
1960	if (err)
1961		return 3;
1962
1963	/* step 4: fix up any arguments */
1964
1965	if (cmd->scan_begin_src == TRIG_TIMER) {
1966		tmp = cmd->scan_begin_arg;
1967		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1968			cmd->flags & TRIG_ROUND_MASK);
1969		if (tmp != cmd->scan_begin_arg)
1970			err++;
1971	}
1972	if (cmd->convert_src == TRIG_TIMER) {
1973		tmp = cmd->convert_arg;
1974		s626_ns_to_timer((int *)&cmd->convert_arg,
1975			cmd->flags & TRIG_ROUND_MASK);
1976		if (tmp != cmd->convert_arg)
1977			err++;
1978		if (cmd->scan_begin_src == TRIG_TIMER &&
1979			cmd->scan_begin_arg <
1980			cmd->convert_arg * cmd->scan_end_arg) {
1981			cmd->scan_begin_arg =
1982				cmd->convert_arg * cmd->scan_end_arg;
1983			err++;
1984		}
1985	}
1986
1987	if (err)
1988		return 4;
1989
1990	return 0;
1991}
1992
1993static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1994{
1995	/*  Stop RPS program in case it is currently running. */
1996	MC_DISABLE(P_MC1, MC1_ERPS1);
1997
1998	/* disable master interrupt */
1999	writel(0, devpriv->base_addr + P_IER);
2000
2001	devpriv->ai_cmd_running = 0;
2002
2003	return 0;
2004}
2005
2006/* This function doesn't require a particular form, this is just what
2007 * happens to be used in some of the drivers.  It should convert ns
2008 * nanoseconds to a counter value suitable for programming the device.
2009 * Also, it should adjust ns so that it cooresponds to the actual time
2010 * that the device will use. */
2011static int s626_ns_to_timer(int *nanosec, int round_mode)
2012{
2013	int divider, base;
2014
2015	base = 500;		/* 2MHz internal clock */
2016
2017	switch (round_mode) {
2018	case TRIG_ROUND_NEAREST:
2019	default:
2020		divider = (*nanosec + base / 2) / base;
2021		break;
2022	case TRIG_ROUND_DOWN:
2023		divider = (*nanosec) / base;
2024		break;
2025	case TRIG_ROUND_UP:
2026		divider = (*nanosec + base - 1) / base;
2027		break;
2028	}
2029
2030	*nanosec = base * divider;
2031	return divider - 1;
2032}
2033
2034static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2035	struct comedi_insn *insn, unsigned int *data)
2036{
2037
2038	int i;
2039	uint16_t chan = CR_CHAN(insn->chanspec);
2040	int16_t dacdata;
2041
2042	for (i = 0; i < insn->n; i++) {
2043		dacdata = (int16_t) data[i];
2044		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2045		dacdata -= (0x1fff);
2046
2047		SetDAC(dev, chan, dacdata);
2048	}
2049
2050	return i;
2051}
2052
2053static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2054	struct comedi_insn *insn, unsigned int *data)
2055{
2056	int i;
2057
2058	for (i = 0; i < insn->n; i++)
2059		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2060
2061	return i;
2062}
2063
2064/* *************** DIGITAL I/O FUNCTIONS ***************
2065 * All DIO functions address a group of DIO channels by means of
2066 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2067 * ports A, B and C, respectively.
2068 */
2069
2070static void s626_dio_init(struct comedi_device *dev)
2071{
2072	uint16_t group;
2073	struct comedi_subdevice *s;
2074
2075	/*  Prepare to treat writes to WRCapSel as capture disables. */
2076	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2077
2078	/*  For each group of sixteen channels ... */
2079	for (group = 0; group < S626_DIO_BANKS; group++) {
2080		s = dev->subdevices + 2 + group;
2081		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2082		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2083		/*  captures. */
2084		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2085		/*  default edge */
2086		/*  polarity. */
2087		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2088		/*  to inactive state. */
2089	}
2090	DEBUG("s626_dio_init: DIO initialized \n");
2091}
2092
2093/* DIO devices are slightly special.  Although it is possible to
2094 * implement the insn_read/insn_write interface, it is much more
2095 * useful to applications if you implement the insn_bits interface.
