s626.c revision 828684f9a6e096f9150bad523c43b75d74b9badd
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63                            //during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66                                                        //to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/interrupt.h>
72#include <linux/kernel.h>
73#include <linux/types.h>
74
75#include "../comedidev.h"
76
77#include "comedi_pci.h"
78
79#include "comedi_fc.h"
80#include "s626.h"
81
82MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
83MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
84MODULE_LICENSE("GPL");
85
86struct s626_board {
87	const char *name;
88	int ai_chans;
89	int ai_bits;
90	int ao_chans;
91	int ao_bits;
92	int dio_chans;
93	int dio_banks;
94	int enc_chans;
95};
96
97static const struct s626_board s626_boards[] = {
98	{
99	 .name = "s626",
100	 .ai_chans = S626_ADC_CHANNELS,
101	 .ai_bits = 14,
102	 .ao_chans = S626_DAC_CHANNELS,
103	 .ao_bits = 13,
104	 .dio_chans = S626_DIO_CHANNELS,
105	 .dio_banks = S626_DIO_BANKS,
106	 .enc_chans = S626_ENCODER_CHANNELS,
107	 }
108};
109
110#define thisboard ((const struct s626_board *)dev->board_ptr)
111#define PCI_VENDOR_ID_S626 0x1131
112#define PCI_DEVICE_ID_S626 0x7146
113
114/*
115 * For devices with vendor:device id == 0x1131:0x7146 you must specify
116 * also subvendor:subdevice ids, because otherwise it will conflict with
117 * Philips SAA7146 media/dvb based cards.
118 */
119static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
120	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, 0x6000, 0x0272, 0, 0, 0},
121	{0}
122};
123
124MODULE_DEVICE_TABLE(pci, s626_pci_table);
125
126static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
127static int s626_detach(struct comedi_device *dev);
128
129static struct comedi_driver driver_s626 = {
130	.driver_name = "s626",
131	.module = THIS_MODULE,
132	.attach = s626_attach,
133	.detach = s626_detach,
134};
135
136struct s626_private {
137	struct pci_dev *pdev;
138	void *base_addr;
139	int got_regions;
140	short allocatedBuf;
141	uint8_t ai_cmd_running;	/*  ai_cmd is running */
142	uint8_t ai_continous;	/*  continous aquisition */
143	int ai_sample_count;	/*  number of samples to aquire */
144	unsigned int ai_sample_timer;
145	/*  time between samples in  units of the timer */
146	int ai_convert_count;	/*  conversion counter */
147	unsigned int ai_convert_timer;
148	/*  time between conversion in  units of the timer */
149	uint16_t CounterIntEnabs;
150	/* Counter interrupt enable  mask for MISC2 register. */
151	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
152	struct bufferDMA RPSBuf;	/* DMA buffer used to hold ADC (RPS1) program. */
153	struct bufferDMA ANABuf;
154	/* DMA buffer used to receive ADC data and hold DAC data. */
155	uint32_t *pDacWBuf;
156	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
157	uint16_t Dacpol;	/* Image of DAC polarity register. */
158	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
159	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
160	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
161	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
162	uint32_t I2CAdrs;
163	/* I2C device address for onboard EEPROM (board rev dependent). */
164	/*   short         I2Cards; */
165	unsigned int ao_readback[S626_DAC_CHANNELS];
166};
167
168struct dio_private {
169	uint16_t RDDIn;
170	uint16_t WRDOut;
171	uint16_t RDEdgSel;
172	uint16_t WREdgSel;
173	uint16_t RDCapSel;
174	uint16_t WRCapSel;
175	uint16_t RDCapFlg;
176	uint16_t RDIntSel;
177	uint16_t WRIntSel;
178};
179
180static struct dio_private dio_private_A = {
181	.RDDIn = LP_RDDINA,
182	.WRDOut = LP_WRDOUTA,
183	.RDEdgSel = LP_RDEDGSELA,
184	.WREdgSel = LP_WREDGSELA,
185	.RDCapSel = LP_RDCAPSELA,
186	.WRCapSel = LP_WRCAPSELA,
187	.RDCapFlg = LP_RDCAPFLGA,
188	.RDIntSel = LP_RDINTSELA,
189	.WRIntSel = LP_WRINTSELA,
190};
191
192static struct dio_private dio_private_B = {
193	.RDDIn = LP_RDDINB,
194	.WRDOut = LP_WRDOUTB,
195	.RDEdgSel = LP_RDEDGSELB,
196	.WREdgSel = LP_WREDGSELB,
197	.RDCapSel = LP_RDCAPSELB,
198	.WRCapSel = LP_WRCAPSELB,
199	.RDCapFlg = LP_RDCAPFLGB,
200	.RDIntSel = LP_RDINTSELB,
201	.WRIntSel = LP_WRINTSELB,
202};
203
204static struct dio_private dio_private_C = {
205	.RDDIn = LP_RDDINC,
206	.WRDOut = LP_WRDOUTC,
207	.RDEdgSel = LP_RDEDGSELC,
208	.WREdgSel = LP_WREDGSELC,
209	.RDCapSel = LP_RDCAPSELC,
210	.WRCapSel = LP_WRCAPSELC,
211	.RDCapFlg = LP_RDCAPFLGC,
212	.RDIntSel = LP_RDINTSELC,
213	.WRIntSel = LP_WRINTSELC,
214};
215
216/* to group dio devices (48 bits mask and data are not allowed ???)
217static struct dio_private *dio_private_word[]={
218  &dio_private_A,
219  &dio_private_B,
220  &dio_private_C,
221};
222*/
223
224#define devpriv ((struct s626_private *)dev->private)
225#define diopriv ((struct dio_private *)s->private)
226
227COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
228
229/* ioctl routines */
230static int s626_ai_insn_config(struct comedi_device *dev,
231			       struct comedi_subdevice *s,
232			       struct comedi_insn *insn, unsigned int *data);
233/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
234static int s626_ai_insn_read(struct comedi_device *dev,
235			     struct comedi_subdevice *s,
236			     struct comedi_insn *insn, unsigned int *data);
237static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
238static int s626_ai_cmdtest(struct comedi_device *dev,
239			   struct comedi_subdevice *s, struct comedi_cmd *cmd);
240static int s626_ai_cancel(struct comedi_device *dev,
241			  struct comedi_subdevice *s);
242static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
243			 struct comedi_insn *insn, unsigned int *data);
244static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
245			 struct comedi_insn *insn, unsigned int *data);
246static int s626_dio_insn_bits(struct comedi_device *dev,
247			      struct comedi_subdevice *s,
248			      struct comedi_insn *insn, unsigned int *data);
249static int s626_dio_insn_config(struct comedi_device *dev,
250				struct comedi_subdevice *s,
251				struct comedi_insn *insn, unsigned int *data);
252static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
253static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
254			      unsigned int mask);
255static int s626_dio_clear_irq(struct comedi_device *dev);
256static int s626_enc_insn_config(struct comedi_device *dev,
257				struct comedi_subdevice *s,
258				struct comedi_insn *insn, unsigned int *data);
259static int s626_enc_insn_read(struct comedi_device *dev,
260			      struct comedi_subdevice *s,
261			      struct comedi_insn *insn, unsigned int *data);
262static int s626_enc_insn_write(struct comedi_device *dev,
263			       struct comedi_subdevice *s,
264			       struct comedi_insn *insn, unsigned int *data);
265static int s626_ns_to_timer(int *nanosec, int round_mode);
266static int s626_ai_load_polllist(uint8_t * ppl, struct comedi_cmd *cmd);
267static int s626_ai_inttrig(struct comedi_device *dev,
268			   struct comedi_subdevice *s, unsigned int trignum);
269static irqreturn_t s626_irq_handler(int irq, void *d);
270static unsigned int s626_ai_reg_to_uint(int data);
271/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
272
273/* end ioctl routines */
274
275/* internal routines */
276static void s626_dio_init(struct comedi_device *dev);
277static void ResetADC(struct comedi_device *dev, uint8_t * ppl);
278static void LoadTrimDACs(struct comedi_device *dev);
279static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
280			 uint8_t DacData);
281static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
282static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
283static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
284static void SendDAC(struct comedi_device *dev, uint32_t val);
285static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
286static void DEBItransfer(struct comedi_device *dev);
287static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
288static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
289static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
290			uint16_t wdata);
291static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
292		      size_t bsize);
293
294/*  COUNTER OBJECT ------------------------------------------------ */
295struct enc_private {
296	/*  Pointers to functions that differ for A and B counters: */
297	uint16_t(*GetEnable) (struct comedi_device * dev, struct enc_private *);	/* Return clock enable. */
298	uint16_t(*GetIntSrc) (struct comedi_device * dev, struct enc_private *);	/* Return interrupt source. */
299	uint16_t(*GetLoadTrig) (struct comedi_device * dev, struct enc_private *);	/* Return preload trigger source. */
300	uint16_t(*GetMode) (struct comedi_device * dev, struct enc_private *);	/* Return standardized operating mode. */
301	void (*PulseIndex) (struct comedi_device * dev, struct enc_private *);	/* Generate soft index strobe. */
302	void (*SetEnable) (struct comedi_device * dev, struct enc_private *, uint16_t enab);	/* Program clock enable. */
303	void (*SetIntSrc) (struct comedi_device * dev, struct enc_private *, uint16_t IntSource);	/* Program interrupt source. */
304	void (*SetLoadTrig) (struct comedi_device * dev, struct enc_private *, uint16_t Trig);	/* Program preload trigger source. */
305	void (*SetMode) (struct comedi_device * dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
306	void (*ResetCapFlags) (struct comedi_device * dev, struct enc_private *);	/* Reset event capture flags. */
307
308	uint16_t MyCRA;		/*    Address of CRA register. */
309	uint16_t MyCRB;		/*    Address of CRB register. */
310	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
311	/*    register. */
312	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
313};
314
315#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
316
317/* counters routines */
318static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
319			    int tick);
320static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
321static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
322static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
323static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
324static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
325static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
326		      uint16_t Setup, uint16_t DisableIntSrc);
327static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
328		      uint16_t Setup, uint16_t DisableIntSrc);
329static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
330			uint16_t enab);
331static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
332			uint16_t enab);
333static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
334static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
335static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
336			   uint16_t value);
337/* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
338static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
339			  uint16_t Trig);
340static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
341			  uint16_t Trig);
342static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
343static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
344static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
345			uint16_t IntSource);
346static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
347			uint16_t IntSource);
348static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
349static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
350/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
351/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
352/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
353/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
354/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
355/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k );  */
356/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
357/* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k );  */
358static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
359static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
360static void Preload(struct comedi_device *dev, struct enc_private *k,
361		    uint32_t value);
362static void CountersInit(struct comedi_device *dev);
363/* end internal routines */
364
365/*  Counter objects constructor. */
366
367/*  Counter overflow/index event flag masks for RDMISC2. */
368#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
