s626.c revision 8231eb5672e7a020174eb7ce0436766eea57cae8
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63                            //during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66                                                        //to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/interrupt.h>
72#include <linux/kernel.h>
73#include <linux/types.h>
74
75#include "../comedidev.h"
76
77#include "comedi_pci.h"
78
79#include "comedi_fc.h"
80#include "s626.h"
81
82MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
83MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
84MODULE_LICENSE("GPL");
85
86struct s626_board {
87	const char *name;
88	int ai_chans;
89	int ai_bits;
90	int ao_chans;
91	int ao_bits;
92	int dio_chans;
93	int dio_banks;
94	int enc_chans;
95};
96
97static const struct s626_board s626_boards[] = {
98	{
99	.name = "s626",
100	.ai_chans = S626_ADC_CHANNELS,
101	.ai_bits = 14,
102	.ao_chans = S626_DAC_CHANNELS,
103	.ao_bits = 13,
104	.dio_chans = S626_DIO_CHANNELS,
105	.dio_banks = S626_DIO_BANKS,
106	.enc_chans = S626_ENCODER_CHANNELS,
107		}
108};
109
110#define thisboard ((const struct s626_board *)dev->board_ptr)
111#define PCI_VENDOR_ID_S626 0x1131
112#define PCI_DEVICE_ID_S626 0x7146
113
114/*
115 * For devices with vendor:device id == 0x1131:0x7146 you must specify
116 * also subvendor:subdevice ids, because otherwise it will conflict with
117 * Philips SAA7146 media/dvb based cards.
118 */
119static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
120	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, 0x6000, 0x0272, 0, 0, 0},
121	{0}
122};
123
124MODULE_DEVICE_TABLE(pci, s626_pci_table);
125
126static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
127static int s626_detach(struct comedi_device *dev);
128
129static struct comedi_driver driver_s626 = {
130	.driver_name = "s626",
131	.module = THIS_MODULE,
132	.attach = s626_attach,
133	.detach = s626_detach,
134};
135
136struct s626_private {
137	struct pci_dev *pdev;
138	void *base_addr;
139	int got_regions;
140	short allocatedBuf;
141	uint8_t ai_cmd_running;	/*  ai_cmd is running */
142	uint8_t ai_continous;	/*  continous aquisition */
143	int ai_sample_count;	/*  number of samples to aquire */
144	unsigned int ai_sample_timer;
145	/*  time between samples in  units of the timer */
146	int ai_convert_count;	/*  conversion counter */
147	unsigned int ai_convert_timer;
148	/*  time between conversion in  units of the timer */
149	uint16_t CounterIntEnabs;
150	/* Counter interrupt enable  mask for MISC2 register. */
151	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
152	struct bufferDMA RPSBuf;		/* DMA buffer used to hold ADC (RPS1) program. */
153	struct bufferDMA ANABuf;
154	/* DMA buffer used to receive ADC data and hold DAC data. */
155	uint32_t *pDacWBuf;
156	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
157	uint16_t Dacpol;	/* Image of DAC polarity register. */
158	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
159	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
160	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
161	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
162	uint32_t I2CAdrs;
163	/* I2C device address for onboard EEPROM (board rev dependent). */
164	/*   short         I2Cards; */
165	unsigned int ao_readback[S626_DAC_CHANNELS];
166};
167
168struct dio_private {
169	uint16_t RDDIn;
170	uint16_t WRDOut;
171	uint16_t RDEdgSel;
172	uint16_t WREdgSel;
173	uint16_t RDCapSel;
174	uint16_t WRCapSel;
175	uint16_t RDCapFlg;
176	uint16_t RDIntSel;
177	uint16_t WRIntSel;
178};
179
180static struct dio_private dio_private_A = {
181	.RDDIn = LP_RDDINA,
182	.WRDOut = LP_WRDOUTA,
183	.RDEdgSel = LP_RDEDGSELA,
184	.WREdgSel = LP_WREDGSELA,
185	.RDCapSel = LP_RDCAPSELA,
186	.WRCapSel = LP_WRCAPSELA,
187	.RDCapFlg = LP_RDCAPFLGA,
188	.RDIntSel = LP_RDINTSELA,
189	.WRIntSel = LP_WRINTSELA,
190};
191
192static struct dio_private dio_private_B = {
193	.RDDIn = LP_RDDINB,
194	.WRDOut = LP_WRDOUTB,
195	.RDEdgSel = LP_RDEDGSELB,
196	.WREdgSel = LP_WREDGSELB,
197	.RDCapSel = LP_RDCAPSELB,
198	.WRCapSel = LP_WRCAPSELB,
199	.RDCapFlg = LP_RDCAPFLGB,
200	.RDIntSel = LP_RDINTSELB,
201	.WRIntSel = LP_WRINTSELB,
202};
203
204static struct dio_private dio_private_C = {
205	.RDDIn = LP_RDDINC,
206	.WRDOut = LP_WRDOUTC,
207	.RDEdgSel = LP_RDEDGSELC,
208	.WREdgSel = LP_WREDGSELC,
209	.RDCapSel = LP_RDCAPSELC,
210	.WRCapSel = LP_WRCAPSELC,
211	.RDCapFlg = LP_RDCAPFLGC,
212	.RDIntSel = LP_RDINTSELC,
213	.WRIntSel = LP_WRINTSELC,
214};
215
216/* to group dio devices (48 bits mask and data are not allowed ???)
217static struct dio_private *dio_private_word[]={
218  &dio_private_A,
219  &dio_private_B,
220  &dio_private_C,
221};
222*/
223
224#define devpriv ((struct s626_private *)dev->private)
225#define diopriv ((struct dio_private *)s->private)
226
227COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
228
229/* ioctl routines */
230static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
231	struct comedi_insn *insn, unsigned int *data);
232/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
233static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
234	struct comedi_insn *insn, unsigned int *data);
235static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
236static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
237	struct comedi_cmd *cmd);
238static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
239static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
240	struct comedi_insn *insn, unsigned int *data);
241static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
242	struct comedi_insn *insn, unsigned int *data);
243static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
244	struct comedi_insn *insn, unsigned int *data);
245static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
246	struct comedi_insn *insn, unsigned int *data);
247static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
248static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
249	unsigned int mask);
250static int s626_dio_clear_irq(struct comedi_device *dev);
251static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
252	struct comedi_insn *insn, unsigned int *data);
253static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
254	struct comedi_insn *insn, unsigned int *data);
255static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
256	struct comedi_insn *insn, unsigned int *data);
257static int s626_ns_to_timer(int *nanosec, int round_mode);
258static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
259static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
260	unsigned int trignum);
261static irqreturn_t s626_irq_handler(int irq, void *d);
262static unsigned int s626_ai_reg_to_uint(int data);
263/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
264
265/* end ioctl routines */
266
267/* internal routines */
268static void s626_dio_init(struct comedi_device *dev);
269static void ResetADC(struct comedi_device *dev, uint8_t *ppl);
270static void LoadTrimDACs(struct comedi_device *dev);
271static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
272	uint8_t DacData);
273static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
274static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
275static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
276static void SendDAC(struct comedi_device *dev, uint32_t val);
277static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
278static void DEBItransfer(struct comedi_device *dev);
279static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
280static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
281static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
282	uint16_t wdata);
283static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize);
284
285/*  COUNTER OBJECT ------------------------------------------------ */
286struct enc_private {
287	/*  Pointers to functions that differ for A and B counters: */
288	uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *);	/* Return clock enable. */
289	uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *);	/* Return interrupt source. */
290	uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *);	/* Return preload trigger source. */
291	uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *);	/* Return standardized operating mode. */
292	void (*PulseIndex) (struct comedi_device *dev, struct enc_private *);	/* Generate soft index strobe. */
293	void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab);	/* Program clock enable. */
294	void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource);	/* Program interrupt source. */
295	void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig);	/* Program preload trigger source. */
296	void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
297	void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *);	/* Reset event capture flags. */
298
299	uint16_t MyCRA;		/*    Address of CRA register. */
300	uint16_t MyCRB;		/*    Address of CRB register. */
301	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
302	/*    register. */
303	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
304};
305
306#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
307
308/* counters routines */
309static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick);
310static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
311static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
312static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
313static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
314static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
315static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
316	uint16_t DisableIntSrc);
317static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
318	uint16_t DisableIntSrc);
319static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
320static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
321static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
322static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
323static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
324	uint16_t value);
325/* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
326static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
327static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
328static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
329static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
330static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
331	uint16_t IntSource);
332static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
333	uint16_t IntSource);
334static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
335static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
336/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
337/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
338/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
339/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
340/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
341/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k );  */
342/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
343/* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k );  */
344static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
345static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
346static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value);
347static void CountersInit(struct comedi_device *dev);
348/* end internal routines */
349
350/*  Counter objects constructor. */
351
352/*  Counter overflow/index event flag masks for RDMISC2. */
353#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
354#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
355#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
356
357/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
358/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
359
360/* struct enc_private; */
361static struct enc_private enc_private_data[] = {
362	{
363	.GetEnable = GetEnable_A,
364	.GetIntSrc = GetIntSrc_A,
365	.GetLoadTrig = GetLoadTrig_A,
366	.GetMode = GetMode_A,
367	.PulseIndex = PulseIndex_A,
368	.SetEnable = SetEnable_A,
369	.SetIntSrc = SetIntSrc_A,
370	.SetLoadTrig = SetLoadTrig_A,
371	.SetMode = SetMode_A,
372	.ResetCapFlags = ResetCapFlags_A,
373	.MyCRA = LP_CR0A,
374	.MyCRB = LP_CR0B,
375	.MyLatchLsw = LP_CNTR0ALSW,
376	.MyEventBits = EVBITS(0),
377		},
378	{
379	.GetEnable = GetEnable_A,
380	.GetIntSrc = GetIntSrc_A,
381	.GetLoadTrig = GetLoadTrig_A,