2096 * This allows packed reading/writing of the DIO channels.  The comedi
2097 * core can convert between insn_bits and insn_read/write */
2098
2099static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
2100	struct comedi_insn *insn, unsigned int *data)
2101{
2102
2103	/* Length of data must be 2 (mask and new data, see below) */
2104	if (insn->n == 0)
2105		return 0;
2106
2107	if (insn->n != 2) {
2108		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2109		return -EINVAL;
2110	}
2111
2112	/*
2113	 * The insn data consists of a mask in data[0] and the new data in
2114	 * data[1]. The mask defines which bits we are concerning about.
2115	 * The new data must be anded with the mask.  Each channel
2116	 * corresponds to a bit.
2117	 */
2118	if (data[0]) {
2119		/* Check if requested ports are configured for output */
2120		if ((s->io_bits & data[0]) != data[0])
2121			return -EIO;
2122
2123		s->state &= ~data[0];
2124		s->state |= data[0] & data[1];
2125
2126		/* Write out the new digital output lines */
2127
2128		DEBIwrite(dev, diopriv->WRDOut, s->state);
2129	}
2130	data[1] = DEBIread(dev, diopriv->RDDIn);
2131
2132	return 2;
2133}
2134
2135static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2136	struct comedi_insn *insn, unsigned int *data)
2137{
2138
2139	switch (data[0]) {
2140	case INSN_CONFIG_DIO_QUERY:
2141		data[1] =
2142			(s->io_bits & (1 << CR_CHAN(insn->
2143					chanspec))) ? COMEDI_OUTPUT :
2144			COMEDI_INPUT;
2145		return insn->n;
2146		break;
2147	case COMEDI_INPUT:
2148		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2149		break;
2150	case COMEDI_OUTPUT:
2151		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2152		break;
2153	default:
2154		return -EINVAL;
2155		break;
2156	}
2157	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2158
2159	return 1;
2160}
2161
2162static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2163{
2164	unsigned int group;
2165	unsigned int bitmask;
2166	unsigned int status;
2167
2168	/* select dio bank */
2169	group = chan / 16;
2170	bitmask = 1 << (chan - (16 * group));
2171	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2172		chan - (16 * group), group);
2173
2174	/* set channel to capture positive edge */
2175	status = DEBIread(dev,
2176		((struct dio_private *) (dev->subdevices + 2 +
2177				group)->private)->RDEdgSel);
2178	DEBIwrite(dev,
2179		((struct dio_private *) (dev->subdevices + 2 +
2180				group)->private)->WREdgSel, bitmask | status);
2181
2182	/* enable interrupt on selected channel */
2183	status = DEBIread(dev,
2184		((struct dio_private *) (dev->subdevices + 2 +
2185				group)->private)->RDIntSel);
2186	DEBIwrite(dev,
2187		((struct dio_private *) (dev->subdevices + 2 +
2188				group)->private)->WRIntSel, bitmask | status);
2189
2190	/* enable edge capture write command */
2191	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2192
2193	/* enable edge capture on selected channel */
2194	status = DEBIread(dev,
2195		((struct dio_private *) (dev->subdevices + 2 +
2196				group)->private)->RDCapSel);
2197	DEBIwrite(dev,
2198		((struct dio_private *) (dev->subdevices + 2 +
2199				group)->private)->WRCapSel, bitmask | status);
2200
2201	return 0;
2202}
2203
2204static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2205	unsigned int mask)
2206{
2207	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);
2208
2209	/* disable edge capture write command */
2210	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2211
2212	/* enable edge capture on selected channel */
2213	DEBIwrite(dev,
2214		((struct dio_private *) (dev->subdevices + 2 +
2215				group)->private)->WRCapSel, mask);
2216
2217	return 0;
2218}
2219
2220static int s626_dio_clear_irq(struct comedi_device *dev)
2221{
2222	unsigned int group;
2223
2224	/* disable edge capture write command */
2225	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2226
2227	for (group = 0; group < S626_DIO_BANKS; group++) {
2228		/* clear pending events and interrupt */
2229		DEBIwrite(dev,
2230			((struct dio_private *) (dev->subdevices + 2 +
2231					group)->private)->WRCapSel, 0xffff);
2232	}
2233
2234	return 0;
2235}
2236
2237/* Now this function initializes the value of the counter (data[0])
2238   and set the subdevice. To complete with trigger and interrupt
2239   configuration */
2240static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2241	struct comedi_insn *insn, unsigned int *data)
2242{
2243	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2244		/*  index. */
2245		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2246		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2247		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2248		/* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2249		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2250		(CLKENAB_INDEX << BF_CLKENAB);
2251	/*   uint16_t DisableIntSrc=TRUE; */
2252	/*  uint32_t Preloadvalue;              //Counter initial value */