369#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
370#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
371
372/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
373/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
374
375/* struct enc_private; */
376static struct enc_private enc_private_data[] = {
377	{
378	 .GetEnable = GetEnable_A,
379	 .GetIntSrc = GetIntSrc_A,
380	 .GetLoadTrig = GetLoadTrig_A,
381	 .GetMode = GetMode_A,
382	 .PulseIndex = PulseIndex_A,
383	 .SetEnable = SetEnable_A,
384	 .SetIntSrc = SetIntSrc_A,
385	 .SetLoadTrig = SetLoadTrig_A,
386	 .SetMode = SetMode_A,
387	 .ResetCapFlags = ResetCapFlags_A,
388	 .MyCRA = LP_CR0A,
389	 .MyCRB = LP_CR0B,
390	 .MyLatchLsw = LP_CNTR0ALSW,
391	 .MyEventBits = EVBITS(0),
392	 },
393	{
394	 .GetEnable = GetEnable_A,
395	 .GetIntSrc = GetIntSrc_A,
396	 .GetLoadTrig = GetLoadTrig_A,
397	 .GetMode = GetMode_A,
398	 .PulseIndex = PulseIndex_A,
399	 .SetEnable = SetEnable_A,
400	 .SetIntSrc = SetIntSrc_A,
401	 .SetLoadTrig = SetLoadTrig_A,
402	 .SetMode = SetMode_A,
403	 .ResetCapFlags = ResetCapFlags_A,
404	 .MyCRA = LP_CR1A,
405	 .MyCRB = LP_CR1B,
406	 .MyLatchLsw = LP_CNTR1ALSW,
407	 .MyEventBits = EVBITS(1),
408	 },
409	{
410	 .GetEnable = GetEnable_A,
411	 .GetIntSrc = GetIntSrc_A,
412	 .GetLoadTrig = GetLoadTrig_A,
413	 .GetMode = GetMode_A,
414	 .PulseIndex = PulseIndex_A,
415	 .SetEnable = SetEnable_A,
416	 .SetIntSrc = SetIntSrc_A,
417	 .SetLoadTrig = SetLoadTrig_A,
418	 .SetMode = SetMode_A,
419	 .ResetCapFlags = ResetCapFlags_A,
420	 .MyCRA = LP_CR2A,
421	 .MyCRB = LP_CR2B,
422	 .MyLatchLsw = LP_CNTR2ALSW,
423	 .MyEventBits = EVBITS(2),
424	 },
425	{
426	 .GetEnable = GetEnable_B,
427	 .GetIntSrc = GetIntSrc_B,
428	 .GetLoadTrig = GetLoadTrig_B,
429	 .GetMode = GetMode_B,
430	 .PulseIndex = PulseIndex_B,
431	 .SetEnable = SetEnable_B,
432	 .SetIntSrc = SetIntSrc_B,
433	 .SetLoadTrig = SetLoadTrig_B,
434	 .SetMode = SetMode_B,
435	 .ResetCapFlags = ResetCapFlags_B,
436	 .MyCRA = LP_CR0A,
437	 .MyCRB = LP_CR0B,
438	 .MyLatchLsw = LP_CNTR0BLSW,
439	 .MyEventBits = EVBITS(3),
440	 },
441	{
442	 .GetEnable = GetEnable_B,
443	 .GetIntSrc = GetIntSrc_B,
444	 .GetLoadTrig = GetLoadTrig_B,
445	 .GetMode = GetMode_B,
446	 .PulseIndex = PulseIndex_B,
447	 .SetEnable = SetEnable_B,
448	 .SetIntSrc = SetIntSrc_B,
449	 .SetLoadTrig = SetLoadTrig_B,
450	 .SetMode = SetMode_B,
451	 .ResetCapFlags = ResetCapFlags_B,
452	 .MyCRA = LP_CR1A,
453	 .MyCRB = LP_CR1B,
454	 .MyLatchLsw = LP_CNTR1BLSW,
455	 .MyEventBits = EVBITS(4),
456	 },
457	{
458	 .GetEnable = GetEnable_B,
459	 .GetIntSrc = GetIntSrc_B,
460	 .GetLoadTrig = GetLoadTrig_B,
461	 .GetMode = GetMode_B,
462	 .PulseIndex = PulseIndex_B,
463	 .SetEnable = SetEnable_B,
464	 .SetIntSrc = SetIntSrc_B,
465	 .SetLoadTrig = SetLoadTrig_B,
466	 .SetMode = SetMode_B,
467	 .ResetCapFlags = ResetCapFlags_B,
468	 .MyCRA = LP_CR2A,
469	 .MyCRB = LP_CR2B,
470	 .MyLatchLsw = LP_CNTR2BLSW,
471	 .MyEventBits = EVBITS(5),
472	 },
473};
474
475/*  enab/disable a function or test status bit(s) that are accessed */
476/*  through Main Control Registers 1 or 2. */
477#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
478
479#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
480
481#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
482
483/* #define WR7146(REGARDS,CTRLWORD)
484    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
485#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
486
487/* #define RR7146(REGARDS)
488    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
489#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
490
491#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
492
493/*  Write a time slot control record to TSL2. */
494#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
495#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
496
497/*  Code macros used for constructing I2C command bytes. */
498#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
499#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
500#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
501
502static const struct comedi_lrange s626_range_table = { 2, {
503							   RANGE(-5, 5),
504							   RANGE(-10, 10),
505							   }
506};
507
508static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
509{
510/*   uint8_t	PollList; */
511/*   uint16_t	AdcData; */
512/*   uint16_t	StartVal; */
513/*   uint16_t	index; */
514/*   unsigned int data[16]; */
515	int result;
516	int i;
517	int ret;
518	resource_size_t resourceStart;
519	dma_addr_t appdma;
520	struct comedi_subdevice *s;
521	const struct pci_device_id *ids;
522	struct pci_dev *pdev = NULL;
523
524	if (alloc_private(dev, sizeof(struct s626_private)) < 0)
525		return -ENOMEM;
526
527	for (i = 0; i < (ARRAY_SIZE(s626_pci_table) - 1) && !pdev; i++) {
528		ids = &s626_pci_table[i];
529		do {
530			pdev = pci_get_subsys(ids->vendor, ids->device,
531					      ids->subvendor, ids->subdevice,
532					      pdev);
533
534			if ((it->options[0] || it->options[1]) && pdev) {
535				/* matches requested bus/slot */
536				if (pdev->bus->number == it->options[0] &&
537				    PCI_SLOT(pdev->devfn) == it->options[1])
538					break;
539			} else
540				break;
541		} while (1);
542	}
543	devpriv->pdev = pdev;
544
545	if (pdev == NULL) {
546		printk("s626_attach: Board not present!!!\n");
547		return -ENODEV;
548	}
549
550	result = comedi_pci_enable(pdev, "s626");
551	if (result < 0) {
552		printk("s626_attach: comedi_pci_enable fails\n");
553		return -ENODEV;
554	}
555	devpriv->got_regions = 1;
556
557	resourceStart = pci_resource_start(devpriv->pdev, 0);
558
559	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
560	if (devpriv->base_addr == NULL) {
561		printk("s626_attach: IOREMAP failed\n");
562		return -ENODEV;
563	}
564
565	if (devpriv->base_addr) {
566		/* disable master interrupt */
567		writel(0, devpriv->base_addr + P_IER);
568
569		/* soft reset */
570		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
571
572		/* DMA FIXME DMA// */
573		DEBUG("s626_attach: DMA ALLOCATION\n");
574
575		/* adc buffer allocation */
576		devpriv->allocatedBuf = 0;
577
578		devpriv->ANABuf.LogicalBase =
579		    pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
580
581		if (devpriv->ANABuf.LogicalBase == NULL) {
582			printk("s626_attach: DMA Memory mapping error\n");
583			return -ENOMEM;
584		}
585
586		devpriv->ANABuf.PhysicalBase = appdma;
587
588		DEBUG
589		    ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n",
590		     devpriv->ANABuf.LogicalBase, DMABUF_SIZE,
591		     (uint32_t) devpriv->ANABuf.PhysicalBase);
592
593		devpriv->allocatedBuf++;
594
595		devpriv->RPSBuf.LogicalBase =
596		    pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
597
598		if (devpriv->RPSBuf.LogicalBase == NULL) {
599			printk("s626_attach: DMA Memory mapping error\n");
600			return -ENOMEM;
601		}
602
603		devpriv->RPSBuf.PhysicalBase = appdma;
604
605		DEBUG
606		    ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n",
607		     devpriv->RPSBuf.LogicalBase, DMABUF_SIZE,
608		     (uint32_t) devpriv->RPSBuf.PhysicalBase);
609
610		devpriv->allocatedBuf++;
611
612	}
613
614	dev->board_ptr = s626_boards;
615	dev->board_name = thisboard->name;
616
617	if (alloc_subdevices(dev, 6) < 0)
618		return -ENOMEM;
619
620	dev->iobase = (unsigned long)devpriv->base_addr;
621	dev->irq = devpriv->pdev->irq;
622
623	/* set up interrupt handler */
624	if (dev->irq == 0) {
625		printk(" unknown irq (bad)\n");
626	} else {
627		ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
628				  "s626", dev);
629
630		if (ret < 0) {
631			printk(" irq not available\n");
632			dev->irq = 0;
633		}
634	}
635
636	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
637	      it->options[0], it->options[1]);
638
639	s = dev->subdevices + 0;
640	/* analog input subdevice */
641	dev->read_subdev = s;
642	/* we support single-ended (ground) and differential */
643	s->type = COMEDI_SUBD_AI;
644	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
645	s->n_chan = thisboard->ai_chans;
646	s->maxdata = (0xffff >> 2);
647	s->range_table = &s626_range_table;
648	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
649						   length that the board can
650						   handle */
651	s->insn_config = s626_ai_insn_config;
652	s->insn_read = s626_ai_insn_read;
653	s->do_cmd = s626_ai_cmd;
654	s->do_cmdtest = s626_ai_cmdtest;
655	s->cancel = s626_ai_cancel;
656
657	s = dev->subdevices + 1;
658	/* analog output subdevice */
659	s->type = COMEDI_SUBD_AO;
660	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
661	s->n_chan = thisboard->ao_chans;
662	s->maxdata = (0x3fff);
663	s->range_table = &range_bipolar10;
664	s->insn_write = s626_ao_winsn;
665	s->insn_read = s626_ao_rinsn;
666
667	s = dev->subdevices + 2;
668	/* digital I/O subdevice */
669	s->type = COMEDI_SUBD_DIO;
670	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
671	s->n_chan = S626_DIO_CHANNELS;
672	s->maxdata = 1;
673	s->io_bits = 0xffff;
674	s->private = &dio_private_A;
675	s->range_table = &range_digital;
676	s->insn_config = s626_dio_insn_config;
677	s->insn_bits = s626_dio_insn_bits;
678
679	s = dev->subdevices + 3;
680	/* digital I/O subdevice */
681	s->type = COMEDI_SUBD_DIO;
682	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
683	s->n_chan = 16;
684	s->maxdata = 1;
685	s->io_bits = 0xffff;
686	s->private = &dio_private_B;
687	s->range_table = &range_digital;
688	s->insn_config = s626_dio_insn_config;
689	s->insn_bits = s626_dio_insn_bits;
690
691	s = dev->subdevices + 4;
692	/* digital I/O subdevice */
693	s->type = COMEDI_SUBD_DIO;
694	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
695	s->n_chan = 16;
696	s->maxdata = 1;
697	s->io_bits = 0xffff;
698	s->private = &dio_private_C;
699	s->range_table = &range_digital;
700	s->insn_config = s626_dio_insn_config;
701	s->insn_bits = s626_dio_insn_bits;
702
703	s = dev->subdevices + 5;
704	/* encoder (counter) subdevice */
705	s->type = COMEDI_SUBD_COUNTER;
706	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
707	s->n_chan = thisboard->enc_chans;
708	s->private = enc_private_data;
709	s->insn_config = s626_enc_insn_config;
710	s->insn_read = s626_enc_insn_read;
711	s->insn_write = s626_enc_insn_write;
712	s->maxdata = 0xffffff;
713	s->range_table = &range_unknown;
714
715	/* stop ai_command */
716	devpriv->ai_cmd_running = 0;
717
718	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
719		dma_addr_t pPhysBuf;
720		uint16_t chan;
721
722		/*  enab DEBI and audio pins, enable I2C interface. */
723		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
724		/*  Configure DEBI operating mode. */
725		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
726		       /*  bits wide. */
727		       | (DEBI_TOUT << DEBI_CFG_TOUT_BIT)
728
729		       /*  Declare DEBI */
730		       /*  transfer timeout */
731		       /*  interval. */
732		       |DEBI_SWAP	/*  Set up byte lane */
733		       /*  steering. */
734		       | DEBI_CFG_INTEL);	/*  Intel-compatible */
735		/*  local bus (DEBI */
736		/*  never times out). */
737		DEBUG("s626_attach: %d debi init -- %d\n",
738		      DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
739		      DEBI_SWAP | DEBI_CFG_INTEL,
740		      DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
741		      DEBI_CFG_16Q);
742
743		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
744		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
745
746		/*  Paging is disabled. */
747		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
748
749		/*  Init GPIO so that ADC Start* is negated. */
750		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
751
752		/* IsBoardRevA is a boolean that indicates whether the board is RevA.
753		 *
754		 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
755		 * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
756		 * is used to access the onboard serial EEPROM.  The EEPROM's I2C
757		 * DeviceAddress is hardwired to a value that is dependent on the
758		 * 626 board revision.  On all board revisions, the EEPROM stores
759		 * TrimDAC calibration constants for analog I/O.  On RevB and
760		 * higher boards, the DeviceAddress is hardwired to 0 to enable
761		 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
762		 * this is the address at which the SAA7146 expects a
763		 * configuration EEPROM to reside.  On RevA boards, the EEPROM
764		 * device address, which is hardwired to 4, prevents the SAA7146
765		 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
766		 * default values, instead.