382	.GetMode = GetMode_A,
383	.PulseIndex = PulseIndex_A,
384	.SetEnable = SetEnable_A,
385	.SetIntSrc = SetIntSrc_A,
386	.SetLoadTrig = SetLoadTrig_A,
387	.SetMode = SetMode_A,
388	.ResetCapFlags = ResetCapFlags_A,
389	.MyCRA = LP_CR1A,
390	.MyCRB = LP_CR1B,
391	.MyLatchLsw = LP_CNTR1ALSW,
392	.MyEventBits = EVBITS(1),
393		},
394	{
395	.GetEnable = GetEnable_A,
396	.GetIntSrc = GetIntSrc_A,
397	.GetLoadTrig = GetLoadTrig_A,
398	.GetMode = GetMode_A,
399	.PulseIndex = PulseIndex_A,
400	.SetEnable = SetEnable_A,
401	.SetIntSrc = SetIntSrc_A,
402	.SetLoadTrig = SetLoadTrig_A,
403	.SetMode = SetMode_A,
404	.ResetCapFlags = ResetCapFlags_A,
405	.MyCRA = LP_CR2A,
406	.MyCRB = LP_CR2B,
407	.MyLatchLsw = LP_CNTR2ALSW,
408	.MyEventBits = EVBITS(2),
409		},
410	{
411	.GetEnable = GetEnable_B,
412	.GetIntSrc = GetIntSrc_B,
413	.GetLoadTrig = GetLoadTrig_B,
414	.GetMode = GetMode_B,
415	.PulseIndex = PulseIndex_B,
416	.SetEnable = SetEnable_B,
417	.SetIntSrc = SetIntSrc_B,
418	.SetLoadTrig = SetLoadTrig_B,
419	.SetMode = SetMode_B,
420	.ResetCapFlags = ResetCapFlags_B,
421	.MyCRA = LP_CR0A,
422	.MyCRB = LP_CR0B,
423	.MyLatchLsw = LP_CNTR0BLSW,
424	.MyEventBits = EVBITS(3),
425		},
426	{
427	.GetEnable = GetEnable_B,
428	.GetIntSrc = GetIntSrc_B,
429	.GetLoadTrig = GetLoadTrig_B,
430	.GetMode = GetMode_B,
431	.PulseIndex = PulseIndex_B,
432	.SetEnable = SetEnable_B,
433	.SetIntSrc = SetIntSrc_B,
434	.SetLoadTrig = SetLoadTrig_B,
435	.SetMode = SetMode_B,
436	.ResetCapFlags = ResetCapFlags_B,
437	.MyCRA = LP_CR1A,
438	.MyCRB = LP_CR1B,
439	.MyLatchLsw = LP_CNTR1BLSW,
440	.MyEventBits = EVBITS(4),
441		},
442	{
443	.GetEnable = GetEnable_B,
444	.GetIntSrc = GetIntSrc_B,
445	.GetLoadTrig = GetLoadTrig_B,
446	.GetMode = GetMode_B,
447	.PulseIndex = PulseIndex_B,
448	.SetEnable = SetEnable_B,
449	.SetIntSrc = SetIntSrc_B,
450	.SetLoadTrig = SetLoadTrig_B,
451	.SetMode = SetMode_B,
452	.ResetCapFlags = ResetCapFlags_B,
453	.MyCRA = LP_CR2A,
454	.MyCRB = LP_CR2B,
455	.MyLatchLsw = LP_CNTR2BLSW,
456	.MyEventBits = EVBITS(5),
457		},
458};
459
460/*  enab/disable a function or test status bit(s) that are accessed */
461/*  through Main Control Registers 1 or 2. */
462#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
463
464#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
465
466#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
467
468/* #define WR7146(REGARDS,CTRLWORD)
469    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
470#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
471
472/* #define RR7146(REGARDS)
473    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
474#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
475
476#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
477
478/*  Write a time slot control record to TSL2. */
479#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
480#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
481
482/*  Code macros used for constructing I2C command bytes. */
483#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
484#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
485#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
486
487static const struct comedi_lrange s626_range_table = { 2, {
488			RANGE(-5, 5),
489			RANGE(-10, 10),
490	}
491};
492
493static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
494{
495/*   uint8_t	PollList; */
496/*   uint16_t	AdcData; */
497/*   uint16_t	StartVal; */
498/*   uint16_t	index; */
499/*   unsigned int data[16]; */
500	int result;
501	int i;
502	int ret;
503	resource_size_t resourceStart;
504	dma_addr_t appdma;
505	struct comedi_subdevice *s;
506	const struct pci_device_id *ids;
507	struct pci_dev *pdev = NULL;
508
509	if (alloc_private(dev, sizeof(struct s626_private)) < 0)
510		return -ENOMEM;
511
512	for (i = 0; i < (ARRAY_SIZE(s626_pci_table) - 1) && !pdev; i++) {
513		ids = &s626_pci_table[i];
514		do {
515			pdev = pci_get_subsys(ids->vendor, ids->device, ids->subvendor,
516					      ids->subdevice, pdev);
517
518			if ((it->options[0] || it->options[1]) && pdev) {
519				/* matches requested bus/slot */
520				if (pdev->bus->number == it->options[0] &&
521				    PCI_SLOT(pdev->devfn) == it->options[1])
522					break;
523			} else
524				break;
525		} while (1);
526	}
527	devpriv->pdev = pdev;
528
529	if (pdev == NULL) {
530		printk("s626_attach: Board not present!!!\n");
531		return -ENODEV;
532	}
533
534	result = comedi_pci_enable(pdev, "s626");
535	if (result < 0) {
536		printk("s626_attach: comedi_pci_enable fails\n");
537		return -ENODEV;
538	}
539	devpriv->got_regions = 1;
540
541	resourceStart = pci_resource_start(devpriv->pdev, 0);
542
543	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
544	if (devpriv->base_addr == NULL) {
545		printk("s626_attach: IOREMAP failed\n");
546		return -ENODEV;
547	}
548
549	if (devpriv->base_addr) {
550		/* disable master interrupt */
551		writel(0, devpriv->base_addr + P_IER);
552
553		/* soft reset */
554		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
555
556		/* DMA FIXME DMA// */
557		DEBUG("s626_attach: DMA ALLOCATION\n");
558
559		/* adc buffer allocation */
560		devpriv->allocatedBuf = 0;
561
562		devpriv->ANABuf.LogicalBase =
563			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
564
565		if (devpriv->ANABuf.LogicalBase == NULL) {
566			printk("s626_attach: DMA Memory mapping error\n");
567			return -ENOMEM;
568		}
569
570		devpriv->ANABuf.PhysicalBase = appdma;
571
572		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
573
574		devpriv->allocatedBuf++;
575
576		devpriv->RPSBuf.LogicalBase =
577			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,  &appdma);
578
579		if (devpriv->RPSBuf.LogicalBase == NULL) {
580			printk("s626_attach: DMA Memory mapping error\n");
581			return -ENOMEM;
582		}
583
584		devpriv->RPSBuf.PhysicalBase = appdma;
585
586		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
587
588		devpriv->allocatedBuf++;
589
590	}
591
592	dev->board_ptr = s626_boards;
593	dev->board_name = thisboard->name;
594
595	if (alloc_subdevices(dev, 6) < 0)
596		return -ENOMEM;
597
598	dev->iobase = (unsigned long)devpriv->base_addr;
599	dev->irq = devpriv->pdev->irq;
600
601	/* set up interrupt handler */
602	if (dev->irq == 0) {
603		printk(" unknown irq (bad)\n");
604	} else {
605		ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
606				  "s626", dev);
607
608		if (ret < 0) {
609			printk(" irq not available\n");
610			dev->irq = 0;
611		}
612	}
613
614	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
615		it->options[0], it->options[1]);
616
617	s = dev->subdevices + 0;
618	/* analog input subdevice */
619	dev->read_subdev = s;
620	/* we support single-ended (ground) and differential */
621	s->type = COMEDI_SUBD_AI;
622	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
623	s->n_chan = thisboard->ai_chans;
624	s->maxdata = (0xffff >> 2);
625	s->range_table = &s626_range_table;
626	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
627						   length that the board can
628						   handle */
629	s->insn_config = s626_ai_insn_config;
630	s->insn_read = s626_ai_insn_read;
631	s->do_cmd = s626_ai_cmd;
632	s->do_cmdtest = s626_ai_cmdtest;
633	s->cancel = s626_ai_cancel;
634
635	s = dev->subdevices + 1;
636	/* analog output subdevice */
637	s->type = COMEDI_SUBD_AO;
638	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
639	s->n_chan = thisboard->ao_chans;
640	s->maxdata = (0x3fff);
641	s->range_table = &range_bipolar10;
642	s->insn_write = s626_ao_winsn;
643	s->insn_read = s626_ao_rinsn;
644
645	s = dev->subdevices + 2;
646	/* digital I/O subdevice */
647	s->type = COMEDI_SUBD_DIO;
648	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
649	s->n_chan = S626_DIO_CHANNELS;
650	s->maxdata = 1;
651	s->io_bits = 0xffff;
652	s->private = &dio_private_A;
653	s->range_table = &range_digital;
654	s->insn_config = s626_dio_insn_config;
655	s->insn_bits = s626_dio_insn_bits;
656
657	s = dev->subdevices + 3;
658	/* digital I/O subdevice */
659	s->type = COMEDI_SUBD_DIO;
660	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
661	s->n_chan = 16;
662	s->maxdata = 1;
663	s->io_bits = 0xffff;
664	s->private = &dio_private_B;
665	s->range_table = &range_digital;
666	s->insn_config = s626_dio_insn_config;
667	s->insn_bits = s626_dio_insn_bits;
668
669	s = dev->subdevices + 4;
670	/* digital I/O subdevice */
671	s->type = COMEDI_SUBD_DIO;
672	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
673	s->n_chan = 16;
674	s->maxdata = 1;
675	s->io_bits = 0xffff;
676	s->private = &dio_private_C;
677	s->range_table = &range_digital;
678	s->insn_config = s626_dio_insn_config;
679	s->insn_bits = s626_dio_insn_bits;
680
681	s = dev->subdevices + 5;
682	/* encoder (counter) subdevice */
683	s->type = COMEDI_SUBD_COUNTER;
684	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
685	s->n_chan = thisboard->enc_chans;
686	s->private = enc_private_data;
687	s->insn_config = s626_enc_insn_config;
688	s->insn_read = s626_enc_insn_read;
689	s->insn_write = s626_enc_insn_write;
690	s->maxdata = 0xffffff;
691	s->range_table = &range_unknown;
692
693	/* stop ai_command */
694	devpriv->ai_cmd_running = 0;
695
696	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
697		dma_addr_t pPhysBuf;
698		uint16_t chan;
699
700		/*  enab DEBI and audio pins, enable I2C interface. */
701		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
702		/*  Configure DEBI operating mode. */
703		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
704			/*  bits wide. */
705			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	/*  Declare DEBI */
706			/*  transfer timeout */
707			/*  interval. */
708			| DEBI_SWAP	/*  Set up byte lane */
709			/*  steering. */
710			| DEBI_CFG_INTEL);	/*  Intel-compatible */
711		/*  local bus (DEBI */
712		/*  never times out). */
713		DEBUG("s626_attach: %d debi init -- %d\n",
714			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
715			DEBI_SWAP | DEBI_CFG_INTEL,
716			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
717			DEBI_CFG_16Q);
718
719		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
720		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
721
722		/*  Paging is disabled. */
723		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
724
725		/*  Init GPIO so that ADC Start* is negated. */
726		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
727
728    /* IsBoardRevA is a boolean that indicates whether the board is RevA.
729     *
730     * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
731     * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
732     * is used to access the onboard serial EEPROM.  The EEPROM's I2C
733     * DeviceAddress is hardwired to a value that is dependent on the
734     * 626 board revision.  On all board revisions, the EEPROM stores
735     * TrimDAC calibration constants for analog I/O.  On RevB and
736     * higher boards, the DeviceAddress is hardwired to 0 to enable
737     * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
738     * this is the address at which the SAA7146 expects a
739     * configuration EEPROM to reside.  On RevA boards, the EEPROM
740     * device address, which is hardwired to 4, prevents the SAA7146
741     * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
742     * default values, instead.
743     */
744
745		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
746		/*  DeviceType (0xA0) */
747		/*  and DeviceAddress<<1. */
748
749		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
750		/*  eeprom(revb) */
751
752		/*  Issue an I2C ABORT command to halt any I2C operation in */
753		/* progress and reset BUSY flag. */
754		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
755		/*  Write I2C control: abort any I2C activity. */
756		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
757		/*  Invoke command  upload */
758		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
759			;
760		/*  and wait for upload to complete. */
761
762		/* Per SAA7146 data sheet, write to STATUS reg twice to
763		 * reset all  I2C error flags. */
764		for (i = 0; i < 2; i++) {
765			WR7146(P_I2CSTAT, I2C_CLKSEL);
766			/*  Write I2C control: reset  error flags. */
767			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
768			while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
769				;
770			/* and wait for upload to complete. */
771		}
772
773		/* Init audio interface functional attributes: set DAC/ADC
774		 * serial clock rates, invert DAC serial clock so that
775		 * DAC data setup times are satisfied, enable DAC serial
776		 * clock out.