2253	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2254	uint16_t enab = CLKENAB_ALWAYS;
2255	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2256
2257	DEBUG("s626_enc_insn_config: encoder config\n");
2258
2259	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2260
2261	k->SetMode(dev, k, Setup, TRUE);
2262	Preload(dev, k, *(insn->data));
2263	k->PulseIndex(dev, k);
2264	SetLatchSource(dev, k, valueSrclatch);
2265	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2266
2267	return insn->n;
2268}
2269
2270static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
2271	struct comedi_insn *insn, unsigned int *data)
2272{
2273
2274	int n;
2275	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2276
2277	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2278		CR_CHAN(insn->chanspec));
2279
2280	for (n = 0; n < insn->n; n++)
2281		data[n] = ReadLatch(dev, k);
2282
2283	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2284
2285	return n;
2286}
2287
2288static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
2289	struct comedi_insn *insn, unsigned int *data)
2290{
2291
2292	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2293
2294	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2295		CR_CHAN(insn->chanspec));
2296
2297	/*  Set the preload register */
2298	Preload(dev, k, data[0]);
2299
2300	/*  Software index pulse forces the preload register to load */
2301	/*  into the counter */
2302	k->SetLoadTrig(dev, k, 0);
2303	k->PulseIndex(dev, k);
2304	k->SetLoadTrig(dev, k, 2);
2305
2306	DEBUG("s626_enc_insn_write: End encoder write\n");
2307
2308	return 1;
2309}
2310
2311static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick)
2312{
2313	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2314		/*  index. */
2315		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2316		(CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2317		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2318		(CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2319		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2320		(CLKENAB_INDEX << BF_CLKENAB);
2321	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2322	/*   uint16_t enab=CLKENAB_ALWAYS; */
2323
2324	k->SetMode(dev, k, Setup, FALSE);
2325
2326	/*  Set the preload register */
2327	Preload(dev, k, tick);
2328
2329	/*  Software index pulse forces the preload register to load */
2330	/*  into the counter */
2331	k->SetLoadTrig(dev, k, 0);
2332	k->PulseIndex(dev, k);
2333
2334	/* set reload on counter overflow */
2335	k->SetLoadTrig(dev, k, 1);
2336
2337	/* set interrupt on overflow */
2338	k->SetIntSrc(dev, k, INTSRC_OVER);
2339
2340	SetLatchSource(dev, k, valueSrclatch);
2341	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2342}
2343
2344/* ***********  DAC FUNCTIONS *********** */
2345
2346/*  Slot 0 base settings. */
2347#define VECT0	(XSD2 | RSD3 | SIB_A2)
2348/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2349
2350/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2351static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2352
2353/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2354static uint8_t trimadrs[] =
2355	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2356
2357static void LoadTrimDACs(struct comedi_device *dev)
2358{
2359	register uint8_t i;
2360
2361	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2362	for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2363		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2364}
2365
2366static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2367	uint8_t DacData)
2368{
2369	uint32_t chan;
2370
2371	/*  Save the new setpoint in case the application needs to read it back later. */
2372	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2373
2374	/*  Map logical channel number to physical channel number. */
2375	chan = (uint32_t) trimchan[LogicalChan];
2376
2377	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2378	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2379	 * can be detected.
2380	 */
2381
2382	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2383	/* Slot 2: Send high uint8_t to target TrimDac. */
2384	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2385	/* Slot 3: Send low uint8_t to target TrimDac. */
2386	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2387	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2388	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2389	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2390
2391	/* Construct and transmit target DAC's serial packet:
2392	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2393	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2394	 * WORD value (that writes a channel 0 NOP command to a non-existent
2395	 * main DAC channel) that serves to keep the clock running after the
2396	 * packet has been sent to the target DAC.