767		 */
768
769		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
770		/*  DeviceType (0xA0) */
771		/*  and DeviceAddress<<1. */
772
773		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
774		/*  eeprom(revb) */
775
776		/*  Issue an I2C ABORT command to halt any I2C operation in */
777		/* progress and reset BUSY flag. */
778		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
779		/*  Write I2C control: abort any I2C activity. */
780		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
781		/*  Invoke command  upload */
782		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ;
783		/*  and wait for upload to complete. */
784
785		/* Per SAA7146 data sheet, write to STATUS reg twice to
786		 * reset all  I2C error flags. */
787		for (i = 0; i < 2; i++) {
788			WR7146(P_I2CSTAT, I2C_CLKSEL);
789			/*  Write I2C control: reset  error flags. */
790			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
791			while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
792			/* and wait for upload to complete. */
793		}
794
795		/* Init audio interface functional attributes: set DAC/ADC
796		 * serial clock rates, invert DAC serial clock so that
797		 * DAC data setup times are satisfied, enable DAC serial
798		 * clock out.
799		 */
800
801		WR7146(P_ACON2, ACON2_INIT);
802
803		/* Set up TSL1 slot list, which is used to control the
804		 * accumulation of ADC data: RSD1 = shift data in on SD1.
805		 * SIB_A1  = store data uint8_t at next available location in
806		 * FB BUFFER1  register. */
807		WR7146(P_TSL1, RSD1 | SIB_A1);
808		/*  Fetch ADC high data uint8_t. */
809		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
810		/*  Fetch ADC low data uint8_t; end of TSL1. */
811
812		/*  enab TSL1 slot list so that it executes all the time. */
813		WR7146(P_ACON1, ACON1_ADCSTART);
814
815		/*  Initialize RPS registers used for ADC. */
816
817		/* Physical start of RPS program. */
818		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
819
820		WR7146(P_RPSPAGE1, 0);
821		/*  RPS program performs no explicit mem writes. */
822		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
823
824		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
825		 * to a known state by invoking ADCs until FB BUFFER 1
826		 * register shows that it is correctly receiving ADC data.
827		 * This is necessary because the SAA7146 ADC interface does
828		 * not start up in a defined state after a PCI reset.
829		 */
830
831/*     PollList = EOPL;			// Create a simple polling */
832/* 					// list for analog input */
833/* 					// channel 0. */
834/*     ResetADC( dev, &PollList ); */
835
836/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
837/* 						  //Get initial ADC */
838/* 						  //value. */
839
840/*     StartVal = data[0]; */
841
842/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
843/*     // Invoke ADCs until the new ADC value differs from the initial */
844/*     // value or a timeout occurs.  The timeout protects against the */
845/*     // possibility that the driver is restarting and the ADC data is a */
846/*     // fixed value resulting from the applied ADC analog input being */
847/*     // unusually quiet or at the rail. */
848
849/*     for ( index = 0; index < 500; index++ ) */
850/*       { */
851/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
852/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
853/* 	if ( AdcData != StartVal ) */
854/* 	  break; */
855/*       } */
856
857		/*  end initADC */
858
859		/*  init the DAC interface */
860
861		/* Init Audio2's output DMAC attributes: burst length = 1
862		 * DWORD,  threshold = 1 DWORD.
863		 */
864		WR7146(P_PCI_BT_A, 0);
865
866		/* Init Audio2's output DMA physical addresses.  The protection
867		 * address is set to 1 DWORD past the base address so that a
868		 * single DWORD will be transferred each time a DMA transfer is
869		 * enabled. */
870
871		pPhysBuf =
872		    devpriv->ANABuf.PhysicalBase +
873		    (DAC_WDMABUF_OS * sizeof(uint32_t));
874
875		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
876		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
877
878		/* Cache Audio2's output DMA buffer logical address.  This is
879		 * where DAC data is buffered for A2 output DMA transfers. */
880		devpriv->pDacWBuf =
881		    (uint32_t *) devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS;
882
883		/* Audio2's output channels does not use paging.  The protection
884		 * violation handling bit is set so that the DMAC will
885		 * automatically halt and its PCI address pointer will be reset
886		 * when the protection address is reached. */
887
888		WR7146(P_PAGEA2_OUT, 8);
889
890		/* Initialize time slot list 2 (TSL2), which is used to control
891		 * the clock generation for and serialization of data to be sent
892		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
893		 * execution; this permits other slots to be safely modified
894		 * without first turning off the TSL sequencer (which is
895		 * apparently impossible to do).  Also, SD3 (which is driven by a
896		 * pull-up resistor) is shifted in and stored to the MSB of
897		 * FB_BUFFER2 to be used as evidence that the slot sequence has
898		 * not yet finished executing.
899		 */
900
901		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
902		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
903
904		/* Initialize slot 1, which is constant.  Slot 1 causes a
905		 * DWORD to be transferred from audio channel 2's output FIFO
906		 * to the FIFO's output buffer so that it can be serialized
907		 * and sent to the DAC during subsequent slots.  All remaining
908		 * slots are dynamically populated as required by the target
909		 * DAC device.
910		 */
911		SETVECT(1, LF_A2);
912		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
913
914		/*  Start DAC's audio interface (TSL2) running. */
915		WR7146(P_ACON1, ACON1_DACSTART);
916
917		/* end init DAC interface */
918
919		/* Init Trim DACs to calibrated values.  Do it twice because the
920		 * SAA7146 audio channel does not always reset properly and
921		 * sometimes causes the first few TrimDAC writes to malfunction.
922		 */
923
924		LoadTrimDACs(dev);
925		LoadTrimDACs(dev);	/*  Insurance. */
926
927		/* Manually init all gate array hardware in case this is a soft
928		 * reset (we have no way of determining whether this is a warm
929		 * or cold start).  This is necessary because the gate array will
930		 * reset only in response to a PCI hard reset; there is no soft
931		 * reset function. */
932
933		/* Init all DAC outputs to 0V and init all DAC setpoint and
934		 * polarity images.
935		 */
936		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
937			SetDAC(dev, chan, 0);
938
939		/* Init image of WRMISC2 Battery Charger Enabled control bit.
940		 * This image is used when the state of the charger control bit,
941		 * which has no direct hardware readback mechanism, is queried.
942		 */
943		devpriv->ChargeEnabled = 0;
944
945		/* Init image of watchdog timer interval in WRMISC2.  This image
946		 * maintains the value of the control bits of MISC2 are
947		 * continuously reset to zero as long as the WD timer is disabled.
948		 */
949		devpriv->WDInterval = 0;
950
951		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
952		 * applied against MISC2 when testing to determine which timer
953		 * events are requesting interrupt service.
954		 */
955		devpriv->CounterIntEnabs = 0;
956
957		/*  Init counters. */
958		CountersInit(dev);
959
960		/* Without modifying the state of the Battery Backup enab, disable
961		 * the watchdog timer, set DIO channels 0-5 to operate in the
962		 * standard DIO (vs. counter overflow) mode, disable the battery
963		 * charger, and reset the watchdog interval selector to zero.
964		 */
965		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
966						     LP_RDMISC2) &
967					    MISC2_BATT_ENABLE));
968
969		/*  Initialize the digital I/O subsystem. */
970		s626_dio_init(dev);
971
972		/* enable interrupt test */
973		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
974	}
975
976	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
977	      (uint32_t) devpriv->base_addr);
978
979	return 1;
980}
981
982static unsigned int s626_ai_reg_to_uint(int data)
983{
984	unsigned int tempdata;
985
986	tempdata = (data >> 18);
987	if (tempdata & 0x2000)
988		tempdata &= 0x1fff;
989	else
990		tempdata += (1 << 13);
991
992	return tempdata;
993}
994
995/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
996/*   return 0; */
997/* } */
998
999static irqreturn_t s626_irq_handler(int irq, void *d)
1000{
1001	struct comedi_device *dev = d;
1002	struct comedi_subdevice *s;
1003	struct comedi_cmd *cmd;
1004	struct enc_private *k;
1005	unsigned long flags;
1006	int32_t *readaddr;
1007	uint32_t irqtype, irqstatus;
1008	int i = 0;
1009	short tempdata;
1010	uint8_t group;
1011	uint16_t irqbit;
1012
1013	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
1014
1015	if (dev->attached == 0)
1016		return IRQ_NONE;
1017	/*  lock to avoid race with comedi_poll */
1018	spin_lock_irqsave(&dev->spinlock, flags);
1019
1020	/* save interrupt enable register state */
1021	irqstatus = readl(devpriv->base_addr + P_IER);
1022
1023	/* read interrupt type */
1024	irqtype = readl(devpriv->base_addr + P_ISR);
1025
1026	/* disable master interrupt */
1027	writel(0, devpriv->base_addr + P_IER);
1028
1029	/* clear interrupt */
1030	writel(irqtype, devpriv->base_addr + P_ISR);
1031
1032	/* do somethings */
1033	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1034
1035	switch (irqtype) {
1036	case IRQ_RPS1:		/*  end_of_scan occurs */
1037
1038		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1039
1040		/*  manage ai subdevice */
1041		s = dev->subdevices;
1042		cmd = &(s->async->cmd);
1043
1044		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1045		 * first uint16_t in the buffer because it contains junk data from
1046		 * the final ADC of the previous poll list scan.
