s626.c revision 8629efa4cbf6f89a54a85af4b8bc31762af01800
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63                            //during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66                                                        //to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/kernel.h>
72#include <linux/types.h>
73
74#include "../comedidev.h"
75
76#include "comedi_pci.h"
77
78#include "comedi_fc.h"
79#include "s626.h"
80
81MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83MODULE_LICENSE("GPL");
84
85struct s626_board {
86	const char *name;
87	int ai_chans;
88	int ai_bits;
89	int ao_chans;
90	int ao_bits;
91	int dio_chans;
92	int dio_banks;
93	int enc_chans;
94};
95
96static const struct s626_board s626_boards[] = {
97	{
98	.name = "s626",
99	.ai_chans = S626_ADC_CHANNELS,
100	.ai_bits = 14,
101	.ao_chans = S626_DAC_CHANNELS,
102	.ao_bits = 13,
103	.dio_chans = S626_DIO_CHANNELS,
104	.dio_banks = S626_DIO_BANKS,
105	.enc_chans = S626_ENCODER_CHANNELS,
106		}
107};
108
109#define thisboard ((const struct s626_board *)dev->board_ptr)
110#define PCI_VENDOR_ID_S626 0x1131
111#define PCI_DEVICE_ID_S626 0x7146
112
113static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
115		0},
116	{0}
117};
118
119MODULE_DEVICE_TABLE(pci, s626_pci_table);
120
121static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
122static int s626_detach(struct comedi_device *dev);
123
124static struct comedi_driver driver_s626 = {
125	.driver_name = "s626",
126	.module = THIS_MODULE,
127	.attach = s626_attach,
128	.detach = s626_detach,
129};
130
131struct s626_private {
132	struct pci_dev *pdev;
133	void *base_addr;
134	int got_regions;
135	short allocatedBuf;
136	uint8_t ai_cmd_running;	/*  ai_cmd is running */
137	uint8_t ai_continous;	/*  continous aquisition */
138	int ai_sample_count;	/*  number of samples to aquire */
139	unsigned int ai_sample_timer;
140	/*  time between samples in  units of the timer */
141	int ai_convert_count;	/*  conversion counter */
142	unsigned int ai_convert_timer;
143	/*  time between conversion in  units of the timer */
144	uint16_t CounterIntEnabs;
145	/* Counter interrupt enable  mask for MISC2 register. */
146	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
147	struct bufferDMA RPSBuf;		/* DMA buffer used to hold ADC (RPS1) program. */
148	struct bufferDMA ANABuf;
149	/* DMA buffer used to receive ADC data and hold DAC data. */
150	uint32_t *pDacWBuf;
151	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
152	uint16_t Dacpol;	/* Image of DAC polarity register. */
153	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
154	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
155	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
156	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
157	uint32_t I2CAdrs;
158	/* I2C device address for onboard EEPROM (board rev dependent). */
159	/*   short         I2Cards; */
160	unsigned int ao_readback[S626_DAC_CHANNELS];
161};
162
163struct dio_private {
164	uint16_t RDDIn;
165	uint16_t WRDOut;
166	uint16_t RDEdgSel;
167	uint16_t WREdgSel;
168	uint16_t RDCapSel;
169	uint16_t WRCapSel;
170	uint16_t RDCapFlg;
171	uint16_t RDIntSel;
172	uint16_t WRIntSel;
173};
174
175static struct dio_private dio_private_A = {
176	.RDDIn = LP_RDDINA,
177	.WRDOut = LP_WRDOUTA,
178	.RDEdgSel = LP_RDEDGSELA,
179	.WREdgSel = LP_WREDGSELA,
180	.RDCapSel = LP_RDCAPSELA,
181	.WRCapSel = LP_WRCAPSELA,
182	.RDCapFlg = LP_RDCAPFLGA,
183	.RDIntSel = LP_RDINTSELA,
184	.WRIntSel = LP_WRINTSELA,
185};
186
187static struct dio_private dio_private_B = {
188	.RDDIn = LP_RDDINB,
189	.WRDOut = LP_WRDOUTB,
190	.RDEdgSel = LP_RDEDGSELB,
191	.WREdgSel = LP_WREDGSELB,
192	.RDCapSel = LP_RDCAPSELB,
193	.WRCapSel = LP_WRCAPSELB,
194	.RDCapFlg = LP_RDCAPFLGB,
195	.RDIntSel = LP_RDINTSELB,
196	.WRIntSel = LP_WRINTSELB,
197};
198
199static struct dio_private dio_private_C = {
200	.RDDIn = LP_RDDINC,
201	.WRDOut = LP_WRDOUTC,
202	.RDEdgSel = LP_RDEDGSELC,
203	.WREdgSel = LP_WREDGSELC,
204	.RDCapSel = LP_RDCAPSELC,
205	.WRCapSel = LP_WRCAPSELC,
206	.RDCapFlg = LP_RDCAPFLGC,
207	.RDIntSel = LP_RDINTSELC,
208	.WRIntSel = LP_WRINTSELC,
209};
210
211/* to group dio devices (48 bits mask and data are not allowed ???)