2397	 */
2398
2399	/*  Address the DAC channel within the trimdac device. */
2400	SendDAC(dev, ((uint32_t) chan << 8)
2401		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2402}
2403
2404/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2405/*  Read uint8_t from EEPROM. */
2406
2407static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2408{
2409	uint8_t rtnval;
2410
2411	/*  Send EEPROM target address. */
2412	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2413			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2414			| I2C_B1(I2C_ATTRSTOP, addr)
2415			 /* Byte1 = EEPROM internal target address. */
2416			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
2417		/*  Abort function and declare error if handshake failed. */
2418		DEBUG("I2Cread: error handshake I2Cread  a\n");
2419		return 0;
2420	}
2421	/*  Execute EEPROM read. */
2422	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	/*  Byte2 = I2C */
2423			/*  command: read */
2424			/*  from I2C EEPROM */
2425			/*  device. */
2426			| I2C_B1(I2C_ATTRSTOP, 0)	/*  Byte1 receives */
2427			/*  uint8_t from */
2428			/*  EEPROM. */
2429			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */
2430
2431		/*  Abort function and declare error if handshake failed. */
2432		DEBUG("I2Cread: error handshake I2Cread b\n");
2433		return 0;
2434	}
2435	/*  Return copy of EEPROM value. */
2436	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2437	return rtnval;
2438}
2439
2440static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2441{
2442	/*  Write I2C command to I2C Transfer Control shadow register. */
2443	WR7146(P_I2CCTRL, val);
2444
2445	/*  Upload I2C shadow registers into working registers and wait for */
2446	/*  upload confirmation. */
2447
2448	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2449	while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2450		;
2451
2452	/*  Wait until I2C bus transfer is finished or an error occurs. */
2453	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2454		;
2455
2456	/*  Return non-zero if I2C error occured. */
2457	return RR7146(P_I2CCTRL) & I2C_ERR;
2458
2459}
2460
2461/*  Private helper function: Write setpoint to an application DAC channel. */
2462
2463static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2464{
2465	register uint16_t signmask;
2466	register uint32_t WSImage;
2467
2468	/*  Adjust DAC data polarity and set up Polarity Control Register */
2469	/*  image. */
2470	signmask = 1 << chan;
2471	if (dacdata < 0) {
2472		dacdata = -dacdata;
2473		devpriv->Dacpol |= signmask;
2474	} else
2475		devpriv->Dacpol &= ~signmask;
2476
2477	/*  Limit DAC setpoint value to valid range. */
2478	if ((uint16_t) dacdata > 0x1FFF)
2479		dacdata = 0x1FFF;
2480
2481	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2482	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2483	 * data to a non-existent TrimDac channel just to keep the clock
2484	 * running after sending data to the target DAC.  This is necessary
2485	 * to eliminate the clock glitch that would otherwise occur at the
2486	 * end of the target DAC's serial data stream.  When the sequence
2487	 * restarts at V0 (after executing V5), the gate array automatically
2488	 * disables gating for the DAC clock and all DAC chip selects.
2489	 */
2490
2491	WSImage = (chan & 2) ? WS1 : WS2;
2492	/* Choose DAC chip select to be asserted. */
2493	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2494	/* Slot 2: Transmit high data byte to target DAC. */
2495	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2496	/* Slot 3: Transmit low data byte to target DAC. */
2497	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2498	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2499	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2500	/* Slot 5: running after writing target DAC's low data byte. */
2501
2502	/*  Construct and transmit target DAC's serial packet:
2503	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2504	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2505	 * to a  non-existent TrimDac channel) that serves to keep the clock
2506	 * running after the packet has been sent to the target DAC.
2507	 */
2508	SendDAC(dev, 0x0F000000
2509		/* Continue clock after target DAC data (write to non-existent trimdac). */
2510		| 0x00004000
2511		/* Address the two main dual-DAC devices (TSL's chip select enables
2512		 * target device). */
2513		| ((uint32_t) (chan & 1) << 15)
2514		/*  Address the DAC channel within the  device. */
2515		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2516
2517}
2518
2519/* Private helper function: Transmit serial data to DAC via Audio
2520 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2521 * Dacpol contains valid target image.
2522 */
2523
2524static void SendDAC(struct comedi_device *dev, uint32_t val)
2525{
2526
2527	/* START THE SERIAL CLOCK RUNNING ------------- */
2528
2529	/* Assert DAC polarity control and enable gating of DAC serial clock
2530	 * and audio bit stream signals.  At this point in time we must be
2531	 * assured of being in time slot 0.  If we are not in slot 0, the
2532	 * serial clock and audio stream signals will be disabled; this is
2533	 * because the following DEBIwrite statement (which enables signals
2534	 * to be passed through the gate array) would execute before the
2535	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2536	 * causing the signals to be inactive during the DAC write.