1047		 */
1048		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1049
1050		/*  get the data and hand it over to comedi */
1051		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1052			/*  Convert ADC data to 16-bit integer values and copy to application */
1053			/*  buffer. */
1054			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1055			readaddr++;
1056
1057			/* put data into read buffer */
1058			/*  comedi_buf_put(s->async, tempdata); */
1059			if (cfc_write_to_buffer(s, tempdata) == 0)
1060				printk
1061				    ("s626_irq_handler: cfc_write_to_buffer error!\n");
1062
1063			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1064			      i, tempdata);
1065		}
1066
1067		/* end of scan occurs */
1068		s->async->events |= COMEDI_CB_EOS;
1069
1070		if (!(devpriv->ai_continous))
1071			devpriv->ai_sample_count--;
1072		if (devpriv->ai_sample_count <= 0) {
1073			devpriv->ai_cmd_running = 0;
1074
1075			/*  Stop RPS program. */
1076			MC_DISABLE(P_MC1, MC1_ERPS1);
1077
1078			/* send end of acquisition */
1079			s->async->events |= COMEDI_CB_EOA;
1080
1081			/* disable master interrupt */
1082			irqstatus = 0;
1083		}
1084
1085		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1086			DEBUG
1087			    ("s626_irq_handler: enable interrupt on dio channel %d\n",
1088			     cmd->scan_begin_arg);
1089
1090			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1091
1092			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1093		}
1094		/*  tell comedi that data is there */
1095		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1096		comedi_event(dev, s);
1097		break;
1098	case IRQ_GPIO3:	/* check dio and conter interrupt */
1099
1100		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1101
1102		/*  manage ai subdevice */
1103		s = dev->subdevices;
1104		cmd = &(s->async->cmd);
1105
1106		/* s626_dio_clear_irq(dev); */
1107
1108		for (group = 0; group < S626_DIO_BANKS; group++) {
1109			irqbit = 0;
1110			/* read interrupt type */
1111			irqbit = DEBIread(dev,
1112					  ((struct dio_private *)(dev->
1113								  subdevices +
1114								  2 +
1115								  group)->
1116					   private)->RDCapFlg);
1117
1118			/* check if interrupt is generated from dio channels */
1119			if (irqbit) {
1120				s626_dio_reset_irq(dev, group, irqbit);
1121				DEBUG
1122				    ("s626_irq_handler: check interrupt on dio group %d %d\n",
1123				     group, i);
1124				if (devpriv->ai_cmd_running) {
1125					/* check if interrupt is an ai acquisition start trigger */
1126					if ((irqbit >> (cmd->start_arg -
1127							(16 * group)))
1128					    == 1 && cmd->start_src == TRIG_EXT) {
1129						DEBUG
1130						    ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1131						     cmd->start_arg);
1132
1133						/*  Start executing the RPS program. */
1134						MC_ENABLE(P_MC1, MC1_ERPS1);
1135
1136						DEBUG
1137						    ("s626_irq_handler: aquisition start triggered!!!\n");
1138
1139						if (cmd->scan_begin_src ==
1140						    TRIG_EXT) {
1141							DEBUG
1142							    ("s626_ai_cmd: enable interrupt on dio channel %d\n",
1143							     cmd->
1144							     scan_begin_arg);
1145
1146							s626_dio_set_irq(dev,
1147									 cmd->scan_begin_arg);
1148
1149							DEBUG
1150							    ("s626_irq_handler: External scan trigger is set!!!\n");
1151						}
1152					}
1153					if ((irqbit >> (cmd->scan_begin_arg -
1154							(16 * group)))
1155					    == 1
1156					    && cmd->scan_begin_src ==
1157					    TRIG_EXT) {
1158						DEBUG
1159						    ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1160						     cmd->scan_begin_arg);
1161
1162						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1163						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1164
1165						DEBUG
1166						    ("s626_irq_handler: scan triggered!!! %d\n",
1167						     devpriv->ai_sample_count);
1168						if (cmd->convert_src ==
1169						    TRIG_EXT) {
1170
1171							DEBUG
1172							    ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1173							     cmd->convert_arg -
1174							     (16 * group),
1175							     group);
1176
1177							devpriv->ai_convert_count
1178							    = cmd->chanlist_len;
1179
1180							s626_dio_set_irq(dev,
1181									 cmd->convert_arg);
1182
1183							DEBUG
1184							    ("s626_irq_handler: External convert trigger is set!!!\n");
1185						}
1186
1187						if (cmd->convert_src ==
1188						    TRIG_TIMER) {
1189							k = &encpriv[5];
1190							devpriv->ai_convert_count
1191							    = cmd->chanlist_len;
1192							k->SetEnable(dev, k,
1193								     CLKENAB_ALWAYS);
1194						}
1195					}
1196					if ((irqbit >> (cmd->convert_arg -
1197							(16 * group)))
1198					    == 1
1199					    && cmd->convert_src == TRIG_EXT) {
1200						DEBUG
1201						    ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1202						     cmd->convert_arg);
1203
1204						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1205						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1206
1207						DEBUG
1208						    ("s626_irq_handler: adc convert triggered!!!\n");
1209
1210						devpriv->ai_convert_count--;
1211
1212						if (devpriv->ai_convert_count >
1213						    0) {
1214
1215							DEBUG
1216							    ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1217							     cmd->convert_arg -
1218							     (16 * group),
1219							     group);
1220
1221							s626_dio_set_irq(dev,
1222									 cmd->convert_arg);
1223
1224							DEBUG
1225							    ("s626_irq_handler: External trigger is set!!!\n");
1226						}
1227					}
1228				}
1229				break;
1230			}
1231		}
1232
1233		/* read interrupt type */
1234		irqbit = DEBIread(dev, LP_RDMISC2);
1235
1236		/* check interrupt on counters */
1237		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1238		      irqbit);
1239
1240		if (irqbit & IRQ_COINT1A) {
1241			DEBUG
1242			    ("s626_irq_handler: interrupt on counter 1A overflow\n");
1243			k = &encpriv[0];
1244
1245			/* clear interrupt capture flag */
1246			k->ResetCapFlags(dev, k);
1247		}
1248		if (irqbit & IRQ_COINT2A) {
1249			DEBUG
1250			    ("s626_irq_handler: interrupt on counter 2A overflow\n");
1251			k = &encpriv[1];
1252
1253			/* clear interrupt capture flag */
1254			k->ResetCapFlags(dev, k);
1255		}
1256		if (irqbit & IRQ_COINT3A) {
1257			DEBUG
1258			    ("s626_irq_handler: interrupt on counter 3A overflow\n");
1259			k = &encpriv[2];
1260
1261			/* clear interrupt capture flag */
1262			k->ResetCapFlags(dev, k);
1263		}
1264		if (irqbit & IRQ_COINT1B) {
1265			DEBUG
1266			    ("s626_irq_handler: interrupt on counter 1B overflow\n");
1267			k = &encpriv[3];
1268
1269			/* clear interrupt capture flag */
1270			k->ResetCapFlags(dev, k);
1271		}
1272		if (irqbit & IRQ_COINT2B) {
1273			DEBUG
1274			    ("s626_irq_handler: interrupt on counter 2B overflow\n");
1275			k = &encpriv[4];
1276
1277			/* clear interrupt capture flag */
1278			k->ResetCapFlags(dev, k);
1279
1280			if (devpriv->ai_convert_count > 0) {
1281				devpriv->ai_convert_count--;
1282				if (devpriv->ai_convert_count == 0)
1283					k->SetEnable(dev, k, CLKENAB_INDEX);
1284
1285				if (cmd->convert_src == TRIG_TIMER) {
1286					DEBUG
1287					    ("s626_irq_handler: conver timer trigger!!! %d\n",
1288					     devpriv->ai_convert_count);
1289
1290					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1291					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1292				}
1293			}
1294		}
1295		if (irqbit & IRQ_COINT3B) {
1296			DEBUG
1297			    ("s626_irq_handler: interrupt on counter 3B overflow\n");
1298			k = &encpriv[5];
1299
1300			/* clear interrupt capture flag */
1301			k->ResetCapFlags(dev, k);
1302
1303			if (cmd->scan_begin_src == TRIG_TIMER) {
1304				DEBUG
1305				    ("s626_irq_handler: scan timer trigger!!!\n");
1306
1307				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1308				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1309			}
1310
1311			if (cmd->convert_src == TRIG_TIMER) {
1312				DEBUG
1313				    ("s626_irq_handler: convert timer trigger is set\n");
1314				k = &encpriv[4];
1315				devpriv->ai_convert_count = cmd->chanlist_len;
1316				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1317			}
1318		}
1319	}
1320
1321	/* enable interrupt */
1322	writel(irqstatus, devpriv->base_addr + P_IER);
1323
1324	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1325
1326	spin_unlock_irqrestore(&dev->spinlock, flags);
1327	return IRQ_HANDLED;
1328}
1329
1330static int s626_detach(struct comedi_device *dev)
1331{
1332	if (devpriv) {
1333		/* stop ai_command */
1334		devpriv->ai_cmd_running = 0;
1335
1336		if (devpriv->base_addr) {
1337			/* interrupt mask */
1338			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1339			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1340
1341			/*  Disable the watchdog timer and battery charger. */
1342			WriteMISC2(dev, 0);
1343
1344			/*  Close all interfaces on 7146 device. */
1345			WR7146(P_MC1, MC1_SHUTDOWN);
1346			WR7146(P_ACON1, ACON1_BASE);
1347
1348			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1349			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1350		}
1351
1352		if (dev->irq)
1353			free_irq(dev->irq, dev);
1354
1355		if (devpriv->base_addr)
1356			iounmap(devpriv->base_addr);
1357
1358		if (devpriv->pdev) {
1359			if (devpriv->got_regions)
1360				comedi_pci_disable(devpriv->pdev);
1361			pci_dev_put(devpriv->pdev);
1362		}
1363	}
1364
1365	DEBUG("s626_detach: S626 detached!\n");
1366
1367	return 0;
1368}
1369
1370/*
1371 * this functions build the RPS program for hardware driven acquistion
1372 */
1373void ResetADC(struct comedi_device *dev, uint8_t * ppl)
1374{
1375	register uint32_t *pRPS;
1376	uint32_t JmpAdrs;
1377	uint16_t i;
1378	uint16_t n;
1379	uint32_t LocalPPL;
1380	struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1381
1382	/*  Stop RPS program in case it is currently running. */
1383	MC_DISABLE(P_MC1, MC1_ERPS1);
1384
1385	/*  Set starting logical address to write RPS commands. */
1386	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1387
1388	/*  Initialize RPS instruction pointer. */
1389	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1390
1391	/*  Construct RPS program in RPSBuf DMA buffer */
1392
1393	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1394		DEBUG("ResetADC: scan_begin pause inserted\n");
1395		/*  Wait for Start trigger. */
1396		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1397		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1398	}
1399
1400	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1401	 * because the first RPS DEBI Write following a non-RPS DEBI write
1402	 * seems to always fail.  If we don't do this dummy write, the ADC
1403	 * gain might not be set to the value required for the first slot in
1404	 * the poll list; the ADC gain would instead remain unchanged from
1405	 * the previously programmed value.
1406	 */
1407	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1408	/* Write DEBI Write command and address to shadow RAM. */
1409
1410	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1411	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1412	/*  Write DEBI immediate data  to shadow RAM: */
1413
1414	*pRPS++ = GSEL_BIPOLAR5V;
1415	/*  arbitrary immediate data  value. */
1416
1417	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1418	/*  Reset "shadow RAM  uploaded" flag. */
1419	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1420	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1421
1422	/* Digitize all slots in the poll list. This is implemented as a
1423	 * for loop to limit the slot count to 16 in case the application
1424	 * forgot to set the EOPL flag in the final slot.
1425	 */
1426	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1427		/* Convert application's poll list item to private board class
1428		 * format.  Each app poll list item is an uint8_t with form
1429		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1430		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1431		 */
1432		LocalPPL =
1433		    (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1434				   GSEL_BIPOLAR10V);
1435
1436		/*  Switch ADC analog gain. */
1437		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1438		/*  and address to */
1439		/*  shadow RAM. */
1440		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1441		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1442		/*  immediate data to */
1443		/*  shadow RAM. */
1444		*pRPS++ = LocalPPL;
1445		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1446		/*  flag. */
1447		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1448		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1449		/*  finish. */
1450
1451		/*  Select ADC analog input channel. */
1452		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1453		/*  Write DEBI command and address to  shadow RAM. */
1454		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1455		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1456		/*  Write DEBI immediate data to shadow RAM. */
1457		*pRPS++ = LocalPPL;
1458		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1459		/*  Reset "shadow RAM uploaded"  flag. */
1460
1461		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1462		/*  Invoke shadow RAM upload. */
1463
1464		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1465		/*  Wait for shadow upload to finish. */
1466
1467		/* Delay at least 10 microseconds for analog input settling.
1468		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1469		 * here; this allows us to produce a longer delay than is
1470		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1471		 * instruction prefetch pipeline.
1472		 */
1473		JmpAdrs =
1474		    (uint32_t) devpriv->RPSBuf.PhysicalBase +
1475		    (uint32_t) ((unsigned long)pRPS -
1476				(unsigned long)devpriv->RPSBuf.LogicalBase);
1477		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1478			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1479			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1480			*pRPS++ = JmpAdrs;
1481		}
1482
1483		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1484			DEBUG("ResetADC: convert pause inserted\n");
1485			/*  Wait for Start trigger. */
1486			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1487			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1488		}
1489		/*  Start ADC by pulsing GPIO1. */
1490		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1491		*pRPS++ = GPIO_BASE | GPIO1_LO;
1492		*pRPS++ = RPS_NOP;
1493		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1494		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1495		*pRPS++ = GPIO_BASE | GPIO1_HI;
1496
1497		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1498		 * busy) and for data from previous conversion to shift into FB
1499		 * BUFFER 1 register.
1500		 */
1501		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1502
1503		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1504		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1505		*pRPS++ =
1506		    (uint32_t) devpriv->ANABuf.PhysicalBase +
1507		    (devpriv->AdcItems << 2);
1508
1509		/*  If this slot's EndOfPollList flag is set, all channels have */
1510		/*  now been processed. */
1511		if (*ppl++ & EOPL) {
1512			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1513			break;	/*  Exit poll list processing loop. */
1514		}
1515	}
1516	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1517
1518	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1519	 * ADC to stabilize for 2 microseconds before starting the final
1520	 * (dummy) conversion.  This delay is necessary to allow sufficient
1521	 * time between last conversion finished and the start of the dummy
1522	 * conversion.  Without this delay, the last conversion's data value
1523	 * is sometimes set to the previous conversion's data value.
1524	 */
1525	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1526		*pRPS++ = RPS_NOP;
1527
1528	/* Start a dummy conversion to cause the data from the last
1529	 * conversion of interest to be shifted in.