212static struct dio_private *dio_private_word[]={
213  &dio_private_A,
214  &dio_private_B,
215  &dio_private_C,
216};
217*/
218
219#define devpriv ((struct s626_private *)dev->private)
220#define diopriv ((struct dio_private *)s->private)
221
222COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
223
224/* ioctl routines */
225static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
226	struct comedi_insn *insn, unsigned int *data);
227/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
228static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
229	struct comedi_insn *insn, unsigned int *data);
230static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
231static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
232	struct comedi_cmd *cmd);
233static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
234static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
235	struct comedi_insn *insn, unsigned int *data);
236static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
237	struct comedi_insn *insn, unsigned int *data);
238static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
239	struct comedi_insn *insn, unsigned int *data);
240static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
241	struct comedi_insn *insn, unsigned int *data);
242static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
243static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
244	unsigned int mask);
245static int s626_dio_clear_irq(struct comedi_device *dev);
246static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
247	struct comedi_insn *insn, unsigned int *data);
248static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
249	struct comedi_insn *insn, unsigned int *data);
250static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
251	struct comedi_insn *insn, unsigned int *data);
252static int s626_ns_to_timer(int *nanosec, int round_mode);
253static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
254static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
255	unsigned int trignum);
256static irqreturn_t s626_irq_handler(int irq, void *d);
257static unsigned int s626_ai_reg_to_uint(int data);
258/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
259
260/* end ioctl routines */
261
262/* internal routines */
263static void s626_dio_init(struct comedi_device *dev);
264static void ResetADC(struct comedi_device *dev, uint8_t *ppl);
265static void LoadTrimDACs(struct comedi_device *dev);
266static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
267	uint8_t DacData);
268static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
269static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
270static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
271static void SendDAC(struct comedi_device *dev, uint32_t val);
272static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
273static void DEBItransfer(struct comedi_device *dev);
274static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
275static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
276static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
277	uint16_t wdata);
278static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize);
279
280/*  COUNTER OBJECT ------------------------------------------------ */
281struct enc_private {
282	/*  Pointers to functions that differ for A and B counters: */
283	uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *);	/* Return clock enable. */
284	uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *);	/* Return interrupt source. */
285	uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *);	/* Return preload trigger source. */
286	uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *);	/* Return standardized operating mode. */
287	void (*PulseIndex) (struct comedi_device *dev, struct enc_private *);	/* Generate soft index strobe. */
288	void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab);	/* Program clock enable. */
289	void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource);	/* Program interrupt source. */
290	void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig);	/* Program preload trigger source. */
291	void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
292	void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *);	/* Reset event capture flags. */
293
294	uint16_t MyCRA;		/*    Address of CRA register. */
295	uint16_t MyCRB;		/*    Address of CRB register. */
296	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
297	/*    register. */
298	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
299};
300