2537	 */
2538	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2539
2540	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2541
2542	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2543
2544	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2545	*devpriv->pDacWBuf = val;
2546
2547	/* enab the output DMA transfer.  This will cause the DMAC to copy
2548	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2549	 * then immediately terminate because the protection address is
2550	 * reached upon transfer of the first DWORD value.
2551	 */
2552	MC_ENABLE(P_MC1, MC1_A2OUT);
2553
2554	/*  While the DMA transfer is executing ... */
2555
2556	/* Reset Audio2 output FIFO's underflow flag (along with any other
2557	 * FIFO underflow/overflow flags).  When set, this flag will
2558	 * indicate that we have emerged from slot 0.
2559	 */
2560	WR7146(P_ISR, ISR_AFOU);
2561
2562	/* Wait for the DMA transfer to finish so that there will be data
2563	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2564	 * from the FIFO to the output buffer register.  We test for DMA
2565	 * Done by polling the DMAC enable flag; this flag is automatically
2566	 * cleared when the transfer has finished.
2567	 */
2568	while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2569		;
2570
2571	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2572
2573	/* FIFO data is now available, so we enable execution of time slots
2574	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2575	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2576	 * detection.
2577	 */
2578	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2579
2580	/* Wait for slot 1 to execute to ensure that the Packet will be
2581	 * transmitted.  This is detected by polling the Audio2 output FIFO
2582	 * underflow flag, which will be set when slot 1 execution has
2583	 * finished transferring the DAC's data DWORD from the output FIFO
2584	 * to the output buffer register.
2585	 */
2586	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2587		;
2588
2589	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2590	 * back to slot 0 after executing the EOS in slot 5.  Also,
2591	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2592	 * stored in the last byte to be shifted out of the FIFO's DWORD
2593	 * buffer register.
2594	 */
2595	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2596
2597	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2598
2599	/* Wait for the TSL to finish executing all time slots before
2600	 * exiting this function.  We must do this so that the next DAC
2601	 * write doesn't start, thereby enabling clock/chip select signals:
2602	 *
2603	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2604	 *    the clock/cs signal gating and traps slot // list execution.
2605	 *    we have not yet finished slot 5 then the clock/cs signals are
2606	 *    still gated and we have not finished transmitting the stream.
2607	 *
2608	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2609	 *    this case, the slot sequence is currently repeating, but with
2610	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2611	 *    execution before setting up the next DAC setpoint DMA transfer
2612	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2613	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2614	 *    the TSL has not yet finished executing slot 5 ...
2615	 */
2616	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2617		/* The trap was set on time and we are still executing somewhere
2618		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2619		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2620		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2621		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2622		 */
2623		 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2624			;
2625	}
2626	/* Either (1) we were too late setting the slot 0 trap; the TSL
2627	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2628	 * or (2) we were not late and execution is now trapped at slot 0.
2629	 * In either case, we must now change slot 0 so that it will store
2630	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2631	 * In order to do this, we reprogram slot 0 so that it will shift in
2632	 * SD3, which is driven only by a pull-up resistor.
2633	 */
2634	SETVECT(0, RSD3 | SIB_A2 | EOS);
2635
2636	/* Wait for slot 0 to execute, at which time the TSL is setup for
2637	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2638	 * from 0x00 to 0xFF.
2639	 */
2640	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2641		;
2642}
2643
2644static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2645{
2646	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2647	/*  MISC2 register. */
2648	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2649	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2650}
2651
2652/*  Initialize the DEBI interface for all transfers. */
2653
2654static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2655{
2656	uint16_t retval;
2657
2658	/*  Set up DEBI control register value in shadow RAM. */
2659	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2660
2661	/*  Execute the DEBI transfer. */
2662	DEBItransfer(dev);
2663
2664	/*  Fetch target register value. */
2665	retval = (uint16_t) RR7146(P_DEBIAD);
2666
2667	/*  Return register value. */
2668	return retval;
2669}
2670
2671/*  Execute a DEBI transfer.  This must be called from within a */
2672/*  critical section. */
2673static void DEBItransfer(struct comedi_device *dev)
2674{
2675	/*  Initiate upload of shadow RAM to DEBI control register. */
2676	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2677
2678	/*  Wait for completion of upload from shadow RAM to DEBI control */
2679	/*  register. */
2680	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2681		;
2682
2683	/*  Wait until DEBI transfer is done. */
2684	while (RR7146(P_PSR) & PSR_DEBI_S)
2685		;
2686}
2687
2688/*  Write a value to a gate array register. */
2689static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2690{
2691
2692	/*  Set up DEBI control register value in shadow RAM. */
2693	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2694	WR7146(P_DEBIAD, wdata);
2695
2696	/*  Execute the DEBI transfer. */
2697	DEBItransfer(dev);
2698}
2699
2700/* Replace the specified bits in a gate array register.  Imports: mask
2701 * specifies bits that are to be preserved, wdata is new value to be
2702 * or'd with the masked original.