777		 */
778
779		WR7146(P_ACON2, ACON2_INIT);
780
781		/* Set up TSL1 slot list, which is used to control the
782		 * accumulation of ADC data: RSD1 = shift data in on SD1.
783		 * SIB_A1  = store data uint8_t at next available location in
784		 * FB BUFFER1  register. */
785		WR7146(P_TSL1, RSD1 | SIB_A1);
786		/*  Fetch ADC high data uint8_t. */
787		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
788		/*  Fetch ADC low data uint8_t; end of TSL1. */
789
790		/*  enab TSL1 slot list so that it executes all the time. */
791		WR7146(P_ACON1, ACON1_ADCSTART);
792
793		/*  Initialize RPS registers used for ADC. */
794
795		/* Physical start of RPS program. */
796		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
797
798		WR7146(P_RPSPAGE1, 0);
799		/*  RPS program performs no explicit mem writes. */
800		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
801
802		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
803		 * to a known state by invoking ADCs until FB BUFFER 1
804		 * register shows that it is correctly receiving ADC data.
805		 * This is necessary because the SAA7146 ADC interface does
806		 * not start up in a defined state after a PCI reset.
807		 */
808
809/*     PollList = EOPL;			// Create a simple polling */
810/* 					// list for analog input */
811/* 					// channel 0. */
812/*     ResetADC( dev, &PollList ); */
813
814/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
815/* 						  //Get initial ADC */
816/* 						  //value. */
817
818/*     StartVal = data[0]; */
819
820/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
821/*     // Invoke ADCs until the new ADC value differs from the initial */
822/*     // value or a timeout occurs.  The timeout protects against the */
823/*     // possibility that the driver is restarting and the ADC data is a */
824/*     // fixed value resulting from the applied ADC analog input being */
825/*     // unusually quiet or at the rail. */
826
827/*     for ( index = 0; index < 500; index++ ) */
828/*       { */
829/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
830/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
831/* 	if ( AdcData != StartVal ) */
832/* 	  break; */
833/*       } */
834
835		/*  end initADC */
836
837		/*  init the DAC interface */
838
839		/* Init Audio2's output DMAC attributes: burst length = 1
840		 * DWORD,  threshold = 1 DWORD.
841		 */
842		WR7146(P_PCI_BT_A, 0);
843
844		/* Init Audio2's output DMA physical addresses.  The protection
845		 * address is set to 1 DWORD past the base address so that a
846		 * single DWORD will be transferred each time a DMA transfer is
847		 * enabled. */
848
849		pPhysBuf =
850			devpriv->ANABuf.PhysicalBase +
851			(DAC_WDMABUF_OS * sizeof(uint32_t));
852
853		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
854		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
855
856		/* Cache Audio2's output DMA buffer logical address.  This is
857		 * where DAC data is buffered for A2 output DMA transfers. */
858		devpriv->pDacWBuf =
859			(uint32_t *) devpriv->ANABuf.LogicalBase +
860			DAC_WDMABUF_OS;
861
862		/* Audio2's output channels does not use paging.  The protection
863		 * violation handling bit is set so that the DMAC will
864		 * automatically halt and its PCI address pointer will be reset
865		 * when the protection address is reached. */
866
867		WR7146(P_PAGEA2_OUT, 8);
868
869		/* Initialize time slot list 2 (TSL2), which is used to control
870		 * the clock generation for and serialization of data to be sent
871		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
872		 * execution; this permits other slots to be safely modified
873		 * without first turning off the TSL sequencer (which is
874		 * apparently impossible to do).  Also, SD3 (which is driven by a
875		 * pull-up resistor) is shifted in and stored to the MSB of
876		 * FB_BUFFER2 to be used as evidence that the slot sequence has
877		 * not yet finished executing.
878		 */
879
880		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
881		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
882
883		/* Initialize slot 1, which is constant.  Slot 1 causes a
884		 * DWORD to be transferred from audio channel 2's output FIFO
885		 * to the FIFO's output buffer so that it can be serialized
886		 * and sent to the DAC during subsequent slots.  All remaining
887		 * slots are dynamically populated as required by the target
888		 * DAC device.
889		 */
890		SETVECT(1, LF_A2);
891		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
892
893		/*  Start DAC's audio interface (TSL2) running. */
894		WR7146(P_ACON1, ACON1_DACSTART);
895
896		/* end init DAC interface */
897
898		/* Init Trim DACs to calibrated values.  Do it twice because the
899		 * SAA7146 audio channel does not always reset properly and
900		 * sometimes causes the first few TrimDAC writes to malfunction.
901		 */
902
903		LoadTrimDACs(dev);
904		LoadTrimDACs(dev);	/*  Insurance. */
905
906		/* Manually init all gate array hardware in case this is a soft
907		 * reset (we have no way of determining whether this is a warm
908		 * or cold start).  This is necessary because the gate array will
909		 * reset only in response to a PCI hard reset; there is no soft
910		 * reset function. */
911
912		/* Init all DAC outputs to 0V and init all DAC setpoint and
913		 * polarity images.
914		 */
915		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
916			SetDAC(dev, chan, 0);
917
918		/* Init image of WRMISC2 Battery Charger Enabled control bit.
919		 * This image is used when the state of the charger control bit,
920		 * which has no direct hardware readback mechanism, is queried.
921		 */
922		devpriv->ChargeEnabled = 0;
923
924		/* Init image of watchdog timer interval in WRMISC2.  This image
925		 * maintains the value of the control bits of MISC2 are
926		 * continuously reset to zero as long as the WD timer is disabled.
927		 */
928		devpriv->WDInterval = 0;
929
930		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
931		 * applied against MISC2 when testing to determine which timer
932		 * events are requesting interrupt service.
933		 */
934		devpriv->CounterIntEnabs = 0;
935
936		/*  Init counters. */
937		CountersInit(dev);
938
939		/* Without modifying the state of the Battery Backup enab, disable
940		 * the watchdog timer, set DIO channels 0-5 to operate in the
941		 * standard DIO (vs. counter overflow) mode, disable the battery
942		 * charger, and reset the watchdog interval selector to zero.
943		 */
944		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
945					LP_RDMISC2) & MISC2_BATT_ENABLE));
946
947		/*  Initialize the digital I/O subsystem. */
948		s626_dio_init(dev);
949
950		/* enable interrupt test */
951		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
952	}
953
954	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
955		(uint32_t) devpriv->base_addr);
956
957	return 1;
958}
959
960static unsigned int s626_ai_reg_to_uint(int data)
961{
962	unsigned int tempdata;
963
964	tempdata = (data >> 18);
965	if (tempdata & 0x2000)
966		tempdata &= 0x1fff;
967	else
968		tempdata += (1 << 13);
969
970	return tempdata;
971}
972
973/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
974/*   return 0; */
975/* } */
976
977static irqreturn_t s626_irq_handler(int irq, void *d)
978{
979	struct comedi_device *dev = d;
980	struct comedi_subdevice *s;
981	struct comedi_cmd *cmd;
982	struct enc_private *k;
983	unsigned long flags;
984	int32_t *readaddr;
985	uint32_t irqtype, irqstatus;
986	int i = 0;
987	short tempdata;
988	uint8_t group;
989	uint16_t irqbit;
990
991	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
992
993	if (dev->attached == 0)
994		return IRQ_NONE;
995	/*  lock to avoid race with comedi_poll */
996	spin_lock_irqsave(&dev->spinlock, flags);
997
998	/* save interrupt enable register state */
999	irqstatus = readl(devpriv->base_addr + P_IER);
1000
1001	/* read interrupt type */
1002	irqtype = readl(devpriv->base_addr + P_ISR);
1003
1004	/* disable master interrupt */
1005	writel(0, devpriv->base_addr + P_IER);
1006
1007	/* clear interrupt */
1008	writel(irqtype, devpriv->base_addr + P_ISR);
1009
1010	/* do somethings */
1011	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1012
1013	switch (irqtype) {
1014	case IRQ_RPS1:		/*  end_of_scan occurs */
1015
1016		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1017
1018		/*  manage ai subdevice */
1019		s = dev->subdevices;
1020		cmd = &(s->async->cmd);
1021
1022		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1023		 * first uint16_t in the buffer because it contains junk data from
1024		 * the final ADC of the previous poll list scan.