301#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
302
303/* counters routines */
304static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick);
305static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
306static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
307static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
308static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
309static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
310static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
311	uint16_t DisableIntSrc);
312static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
313	uint16_t DisableIntSrc);
314static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
315static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
316static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
317static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
318static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
319	uint16_t value);
320/* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
321static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
322static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
323static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
324static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
325static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
326	uint16_t IntSource);
327static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
328	uint16_t IntSource);
329static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
330static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
331/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
332/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
333/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
334/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
335/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
336/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k );  */
337/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
338/* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k );  */
339static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
340static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
341static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value);
342static void CountersInit(struct comedi_device *dev);
343/* end internal routines */
344
345/*  Counter objects constructor. */
346
347/*  Counter overflow/index event flag masks for RDMISC2. */
348#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
349#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
350#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
351
352/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
353/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
354
355/* struct enc_private; */
356static struct enc_private enc_private_data[] = {
357	{
358	.GetEnable = GetEnable_A,
359	.GetIntSrc = GetIntSrc_A,
360	.GetLoadTrig = GetLoadTrig_A,
361	.GetMode = GetMode_A,
362	.PulseIndex = PulseIndex_A,
363	.SetEnable = SetEnable_A,
364	.SetIntSrc = SetIntSrc_A,
365	.SetLoadTrig = SetLoadTrig_A,
366	.SetMode = SetMode_A,
367	.ResetCapFlags = ResetCapFlags_A,
368	.MyCRA = LP_CR0A,
369	.MyCRB = LP_CR0B,
370	.MyLatchLsw = LP_CNTR0ALSW,
371	.MyEventBits = EVBITS(0),
372		},
373	{
374	.GetEnable = GetEnable_A,
375	.GetIntSrc = GetIntSrc_A,
376	.GetLoadTrig = GetLoadTrig_A,
377	.GetMode = GetMode_A,
378	.PulseIndex = PulseIndex_A,
379	.SetEnable = SetEnable_A,
380	.SetIntSrc = SetIntSrc_A,
381	.SetLoadTrig = SetLoadTrig_A,
382	.SetMode = SetMode_A,
383	.ResetCapFlags = ResetCapFlags_A,
384	.MyCRA = LP_CR1A,
385	.MyCRB = LP_CR1B,
386	.MyLatchLsw = LP_CNTR1ALSW,
387	.MyEventBits = EVBITS(1),
388		},
389	{
390	.GetEnable = GetEnable_A,
391	.GetIntSrc = GetIntSrc_A,
392	.GetLoadTrig = GetLoadTrig_A,
393	.GetMode = GetMode_A,
394	.PulseIndex = PulseIndex_A,
395	.SetEnable = SetEnable_A,
396	.SetIntSrc = SetIntSrc_A,
397	.SetLoadTrig = SetLoadTrig_A,
398	.SetMode = SetMode_A,
399	.ResetCapFlags = ResetCapFlags_A,
400	.MyCRA = LP_CR2A,
401	.MyCRB = LP_CR2B,
402	.MyLatchLsw = LP_CNTR2ALSW,
403	.MyEventBits = EVBITS(2),
404		},
405	{
406	.GetEnable = GetEnable_B,
407	.GetIntSrc = GetIntSrc_B,
408	.GetLoadTrig = GetLoadTrig_B,
409	.GetMode = GetMode_B,
410	.PulseIndex = PulseIndex_B,
411	.SetEnable = SetEnable_B,
412	.SetIntSrc = SetIntSrc_B,
413	.SetLoadTrig = SetLoadTrig_B,
414	.SetMode = SetMode_B,
415	.ResetCapFlags = ResetCapFlags_B,
416	.MyCRA = LP_CR0A,
417	.MyCRB = LP_CR0B,
418	.MyLatchLsw = LP_CNTR0BLSW,
419	.MyEventBits = EVBITS(3),
420		},
421	{