2703 */
2704static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2705	uint16_t wdata)
2706{
2707
2708	/*  Copy target gate array register into P_DEBIAD register. */
2709	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2710	/* Set up DEBI control reg value in shadow RAM. */
2711	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2712
2713	/*  Write back the modified image. */
2714	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2715	/* Set up DEBI control reg value in shadow  RAM. */
2716
2717	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2718	/* Modify the register image. */
2719	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2720}
2721
2722static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize)
2723{
2724	void *vbptr;
2725	dma_addr_t vpptr;
2726
2727	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2728	if (pdma == NULL)
2729		return;
2730	/* find the matching allocation from the board struct */
2731
2732	vbptr = pdma->LogicalBase;
2733	vpptr = pdma->PhysicalBase;
2734	if (vbptr) {
2735		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2736		pdma->LogicalBase = 0;
2737		pdma->PhysicalBase = 0;
2738
2739		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2740			vbptr, bsize, (uint32_t) vpptr);
2741	}
2742}
2743
2744/* ******  COUNTER FUNCTIONS  ******* */
2745/* All counter functions address a specific counter by means of the
2746 * "Counter" argument, which is a logical counter number.  The Counter
2747 * argument may have any of the following legal values: 0=0A, 1=1A,
2748 * 2=2A, 3=0B, 4=1B, 5=2B.
2749 */
2750
2751/* Forward declarations for functions that are common to both A and B counters: */
2752
2753/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2754
2755/*  Read a counter's output latch. */
2756
2757static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2758{
2759	register uint32_t value;
2760	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2761
2762	/*  Latch counts and fetch LSW of latched counts value. */
2763	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2764
2765	/*  Fetch MSW of latched counts and combine with LSW. */
2766	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2767
2768	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2769
2770	/*  Return latched counts. */
2771	return value;
2772}
2773
2774/*  Reset a counter's index and overflow event capture flags. */
2775
2776static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2777{
2778	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2779		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2780}
2781
2782static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2783{
2784	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2785		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2786}
2787
2788/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2789/*  for both A and B counters. */
2790
2791static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2792{
2793	register uint16_t cra;
2794	register uint16_t crb;
2795	register uint16_t setup;
2796
2797	/*  Fetch CRA and CRB register images. */
2798	cra = DEBIread(dev, k->MyCRA);
2799	crb = DEBIread(dev, k->MyCRB);
2800
2801	/*  Populate the standardized counter setup bit fields.  Note: */
2802	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2803	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2804		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2805		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2806		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2807		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2808		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2809
2810	/*  Adjust mode-dependent parameters. */
2811	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2812		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2813			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2814			| (MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2815
2816	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2817		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2818			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2819			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2820				(MULT_X1 << STDBIT_CLKMULT) :
2821				((cra >> (CRABIT_CLKMULT_A -
2822							STDBIT_CLKMULT)) &
2823					STDMSK_CLKMULT)));
2824
2825	/*  Return adjusted counter setup. */
2826	return setup;
2827}
2828
2829static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2830{
2831	register uint16_t cra;
2832	register uint16_t crb;
2833	register uint16_t setup;
2834
2835	/*  Fetch CRA and CRB register images. */
2836	cra = DEBIread(dev, k->MyCRA);
2837	crb = DEBIread(dev, k->MyCRB);
2838
2839	/*  Populate the standardized counter setup bit fields.  Note: */
2840	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2841	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2842		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2843		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2844		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2845		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2846		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2847
2848	/*  Adjust mode-dependent parameters. */
2849	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2850		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2851			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2852			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2853
2854	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2855		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2856			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2857			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2858
2859	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2860		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2861			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2862			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2863
2864	/*  Return adjusted counter setup. */
2865	return setup;
2866}
2867
2868/*
2869 * Set the operating mode for the specified counter.  The setup
2870 * parameter is treated as a COUNTER_SETUP data type.  The following
2871 * parameters are programmable (all other parms are ignored): ClkMult,
2872 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2873 */
2874
2875static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2876	uint16_t DisableIntSrc)
2877{