1025		 */
1026		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1027
1028		/*  get the data and hand it over to comedi */
1029		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1030			/*  Convert ADC data to 16-bit integer values and copy to application */
1031			/*  buffer. */
1032			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1033			readaddr++;
1034
1035			/* put data into read buffer */
1036			/*  comedi_buf_put(s->async, tempdata); */
1037			if (cfc_write_to_buffer(s, tempdata) == 0)
1038				printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1039
1040			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1041				i, tempdata);
1042		}
1043
1044		/* end of scan occurs */
1045		s->async->events |= COMEDI_CB_EOS;
1046
1047		if (!(devpriv->ai_continous))
1048			devpriv->ai_sample_count--;
1049		if (devpriv->ai_sample_count <= 0) {
1050			devpriv->ai_cmd_running = 0;
1051
1052			/*  Stop RPS program. */
1053			MC_DISABLE(P_MC1, MC1_ERPS1);
1054
1055			/* send end of acquisition */
1056			s->async->events |= COMEDI_CB_EOA;
1057
1058			/* disable master interrupt */
1059			irqstatus = 0;
1060		}
1061
1062		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1063			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1064
1065			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1066
1067			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1068		}
1069		/*  tell comedi that data is there */
1070		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1071		comedi_event(dev, s);
1072		break;
1073	case IRQ_GPIO3:	/* check dio and conter interrupt */
1074
1075		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1076
1077		/*  manage ai subdevice */
1078		s = dev->subdevices;
1079		cmd = &(s->async->cmd);
1080
1081		/* s626_dio_clear_irq(dev); */
1082
1083		for (group = 0; group < S626_DIO_BANKS; group++) {
1084			irqbit = 0;
1085			/* read interrupt type */
1086			irqbit = DEBIread(dev,
1087				((struct dio_private *) (dev->subdevices + 2 +
1088						group)->private)->RDCapFlg);
1089
1090			/* check if interrupt is generated from dio channels */
1091			if (irqbit) {
1092				s626_dio_reset_irq(dev, group, irqbit);
1093				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1094				if (devpriv->ai_cmd_running) {
1095					/* check if interrupt is an ai acquisition start trigger */
1096					if ((irqbit >> (cmd->start_arg -
1097								(16 * group)))
1098						== 1
1099						&& cmd->start_src == TRIG_EXT) {
1100						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1101
1102						/*  Start executing the RPS program. */
1103						MC_ENABLE(P_MC1, MC1_ERPS1);
1104
1105						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1106
1107						if (cmd->scan_begin_src ==
1108							TRIG_EXT) {
1109							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1110
1111							s626_dio_set_irq(dev,
1112								cmd->
1113								scan_begin_arg);
1114
1115							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1116						}
1117					}
1118					if ((irqbit >> (cmd->scan_begin_arg -
1119								(16 * group)))
1120						== 1
1121						&& cmd->scan_begin_src ==
1122						TRIG_EXT) {
1123						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1124
1125						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1126						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1127
1128						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1129						if (cmd->convert_src ==
1130							TRIG_EXT) {
1131
1132							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1133
1134							devpriv->
1135								ai_convert_count
1136								=
1137								cmd->
1138								chanlist_len;
1139
1140							s626_dio_set_irq(dev,
1141								cmd->
1142								convert_arg);
1143
1144							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1145						}
1146
1147						if (cmd->convert_src ==
1148							TRIG_TIMER) {
1149							k = &encpriv[5];
1150							devpriv->
1151								ai_convert_count
1152								=
1153								cmd->
1154								chanlist_len;
1155							k->SetEnable(dev, k,
1156								CLKENAB_ALWAYS);
1157						}
1158					}
1159					if ((irqbit >> (cmd->convert_arg -
1160								(16 * group)))
1161						== 1
1162						&& cmd->convert_src ==
1163						TRIG_EXT) {
1164						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1165
1166						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1167						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1168
1169						DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1170
1171						devpriv->ai_convert_count--;
1172
1173						if (devpriv->ai_convert_count >
1174							0) {
1175
1176							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1177
1178							s626_dio_set_irq(dev,
1179								cmd->
1180								convert_arg);
1181
1182							DEBUG("s626_irq_handler: External trigger is set!!!\n");
1183						}
1184					}
1185				}
1186				break;
1187			}
1188		}
1189
1190		/* read interrupt type */
1191		irqbit = DEBIread(dev, LP_RDMISC2);
1192
1193		/* check interrupt on counters */
1194		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1195			irqbit);
1196
1197		if (irqbit & IRQ_COINT1A) {
1198			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1199			k = &encpriv[0];
1200
1201			/* clear interrupt capture flag */
1202			k->ResetCapFlags(dev, k);
1203		}
1204		if (irqbit & IRQ_COINT2A) {
1205			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1206			k = &encpriv[1];
1207
1208			/* clear interrupt capture flag */
1209			k->ResetCapFlags(dev, k);
1210		}
1211		if (irqbit & IRQ_COINT3A) {
1212			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1213			k = &encpriv[2];
1214
1215			/* clear interrupt capture flag */
1216			k->ResetCapFlags(dev, k);
1217		}
1218		if (irqbit & IRQ_COINT1B) {
1219			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1220			k = &encpriv[3];
1221
1222			/* clear interrupt capture flag */
1223			k->ResetCapFlags(dev, k);
1224		}
1225		if (irqbit & IRQ_COINT2B) {
1226			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1227			k = &encpriv[4];
1228
1229			/* clear interrupt capture flag */
1230			k->ResetCapFlags(dev, k);
1231
1232			if (devpriv->ai_convert_count > 0) {
1233				devpriv->ai_convert_count--;
1234				if (devpriv->ai_convert_count == 0)
1235					k->SetEnable(dev, k, CLKENAB_INDEX);
1236
1237				if (cmd->convert_src == TRIG_TIMER) {
1238					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1239
1240					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1241					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1242				}
1243			}
1244		}
1245		if (irqbit & IRQ_COINT3B) {
1246			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1247			k = &encpriv[5];
1248
1249			/* clear interrupt capture flag */
1250			k->ResetCapFlags(dev, k);
1251
1252			if (cmd->scan_begin_src == TRIG_TIMER) {
1253				DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1254
1255				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1256				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1257			}
1258
1259			if (cmd->convert_src == TRIG_TIMER) {
1260				DEBUG("s626_irq_handler: convert timer trigger is set\n");
1261				k = &encpriv[4];
1262				devpriv->ai_convert_count = cmd->chanlist_len;
1263				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1264			}
1265		}
1266	}
1267
1268	/* enable interrupt */
1269	writel(irqstatus, devpriv->base_addr + P_IER);
1270
1271	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1272
1273	spin_unlock_irqrestore(&dev->spinlock, flags);
1274	return IRQ_HANDLED;
1275}
1276
1277static int s626_detach(struct comedi_device *dev)
1278{
1279	if (devpriv) {
1280		/* stop ai_command */
1281		devpriv->ai_cmd_running = 0;
1282
1283		if (devpriv->base_addr) {
1284			/* interrupt mask */
1285			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1286			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1287
1288			/*  Disable the watchdog timer and battery charger. */
1289			WriteMISC2(dev, 0);
1290
1291			/*  Close all interfaces on 7146 device. */
1292			WR7146(P_MC1, MC1_SHUTDOWN);
1293			WR7146(P_ACON1, ACON1_BASE);
1294
1295			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1296			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1297		}
1298
1299		if (dev->irq)
1300			free_irq(dev->irq, dev);
1301
1302		if (devpriv->base_addr)
1303			iounmap(devpriv->base_addr);
1304
1305		if (devpriv->pdev) {
1306			if (devpriv->got_regions)
1307				comedi_pci_disable(devpriv->pdev);
1308			pci_dev_put(devpriv->pdev);
1309		}
1310	}
1311
1312	DEBUG("s626_detach: S626 detached!\n");
1313
1314	return 0;
1315}
1316
1317/*
1318 * this functions build the RPS program for hardware driven acquistion
1319 */
1320void ResetADC(struct comedi_device *dev, uint8_t *ppl)
1321{
1322	register uint32_t *pRPS;
1323	uint32_t JmpAdrs;
1324	uint16_t i;
1325	uint16_t n;
1326	uint32_t LocalPPL;
1327	struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1328
1329	/*  Stop RPS program in case it is currently running. */
1330	MC_DISABLE(P_MC1, MC1_ERPS1);
1331
1332	/*  Set starting logical address to write RPS commands. */
1333	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1334
1335	/*  Initialize RPS instruction pointer. */
1336	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1337
1338	/*  Construct RPS program in RPSBuf DMA buffer */
1339
1340	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1341		DEBUG("ResetADC: scan_begin pause inserted\n");
1342		/*  Wait for Start trigger. */
1343		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1344		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1345	}
1346
1347	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1348	 * because the first RPS DEBI Write following a non-RPS DEBI write
1349	 * seems to always fail.  If we don't do this dummy write, the ADC
1350	 * gain might not be set to the value required for the first slot in
1351	 * the poll list; the ADC gain would instead remain unchanged from
1352	 * the previously programmed value.
1353	 */
1354	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1355	/* Write DEBI Write command and address to shadow RAM. */
1356
1357	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1358	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1359	/*  Write DEBI immediate data  to shadow RAM: */
1360
1361	*pRPS++ = GSEL_BIPOLAR5V;
1362	/*  arbitrary immediate data  value. */
1363
1364	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1365	/*  Reset "shadow RAM  uploaded" flag. */
1366	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1367	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1368
1369	/* Digitize all slots in the poll list. This is implemented as a
1370	 * for loop to limit the slot count to 16 in case the application
1371	 * forgot to set the EOPL flag in the final slot.
1372	 */
1373	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1374	 /* Convert application's poll list item to private board class
1375	  * format.  Each app poll list item is an uint8_t with form
1376	  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1377	  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1378	  */
1379		LocalPPL =
1380			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1381			GSEL_BIPOLAR10V);
1382
1383		/*  Switch ADC analog gain. */
1384		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1385		/*  and address to */
1386		/*  shadow RAM. */
1387		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1388		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1389		/*  immediate data to */
1390		/*  shadow RAM. */
1391		*pRPS++ = LocalPPL;
1392		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1393		/*  flag. */
1394		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1395		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1396		/*  finish. */
1397
1398		/*  Select ADC analog input channel. */
1399		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1400		/*  Write DEBI command and address to  shadow RAM. */
1401		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1402		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1403		/*  Write DEBI immediate data to shadow RAM. */
1404		*pRPS++ = LocalPPL;
1405		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1406		/*  Reset "shadow RAM uploaded"  flag. */
1407
1408		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1409		/*  Invoke shadow RAM upload. */
1410
1411		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1412		/*  Wait for shadow upload to finish. */
1413
1414		/* Delay at least 10 microseconds for analog input settling.
1415		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1416		 * here; this allows us to produce a longer delay than is
1417		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1418		 * instruction prefetch pipeline.
1419		 */
1420		JmpAdrs =
1421			(uint32_t) devpriv->RPSBuf.PhysicalBase +
1422			(uint32_t) ((unsigned long)pRPS -
1423			(unsigned long)devpriv->RPSBuf.LogicalBase);
1424		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1425			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1426			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1427			*pRPS++ = JmpAdrs;
1428		}
1429
1430		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1431			DEBUG("ResetADC: convert pause inserted\n");
1432			/*  Wait for Start trigger. */
1433			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1434			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1435		}
1436		/*  Start ADC by pulsing GPIO1. */
1437		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1438		*pRPS++ = GPIO_BASE | GPIO1_LO;
1439		*pRPS++ = RPS_NOP;
1440		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1441		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1442		*pRPS++ = GPIO_BASE | GPIO1_HI;
1443
1444		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1445		 * busy) and for data from previous conversion to shift into FB
1446		 * BUFFER 1 register.
1447		 */
1448		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1449
1450		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1451		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1452		*pRPS++ =
1453			(uint32_t) devpriv->ANABuf.PhysicalBase +
1454			(devpriv->AdcItems << 2);
1455
1456		/*  If this slot's EndOfPollList flag is set, all channels have */
1457		/*  now been processed. */
1458		if (*ppl++ & EOPL) {
1459			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1460			break;	/*  Exit poll list processing loop. */
1461		}
1462	}
1463	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1464
1465	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1466	 * ADC to stabilize for 2 microseconds before starting the final
1467	 * (dummy) conversion.  This delay is necessary to allow sufficient
1468	 * time between last conversion finished and the start of the dummy
1469	 * conversion.  Without this delay, the last conversion's data value
1470	 * is sometimes set to the previous conversion's data value.
1471	 */
1472	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1473		*pRPS++ = RPS_NOP;
1474
1475	/* Start a dummy conversion to cause the data from the last
1476	 * conversion of interest to be shifted in.
1477	 */
1478	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1479	*pRPS++ = GPIO_BASE | GPIO1_LO;
1480	*pRPS++ = RPS_NOP;
1481	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1482	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1483	*pRPS++ = GPIO_BASE | GPIO1_HI;
1484
1485	/* Wait for the data from the last conversion of interest to arrive
1486	 * in FB BUFFER 1 register.
1487	 */
1488	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1489
1490	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1491	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1492	*pRPS++ =
1493		(uint32_t) devpriv->ANABuf.PhysicalBase +
1494		(devpriv->AdcItems << 2);
1495
1496	/*  Indicate ADC scan loop is finished. */
1497	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1498
1499	/* invoke interrupt */
1500	if (devpriv->ai_cmd_running == 1) {
1501		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1502		*pRPS++ = RPS_IRQ;
1503	}
1504	/*  Restart RPS program at its beginning. */
1505	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1506	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1507
1508	/*  End of RPS program build */
1509}
1510
1511/* TO COMPLETE, IF NECESSARY */
1512static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
1513	struct comedi_insn *insn, unsigned int *data)
1514{
1515
1516	return -EINVAL;
1517}
1518
1519/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1520/* { */
1521/*   register uint8_t	i; */
1522/*   register int32_t	*readaddr; */
1523
1524/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
1525
1526/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1527/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1528
1529/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1530/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1531
1532/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1533 * first uint16_t in the buffer because it contains junk data from
1534 * the final ADC of the previous poll list scan.