422	.GetEnable = GetEnable_B,
423	.GetIntSrc = GetIntSrc_B,
424	.GetLoadTrig = GetLoadTrig_B,
425	.GetMode = GetMode_B,
426	.PulseIndex = PulseIndex_B,
427	.SetEnable = SetEnable_B,
428	.SetIntSrc = SetIntSrc_B,
429	.SetLoadTrig = SetLoadTrig_B,
430	.SetMode = SetMode_B,
431	.ResetCapFlags = ResetCapFlags_B,
432	.MyCRA = LP_CR1A,
433	.MyCRB = LP_CR1B,
434	.MyLatchLsw = LP_CNTR1BLSW,
435	.MyEventBits = EVBITS(4),
436		},
437	{
438	.GetEnable = GetEnable_B,
439	.GetIntSrc = GetIntSrc_B,
440	.GetLoadTrig = GetLoadTrig_B,
441	.GetMode = GetMode_B,
442	.PulseIndex = PulseIndex_B,
443	.SetEnable = SetEnable_B,
444	.SetIntSrc = SetIntSrc_B,
445	.SetLoadTrig = SetLoadTrig_B,
446	.SetMode = SetMode_B,
447	.ResetCapFlags = ResetCapFlags_B,
448	.MyCRA = LP_CR2A,
449	.MyCRB = LP_CR2B,
450	.MyLatchLsw = LP_CNTR2BLSW,
451	.MyEventBits = EVBITS(5),
452		},
453};
454
455/*  enab/disable a function or test status bit(s) that are accessed */
456/*  through Main Control Registers 1 or 2. */
457#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
458
459#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
460
461#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
462
463/* #define WR7146(REGARDS,CTRLWORD)
464    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
465#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
466
467/* #define RR7146(REGARDS)
468    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
469#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
470
471#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
472
473/*  Write a time slot control record to TSL2. */
474#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
475#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
476
477/*  Code macros used for constructing I2C command bytes. */
478#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
479#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
480#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
481
482static const struct comedi_lrange s626_range_table = { 2, {
483			RANGE(-5, 5),
484			RANGE(-10, 10),
485	}
486};
487
488static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
489{
490/*   uint8_t	PollList; */
491/*   uint16_t	AdcData; */
492/*   uint16_t	StartVal; */
493/*   uint16_t	index; */
494/*   unsigned int data[16]; */
495	int result;
496	int i;
497	int ret;
498	resource_size_t resourceStart;
499	dma_addr_t appdma;
500	struct comedi_subdevice *s;
501	struct pci_dev *pdev;
502
503	if (alloc_private(dev, sizeof(struct s626_private)) < 0)
504		return -ENOMEM;
505
506	for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
507			NULL); pdev != NULL;
508		pdev = pci_get_device(PCI_VENDOR_ID_S626,
509			PCI_DEVICE_ID_S626, pdev)) {
510		if (it->options[0] || it->options[1]) {
511			if (pdev->bus->number == it->options[0] &&
512				PCI_SLOT(pdev->devfn) == it->options[1]) {
513				/* matches requested bus/slot */
514				break;
515			}
516		} else {
517			/* no bus/slot specified */
518			break;
519		}
520	}
521	devpriv->pdev = pdev;
522
523	if (pdev == NULL) {
524		printk("s626_attach: Board not present!!!\n");
525		return -ENODEV;
526	}
527
528	result = comedi_pci_enable(pdev, "s626");
529	if (result < 0) {
530		printk("s626_attach: comedi_pci_enable fails\n");
531		return -ENODEV;
532	}
533	devpriv->got_regions = 1;
534
535	resourceStart = pci_resource_start(devpriv->pdev, 0);
536
537	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
538	if (devpriv->base_addr == NULL) {
539		printk("s626_attach: IOREMAP failed\n");
540		return -ENODEV;
541	}
542
543	if (devpriv->base_addr) {
544		/* disable master interrupt */
545		writel(0, devpriv->base_addr + P_IER);
546
547		/* soft reset */
548		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
549
550		/* DMA FIXME DMA// */
551		DEBUG("s626_attach: DMA ALLOCATION\n");
552
553		/* adc buffer allocation */
554		devpriv->allocatedBuf = 0;
555
556		devpriv->ANABuf.LogicalBase =
557			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
558
559		if (devpriv->ANABuf.LogicalBase == NULL) {
560			printk("s626_attach: DMA Memory mapping error\n");
561			return -ENOMEM;
562		}
563
564		devpriv->ANABuf.PhysicalBase = appdma;
565
566		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
567
568		devpriv->allocatedBuf++;
569
570		devpriv->RPSBuf.LogicalBase =
571			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,  &appdma);
572
573		if (devpriv->RPSBuf.LogicalBase == NULL) {
574			printk("s626_attach: DMA Memory mapping error\n");
575			return -ENOMEM;
576		}
577
578		devpriv->RPSBuf.PhysicalBase = appdma;
579
580		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