2878	register uint16_t cra;
2879	register uint16_t crb;
2880	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2881
2882	/*  Initialize CRA and CRB images. */
2883	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
2884		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2885
2886	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
2887		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
2888
2889	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2890	if (!DisableIntSrc)
2891		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2892				CRABIT_INTSRC_A));
2893
2894	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2895	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2896	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
2897		/*  (Extender valid only for B counters). */
2898
2899	case CLKSRC_TIMER:	/*  Timer Mode: */
2900		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
2901			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
2902			| (1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
2903			| (MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
2904		break;
2905
2906	default:		/*  Counter Mode: */
2907		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2908			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
2909			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
2910				(MULT_X1 << CRABIT_CLKMULT_A) :
2911				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2912						STDBIT_CLKMULT))));
2913	}
2914
2915	/*  Force positive index polarity if IndxSrc is software-driven only, */
2916	/*  otherwise pass it through. */
2917	if (~setup & STDMSK_INDXSRC)
2918		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2919				STDBIT_INDXPOL));
2920
2921	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2922	/*  enable mask to indicate the counter interrupt is disabled. */
2923	if (DisableIntSrc)
2924		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2925
2926	/*  While retaining CounterB and LatchSrc configurations, program the */
2927	/*  new counter operating mode. */
2928	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2929	DEBIreplace(dev, k->MyCRB,
2930		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2931}
2932
2933static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2934	uint16_t DisableIntSrc)
2935{
2936	register uint16_t cra;
2937	register uint16_t crb;
2938	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2939
2940	/*  Initialize CRA and CRB images. */
2941	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
2942
2943	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
2944		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
2945		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
2946
2947	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2948	if (!DisableIntSrc)
2949		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2950				CRBBIT_INTSRC_B));
2951
2952	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2953	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2954	case CLKSRC_TIMER:	/*  Timer Mode: */
2955		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
2956			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
2957		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
2958			| (MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
2959		break;
2960
2961	case CLKSRC_EXTENDER:	/*  Extender Mode: */
2962		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
2963			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
2964		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
2965			| (MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
2966		break;
2967
2968	default:		/*  Counter Mode: */
2969		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2970		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
2971			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
2972				(MULT_X1 << CRBBIT_CLKMULT_B) :
2973				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2974						STDBIT_CLKMULT))));
2975	}
2976
2977	/*  Force positive index polarity if IndxSrc is software-driven only, */
2978	/*  otherwise pass it through. */
2979	if (~setup & STDMSK_INDXSRC)
2980		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2981				CRBBIT_INDXPOL_B));
2982
2983	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2984	/*  enable mask to indicate the counter interrupt is disabled. */
2985	if (DisableIntSrc)
2986		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2987
2988	/*  While retaining CounterA and LatchSrc configurations, program the */
2989	/*  new counter operating mode. */
2990	DEBIreplace(dev, k->MyCRA,
2991		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2992	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2993}
2994
2995/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
2996
2997static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
2998{
2999	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3000	DEBIreplace(dev, k->MyCRB,
3001		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3002		(uint16_t) (enab << CRBBIT_CLKENAB_A));
3003}
3004
3005static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3006{
3007	DEBIreplace(dev, k->MyCRB,
3008		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3009		(uint16_t) (enab << CRBBIT_CLKENAB_B));
3010}
3011
3012static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3013{
3014	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3015}
3016
3017static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3018{
3019	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3020}
3021
3022/* Return/set a counter pair's latch trigger source.  0: On read
3023 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3024 * latches B.
3025 */
3026
3027static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, uint16_t value)
3028{
3029	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3030	DEBIreplace(dev, k->MyCRB,
3031		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3032		(uint16_t) (value << CRBBIT_LATCHSRC));
3033
3034	DEBUG("SetLatchSource: SetLatchSource exit \n");
3035}
3036
3037/*
3038 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3039 * {
3040 * 	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3041 * }
3042 */
3043
3044/*
3045 * Return/set the event that will trigger transfer of the preload
3046 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3047 * 2=OverflowA (B counters only), 3=disabled.