1535 */
1536/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1537
1538/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1539/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1540/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1541/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
1542/*     data++; */
1543/*   } */
1544
1545/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1546/*   return i; */
1547/* } */
1548
1549static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
1550	struct comedi_insn *insn, unsigned int *data)
1551{
1552	uint16_t chan = CR_CHAN(insn->chanspec);
1553	uint16_t range = CR_RANGE(insn->chanspec);
1554	uint16_t AdcSpec = 0;
1555	uint32_t GpioImage;
1556	int n;
1557
1558 /* interrupt call test  */
1559/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1560	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1561	 * corresponding interrupt to be generated if enabled
1562	 */
1563
1564	DEBUG("s626_ai_insn_read: entering\n");
1565
1566	/* Convert application's ADC specification into form
1567	 *  appropriate for register programming.
1568	 */
1569	if (range == 0)
1570		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1571	else
1572		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1573
1574	/*  Switch ADC analog gain. */
1575	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1576
1577	/*  Select ADC analog input channel. */
1578	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1579
1580	for (n = 0; n < insn->n; n++) {
1581
1582		/*  Delay 10 microseconds for analog input settling. */
1583		udelay(10);
1584
1585		/*  Start ADC by pulsing GPIO1 low. */
1586		GpioImage = RR7146(P_GPIO);
1587		/*  Assert ADC Start command */
1588		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1589		/*    and stretch it out. */
1590		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1591		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1592		/*  Negate ADC Start command. */
1593		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1594
1595		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1596		/*  ADC not busy) and for data from previous conversion to */
1597		/*  shift into FB BUFFER 1 register. */
1598
1599		/*  Wait for ADC done. */
1600		while (!(RR7146(P_PSR) & PSR_GPIO2))
1601			;
1602
1603		/*  Fetch ADC data. */
1604		if (n != 0)
1605			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1606
1607		/* Allow the ADC to stabilize for 4 microseconds before
1608		 * starting the next (final) conversion.  This delay is
1609		 * necessary to allow sufficient time between last
1610		 * conversion finished and the start of the next
1611		 * conversion.  Without this delay, the last conversion's
1612		 * data value is sometimes set to the previous
1613		 * conversion's data value.
1614		 */
1615		udelay(4);
1616	}
1617
1618	/* Start a dummy conversion to cause the data from the
1619	 * previous conversion to be shifted in. */
1620	GpioImage = RR7146(P_GPIO);
1621
1622	/* Assert ADC Start command */
1623	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1624	/*    and stretch it out. */
1625	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1626	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1627	/*  Negate ADC Start command. */
1628	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1629
1630	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1631
1632	/*  Wait for ADC done. */
1633	while (!(RR7146(P_PSR) & PSR_GPIO2))
1634		;
1635
1636	/*  Fetch ADC data from audio interface's input shift register. */
1637
1638	/*  Fetch ADC data. */
1639	if (n != 0)
1640		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1641
1642	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1643
1644	return n;
1645}
1646
1647static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1648{
1649
1650	int n;
1651
1652	for (n = 0; n < cmd->chanlist_len; n++) {
1653		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1654			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1655		else
1656			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1657	}
1658	ppl[n - 1] |= EOPL;
1659
1660	return n;
1661}
1662
1663static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
1664	unsigned int trignum)
1665{
1666	if (trignum != 0)
1667		return -EINVAL;
1668
1669	DEBUG("s626_ai_inttrig: trigger adc start...");
1670
1671	/*  Start executing the RPS program. */
1672	MC_ENABLE(P_MC1, MC1_ERPS1);
1673
1674	s->async->inttrig = NULL;
1675
1676	DEBUG(" done\n");
1677
1678	return 1;
1679}
1680
1681/*  TO COMPLETE  */
1682static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1683{
1684
1685	uint8_t ppl[16];
1686	struct comedi_cmd *cmd = &s->async->cmd;
1687	struct enc_private *k;
1688	int tick;
1689
1690	DEBUG("s626_ai_cmd: entering command function\n");
1691
1692	if (devpriv->ai_cmd_running) {
1693		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1694			dev->minor);
1695		return -EBUSY;
1696	}
1697	/* disable interrupt */
1698	writel(0, devpriv->base_addr + P_IER);
1699
1700	/* clear interrupt request */
1701	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1702
1703	/* clear any pending interrupt */
1704	s626_dio_clear_irq(dev);
1705	/*   s626_enc_clear_irq(dev); */
1706
1707	/* reset ai_cmd_running flag */
1708	devpriv->ai_cmd_running = 0;
1709
1710	/*  test if cmd is valid */
1711	if (cmd == NULL) {
1712		DEBUG("s626_ai_cmd: NULL command\n");
1713		return -EINVAL;
1714	} else {
1715		DEBUG("s626_ai_cmd: command recieved!!!\n");
1716	}
1717
1718	if (dev->irq == 0) {
1719		comedi_error(dev,
1720			"s626_ai_cmd: cannot run command without an irq");
1721		return -EIO;
1722	}
1723
1724	s626_ai_load_polllist(ppl, cmd);
1725	devpriv->ai_cmd_running = 1;
1726	devpriv->ai_convert_count = 0;
1727
1728	switch (cmd->scan_begin_src) {
1729	case TRIG_FOLLOW:
1730		break;
1731	case TRIG_TIMER:
1732		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1733		k = &encpriv[5];
1734		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1735			cmd->flags & TRIG_ROUND_MASK);
1736
1737		/* load timer value and enable interrupt */
1738		s626_timer_load(dev, k, tick);
1739		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1740
1741		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1742			tick);
1743
1744		break;
1745	case TRIG_EXT:
1746		/*  set the digital line and interrupt for scan trigger */
1747		if (cmd->start_src != TRIG_EXT)
1748			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1749
1750		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1751
1752		break;
1753	}
1754
1755	switch (cmd->convert_src) {
1756	case TRIG_NOW:
1757		break;
1758	case TRIG_TIMER:
1759		/*  set a conter to generate adc trigger at convert_arg interval */
1760		k = &encpriv[4];
1761		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1762			cmd->flags & TRIG_ROUND_MASK);
1763
1764		/* load timer value and enable interrupt */
1765		s626_timer_load(dev, k, tick);
1766		k->SetEnable(dev, k, CLKENAB_INDEX);
1767
1768		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1769		break;
1770	case TRIG_EXT:
1771		/*  set the digital line and interrupt for convert trigger */
1772		if (cmd->scan_begin_src != TRIG_EXT
1773			&& cmd->start_src == TRIG_EXT)
1774			s626_dio_set_irq(dev, cmd->convert_arg);
1775
1776		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1777
1778		break;
1779	}
1780
1781	switch (cmd->stop_src) {
1782	case TRIG_COUNT:
1783		/*  data arrives as one packet */
1784		devpriv->ai_sample_count = cmd->stop_arg;
1785		devpriv->ai_continous = 0;
1786		break;
1787	case TRIG_NONE:
1788		/*  continous aquisition */
1789		devpriv->ai_continous = 1;
1790		devpriv->ai_sample_count = 0;
1791		break;
1792	}
1793
1794	ResetADC(dev, ppl);
1795
1796	switch (cmd->start_src) {
1797	case TRIG_NOW:
1798		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1799		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1800
1801		/*  Start executing the RPS program. */
1802		MC_ENABLE(P_MC1, MC1_ERPS1);
1803
1804		DEBUG("s626_ai_cmd: ADC triggered\n");
1805		s->async->inttrig = NULL;
1806		break;
1807	case TRIG_EXT:
1808		/* configure DIO channel for acquisition trigger */
1809		s626_dio_set_irq(dev, cmd->start_arg);
1810
1811		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1812
1813		s->async->inttrig = NULL;
1814		break;
1815	case TRIG_INT:
1816		s->async->inttrig = s626_ai_inttrig;
1817		break;
1818	}
1819
1820	/* enable interrupt */
1821	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1822
1823	DEBUG("s626_ai_cmd: command function terminated\n");
1824
1825	return 0;
1826}
1827
1828static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
1829	struct comedi_cmd *cmd)
1830{
1831	int err = 0;
1832	int tmp;
1833
1834	/* cmdtest tests a particular command to see if it is valid.  Using
1835	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1836	 * executes by the cmd ioctl.
1837	 *
1838	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1839	 * command passes. */
1840
1841	/* step 1: make sure trigger sources are trivially valid */
1842
1843	tmp = cmd->start_src;
1844	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1845	if (!cmd->start_src || tmp != cmd->start_src)
1846		err++;
1847
1848	tmp = cmd->scan_begin_src;
1849	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1850	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1851		err++;
1852
1853	tmp = cmd->convert_src;
1854	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1855	if (!cmd->convert_src || tmp != cmd->convert_src)
1856		err++;
1857
1858	tmp = cmd->scan_end_src;
1859	cmd->scan_end_src &= TRIG_COUNT;
1860	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1861		err++;
1862
1863	tmp = cmd->stop_src;
1864	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1865	if (!cmd->stop_src || tmp != cmd->stop_src)
1866		err++;
1867
1868	if (err)
1869		return 1;
1870
1871	/* step 2: make sure trigger sources are unique and mutually
1872	   compatible */
1873
1874	/* note that mutual compatiblity is not an issue here */
1875	if (cmd->scan_begin_src != TRIG_TIMER &&
1876		cmd->scan_begin_src != TRIG_EXT
1877		&& cmd->scan_begin_src != TRIG_FOLLOW)
1878		err++;
1879	if (cmd->convert_src != TRIG_TIMER &&
1880		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1881		err++;
1882	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1883		err++;
1884
1885	if (err)
1886		return 2;
1887
1888	/* step 3: make sure arguments are trivially compatible */
1889
1890	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1891		cmd->start_arg = 0;
1892		err++;
1893	}
1894
1895	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1896		cmd->start_arg = 39;
1897		err++;
1898	}
1899
1900	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1901		cmd->scan_begin_arg = 39;
1902		err++;
1903	}
1904
1905	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1906		cmd->convert_arg = 39;
1907		err++;
1908	}
1909#define MAX_SPEED	200000	/* in nanoseconds */
1910#define MIN_SPEED	2000000000	/* in nanoseconds */
1911
1912	if (cmd->scan_begin_src == TRIG_TIMER) {
1913		if (cmd->scan_begin_arg < MAX_SPEED) {
1914			cmd->scan_begin_arg = MAX_SPEED;
1915			err++;
1916		}
1917		if (cmd->scan_begin_arg > MIN_SPEED) {
1918			cmd->scan_begin_arg = MIN_SPEED;
1919			err++;
1920		}
1921	} else {
1922		/* external trigger */
1923		/* should be level/edge, hi/lo specification here */
1924		/* should specify multiple external triggers */
1925/*     if(cmd->scan_begin_arg>9){ */
1926/*       cmd->scan_begin_arg=9; */
1927/*       err++; */
1928/*     } */
1929	}
1930	if (cmd->convert_src == TRIG_TIMER) {
1931		if (cmd->convert_arg < MAX_SPEED) {
1932			cmd->convert_arg = MAX_SPEED;
1933			err++;
1934		}
1935		if (cmd->convert_arg > MIN_SPEED) {
1936			cmd->convert_arg = MIN_SPEED;
1937			err++;
1938		}
1939	} else {
1940		/* external trigger */
1941		/* see above */
1942/*     if(cmd->convert_arg>9){ */
1943/*       cmd->convert_arg=9; */
1944/*       err++; */
1945/*     } */
1946	}
1947
1948	if (cmd->scan_end_arg != cmd->chanlist_len) {
1949		cmd->scan_end_arg = cmd->chanlist_len;
1950		err++;
1951	}
1952	if (cmd->stop_src == TRIG_COUNT) {
1953		if (cmd->stop_arg > 0x00ffffff) {
1954			cmd->stop_arg = 0x00ffffff;
1955			err++;
1956		}
1957	} else {
1958		/* TRIG_NONE */
1959		if (cmd->stop_arg != 0) {
1960			cmd->stop_arg = 0;
1961			err++;
1962		}
1963	}
1964
1965	if (err)
1966		return 3;
1967
1968	/* step 4: fix up any arguments */
1969
1970	if (cmd->scan_begin_src == TRIG_TIMER) {
1971		tmp = cmd->scan_begin_arg;
1972		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1973			cmd->flags & TRIG_ROUND_MASK);
1974		if (tmp != cmd->scan_begin_arg)
1975			err++;
1976	}
1977	if (cmd->convert_src == TRIG_TIMER) {
1978		tmp = cmd->convert_arg;
1979		s626_ns_to_timer((int *)&cmd->convert_arg,
1980			cmd->flags & TRIG_ROUND_MASK);
1981		if (tmp != cmd->convert_arg)
1982			err++;
1983		if (cmd->scan_begin_src == TRIG_TIMER &&
1984			cmd->scan_begin_arg <
1985			cmd->convert_arg * cmd->scan_end_arg) {
1986			cmd->scan_begin_arg =
1987				cmd->convert_arg * cmd->scan_end_arg;
1988			err++;
1989		}
1990	}
1991
1992	if (err)
1993		return 4;
1994
1995	return 0;
1996}
1997
1998static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1999{
2000	/*  Stop RPS program in case it is currently running. */
2001	MC_DISABLE(P_MC1, MC1_ERPS1);
2002
2003	/* disable master interrupt */
2004	writel(0, devpriv->base_addr + P_IER);
2005
2006	devpriv->ai_cmd_running = 0;
2007
2008	return 0;
2009}
2010
2011/* This function doesn't require a particular form, this is just what
2012 * happens to be used in some of the drivers.  It should convert ns
2013 * nanoseconds to a counter value suitable for programming the device.