581
582		devpriv->allocatedBuf++;
583
584	}
585
586	dev->board_ptr = s626_boards;
587	dev->board_name = thisboard->name;
588
589	if (alloc_subdevices(dev, 6) < 0)
590		return -ENOMEM;
591
592	dev->iobase = (unsigned long)devpriv->base_addr;
593	dev->irq = devpriv->pdev->irq;
594
595	/* set up interrupt handler */
596	if (dev->irq == 0) {
597		printk(" unknown irq (bad)\n");
598	} else {
599		ret = comedi_request_irq(dev->irq, s626_irq_handler,
600					 IRQF_SHARED, "s626", dev);
601
602		if (ret < 0) {
603			printk(" irq not available\n");
604			dev->irq = 0;
605		}
606	}
607
608	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
609		it->options[0], it->options[1]);
610
611	s = dev->subdevices + 0;
612	/* analog input subdevice */
613	dev->read_subdev = s;
614	/* we support single-ended (ground) and differential */
615	s->type = COMEDI_SUBD_AI;
616	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
617	s->n_chan = thisboard->ai_chans;
618	s->maxdata = (0xffff >> 2);
619	s->range_table = &s626_range_table;
620	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
621						   length that the board can
622						   handle */
623	s->insn_config = s626_ai_insn_config;
624	s->insn_read = s626_ai_insn_read;
625	s->do_cmd = s626_ai_cmd;
626	s->do_cmdtest = s626_ai_cmdtest;
627	s->cancel = s626_ai_cancel;
628
629	s = dev->subdevices + 1;
630	/* analog output subdevice */
631	s->type = COMEDI_SUBD_AO;
632	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
633	s->n_chan = thisboard->ao_chans;
634	s->maxdata = (0x3fff);
635	s->range_table = &range_bipolar10;
636	s->insn_write = s626_ao_winsn;
637	s->insn_read = s626_ao_rinsn;
638
639	s = dev->subdevices + 2;
640	/* digital I/O subdevice */
641	s->type = COMEDI_SUBD_DIO;
642	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
643	s->n_chan = S626_DIO_CHANNELS;
644	s->maxdata = 1;
645	s->io_bits = 0xffff;
646	s->private = &dio_private_A;
647	s->range_table = &range_digital;
648	s->insn_config = s626_dio_insn_config;
649	s->insn_bits = s626_dio_insn_bits;
650
651	s = dev->subdevices + 3;
652	/* digital I/O subdevice */
653	s->type = COMEDI_SUBD_DIO;
654	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
655	s->n_chan = 16;
656	s->maxdata = 1;
657	s->io_bits = 0xffff;
658	s->private = &dio_private_B;
659	s->range_table = &range_digital;
660	s->insn_config = s626_dio_insn_config;
661	s->insn_bits = s626_dio_insn_bits;
662
663	s = dev->subdevices + 4;
664	/* digital I/O subdevice */
665	s->type = COMEDI_SUBD_DIO;
666	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
667	s->n_chan = 16;
668	s->maxdata = 1;
669	s->io_bits = 0xffff;
670	s->private = &dio_private_C;
671	s->range_table = &range_digital;
672	s->insn_config = s626_dio_insn_config;
673	s->insn_bits = s626_dio_insn_bits;
674
675	s = dev->subdevices + 5;
676	/* encoder (counter) subdevice */
677	s->type = COMEDI_SUBD_COUNTER;
678	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
679	s->n_chan = thisboard->enc_chans;
680	s->private = enc_private_data;
681	s->insn_config = s626_enc_insn_config;
682	s->insn_read = s626_enc_insn_read;
683	s->insn_write = s626_enc_insn_write;
684	s->maxdata = 0xffffff;
685	s->range_table = &range_unknown;
686
687	/* stop ai_command */
688	devpriv->ai_cmd_running = 0;
689
690	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
691		dma_addr_t pPhysBuf;
692		uint16_t chan;
693
694		/*  enab DEBI and audio pins, enable I2C interface. */
695		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
696		/*  Configure DEBI operating mode. */
697		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
698			/*  bits wide. */
699			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	/*  Declare DEBI */
700			/*  transfer timeout */
701			/*  interval. */
702			| DEBI_SWAP	/*  Set up byte lane */
703			/*  steering. */
704			| DEBI_CFG_INTEL);	/*  Intel-compatible */
705		/*  local bus (DEBI */
706		/*  never times out). */
707		DEBUG("s626_attach: %d debi init -- %d\n",
708			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
709			DEBI_SWAP | DEBI_CFG_INTEL,
710			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
711			DEBI_CFG_16Q);
712
713		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
714		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
715
716		/*  Paging is disabled. */
717		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
718
719		/*  Init GPIO so that ADC Start* is negated. */
720		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
721
722    /* IsBoardRevA is a boolean that indicates whether the board is RevA.