1530	 */
1531	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1532	*pRPS++ = GPIO_BASE | GPIO1_LO;
1533	*pRPS++ = RPS_NOP;
1534	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1535	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1536	*pRPS++ = GPIO_BASE | GPIO1_HI;
1537
1538	/* Wait for the data from the last conversion of interest to arrive
1539	 * in FB BUFFER 1 register.
1540	 */
1541	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1542
1543	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1544	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1545	*pRPS++ =
1546	    (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
1547
1548	/*  Indicate ADC scan loop is finished. */
1549	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1550
1551	/* invoke interrupt */
1552	if (devpriv->ai_cmd_running == 1) {
1553		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1554		*pRPS++ = RPS_IRQ;
1555	}
1556	/*  Restart RPS program at its beginning. */
1557	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1558	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1559
1560	/*  End of RPS program build */
1561}
1562
1563/* TO COMPLETE, IF NECESSARY */
1564static int s626_ai_insn_config(struct comedi_device *dev,
1565			       struct comedi_subdevice *s,
1566			       struct comedi_insn *insn, unsigned int *data)
1567{
1568
1569	return -EINVAL;
1570}
1571
1572/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1573/* { */
1574/*   register uint8_t	i; */
1575/*   register int32_t	*readaddr; */
1576
1577/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
1578
1579/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1580/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1581
1582/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1583/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1584
1585/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1586 * first uint16_t in the buffer because it contains junk data from
1587 * the final ADC of the previous poll list scan.
1588 */
1589/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1590
1591/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1592/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1593/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1594/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
1595/*     data++; */
1596/*   } */
1597
1598/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1599/*   return i; */
1600/* } */
1601
1602static int s626_ai_insn_read(struct comedi_device *dev,
1603			     struct comedi_subdevice *s,
1604			     struct comedi_insn *insn, unsigned int *data)
1605{
1606	uint16_t chan = CR_CHAN(insn->chanspec);
1607	uint16_t range = CR_RANGE(insn->chanspec);
1608	uint16_t AdcSpec = 0;
1609	uint32_t GpioImage;
1610	int n;
1611
1612	/* interrupt call test  */
1613/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1614	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1615	 * corresponding interrupt to be generated if enabled
1616	 */
1617
1618	DEBUG("s626_ai_insn_read: entering\n");
1619
1620	/* Convert application's ADC specification into form
1621	 *  appropriate for register programming.
1622	 */
1623	if (range == 0)
1624		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1625	else
1626		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1627
1628	/*  Switch ADC analog gain. */
1629	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1630
1631	/*  Select ADC analog input channel. */
1632	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1633
1634	for (n = 0; n < insn->n; n++) {
1635
1636		/*  Delay 10 microseconds for analog input settling. */
1637		udelay(10);
1638
1639		/*  Start ADC by pulsing GPIO1 low. */
1640		GpioImage = RR7146(P_GPIO);
1641		/*  Assert ADC Start command */
1642		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1643		/*    and stretch it out. */
1644		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1645		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1646		/*  Negate ADC Start command. */
1647		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1648
1649		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1650		/*  ADC not busy) and for data from previous conversion to */
1651		/*  shift into FB BUFFER 1 register. */
1652
1653		/*  Wait for ADC done. */
1654		while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1655
1656		/*  Fetch ADC data. */
1657		if (n != 0)
1658			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1659
1660		/* Allow the ADC to stabilize for 4 microseconds before
1661		 * starting the next (final) conversion.  This delay is
1662		 * necessary to allow sufficient time between last
1663		 * conversion finished and the start of the next
1664		 * conversion.  Without this delay, the last conversion's
1665		 * data value is sometimes set to the previous
1666		 * conversion's data value.
1667		 */
1668		udelay(4);
1669	}
1670
1671	/* Start a dummy conversion to cause the data from the
1672	 * previous conversion to be shifted in. */
1673	GpioImage = RR7146(P_GPIO);
1674
1675	/* Assert ADC Start command */
1676	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1677	/*    and stretch it out. */
1678	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1679	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1680	/*  Negate ADC Start command. */
1681	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1682
1683	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1684
1685	/*  Wait for ADC done. */
1686	while (!(RR7146(P_PSR) & PSR_GPIO2)) ;
1687
1688	/*  Fetch ADC data from audio interface's input shift register. */
1689
1690	/*  Fetch ADC data. */
1691	if (n != 0)
1692		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1693
1694	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1695
1696	return n;
1697}
1698
1699static int s626_ai_load_polllist(uint8_t * ppl, struct comedi_cmd *cmd)
1700{
1701
1702	int n;
1703
1704	for (n = 0; n < cmd->chanlist_len; n++) {
1705		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1706			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1707		else
1708			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1709	}
1710	if (n != 0)
1711		ppl[n - 1] |= EOPL;
1712
1713	return n;
1714}
1715
1716static int s626_ai_inttrig(struct comedi_device *dev,
1717			   struct comedi_subdevice *s, unsigned int trignum)
1718{
1719	if (trignum != 0)
1720		return -EINVAL;
1721
1722	DEBUG("s626_ai_inttrig: trigger adc start...");
1723
1724	/*  Start executing the RPS program. */
1725	MC_ENABLE(P_MC1, MC1_ERPS1);
1726
1727	s->async->inttrig = NULL;
1728
1729	DEBUG(" done\n");
1730
1731	return 1;
1732}
1733
1734/*  TO COMPLETE  */
1735static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1736{
1737
1738	uint8_t ppl[16];
1739	struct comedi_cmd *cmd = &s->async->cmd;
1740	struct enc_private *k;
1741	int tick;
1742
1743	DEBUG("s626_ai_cmd: entering command function\n");
1744
1745	if (devpriv->ai_cmd_running) {
1746		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1747		       dev->minor);
1748		return -EBUSY;
1749	}
1750	/* disable interrupt */
1751	writel(0, devpriv->base_addr + P_IER);
1752
1753	/* clear interrupt request */
1754	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1755
1756	/* clear any pending interrupt */
1757	s626_dio_clear_irq(dev);
1758	/*   s626_enc_clear_irq(dev); */
1759
1760	/* reset ai_cmd_running flag */
1761	devpriv->ai_cmd_running = 0;
1762
1763	/*  test if cmd is valid */
1764	if (cmd == NULL) {
1765		DEBUG("s626_ai_cmd: NULL command\n");
1766		return -EINVAL;
1767	} else {
1768		DEBUG("s626_ai_cmd: command recieved!!!\n");
1769	}
1770
1771	if (dev->irq == 0) {
1772		comedi_error(dev,
1773			     "s626_ai_cmd: cannot run command without an irq");
1774		return -EIO;
1775	}
1776
1777	s626_ai_load_polllist(ppl, cmd);
1778	devpriv->ai_cmd_running = 1;
1779	devpriv->ai_convert_count = 0;
1780
1781	switch (cmd->scan_begin_src) {
1782	case TRIG_FOLLOW:
1783		break;
1784	case TRIG_TIMER:
1785		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1786		k = &encpriv[5];
1787		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1788					cmd->flags & TRIG_ROUND_MASK);
1789
1790		/* load timer value and enable interrupt */
1791		s626_timer_load(dev, k, tick);
1792		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1793
1794		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1795		      tick);
1796
1797		break;
1798	case TRIG_EXT:
1799		/*  set the digital line and interrupt for scan trigger */
1800		if (cmd->start_src != TRIG_EXT)
1801			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1802
1803		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1804
1805		break;
1806	}
1807
1808	switch (cmd->convert_src) {
1809	case TRIG_NOW:
1810		break;
1811	case TRIG_TIMER:
1812		/*  set a conter to generate adc trigger at convert_arg interval */
1813		k = &encpriv[4];
1814		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1815					cmd->flags & TRIG_ROUND_MASK);
1816
1817		/* load timer value and enable interrupt */
1818		s626_timer_load(dev, k, tick);
1819		k->SetEnable(dev, k, CLKENAB_INDEX);
1820
1821		DEBUG
1822		    ("s626_ai_cmd: convert trigger timer is set with value %d\n",
1823		     tick);
1824		break;
1825	case TRIG_EXT:
1826		/*  set the digital line and interrupt for convert trigger */
1827		if (cmd->scan_begin_src != TRIG_EXT
1828		    && cmd->start_src == TRIG_EXT)
1829			s626_dio_set_irq(dev, cmd->convert_arg);
1830
1831		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1832
1833		break;
1834	}
1835
1836	switch (cmd->stop_src) {
1837	case TRIG_COUNT:
1838		/*  data arrives as one packet */
1839		devpriv->ai_sample_count = cmd->stop_arg;
1840		devpriv->ai_continous = 0;
1841		break;
1842	case TRIG_NONE:
1843		/*  continous aquisition */
1844		devpriv->ai_continous = 1;
1845		devpriv->ai_sample_count = 0;
1846		break;
1847	}
1848
1849	ResetADC(dev, ppl);
1850
1851	switch (cmd->start_src) {
1852	case TRIG_NOW:
1853		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1854		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1855
1856		/*  Start executing the RPS program. */
1857		MC_ENABLE(P_MC1, MC1_ERPS1);
1858
1859		DEBUG("s626_ai_cmd: ADC triggered\n");
1860		s->async->inttrig = NULL;
1861		break;
1862	case TRIG_EXT:
1863		/* configure DIO channel for acquisition trigger */
1864		s626_dio_set_irq(dev, cmd->start_arg);
1865
1866		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1867
1868		s->async->inttrig = NULL;
1869		break;
1870	case TRIG_INT:
1871		s->async->inttrig = s626_ai_inttrig;
1872		break;
1873	}
1874
1875	/* enable interrupt */
1876	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1877
1878	DEBUG("s626_ai_cmd: command function terminated\n");
1879
1880	return 0;
1881}
1882
1883static int s626_ai_cmdtest(struct comedi_device *dev,
1884			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
1885{
1886	int err = 0;
1887	int tmp;
1888
1889	/* cmdtest tests a particular command to see if it is valid.  Using
1890	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1891	 * executes by the cmd ioctl.