2014 * Also, it should adjust ns so that it cooresponds to the actual time
2015 * that the device will use. */
2016static int s626_ns_to_timer(int *nanosec, int round_mode)
2017{
2018	int divider, base;
2019
2020	base = 500;		/* 2MHz internal clock */
2021
2022	switch (round_mode) {
2023	case TRIG_ROUND_NEAREST:
2024	default:
2025		divider = (*nanosec + base / 2) / base;
2026		break;
2027	case TRIG_ROUND_DOWN:
2028		divider = (*nanosec) / base;
2029		break;
2030	case TRIG_ROUND_UP:
2031		divider = (*nanosec + base - 1) / base;
2032		break;
2033	}
2034
2035	*nanosec = base * divider;
2036	return divider - 1;
2037}
2038
2039static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2040	struct comedi_insn *insn, unsigned int *data)
2041{
2042
2043	int i;
2044	uint16_t chan = CR_CHAN(insn->chanspec);
2045	int16_t dacdata;
2046
2047	for (i = 0; i < insn->n; i++) {
2048		dacdata = (int16_t) data[i];
2049		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2050		dacdata -= (0x1fff);
2051
2052		SetDAC(dev, chan, dacdata);
2053	}
2054
2055	return i;
2056}
2057
2058static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2059	struct comedi_insn *insn, unsigned int *data)
2060{
2061	int i;
2062
2063	for (i = 0; i < insn->n; i++)
2064		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2065
2066	return i;
2067}
2068
2069/* *************** DIGITAL I/O FUNCTIONS ***************
2070 * All DIO functions address a group of DIO channels by means of
2071 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2072 * ports A, B and C, respectively.
2073 */
2074
2075static void s626_dio_init(struct comedi_device *dev)
2076{
2077	uint16_t group;
2078	struct comedi_subdevice *s;
2079
2080	/*  Prepare to treat writes to WRCapSel as capture disables. */
2081	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2082
2083	/*  For each group of sixteen channels ... */
2084	for (group = 0; group < S626_DIO_BANKS; group++) {
2085		s = dev->subdevices + 2 + group;
2086		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2087		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2088		/*  captures. */
2089		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2090		/*  default edge */
2091		/*  polarity. */
2092		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2093		/*  to inactive state. */
2094	}
2095	DEBUG("s626_dio_init: DIO initialized \n");
2096}
2097
2098/* DIO devices are slightly special.  Although it is possible to
2099 * implement the insn_read/insn_write interface, it is much more
2100 * useful to applications if you implement the insn_bits interface.
2101 * This allows packed reading/writing of the DIO channels.  The comedi
2102 * core can convert between insn_bits and insn_read/write */
2103
2104static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
2105	struct comedi_insn *insn, unsigned int *data)
2106{
2107
2108	/* Length of data must be 2 (mask and new data, see below) */
2109	if (insn->n == 0)
2110		return 0;
2111
2112	if (insn->n != 2) {
2113		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2114		return -EINVAL;
2115	}
2116
2117	/*
2118	 * The insn data consists of a mask in data[0] and the new data in
2119	 * data[1]. The mask defines which bits we are concerning about.
2120	 * The new data must be anded with the mask.  Each channel
2121	 * corresponds to a bit.
2122	 */
2123	if (data[0]) {
2124		/* Check if requested ports are configured for output */
2125		if ((s->io_bits & data[0]) != data[0])
2126			return -EIO;
2127
2128		s->state &= ~data[0];
2129		s->state |= data[0] & data[1];
2130
2131		/* Write out the new digital output lines */
2132
2133		DEBIwrite(dev, diopriv->WRDOut, s->state);
2134	}
2135	data[1] = DEBIread(dev, diopriv->RDDIn);
2136
2137	return 2;
2138}
2139
2140static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2141	struct comedi_insn *insn, unsigned int *data)
2142{
2143
2144	switch (data[0]) {
2145	case INSN_CONFIG_DIO_QUERY:
2146		data[1] =
2147			(s->io_bits & (1 << CR_CHAN(insn->
2148					chanspec))) ? COMEDI_OUTPUT :
2149			COMEDI_INPUT;
2150		return insn->n;
2151		break;
2152	case COMEDI_INPUT:
2153		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2154		break;
2155	case COMEDI_OUTPUT:
2156		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2157		break;
2158	default:
2159		return -EINVAL;
2160		break;
2161	}
2162	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2163
2164	return 1;
2165}
2166
2167static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2168{
2169	unsigned int group;
2170	unsigned int bitmask;
2171	unsigned int status;
2172
2173	/* select dio bank */
2174	group = chan / 16;
2175	bitmask = 1 << (chan - (16 * group));
2176	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2177		chan - (16 * group), group);
2178
2179	/* set channel to capture positive edge */
2180	status = DEBIread(dev,
2181		((struct dio_private *) (dev->subdevices + 2 +
2182				group)->private)->RDEdgSel);
2183	DEBIwrite(dev,
2184		((struct dio_private *) (dev->subdevices + 2 +
2185				group)->private)->WREdgSel, bitmask | status);
2186
2187	/* enable interrupt on selected channel */
2188	status = DEBIread(dev,
2189		((struct dio_private *) (dev->subdevices + 2 +
2190				group)->private)->RDIntSel);
2191	DEBIwrite(dev,
2192		((struct dio_private *) (dev->subdevices + 2 +
2193				group)->private)->WRIntSel, bitmask | status);
2194
2195	/* enable edge capture write command */
2196	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2197
2198	/* enable edge capture on selected channel */
2199	status = DEBIread(dev,
2200		((struct dio_private *) (dev->subdevices + 2 +
2201				group)->private)->RDCapSel);
2202	DEBIwrite(dev,
2203		((struct dio_private *) (dev->subdevices + 2 +
2204				group)->private)->WRCapSel, bitmask | status);
2205
2206	return 0;
2207}
2208
2209static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2210	unsigned int mask)
2211{
2212	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);
2213
2214	/* disable edge capture write command */
2215	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2216
2217	/* enable edge capture on selected channel */
2218	DEBIwrite(dev,
2219		((struct dio_private *) (dev->subdevices + 2 +
2220				group)->private)->WRCapSel, mask);
2221
2222	return 0;
2223}
2224
2225static int s626_dio_clear_irq(struct comedi_device *dev)
2226{
2227	unsigned int group;
2228
2229	/* disable edge capture write command */
2230	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2231
2232	for (group = 0; group < S626_DIO_BANKS; group++) {
2233		/* clear pending events and interrupt */
2234		DEBIwrite(dev,
2235			((struct dio_private *) (dev->subdevices + 2 +
2236					group)->private)->WRCapSel, 0xffff);
2237	}
2238
2239	return 0;
2240}
2241
2242/* Now this function initializes the value of the counter (data[0])
2243   and set the subdevice. To complete with trigger and interrupt
2244   configuration */
2245static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2246	struct comedi_insn *insn, unsigned int *data)
2247{
2248	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2249		/*  index. */
2250		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2251		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2252		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2253		/* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2254		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2255		(CLKENAB_INDEX << BF_CLKENAB);
2256	/*   uint16_t DisableIntSrc=TRUE; */
2257	/*  uint32_t Preloadvalue;              //Counter initial value */
2258	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2259	uint16_t enab = CLKENAB_ALWAYS;
2260	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2261
2262	DEBUG("s626_enc_insn_config: encoder config\n");
2263
2264	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2265
2266	k->SetMode(dev, k, Setup, TRUE);
2267	Preload(dev, k, *(insn->data));
2268	k->PulseIndex(dev, k);
2269	SetLatchSource(dev, k, valueSrclatch);
2270	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2271
2272	return insn->n;
2273}
2274
2275static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
2276	struct comedi_insn *insn, unsigned int *data)
2277{
2278
2279	int n;
2280	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2281
2282	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2283		CR_CHAN(insn->chanspec));
2284
2285	for (n = 0; n < insn->n; n++)
2286		data[n] = ReadLatch(dev, k);
2287
2288	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2289
2290	return n;
2291}
2292
2293static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
2294	struct comedi_insn *insn, unsigned int *data)
2295{
2296
2297	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2298
2299	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2300		CR_CHAN(insn->chanspec));
2301
2302	/*  Set the preload register */
2303	Preload(dev, k, data[0]);
2304
2305	/*  Software index pulse forces the preload register to load */
2306	/*  into the counter */
2307	k->SetLoadTrig(dev, k, 0);
2308	k->PulseIndex(dev, k);
2309	k->SetLoadTrig(dev, k, 2);
2310
2311	DEBUG("s626_enc_insn_write: End encoder write\n");
2312
2313	return 1;
2314}
2315
2316static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick)
2317{
2318	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2319		/*  index. */
2320		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2321		(CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2322		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2323		(CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2324		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2325		(CLKENAB_INDEX << BF_CLKENAB);
2326	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2327	/*   uint16_t enab=CLKENAB_ALWAYS; */
2328
2329	k->SetMode(dev, k, Setup, FALSE);
2330
2331	/*  Set the preload register */
2332	Preload(dev, k, tick);
2333
2334	/*  Software index pulse forces the preload register to load */
2335	/*  into the counter */
2336	k->SetLoadTrig(dev, k, 0);
2337	k->PulseIndex(dev, k);
2338
2339	/* set reload on counter overflow */
2340	k->SetLoadTrig(dev, k, 1);
2341
2342	/* set interrupt on overflow */
2343	k->SetIntSrc(dev, k, INTSRC_OVER);
2344
2345	SetLatchSource(dev, k, valueSrclatch);
2346	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2347}
2348
2349/* ***********  DAC FUNCTIONS *********** */
2350
2351/*  Slot 0 base settings. */
2352#define VECT0	(XSD2 | RSD3 | SIB_A2)
2353/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2354
2355/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2356static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2357
2358/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2359static uint8_t trimadrs[] =
2360	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2361
2362static void LoadTrimDACs(struct comedi_device *dev)
2363{
2364	register uint8_t i;
2365
2366	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2367	for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2368		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2369}
2370
2371static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2372	uint8_t DacData)
2373{
2374	uint32_t chan;
2375
2376	/*  Save the new setpoint in case the application needs to read it back later. */
2377	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2378
2379	/*  Map logical channel number to physical channel number. */
2380	chan = (uint32_t) trimchan[LogicalChan];
2381
2382	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2383	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2384	 * can be detected.