3048 */
3049
3050static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3051{
3052	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3053		(uint16_t) (Trig << CRABIT_LOADSRC_A));
3054}
3055
3056static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3057{
3058	DEBIreplace(dev, k->MyCRB,
3059		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3060		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
3061}
3062
3063static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3064{
3065	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3066}
3067
3068static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3069{
3070	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3071}
3072
3073/* Return/set counter interrupt source and clear any captured
3074 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3075 * 2=IndexOnly, 3=IndexAndOverflow.
3076 */
3077
3078static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3079	uint16_t IntSource)
3080{
3081	/*  Reset any pending counter overflow or index captures. */
3082	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3083		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3084
3085	/*  Program counter interrupt source. */
3086	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3087		(uint16_t) (IntSource << CRABIT_INTSRC_A));
3088
3089	/*  Update MISC2 interrupt enable mask. */
3090	devpriv->CounterIntEnabs =
3091		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3092		MyEventBits[IntSource];
3093}
3094
3095static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3096	uint16_t IntSource)
3097{
3098	uint16_t crb;
3099
3100	/*  Cache writeable CRB register image. */
3101	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3102
3103	/*  Reset any pending counter overflow or index captures. */
3104	DEBIwrite(dev, k->MyCRB,
3105		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3106
3107	/*  Program counter interrupt source. */
3108	DEBIwrite(dev, k->MyCRB,
3109		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3110				CRBBIT_INTSRC_B)));
3111
3112	/*  Update MISC2 interrupt enable mask. */
3113	devpriv->CounterIntEnabs =
3114		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3115		MyEventBits[IntSource];
3116}
3117
3118static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3119{
3120	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3121}
3122
3123static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3124{
3125	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3126}
3127
3128/*  Return/set the clock multiplier. */
3129
3130/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3131/* { */
3132/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3133/* } */
3134
3135/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k )  */
3136/* { */
3137/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3138/* } */
3139
3140/* Return/set the clock polarity. */
3141
3142/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3143/* { */
3144/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3145/* } */
3146
3147/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k )  */
3148/* { */
3149/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3150/* } */
3151
3152/* Return/set the clock source.  */
3153
3154/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3155/* { */
3156/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3157/* } */
3158
3159/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k )  */
3160/* { */
3161/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3162/* } */
3163
3164/* Return/set the index polarity. */
3165
3166/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3167/* { */
3168/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3169/* } */
3170
3171/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k )  */
3172/* { */
3173/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3174/* } */
3175
3176/*  Return/set the index source. */
3177
3178/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3179/* { */
3180/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3181/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3182/* } */
3183
3184/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k )  */
3185/* { */
3186/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3187/* } */
3188
3189/*  Generate an index pulse. */
3190
3191static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3192{
3193	register uint16_t cra;
3194
3195	DEBUG("PulseIndex_A: pulse index enter\n");
3196
3197	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3198	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3199	DEBUG("PulseIndex_A: pulse index step1\n");
3200	DEBIwrite(dev, k->MyCRA, cra);
3201}
3202
3203static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3204{
3205	register uint16_t crb;
3206
3207	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3208	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3209	DEBIwrite(dev, k->MyCRB, crb);
3210}
3211
3212/*  Write value into counter preload register. */
3213
3214static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value)
3215{
3216	DEBUG("Preload: preload enter\n");
3217	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3218	DEBUG("Preload: preload step 1\n");
3219	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3220		(uint16_t) (value >> 16));
3221}
3222
3223static void CountersInit(struct comedi_device *dev)
3224{
3225	int chan;
3226	struct enc_private *k;
3227	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3228		/*  index. */
3229		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3230		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3231		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3232		(CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3233		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3234		(CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3235
3236	/*  Disable all counter interrupts and clear any captured counter events. */
3237	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3238		k = &encpriv[chan];
3239		k->SetMode(dev, k, Setup, TRUE);
3240		k->SetIntSrc(dev, k, 0);
3241		k->ResetCapFlags(dev, k);
3242		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3243	}
3244	DEBUG("CountersInit: counters initialized \n");
3245
3246}
3247