723     *
724     * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
725     * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
726     * is used to access the onboard serial EEPROM.  The EEPROM's I2C
727     * DeviceAddress is hardwired to a value that is dependent on the
728     * 626 board revision.  On all board revisions, the EEPROM stores
729     * TrimDAC calibration constants for analog I/O.  On RevB and
730     * higher boards, the DeviceAddress is hardwired to 0 to enable
731     * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
732     * this is the address at which the SAA7146 expects a
733     * configuration EEPROM to reside.  On RevA boards, the EEPROM
734     * device address, which is hardwired to 4, prevents the SAA7146
735     * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
736     * default values, instead.
737     */
738
739		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
740		/*  DeviceType (0xA0) */
741		/*  and DeviceAddress<<1. */
742
743		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
744		/*  eeprom(revb) */
745
746		/*  Issue an I2C ABORT command to halt any I2C operation in */
747		/* progress and reset BUSY flag. */
748		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
749		/*  Write I2C control: abort any I2C activity. */
750		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
751		/*  Invoke command  upload */
752		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
753			;
754		/*  and wait for upload to complete. */
755
756		/* Per SAA7146 data sheet, write to STATUS reg twice to
757		 * reset all  I2C error flags. */
758		for (i = 0; i < 2; i++) {
759			WR7146(P_I2CSTAT, I2C_CLKSEL);
760			/*  Write I2C control: reset  error flags. */
761			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
762			while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
763				;
764			/* and wait for upload to complete. */
765		}
766
767		/* Init audio interface functional attributes: set DAC/ADC
768		 * serial clock rates, invert DAC serial clock so that
769		 * DAC data setup times are satisfied, enable DAC serial
770		 * clock out.
771		 */
772
773		WR7146(P_ACON2, ACON2_INIT);
774
775		/* Set up TSL1 slot list, which is used to control the
776		 * accumulation of ADC data: RSD1 = shift data in on SD1.
777		 * SIB_A1  = store data uint8_t at next available location in
778		 * FB BUFFER1  register. */
779		WR7146(P_TSL1, RSD1 | SIB_A1);
780		/*  Fetch ADC high data uint8_t. */
781		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
782		/*  Fetch ADC low data uint8_t; end of TSL1. */
783
784		/*  enab TSL1 slot list so that it executes all the time. */
785		WR7146(P_ACON1, ACON1_ADCSTART);
786
787		/*  Initialize RPS registers used for ADC. */
788
789		/* Physical start of RPS program. */
790		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
791
792		WR7146(P_RPSPAGE1, 0);
793		/*  RPS program performs no explicit mem writes. */
794		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
795
796		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
797		 * to a known state by invoking ADCs until FB BUFFER 1
798		 * register shows that it is correctly receiving ADC data.
799		 * This is necessary because the SAA7146 ADC interface does
800		 * not start up in a defined state after a PCI reset.
801		 */
802
803/*     PollList = EOPL;			// Create a simple polling */
804/* 					// list for analog input */
805/* 					// channel 0. */
806/*     ResetADC( dev, &PollList ); */
807
808/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
809/* 						  //Get initial ADC */
810/* 						  //value. */
811
812/*     StartVal = data[0]; */
813
814/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
815/*     // Invoke ADCs until the new ADC value differs from the initial */
816/*     // value or a timeout occurs.  The timeout protects against the */
817/*     // possibility that the driver is restarting and the ADC data is a */
818/*     // fixed value resulting from the applied ADC analog input being */
819/*     // unusually quiet or at the rail. */
820
821/*     for ( index = 0; index < 500; index++ ) */
822/*       { */
823/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
824/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
825/* 	if ( AdcData != StartVal ) */
826/* 	  break; */
827/*       } */
828
829		/*  end initADC */
830
831		/*  init the DAC interface */
832
833		/* Init Audio2's output DMAC attributes: burst length = 1
834		 * DWORD,  threshold = 1 DWORD.