1892	 *
1893	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1894	 * command passes. */
1895
1896	/* step 1: make sure trigger sources are trivially valid */
1897
1898	tmp = cmd->start_src;
1899	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1900	if (!cmd->start_src || tmp != cmd->start_src)
1901		err++;
1902
1903	tmp = cmd->scan_begin_src;
1904	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1905	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1906		err++;
1907
1908	tmp = cmd->convert_src;
1909	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1910	if (!cmd->convert_src || tmp != cmd->convert_src)
1911		err++;
1912
1913	tmp = cmd->scan_end_src;
1914	cmd->scan_end_src &= TRIG_COUNT;
1915	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1916		err++;
1917
1918	tmp = cmd->stop_src;
1919	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1920	if (!cmd->stop_src || tmp != cmd->stop_src)
1921		err++;
1922
1923	if (err)
1924		return 1;
1925
1926	/* step 2: make sure trigger sources are unique and mutually
1927	   compatible */
1928
1929	/* note that mutual compatibility is not an issue here */
1930	if (cmd->scan_begin_src != TRIG_TIMER &&
1931	    cmd->scan_begin_src != TRIG_EXT
1932	    && cmd->scan_begin_src != TRIG_FOLLOW)
1933		err++;
1934	if (cmd->convert_src != TRIG_TIMER &&
1935	    cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1936		err++;
1937	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1938		err++;
1939
1940	if (err)
1941		return 2;
1942
1943	/* step 3: make sure arguments are trivially compatible */
1944
1945	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1946		cmd->start_arg = 0;
1947		err++;
1948	}
1949
1950	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1951		cmd->start_arg = 39;
1952		err++;
1953	}
1954
1955	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1956		cmd->scan_begin_arg = 39;
1957		err++;
1958	}
1959
1960	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1961		cmd->convert_arg = 39;
1962		err++;
1963	}
1964#define MAX_SPEED	200000	/* in nanoseconds */
1965#define MIN_SPEED	2000000000	/* in nanoseconds */
1966
1967	if (cmd->scan_begin_src == TRIG_TIMER) {
1968		if (cmd->scan_begin_arg < MAX_SPEED) {
1969			cmd->scan_begin_arg = MAX_SPEED;
1970			err++;
1971		}
1972		if (cmd->scan_begin_arg > MIN_SPEED) {
1973			cmd->scan_begin_arg = MIN_SPEED;
1974			err++;
1975		}
1976	} else {
1977		/* external trigger */
1978		/* should be level/edge, hi/lo specification here */
1979		/* should specify multiple external triggers */
1980/*     if(cmd->scan_begin_arg>9){ */
1981/*       cmd->scan_begin_arg=9; */
1982/*       err++; */
1983/*     } */
1984	}
1985	if (cmd->convert_src == TRIG_TIMER) {
1986		if (cmd->convert_arg < MAX_SPEED) {
1987			cmd->convert_arg = MAX_SPEED;
1988			err++;
1989		}
1990		if (cmd->convert_arg > MIN_SPEED) {
1991			cmd->convert_arg = MIN_SPEED;
1992			err++;
1993		}
1994	} else {
1995		/* external trigger */
1996		/* see above */
1997/*     if(cmd->convert_arg>9){ */
1998/*       cmd->convert_arg=9; */
1999/*       err++; */
2000/*     } */
2001	}
2002
2003	if (cmd->scan_end_arg != cmd->chanlist_len) {
2004		cmd->scan_end_arg = cmd->chanlist_len;
2005		err++;
2006	}
2007	if (cmd->stop_src == TRIG_COUNT) {
2008		if (cmd->stop_arg > 0x00ffffff) {
2009			cmd->stop_arg = 0x00ffffff;
2010			err++;
2011		}
2012	} else {
2013		/* TRIG_NONE */
2014		if (cmd->stop_arg != 0) {
2015			cmd->stop_arg = 0;
2016			err++;
2017		}
2018	}
2019
2020	if (err)
2021		return 3;
2022
2023	/* step 4: fix up any arguments */
2024
2025	if (cmd->scan_begin_src == TRIG_TIMER) {
2026		tmp = cmd->scan_begin_arg;
2027		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2028				 cmd->flags & TRIG_ROUND_MASK);
2029		if (tmp != cmd->scan_begin_arg)
2030			err++;
2031	}
2032	if (cmd->convert_src == TRIG_TIMER) {
2033		tmp = cmd->convert_arg;
2034		s626_ns_to_timer((int *)&cmd->convert_arg,
2035				 cmd->flags & TRIG_ROUND_MASK);
2036		if (tmp != cmd->convert_arg)
2037			err++;
2038		if (cmd->scan_begin_src == TRIG_TIMER &&
2039		    cmd->scan_begin_arg <
2040		    cmd->convert_arg * cmd->scan_end_arg) {
2041			cmd->scan_begin_arg =
2042			    cmd->convert_arg * cmd->scan_end_arg;
2043			err++;
2044		}
2045	}
2046
2047	if (err)
2048		return 4;
2049
2050	return 0;
2051}
2052
2053static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
2054{
2055	/*  Stop RPS program in case it is currently running. */
2056	MC_DISABLE(P_MC1, MC1_ERPS1);
2057
2058	/* disable master interrupt */
2059	writel(0, devpriv->base_addr + P_IER);
2060
2061	devpriv->ai_cmd_running = 0;
2062
2063	return 0;
2064}
2065
2066/* This function doesn't require a particular form, this is just what
2067 * happens to be used in some of the drivers.  It should convert ns
2068 * nanoseconds to a counter value suitable for programming the device.
2069 * Also, it should adjust ns so that it cooresponds to the actual time
2070 * that the device will use. */
2071static int s626_ns_to_timer(int *nanosec, int round_mode)
2072{
2073	int divider, base;
2074
2075	base = 500;		/* 2MHz internal clock */
2076
2077	switch (round_mode) {
2078	case TRIG_ROUND_NEAREST:
2079	default:
2080		divider = (*nanosec + base / 2) / base;
2081		break;
2082	case TRIG_ROUND_DOWN:
2083		divider = (*nanosec) / base;
2084		break;
2085	case TRIG_ROUND_UP:
2086		divider = (*nanosec + base - 1) / base;
2087		break;
2088	}
2089
2090	*nanosec = base * divider;
2091	return divider - 1;
2092}
2093
2094static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2095			 struct comedi_insn *insn, unsigned int *data)
2096{
2097
2098	int i;
2099	uint16_t chan = CR_CHAN(insn->chanspec);
2100	int16_t dacdata;
2101
2102	for (i = 0; i < insn->n; i++) {
2103		dacdata = (int16_t) data[i];
2104		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2105		dacdata -= (0x1fff);
2106
2107		SetDAC(dev, chan, dacdata);
2108	}
2109
2110	return i;
2111}
2112
2113static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2114			 struct comedi_insn *insn, unsigned int *data)
2115{
2116	int i;
2117
2118	for (i = 0; i < insn->n; i++)
2119		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2120
2121	return i;
2122}
2123
2124/* *************** DIGITAL I/O FUNCTIONS ***************
2125 * All DIO functions address a group of DIO channels by means of
2126 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2127 * ports A, B and C, respectively.
2128 */
2129
2130static void s626_dio_init(struct comedi_device *dev)
2131{
2132	uint16_t group;
2133	struct comedi_subdevice *s;
2134
2135	/*  Prepare to treat writes to WRCapSel as capture disables. */
2136	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2137
2138	/*  For each group of sixteen channels ... */
2139	for (group = 0; group < S626_DIO_BANKS; group++) {
2140		s = dev->subdevices + 2 + group;
2141		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2142		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2143		/*  captures. */
2144		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2145		/*  default edge */
2146		/*  polarity. */
2147		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2148		/*  to inactive state. */
2149	}
2150	DEBUG("s626_dio_init: DIO initialized \n");
2151}
2152
2153/* DIO devices are slightly special.  Although it is possible to
2154 * implement the insn_read/insn_write interface, it is much more
2155 * useful to applications if you implement the insn_bits interface.
2156 * This allows packed reading/writing of the DIO channels.  The comedi
2157 * core can convert between insn_bits and insn_read/write */
2158
2159static int s626_dio_insn_bits(struct comedi_device *dev,
2160			      struct comedi_subdevice *s,
2161			      struct comedi_insn *insn, unsigned int *data)
2162{
2163
2164	/* Length of data must be 2 (mask and new data, see below) */
2165	if (insn->n == 0)
2166		return 0;
2167
2168	if (insn->n != 2) {
2169		printk
2170		    ("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n",
2171		     dev->minor);
2172		return -EINVAL;
2173	}
2174
2175	/*
2176	 * The insn data consists of a mask in data[0] and the new data in
2177	 * data[1]. The mask defines which bits we are concerning about.
2178	 * The new data must be anded with the mask.  Each channel
2179	 * corresponds to a bit.
2180	 */
2181	if (data[0]) {
2182		/* Check if requested ports are configured for output */
2183		if ((s->io_bits & data[0]) != data[0])
2184			return -EIO;
2185
2186		s->state &= ~data[0];
2187		s->state |= data[0] & data[1];
2188
2189		/* Write out the new digital output lines */
2190
2191		DEBIwrite(dev, diopriv->WRDOut, s->state);
2192	}
2193	data[1] = DEBIread(dev, diopriv->RDDIn);
2194
2195	return 2;
2196}
2197
2198static int s626_dio_insn_config(struct comedi_device *dev,
2199				struct comedi_subdevice *s,
2200				struct comedi_insn *insn, unsigned int *data)
2201{
2202
2203	switch (data[0]) {
2204	case INSN_CONFIG_DIO_QUERY:
2205		data[1] =
2206		    (s->
2207		     io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
2208		    COMEDI_INPUT;
2209		return insn->n;
2210		break;
2211	case COMEDI_INPUT:
2212		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2213		break;
2214	case COMEDI_OUTPUT:
2215		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2216		break;
2217	default:
2218		return -EINVAL;
2219		break;
2220	}
2221	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2222
2223	return 1;
2224}
2225
2226static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2227{
2228	unsigned int group;
2229	unsigned int bitmask;
2230	unsigned int status;
2231
2232	/* select dio bank */
2233	group = chan / 16;
2234	bitmask = 1 << (chan - (16 * group));
2235	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2236	      chan - (16 * group), group);
2237
2238	/* set channel to capture positive edge */
2239	status = DEBIread(dev,
2240			  ((struct dio_private *)(dev->subdevices + 2 +
2241						  group)->private)->RDEdgSel);
2242	DEBIwrite(dev,
2243		  ((struct dio_private *)(dev->subdevices + 2 +
2244					  group)->private)->WREdgSel,
2245		  bitmask | status);
2246
2247	/* enable interrupt on selected channel */
2248	status = DEBIread(dev,
2249			  ((struct dio_private *)(dev->subdevices + 2 +
2250						  group)->private)->RDIntSel);
2251	DEBIwrite(dev,
2252		  ((struct dio_private *)(dev->subdevices + 2 +
2253					  group)->private)->WRIntSel,
2254		  bitmask | status);
2255
2256	/* enable edge capture write command */
2257	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2258
2259	/* enable edge capture on selected channel */
2260	status = DEBIread(dev,
2261			  ((struct dio_private *)(dev->subdevices + 2 +
2262						  group)->private)->RDCapSel);
2263	DEBIwrite(dev,
2264		  ((struct dio_private *)(dev->subdevices + 2 +
2265					  group)->private)->WRCapSel,
2266		  bitmask | status);
2267
2268	return 0;
2269}
2270
2271static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2272			      unsigned int mask)
2273{
2274	DEBUG
2275	    ("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n",
2276	     mask, group);
2277
2278	/* disable edge capture write command */
2279	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2280
2281	/* enable edge capture on selected channel */
2282	DEBIwrite(dev,
2283		  ((struct dio_private *)(dev->subdevices + 2 +
2284					  group)->private)->WRCapSel, mask);
2285
2286	return 0;
2287}
2288
2289static int s626_dio_clear_irq(struct comedi_device *dev)
2290{
2291	unsigned int group;
2292
2293	/* disable edge capture write command */
2294	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2295
2296	for (group = 0; group < S626_DIO_BANKS; group++) {
2297		/* clear pending events and interrupt */
2298		DEBIwrite(dev,
2299			  ((struct dio_private *)(dev->subdevices + 2 +
2300						  group)->private)->WRCapSel,
2301			  0xffff);
2302	}
2303
2304	return 0;
2305}
2306
2307/* Now this function initializes the value of the counter (data[0])
2308   and set the subdevice. To complete with trigger and interrupt
2309   configuration */
2310static int s626_enc_insn_config(struct comedi_device *dev,
2311				struct comedi_subdevice *s,
2312				struct comedi_insn *insn, unsigned int *data)
2313{
2314	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2315	    /*  index. */
2316	    (INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2317	    (CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2318	    (CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2319	    /* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2320	    (CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2321	    (CLKENAB_INDEX << BF_CLKENAB);
2322	/*   uint16_t DisableIntSrc=TRUE; */
2323	/*  uint32_t Preloadvalue;              //Counter initial value */
2324	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2325	uint16_t enab = CLKENAB_ALWAYS;
2326	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2327
2328	DEBUG("s626_enc_insn_config: encoder config\n");
2329
2330	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2331
2332	k->SetMode(dev, k, Setup, TRUE);
2333	Preload(dev, k, *(insn->data));
2334	k->PulseIndex(dev, k);
2335	SetLatchSource(dev, k, valueSrclatch);
2336	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2337
2338	return insn->n;
2339}
2340
2341static int s626_enc_insn_read(struct comedi_device *dev,
2342			      struct comedi_subdevice *s,
2343			      struct comedi_insn *insn, unsigned int *data)
2344{
2345
2346	int n;
2347	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2348
2349	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2350	      CR_CHAN(insn->chanspec));
2351
2352	for (n = 0; n < insn->n; n++)
2353		data[n] = ReadLatch(dev, k);
2354
2355	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2356
2357	return n;
2358}
2359
2360static int s626_enc_insn_write(struct comedi_device *dev,
2361			       struct comedi_subdevice *s,
2362			       struct comedi_insn *insn, unsigned int *data)
2363{
2364
2365	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2366
2367	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2368	      CR_CHAN(insn->chanspec));
2369
2370	/*  Set the preload register */
2371	Preload(dev, k, data[0]);
2372
2373	/*  Software index pulse forces the preload register to load */
2374	/*  into the counter */
2375	k->SetLoadTrig(dev, k, 0);
2376	k->PulseIndex(dev, k);
2377	k->SetLoadTrig(dev, k, 2);
2378
2379	DEBUG("s626_enc_insn_write: End encoder write\n");
2380
2381	return 1;
2382}
2383
2384static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
2385			    int tick)
2386{
2387	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2388	    /*  index. */
2389	    (INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2390	    (CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2391	    (CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2392	    (CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2393	    (CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2394	    (CLKENAB_INDEX << BF_CLKENAB);
2395	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2396	/*   uint16_t enab=CLKENAB_ALWAYS; */
2397
2398	k->SetMode(dev, k, Setup, FALSE);
2399
2400	/*  Set the preload register */
2401	Preload(dev, k, tick);
2402
2403	/*  Software index pulse forces the preload register to load */
2404	/*  into the counter */
2405	k->SetLoadTrig(dev, k, 0);
2406	k->PulseIndex(dev, k);
2407
2408	/* set reload on counter overflow */
2409	k->SetLoadTrig(dev, k, 1);
2410
2411	/* set interrupt on overflow */
2412	k->SetIntSrc(dev, k, INTSRC_OVER);
2413
2414	SetLatchSource(dev, k, valueSrclatch);
2415	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2416}
2417
2418/* ***********  DAC FUNCTIONS *********** */
2419
2420/*  Slot 0 base settings. */
2421#define VECT0	(XSD2 | RSD3 | SIB_A2)
2422/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2423
2424/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2425static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2426
2427/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2428static uint8_t trimadrs[] =
2429    { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2430
2431static void LoadTrimDACs(struct comedi_device *dev)
2432{
2433	register uint8_t i;
2434
2435	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2436	for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2437		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2438}
2439
2440static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2441			 uint8_t DacData)
2442{
2443	uint32_t chan;
2444
2445	/*  Save the new setpoint in case the application needs to read it back later. */
2446	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2447
2448	/*  Map logical channel number to physical channel number. */
2449	chan = (uint32_t) trimchan[LogicalChan];
2450
2451	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2452	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2453	 * can be detected.