2385	 */
2386
2387	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2388	/* Slot 2: Send high uint8_t to target TrimDac. */
2389	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2390	/* Slot 3: Send low uint8_t to target TrimDac. */
2391	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2392	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2393	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2394	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2395
2396	/* Construct and transmit target DAC's serial packet:
2397	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2398	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2399	 * WORD value (that writes a channel 0 NOP command to a non-existent
2400	 * main DAC channel) that serves to keep the clock running after the
2401	 * packet has been sent to the target DAC.
2402	 */
2403
2404	/*  Address the DAC channel within the trimdac device. */
2405	SendDAC(dev, ((uint32_t) chan << 8)
2406		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2407}
2408
2409/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2410/*  Read uint8_t from EEPROM. */
2411
2412static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2413{
2414	uint8_t rtnval;
2415
2416	/*  Send EEPROM target address. */
2417	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2418			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2419			| I2C_B1(I2C_ATTRSTOP, addr)
2420			 /* Byte1 = EEPROM internal target address. */
2421			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
2422		/*  Abort function and declare error if handshake failed. */
2423		DEBUG("I2Cread: error handshake I2Cread  a\n");
2424		return 0;
2425	}
2426	/*  Execute EEPROM read. */
2427	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	/*  Byte2 = I2C */
2428			/*  command: read */
2429			/*  from I2C EEPROM */
2430			/*  device. */
2431			| I2C_B1(I2C_ATTRSTOP, 0)	/*  Byte1 receives */
2432			/*  uint8_t from */
2433			/*  EEPROM. */
2434			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */
2435
2436		/*  Abort function and declare error if handshake failed. */
2437		DEBUG("I2Cread: error handshake I2Cread b\n");
2438		return 0;
2439	}
2440	/*  Return copy of EEPROM value. */
2441	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2442	return rtnval;
2443}
2444
2445static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2446{
2447	/*  Write I2C command to I2C Transfer Control shadow register. */
2448	WR7146(P_I2CCTRL, val);
2449
2450	/*  Upload I2C shadow registers into working registers and wait for */
2451	/*  upload confirmation. */
2452
2453	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2454	while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2455		;
2456
2457	/*  Wait until I2C bus transfer is finished or an error occurs. */
2458	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2459		;
2460
2461	/*  Return non-zero if I2C error occured. */
2462	return RR7146(P_I2CCTRL) & I2C_ERR;
2463
2464}
2465
2466/*  Private helper function: Write setpoint to an application DAC channel. */
2467
2468static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2469{
2470	register uint16_t signmask;
2471	register uint32_t WSImage;
2472
2473	/*  Adjust DAC data polarity and set up Polarity Control Register */
2474	/*  image. */
2475	signmask = 1 << chan;
2476	if (dacdata < 0) {
2477		dacdata = -dacdata;
2478		devpriv->Dacpol |= signmask;
2479	} else
2480		devpriv->Dacpol &= ~signmask;
2481
2482	/*  Limit DAC setpoint value to valid range. */
2483	if ((uint16_t) dacdata > 0x1FFF)
2484		dacdata = 0x1FFF;
2485
2486	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2487	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2488	 * data to a non-existent TrimDac channel just to keep the clock
2489	 * running after sending data to the target DAC.  This is necessary
2490	 * to eliminate the clock glitch that would otherwise occur at the
2491	 * end of the target DAC's serial data stream.  When the sequence
2492	 * restarts at V0 (after executing V5), the gate array automatically
2493	 * disables gating for the DAC clock and all DAC chip selects.
2494	 */
2495
2496	WSImage = (chan & 2) ? WS1 : WS2;
2497	/* Choose DAC chip select to be asserted. */
2498	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2499	/* Slot 2: Transmit high data byte to target DAC. */
2500	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2501	/* Slot 3: Transmit low data byte to target DAC. */
2502	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2503	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2504	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2505	/* Slot 5: running after writing target DAC's low data byte. */
2506
2507	/*  Construct and transmit target DAC's serial packet:
2508	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2509	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2510	 * to a  non-existent TrimDac channel) that serves to keep the clock
2511	 * running after the packet has been sent to the target DAC.
2512	 */
2513	SendDAC(dev, 0x0F000000
2514		/* Continue clock after target DAC data (write to non-existent trimdac). */
2515		| 0x00004000
2516		/* Address the two main dual-DAC devices (TSL's chip select enables
2517		 * target device). */
2518		| ((uint32_t) (chan & 1) << 15)
2519		/*  Address the DAC channel within the  device. */
2520		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2521
2522}
2523
2524/* Private helper function: Transmit serial data to DAC via Audio
2525 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2526 * Dacpol contains valid target image.
2527 */
2528
2529static void SendDAC(struct comedi_device *dev, uint32_t val)
2530{
2531
2532	/* START THE SERIAL CLOCK RUNNING ------------- */
2533
2534	/* Assert DAC polarity control and enable gating of DAC serial clock
2535	 * and audio bit stream signals.  At this point in time we must be
2536	 * assured of being in time slot 0.  If we are not in slot 0, the
2537	 * serial clock and audio stream signals will be disabled; this is
2538	 * because the following DEBIwrite statement (which enables signals
2539	 * to be passed through the gate array) would execute before the
2540	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2541	 * causing the signals to be inactive during the DAC write.
2542	 */
2543	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2544
2545	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2546
2547	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2548
2549	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2550	*devpriv->pDacWBuf = val;
2551
2552	/* enab the output DMA transfer.  This will cause the DMAC to copy
2553	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2554	 * then immediately terminate because the protection address is
2555	 * reached upon transfer of the first DWORD value.
2556	 */
2557	MC_ENABLE(P_MC1, MC1_A2OUT);
2558
2559	/*  While the DMA transfer is executing ... */
2560
2561	/* Reset Audio2 output FIFO's underflow flag (along with any other
2562	 * FIFO underflow/overflow flags).  When set, this flag will
2563	 * indicate that we have emerged from slot 0.
2564	 */
2565	WR7146(P_ISR, ISR_AFOU);
2566
2567	/* Wait for the DMA transfer to finish so that there will be data
2568	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2569	 * from the FIFO to the output buffer register.  We test for DMA
2570	 * Done by polling the DMAC enable flag; this flag is automatically
2571	 * cleared when the transfer has finished.
2572	 */
2573	while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2574		;
2575
2576	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2577
2578	/* FIFO data is now available, so we enable execution of time slots
2579	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2580	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2581	 * detection.
2582	 */
2583	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2584
2585	/* Wait for slot 1 to execute to ensure that the Packet will be
2586	 * transmitted.  This is detected by polling the Audio2 output FIFO
2587	 * underflow flag, which will be set when slot 1 execution has
2588	 * finished transferring the DAC's data DWORD from the output FIFO
2589	 * to the output buffer register.
2590	 */
2591	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2592		;
2593
2594	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2595	 * back to slot 0 after executing the EOS in slot 5.  Also,
2596	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2597	 * stored in the last byte to be shifted out of the FIFO's DWORD
2598	 * buffer register.
2599	 */
2600	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2601
2602	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2603
2604	/* Wait for the TSL to finish executing all time slots before
2605	 * exiting this function.  We must do this so that the next DAC
2606	 * write doesn't start, thereby enabling clock/chip select signals:
2607	 *
2608	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2609	 *    the clock/cs signal gating and traps slot // list execution.
2610	 *    we have not yet finished slot 5 then the clock/cs signals are
2611	 *    still gated and we have not finished transmitting the stream.
2612	 *
2613	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2614	 *    this case, the slot sequence is currently repeating, but with
2615	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2616	 *    execution before setting up the next DAC setpoint DMA transfer
2617	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2618	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2619	 *    the TSL has not yet finished executing slot 5 ...
2620	 */
2621	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2622		/* The trap was set on time and we are still executing somewhere
2623		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2624		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2625		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2626		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2627		 */
2628		 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2629			;
2630	}
2631	/* Either (1) we were too late setting the slot 0 trap; the TSL
2632	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2633	 * or (2) we were not late and execution is now trapped at slot 0.
2634	 * In either case, we must now change slot 0 so that it will store
2635	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2636	 * In order to do this, we reprogram slot 0 so that it will shift in
2637	 * SD3, which is driven only by a pull-up resistor.
2638	 */
2639	SETVECT(0, RSD3 | SIB_A2 | EOS);
2640
2641	/* Wait for slot 0 to execute, at which time the TSL is setup for
2642	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2643	 * from 0x00 to 0xFF.
2644	 */
2645	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2646		;
2647}
2648
2649static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2650{
2651	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2652	/*  MISC2 register. */
2653	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2654	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2655}
2656
2657/*  Initialize the DEBI interface for all transfers. */
2658
2659static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2660{
2661	uint16_t retval;
2662
2663	/*  Set up DEBI control register value in shadow RAM. */
2664	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2665
2666	/*  Execute the DEBI transfer. */
2667	DEBItransfer(dev);
2668
2669	/*  Fetch target register value. */
2670	retval = (uint16_t) RR7146(P_DEBIAD);
2671
2672	/*  Return register value. */
2673	return retval;
2674}
2675
2676/*  Execute a DEBI transfer.  This must be called from within a */
2677/*  critical section. */
2678static void DEBItransfer(struct comedi_device *dev)
2679{
2680	/*  Initiate upload of shadow RAM to DEBI control register. */
2681	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2682
2683	/*  Wait for completion of upload from shadow RAM to DEBI control */
2684	/*  register. */
2685	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2686		;
2687
2688	/*  Wait until DEBI transfer is done. */
2689	while (RR7146(P_PSR) & PSR_DEBI_S)
2690		;
2691}
2692
2693/*  Write a value to a gate array register. */
2694static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2695{
2696
2697	/*  Set up DEBI control register value in shadow RAM. */
2698	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2699	WR7146(P_DEBIAD, wdata);
2700
2701	/*  Execute the DEBI transfer. */
2702	DEBItransfer(dev);
2703}
2704
2705/* Replace the specified bits in a gate array register.  Imports: mask
2706 * specifies bits that are to be preserved, wdata is new value to be
2707 * or'd with the masked original.