2454	 */
2455
2456	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2457	/* Slot 2: Send high uint8_t to target TrimDac. */
2458	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2459	/* Slot 3: Send low uint8_t to target TrimDac. */
2460	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2461	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2462	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2463	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2464
2465	/* Construct and transmit target DAC's serial packet:
2466	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2467	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2468	 * WORD value (that writes a channel 0 NOP command to a non-existent
2469	 * main DAC channel) that serves to keep the clock running after the
2470	 * packet has been sent to the target DAC.
2471	 */
2472
2473	/*  Address the DAC channel within the trimdac device. */
2474	SendDAC(dev, ((uint32_t) chan << 8)
2475		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2476}
2477
2478/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2479/*  Read uint8_t from EEPROM. */
2480
2481static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2482{
2483	uint8_t rtnval;
2484
2485	/*  Send EEPROM target address. */
2486	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2487			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2488			 | I2C_B1(I2C_ATTRSTOP, addr)
2489			 /* Byte1 = EEPROM internal target address. */
2490			 | I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
2491		/*  Abort function and declare error if handshake failed. */
2492		DEBUG("I2Cread: error handshake I2Cread  a\n");
2493		return 0;
2494	}
2495	/*  Execute EEPROM read. */
2496	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
2497
2498			 /*  Byte2 = I2C */
2499			 /*  command: read */
2500			 /*  from I2C EEPROM */
2501			 /*  device. */
2502			 |I2C_B1(I2C_ATTRSTOP, 0)
2503
2504			 /*  Byte1 receives */
2505			 /*  uint8_t from */
2506			 /*  EEPROM. */
2507			 |I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */
2508
2509		/*  Abort function and declare error if handshake failed. */
2510		DEBUG("I2Cread: error handshake I2Cread b\n");
2511		return 0;
2512	}
2513	/*  Return copy of EEPROM value. */
2514	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2515	return rtnval;
2516}
2517
2518static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2519{
2520	/*  Write I2C command to I2C Transfer Control shadow register. */
2521	WR7146(P_I2CCTRL, val);
2522
2523	/*  Upload I2C shadow registers into working registers and wait for */
2524	/*  upload confirmation. */
2525
2526	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2527	while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ;
2528
2529	/*  Wait until I2C bus transfer is finished or an error occurs. */
2530	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ;
2531
2532	/*  Return non-zero if I2C error occured. */
2533	return RR7146(P_I2CCTRL) & I2C_ERR;
2534
2535}
2536
2537/*  Private helper function: Write setpoint to an application DAC channel. */
2538
2539static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2540{
2541	register uint16_t signmask;
2542	register uint32_t WSImage;
2543
2544	/*  Adjust DAC data polarity and set up Polarity Control Register */
2545	/*  image. */
2546	signmask = 1 << chan;
2547	if (dacdata < 0) {
2548		dacdata = -dacdata;
2549		devpriv->Dacpol |= signmask;
2550	} else
2551		devpriv->Dacpol &= ~signmask;
2552
2553	/*  Limit DAC setpoint value to valid range. */
2554	if ((uint16_t) dacdata > 0x1FFF)
2555		dacdata = 0x1FFF;
2556
2557	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2558	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2559	 * data to a non-existent TrimDac channel just to keep the clock
2560	 * running after sending data to the target DAC.  This is necessary
2561	 * to eliminate the clock glitch that would otherwise occur at the
2562	 * end of the target DAC's serial data stream.  When the sequence
2563	 * restarts at V0 (after executing V5), the gate array automatically
2564	 * disables gating for the DAC clock and all DAC chip selects.
2565	 */
2566
2567	WSImage = (chan & 2) ? WS1 : WS2;
2568	/* Choose DAC chip select to be asserted. */
2569	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2570	/* Slot 2: Transmit high data byte to target DAC. */
2571	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2572	/* Slot 3: Transmit low data byte to target DAC. */
2573	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2574	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2575	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2576	/* Slot 5: running after writing target DAC's low data byte. */
2577
2578	/*  Construct and transmit target DAC's serial packet:
2579	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2580	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2581	 * to a  non-existent TrimDac channel) that serves to keep the clock
2582	 * running after the packet has been sent to the target DAC.
2583	 */
2584	SendDAC(dev, 0x0F000000
2585		/* Continue clock after target DAC data (write to non-existent trimdac). */
2586		| 0x00004000
2587		/* Address the two main dual-DAC devices (TSL's chip select enables
2588		 * target device). */
2589		| ((uint32_t) (chan & 1) << 15)
2590		/*  Address the DAC channel within the  device. */
2591		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2592
2593}
2594
2595/* Private helper function: Transmit serial data to DAC via Audio
2596 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2597 * Dacpol contains valid target image.
2598 */
2599
2600static void SendDAC(struct comedi_device *dev, uint32_t val)
2601{
2602
2603	/* START THE SERIAL CLOCK RUNNING ------------- */
2604
2605	/* Assert DAC polarity control and enable gating of DAC serial clock
2606	 * and audio bit stream signals.  At this point in time we must be
2607	 * assured of being in time slot 0.  If we are not in slot 0, the
2608	 * serial clock and audio stream signals will be disabled; this is
2609	 * because the following DEBIwrite statement (which enables signals
2610	 * to be passed through the gate array) would execute before the
2611	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2612	 * causing the signals to be inactive during the DAC write.
2613	 */
2614	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2615
2616	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2617
2618	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2619
2620	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2621	*devpriv->pDacWBuf = val;
2622
2623	/* enab the output DMA transfer.  This will cause the DMAC to copy
2624	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2625	 * then immediately terminate because the protection address is
2626	 * reached upon transfer of the first DWORD value.
2627	 */
2628	MC_ENABLE(P_MC1, MC1_A2OUT);
2629
2630	/*  While the DMA transfer is executing ... */
2631
2632	/* Reset Audio2 output FIFO's underflow flag (along with any other
2633	 * FIFO underflow/overflow flags).  When set, this flag will
2634	 * indicate that we have emerged from slot 0.
2635	 */
2636	WR7146(P_ISR, ISR_AFOU);
2637
2638	/* Wait for the DMA transfer to finish so that there will be data
2639	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2640	 * from the FIFO to the output buffer register.  We test for DMA
2641	 * Done by polling the DMAC enable flag; this flag is automatically
2642	 * cleared when the transfer has finished.
2643	 */
2644	while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ;
2645
2646	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2647
2648	/* FIFO data is now available, so we enable execution of time slots
2649	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2650	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2651	 * detection.
2652	 */
2653	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2654
2655	/* Wait for slot 1 to execute to ensure that the Packet will be
2656	 * transmitted.  This is detected by polling the Audio2 output FIFO
2657	 * underflow flag, which will be set when slot 1 execution has
2658	 * finished transferring the DAC's data DWORD from the output FIFO
2659	 * to the output buffer register.
2660	 */
2661	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ;
2662
2663	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2664	 * back to slot 0 after executing the EOS in slot 5.  Also,
2665	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2666	 * stored in the last byte to be shifted out of the FIFO's DWORD
2667	 * buffer register.
2668	 */
2669	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2670
2671	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2672
2673	/* Wait for the TSL to finish executing all time slots before
2674	 * exiting this function.  We must do this so that the next DAC
2675	 * write doesn't start, thereby enabling clock/chip select signals:
2676	 *
2677	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2678	 *    the clock/cs signal gating and traps slot // list execution.
2679	 *    we have not yet finished slot 5 then the clock/cs signals are
2680	 *    still gated and we have not finished transmitting the stream.
2681	 *
2682	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2683	 *    this case, the slot sequence is currently repeating, but with
2684	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2685	 *    execution before setting up the next DAC setpoint DMA transfer
2686	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2687	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2688	 *    the TSL has not yet finished executing slot 5 ...
2689	 */
2690	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2691		/* The trap was set on time and we are still executing somewhere
2692		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2693		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2694		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2695		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2696		 */
2697		while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ;
2698	}
2699	/* Either (1) we were too late setting the slot 0 trap; the TSL
2700	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2701	 * or (2) we were not late and execution is now trapped at slot 0.
2702	 * In either case, we must now change slot 0 so that it will store
2703	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2704	 * In order to do this, we reprogram slot 0 so that it will shift in
2705	 * SD3, which is driven only by a pull-up resistor.
2706	 */
2707	SETVECT(0, RSD3 | SIB_A2 | EOS);
2708
2709	/* Wait for slot 0 to execute, at which time the TSL is setup for
2710	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2711	 * from 0x00 to 0xFF.
2712	 */
2713	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ;
2714}
2715
2716static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2717{
2718	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2719	/*  MISC2 register. */
2720	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2721	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2722}
2723
2724/*  Initialize the DEBI interface for all transfers. */
2725
2726static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2727{
2728	uint16_t retval;
2729
2730	/*  Set up DEBI control register value in shadow RAM. */
2731	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2732
2733	/*  Execute the DEBI transfer. */
2734	DEBItransfer(dev);
2735
2736	/*  Fetch target register value. */
2737	retval = (uint16_t) RR7146(P_DEBIAD);
2738
2739	/*  Return register value. */
2740	return retval;
2741}
2742
2743/*  Execute a DEBI transfer.  This must be called from within a */
2744/*  critical section. */
2745static void DEBItransfer(struct comedi_device *dev)
2746{
2747	/*  Initiate upload of shadow RAM to DEBI control register. */
2748	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2749
2750	/*  Wait for completion of upload from shadow RAM to DEBI control */
2751	/*  register. */
2752	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ;
2753
2754	/*  Wait until DEBI transfer is done. */
2755	while (RR7146(P_PSR) & PSR_DEBI_S) ;
2756}
2757
2758/*  Write a value to a gate array register. */
2759static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2760{
2761
2762	/*  Set up DEBI control register value in shadow RAM. */
2763	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2764	WR7146(P_DEBIAD, wdata);
2765
2766	/*  Execute the DEBI transfer. */
2767	DEBItransfer(dev);
2768}
2769
2770/* Replace the specified bits in a gate array register.  Imports: mask
2771 * specifies bits that are to be preserved, wdata is new value to be
2772 * or'd with the masked original.
2773 */
2774static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2775			uint16_t wdata)
2776{
2777
2778	/*  Copy target gate array register into P_DEBIAD register. */
2779	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2780	/* Set up DEBI control reg value in shadow RAM. */
2781	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2782
2783	/*  Write back the modified image. */
2784	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2785	/* Set up DEBI control reg value in shadow  RAM. */
2786
2787	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2788	/* Modify the register image. */
2789	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2790}
2791
2792static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
2793		      size_t bsize)
2794{
2795	void *vbptr;
2796	dma_addr_t vpptr;
2797
2798	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2799	if (pdma == NULL)
2800		return;
2801	/* find the matching allocation from the board struct */
2802
2803	vbptr = pdma->LogicalBase;
2804	vpptr = pdma->PhysicalBase;
2805	if (vbptr) {
2806		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2807		pdma->LogicalBase = 0;
2808		pdma->PhysicalBase = 0;
2809
2810		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2811		      vbptr, bsize, (uint32_t) vpptr);
2812	}
2813}
2814
2815/* ******  COUNTER FUNCTIONS  ******* */
2816/* All counter functions address a specific counter by means of the
2817 * "Counter" argument, which is a logical counter number.  The Counter
2818 * argument may have any of the following legal values: 0=0A, 1=1A,
2819 * 2=2A, 3=0B, 4=1B, 5=2B.
2820 */
2821
2822/* Forward declarations for functions that are common to both A and B counters: */
2823
2824/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2825
2826/*  Read a counter's output latch. */
2827
2828static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2829{
2830	register uint32_t value;
2831	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2832
2833	/*  Latch counts and fetch LSW of latched counts value. */
2834	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2835
2836	/*  Fetch MSW of latched counts and combine with LSW. */
2837	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2838
2839	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2840
2841	/*  Return latched counts. */
2842	return value;
2843}
2844
2845/*  Reset a counter's index and overflow event capture flags. */
2846
2847static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2848{
2849	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2850		    CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2851}
2852
2853static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2854{
2855	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2856		    CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2857}
2858
2859/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2860/*  for both A and B counters. */
2861
2862static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2863{
2864	register uint16_t cra;
2865	register uint16_t crb;
2866	register uint16_t setup;
2867
2868	/*  Fetch CRA and CRB register images. */
2869	cra = DEBIread(dev, k->MyCRA);
2870	crb = DEBIread(dev, k->MyCRB);
2871
2872	/*  Populate the standardized counter setup bit fields.  Note: */
2873	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2874	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2875		 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2876		 |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2877		 |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2878		 |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2879		 |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2880
2881	/*  Adjust mode-dependent parameters. */
2882	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2883		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2884			  |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2885			  |(MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2886
2887	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2888		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2889			  |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2890			  |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2891			    (MULT_X1 << STDBIT_CLKMULT) :
2892			    ((cra >> (CRABIT_CLKMULT_A -
2893				      STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
2894
2895	/*  Return adjusted counter setup. */
2896	return setup;
2897}
2898
2899static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2900{
2901	register uint16_t cra;
2902	register uint16_t crb;
2903	register uint16_t setup;
2904
2905	/*  Fetch CRA and CRB register images. */
2906	cra = DEBIread(dev, k->MyCRA);
2907	crb = DEBIread(dev, k->MyCRB);
2908
2909	/*  Populate the standardized counter setup bit fields.  Note: */
2910	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2911	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2912		 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2913		 |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2914		 |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2915		 |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2916		 |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2917
2918	/*  Adjust mode-dependent parameters. */
2919	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2920		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2921			  |(MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2922			  |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2923
2924	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2925		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2926			  |(MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2927			  |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2928
2929	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2930		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2931			  |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2932			  |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2933
2934	/*  Return adjusted counter setup. */
2935	return setup;
2936}
2937
2938/*
2939 * Set the operating mode for the specified counter.  The setup
2940 * parameter is treated as a COUNTER_SETUP data type.  The following
2941 * parameters are programmable (all other parms are ignored): ClkMult,
2942 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2943 */
2944
2945static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
2946		      uint16_t Setup, uint16_t DisableIntSrc)
2947{
2948	register uint16_t cra;
2949	register uint16_t crb;
2950	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2951
2952	/*  Initialize CRA and CRB images. */
2953	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
2954	       |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2955
2956	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
2957	       | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
2958
2959	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2960	if (!DisableIntSrc)
2961		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2962						    CRABIT_INTSRC_A));
2963
2964	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2965	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2966	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
2967		/*  (Extender valid only for B counters). */
2968
2969	case CLKSRC_TIMER:	/*  Timer Mode: */
2970		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
2971			|((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
2972			|(1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
2973			|(MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
2974		break;
2975
2976	default:		/*  Counter Mode: */
2977		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2978			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
2979			|(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
2980			  (MULT_X1 << CRABIT_CLKMULT_A) :
2981			  ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2982							STDBIT_CLKMULT))));
2983	}
2984
2985	/*  Force positive index polarity if IndxSrc is software-driven only, */
2986	/*  otherwise pass it through. */
2987	if (~setup & STDMSK_INDXSRC)
2988		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2989						     STDBIT_INDXPOL));
2990
2991	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2992	/*  enable mask to indicate the counter interrupt is disabled. */
2993	if (DisableIntSrc)
2994		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2995
2996	/*  While retaining CounterB and LatchSrc configurations, program the */
2997	/*  new counter operating mode. */
2998	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2999	DEBIreplace(dev, k->MyCRB,
3000		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
3001}
3002
3003static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
3004		      uint16_t Setup, uint16_t DisableIntSrc)
3005{
3006	register uint16_t cra;
3007	register uint16_t crb;
3008	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
3009
3010	/*  Initialize CRA and CRB images. */
3011	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
3012
3013	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
3014	       | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
3015	       |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
3016
3017	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
3018	if (!DisableIntSrc)
3019		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
3020						    CRBBIT_INTSRC_B));
3021
3022	/*  Populate all mode-dependent attributes of CRA & CRB images. */
3023	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
3024	case CLKSRC_TIMER:	/*  Timer Mode: */
3025		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
3026			|((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
3027		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
3028			|(MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
3029		break;
3030
3031	case CLKSRC_EXTENDER:	/*  Extender Mode: */
3032		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
3033			|((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
3034		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
3035			|(MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
3036		break;
3037
3038	default:		/*  Counter Mode: */
3039		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
3040		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
3041			|(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
3042			  (MULT_X1 << CRBBIT_CLKMULT_B) :
3043			  ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
3044							STDBIT_CLKMULT))));
3045	}
3046
3047	/*  Force positive index polarity if IndxSrc is software-driven only, */
3048	/*  otherwise pass it through. */
3049	if (~setup & STDMSK_INDXSRC)
3050		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
3051						     CRBBIT_INDXPOL_B));
3052
3053	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
3054	/*  enable mask to indicate the counter interrupt is disabled. */
3055	if (DisableIntSrc)
3056		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
3057
3058	/*  While retaining CounterA and LatchSrc configurations, program the */
3059	/*  new counter operating mode. */
3060	DEBIreplace(dev, k->MyCRA,
3061		    (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
3062	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
3063}
3064
3065/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
3066
3067static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
3068			uint16_t enab)
3069{
3070	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3071	DEBIreplace(dev, k->MyCRB,
3072		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3073		    (uint16_t) (enab << CRBBIT_CLKENAB_A));
3074}
3075
3076static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
3077			uint16_t enab)
3078{
3079	DEBIreplace(dev, k->MyCRB,
3080		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3081		    (uint16_t) (enab << CRBBIT_CLKENAB_B));
3082}
3083
3084static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3085{
3086	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3087}
3088
3089static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3090{
3091	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3092}
3093
3094/* Return/set a counter pair's latch trigger source.  0: On read
3095 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3096 * latches B.
3097 */
3098
3099static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
3100			   uint16_t value)
3101{
3102	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3103	DEBIreplace(dev, k->MyCRB,
3104		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3105		    (uint16_t) (value << CRBBIT_LATCHSRC));
3106
3107	DEBUG("SetLatchSource: SetLatchSource exit \n");
3108}
3109
3110/*
3111 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3112 * {
3113 * 	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3114 * }
3115 */
3116
3117/*
3118 * Return/set the event that will trigger transfer of the preload
3119 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3120 * 2=OverflowA (B counters only), 3=disabled.
3121 */
3122
3123static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
3124			  uint16_t Trig)
3125{
3126	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3127		    (uint16_t) (Trig << CRABIT_LOADSRC_A));
3128}
3129
3130static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
3131			  uint16_t Trig)
3132{
3133	DEBIreplace(dev, k->MyCRB,
3134		    (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3135		    (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3136}
3137
3138static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3139{
3140	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3141}
3142
3143static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3144{
3145	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3146}
3147
3148/* Return/set counter interrupt source and clear any captured
3149 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3150 * 2=IndexOnly, 3=IndexAndOverflow.
3151 */
3152
3153static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3154			uint16_t IntSource)
3155{
3156	/*  Reset any pending counter overflow or index captures. */
3157	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3158		    CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3159
3160	/*  Program counter interrupt source. */
3161	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3162		    (uint16_t) (IntSource << CRABIT_INTSRC_A));
3163
3164	/*  Update MISC2 interrupt enable mask. */
3165	devpriv->CounterIntEnabs =
3166	    (devpriv->CounterIntEnabs & ~k->
3167	     MyEventBits[3]) | k->MyEventBits[IntSource];
3168}
3169
3170static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3171			uint16_t IntSource)
3172{
3173	uint16_t crb;
3174
3175	/*  Cache writeable CRB register image. */
3176	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3177
3178	/*  Reset any pending counter overflow or index captures. */
3179	DEBIwrite(dev, k->MyCRB,
3180		  (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3181
3182	/*  Program counter interrupt source. */
3183	DEBIwrite(dev, k->MyCRB,
3184		  (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3185							  CRBBIT_INTSRC_B)));
3186
3187	/*  Update MISC2 interrupt enable mask. */
3188	devpriv->CounterIntEnabs =
3189	    (devpriv->CounterIntEnabs & ~k->
3190	     MyEventBits[3]) | k->MyEventBits[IntSource];
3191}
3192
3193static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3194{
3195	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3196}
3197
3198static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3199{
3200	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3201}
3202
3203/*  Return/set the clock multiplier. */
3204
3205/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3206/* { */
3207/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3208/* } */
3209
3210/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k )  */
3211/* { */
3212/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3213/* } */
3214
3215/* Return/set the clock polarity. */
3216
3217/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3218/* { */
3219/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3220/* } */
3221
3222/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k )  */
3223/* { */
3224/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3225/* } */
3226
3227/* Return/set the clock source.  */
3228
3229/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3230/* { */
3231/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3232/* } */
3233
3234/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k )  */
3235/* { */
3236/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3237/* } */
3238
3239/* Return/set the index polarity. */
3240
3241/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3242/* { */
3243/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3244/* } */
3245
3246/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k )  */
3247/* { */
3248/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3249/* } */
3250
3251/*  Return/set the index source. */
3252
3253/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3254/* { */
3255/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3256/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3257/* } */
3258
3259/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k )  */
3260/* { */
3261/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3262/* } */
3263
3264/*  Generate an index pulse. */
3265
3266static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3267{
3268	register uint16_t cra;
3269
3270	DEBUG("PulseIndex_A: pulse index enter\n");
3271
3272	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3273	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3274	DEBUG("PulseIndex_A: pulse index step1\n");
3275	DEBIwrite(dev, k->MyCRA, cra);
3276}
3277
3278static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3279{
3280	register uint16_t crb;
3281
3282	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3283	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3284	DEBIwrite(dev, k->MyCRB, crb);
3285}
3286
3287/*  Write value into counter preload register. */
3288
3289static void Preload(struct comedi_device *dev, struct enc_private *k,
3290		    uint32_t value)
3291{
3292	DEBUG("Preload: preload enter\n");
3293	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3294	DEBUG("Preload: preload step 1\n");
3295	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3296		  (uint16_t) (value >> 16));
3297}
3298
3299static void CountersInit(struct comedi_device *dev)
3300{
3301	int chan;
3302	struct enc_private *k;
3303	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3304	    /*  index. */
3305	    (INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3306	    (CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3307	    (CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3308	    (CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3309	    (CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3310	    (CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3311
3312	/*  Disable all counter interrupts and clear any captured counter events. */
3313	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3314		k = &encpriv[chan];
3315		k->SetMode(dev, k, Setup, TRUE);
3316		k->SetIntSrc(dev, k, 0);
3317		k->ResetCapFlags(dev, k);
3318		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3319	}
3320	DEBUG("CountersInit: counters initialized \n");
3321
3322}
3323