2708 */
2709static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2710	uint16_t wdata)
2711{
2712
2713	/*  Copy target gate array register into P_DEBIAD register. */
2714	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2715	/* Set up DEBI control reg value in shadow RAM. */
2716	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2717
2718	/*  Write back the modified image. */
2719	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2720	/* Set up DEBI control reg value in shadow  RAM. */
2721
2722	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2723	/* Modify the register image. */
2724	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2725}
2726
2727static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize)
2728{
2729	void *vbptr;
2730	dma_addr_t vpptr;
2731
2732	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2733	if (pdma == NULL)
2734		return;
2735	/* find the matching allocation from the board struct */
2736
2737	vbptr = pdma->LogicalBase;
2738	vpptr = pdma->PhysicalBase;
2739	if (vbptr) {
2740		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2741		pdma->LogicalBase = 0;
2742		pdma->PhysicalBase = 0;
2743
2744		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2745			vbptr, bsize, (uint32_t) vpptr);
2746	}
2747}
2748
2749/* ******  COUNTER FUNCTIONS  ******* */
2750/* All counter functions address a specific counter by means of the
2751 * "Counter" argument, which is a logical counter number.  The Counter
2752 * argument may have any of the following legal values: 0=0A, 1=1A,
2753 * 2=2A, 3=0B, 4=1B, 5=2B.
2754 */
2755
2756/* Forward declarations for functions that are common to both A and B counters: */
2757
2758/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2759
2760/*  Read a counter's output latch. */
2761
2762static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2763{
2764	register uint32_t value;
2765	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2766
2767	/*  Latch counts and fetch LSW of latched counts value. */
2768	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2769
2770	/*  Fetch MSW of latched counts and combine with LSW. */
2771	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2772
2773	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2774
2775	/*  Return latched counts. */
2776	return value;
2777}
2778
2779/*  Reset a counter's index and overflow event capture flags. */
2780
2781static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2782{
2783	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2784		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2785}
2786
2787static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2788{
2789	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2790		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2791}
2792
2793/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2794/*  for both A and B counters. */
2795
2796static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2797{
2798	register uint16_t cra;
2799	register uint16_t crb;
2800	register uint16_t setup;
2801
2802	/*  Fetch CRA and CRB register images. */
2803	cra = DEBIread(dev, k->MyCRA);
2804	crb = DEBIread(dev, k->MyCRB);
2805
2806	/*  Populate the standardized counter setup bit fields.  Note: */
2807	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2808	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2809		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2810		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2811		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2812		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2813		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2814
2815	/*  Adjust mode-dependent parameters. */
2816	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2817		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2818			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2819			| (MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2820
2821	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2822		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2823			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2824			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2825				(MULT_X1 << STDBIT_CLKMULT) :
2826				((cra >> (CRABIT_CLKMULT_A -
2827							STDBIT_CLKMULT)) &
2828					STDMSK_CLKMULT)));
2829
2830	/*  Return adjusted counter setup. */
2831	return setup;
2832}
2833
2834static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2835{
2836	register uint16_t cra;
2837	register uint16_t crb;
2838	register uint16_t setup;
2839
2840	/*  Fetch CRA and CRB register images. */
2841	cra = DEBIread(dev, k->MyCRA);
2842	crb = DEBIread(dev, k->MyCRB);
2843
2844	/*  Populate the standardized counter setup bit fields.  Note: */
2845	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2846	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2847		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2848		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2849		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2850		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2851		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2852
2853	/*  Adjust mode-dependent parameters. */
2854	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2855		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2856			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2857			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2858
2859	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2860		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2861			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2862			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2863
2864	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2865		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2866			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2867			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2868
2869	/*  Return adjusted counter setup. */
2870	return setup;
2871}
2872
2873/*
2874 * Set the operating mode for the specified counter.  The setup
2875 * parameter is treated as a COUNTER_SETUP data type.  The following
2876 * parameters are programmable (all other parms are ignored): ClkMult,
2877 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2878 */
2879
2880static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2881	uint16_t DisableIntSrc)
2882{
2883	register uint16_t cra;
2884	register uint16_t crb;
2885	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2886
2887	/*  Initialize CRA and CRB images. */
2888	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
2889		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2890
2891	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
2892		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
2893
2894	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2895	if (!DisableIntSrc)
2896		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2897				CRABIT_INTSRC_A));
2898
2899	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2900	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2901	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
2902		/*  (Extender valid only for B counters). */
2903
2904	case CLKSRC_TIMER:	/*  Timer Mode: */
2905		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
2906			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
2907			| (1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
2908			| (MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
2909		break;
2910
2911	default:		/*  Counter Mode: */
2912		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2913			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
2914			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
2915				(MULT_X1 << CRABIT_CLKMULT_A) :
2916				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2917						STDBIT_CLKMULT))));
2918	}
2919
2920	/*  Force positive index polarity if IndxSrc is software-driven only, */
2921	/*  otherwise pass it through. */
2922	if (~setup & STDMSK_INDXSRC)
2923		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2924				STDBIT_INDXPOL));
2925
2926	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2927	/*  enable mask to indicate the counter interrupt is disabled. */
2928	if (DisableIntSrc)
2929		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2930
2931	/*  While retaining CounterB and LatchSrc configurations, program the */
2932	/*  new counter operating mode. */
2933	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2934	DEBIreplace(dev, k->MyCRB,
2935		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2936}
2937
2938static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2939	uint16_t DisableIntSrc)
2940{
2941	register uint16_t cra;
2942	register uint16_t crb;
2943	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2944
2945	/*  Initialize CRA and CRB images. */
2946	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
2947
2948	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
2949		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
2950		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
2951
2952	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2953	if (!DisableIntSrc)
2954		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2955				CRBBIT_INTSRC_B));
2956
2957	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2958	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2959	case CLKSRC_TIMER:	/*  Timer Mode: */
2960		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
2961			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
2962		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
2963			| (MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
2964		break;
2965
2966	case CLKSRC_EXTENDER:	/*  Extender Mode: */
2967		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
2968			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
2969		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
2970			| (MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
2971		break;
2972
2973	default:		/*  Counter Mode: */
2974		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2975		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
2976			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
2977				(MULT_X1 << CRBBIT_CLKMULT_B) :
2978				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2979						STDBIT_CLKMULT))));
2980	}
2981
2982	/*  Force positive index polarity if IndxSrc is software-driven only, */
2983	/*  otherwise pass it through. */
2984	if (~setup & STDMSK_INDXSRC)
2985		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2986				CRBBIT_INDXPOL_B));
2987
2988	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2989	/*  enable mask to indicate the counter interrupt is disabled. */
2990	if (DisableIntSrc)
2991		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2992
2993	/*  While retaining CounterA and LatchSrc configurations, program the */
2994	/*  new counter operating mode. */
2995	DEBIreplace(dev, k->MyCRA,
2996		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2997	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2998}
2999
3000/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
3001
3002static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3003{
3004	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3005	DEBIreplace(dev, k->MyCRB,
3006		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3007		(uint16_t) (enab << CRBBIT_CLKENAB_A));
3008}
3009
3010static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3011{
3012	DEBIreplace(dev, k->MyCRB,
3013		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3014		(uint16_t) (enab << CRBBIT_CLKENAB_B));
3015}
3016
3017static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3018{
3019	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3020}
3021
3022static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3023{
3024	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3025}
3026
3027/* Return/set a counter pair's latch trigger source.  0: On read
3028 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3029 * latches B.
3030 */
3031
3032static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, uint16_t value)
3033{
3034	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3035	DEBIreplace(dev, k->MyCRB,
3036		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3037		(uint16_t) (value << CRBBIT_LATCHSRC));
3038
3039	DEBUG("SetLatchSource: SetLatchSource exit \n");
3040}
3041
3042/*
3043 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3044 * {
3045 * 	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3046 * }
3047 */
3048
3049/*
3050 * Return/set the event that will trigger transfer of the preload
3051 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3052 * 2=OverflowA (B counters only), 3=disabled.
3053 */
3054
3055static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3056{
3057	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3058		(uint16_t) (Trig << CRABIT_LOADSRC_A));
3059}
3060
3061static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3062{
3063	DEBIreplace(dev, k->MyCRB,
3064		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3065		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
3066}
3067
3068static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3069{
3070	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3071}
3072
3073static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3074{
3075	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3076}
3077
3078/* Return/set counter interrupt source and clear any captured
3079 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3080 * 2=IndexOnly, 3=IndexAndOverflow.
3081 */
3082
3083static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3084	uint16_t IntSource)
3085{
3086	/*  Reset any pending counter overflow or index captures. */
3087	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3088		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3089
3090	/*  Program counter interrupt source. */
3091	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3092		(uint16_t) (IntSource << CRABIT_INTSRC_A));
3093
3094	/*  Update MISC2 interrupt enable mask. */
3095	devpriv->CounterIntEnabs =
3096		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3097		MyEventBits[IntSource];
3098}
3099
3100static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3101	uint16_t IntSource)
3102{
3103	uint16_t crb;
3104
3105	/*  Cache writeable CRB register image. */
3106	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3107
3108	/*  Reset any pending counter overflow or index captures. */
3109	DEBIwrite(dev, k->MyCRB,
3110		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3111
3112	/*  Program counter interrupt source. */
3113	DEBIwrite(dev, k->MyCRB,
3114		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3115				CRBBIT_INTSRC_B)));
3116
3117	/*  Update MISC2 interrupt enable mask. */
3118	devpriv->CounterIntEnabs =
3119		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3120		MyEventBits[IntSource];
3121}
3122
3123static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3124{
3125	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3126}
3127
3128static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3129{
3130	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3131}
3132
3133/*  Return/set the clock multiplier. */
3134
3135/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3136/* { */
3137/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3138/* } */
3139
3140/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k )  */
3141/* { */
3142/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3143/* } */
3144
3145/* Return/set the clock polarity. */
3146
3147/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3148/* { */
3149/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3150/* } */
3151
3152/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k )  */
3153/* { */
3154/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3155/* } */
3156
3157/* Return/set the clock source.  */
3158
3159/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3160/* { */
3161/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3162/* } */
3163
3164/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k )  */
3165/* { */
3166/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3167/* } */
3168
3169/* Return/set the index polarity. */
3170
3171/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3172/* { */
3173/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3174/* } */
3175
3176/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k )  */
3177/* { */
3178/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3179/* } */
3180
3181/*  Return/set the index source. */
3182
3183/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3184/* { */
3185/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3186/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3187/* } */
3188
3189/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k )  */
3190/* { */
3191/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3192/* } */
3193
3194/*  Generate an index pulse. */
3195
3196static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3197{
3198	register uint16_t cra;
3199
3200	DEBUG("PulseIndex_A: pulse index enter\n");
3201
3202	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3203	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3204	DEBUG("PulseIndex_A: pulse index step1\n");
3205	DEBIwrite(dev, k->MyCRA, cra);
3206}
3207
3208static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3209{
3210	register uint16_t crb;
3211
3212	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3213	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3214	DEBIwrite(dev, k->MyCRB, crb);
3215}
3216
3217/*  Write value into counter preload register. */
3218
3219static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value)
3220{
3221	DEBUG("Preload: preload enter\n");
3222	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3223	DEBUG("Preload: preload step 1\n");
3224	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3225		(uint16_t) (value >> 16));
3226}
3227
3228static void CountersInit(struct comedi_device *dev)
3229{
3230	int chan;
3231	struct enc_private *k;
3232	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3233		/*  index. */
3234		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3235		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3236		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3237		(CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3238		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3239		(CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3240
3241	/*  Disable all counter interrupts and clear any captured counter events. */
3242	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3243		k = &encpriv[chan];
3244		k->SetMode(dev, k, Setup, TRUE);
3245		k->SetIntSrc(dev, k, 0);
3246		k->ResetCapFlags(dev, k);
3247		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3248	}
3249	DEBUG("CountersInit: counters initialized \n");
3250
3251}
3252