835		 */
836		WR7146(P_PCI_BT_A, 0);
837
838		/* Init Audio2's output DMA physical addresses.  The protection
839		 * address is set to 1 DWORD past the base address so that a
840		 * single DWORD will be transferred each time a DMA transfer is
841		 * enabled. */
842
843		pPhysBuf =
844			devpriv->ANABuf.PhysicalBase +
845			(DAC_WDMABUF_OS * sizeof(uint32_t));
846
847		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
848		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
849
850		/* Cache Audio2's output DMA buffer logical address.  This is
851		 * where DAC data is buffered for A2 output DMA transfers. */
852		devpriv->pDacWBuf =
853			(uint32_t *) devpriv->ANABuf.LogicalBase +
854			DAC_WDMABUF_OS;
855
856		/* Audio2's output channels does not use paging.  The protection
857		 * violation handling bit is set so that the DMAC will
858		 * automatically halt and its PCI address pointer will be reset
859		 * when the protection address is reached. */
860
861		WR7146(P_PAGEA2_OUT, 8);
862
863		/* Initialize time slot list 2 (TSL2), which is used to control
864		 * the clock generation for and serialization of data to be sent
865		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
866		 * execution; this permits other slots to be safely modified
867		 * without first turning off the TSL sequencer (which is
868		 * apparently impossible to do).  Also, SD3 (which is driven by a
869		 * pull-up resistor) is shifted in and stored to the MSB of
870		 * FB_BUFFER2 to be used as evidence that the slot sequence has
871		 * not yet finished executing.
872		 */
873
874		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
875		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
876
877		/* Initialize slot 1, which is constant.  Slot 1 causes a
878		 * DWORD to be transferred from audio channel 2's output FIFO
879		 * to the FIFO's output buffer so that it can be serialized
880		 * and sent to the DAC during subsequent slots.  All remaining
881		 * slots are dynamically populated as required by the target
882		 * DAC device.
883		 */
884		SETVECT(1, LF_A2);
885		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
886
887		/*  Start DAC's audio interface (TSL2) running. */
888		WR7146(P_ACON1, ACON1_DACSTART);
889
890		/* end init DAC interface */
891
892		/* Init Trim DACs to calibrated values.  Do it twice because the
893		 * SAA7146 audio channel does not always reset properly and
894		 * sometimes causes the first few TrimDAC writes to malfunction.
895		 */
896
897		LoadTrimDACs(dev);
898		LoadTrimDACs(dev);	/*  Insurance. */
899
900		/* Manually init all gate array hardware in case this is a soft
901		 * reset (we have no way of determining whether this is a warm
902		 * or cold start).  This is necessary because the gate array will
903		 * reset only in response to a PCI hard reset; there is no soft
904		 * reset function. */
905
906		/* Init all DAC outputs to 0V and init all DAC setpoint and
907		 * polarity images.
908		 */
909		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
910			SetDAC(dev, chan, 0);
911
912		/* Init image of WRMISC2 Battery Charger Enabled control bit.
913		 * This image is used when the state of the charger control bit,
914		 * which has no direct hardware readback mechanism, is queried.
915		 */
916		devpriv->ChargeEnabled = 0;
917
918		/* Init image of watchdog timer interval in WRMISC2.  This image
919		 * maintains the value of the control bits of MISC2 are
920		 * continuously reset to zero as long as the WD timer is disabled.
921		 */
922		devpriv->WDInterval = 0;
923
924		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
925		 * applied against MISC2 when testing to determine which timer
926		 * events are requesting interrupt service.
927		 */
928		devpriv->CounterIntEnabs = 0;
929
930		/*  Init counters. */
931		CountersInit(dev);
932
933		/* Without modifying the state of the Battery Backup enab, disable
934		 * the watchdog timer, set DIO channels 0-5 to operate in the
935		 * standard DIO (vs. counter overflow) mode, disable the battery
936		 * charger, and reset the watchdog interval selector to zero.
937		 */
938		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
939					LP_RDMISC2) & MISC2_BATT_ENABLE));
940
941		/*  Initialize the digital I/O subsystem. */
942		s626_dio_init(dev);
943
944		/* enable interrupt test */
945		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
946	}
947
948	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
949		(uint32_t) devpriv->base_addr);
950
951	return 1;
952}
953
954static unsigned int s626_ai_reg_to_uint(int data)
955{
956	unsigned int tempdata;
957
958	tempdata = (data >> 18);
959	if (tempdata & 0x2000)
960		tempdata &= 0x1fff;
961	else
962		tempdata += (1 << 13);
963
964	return tempdata;
965}
966
967/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
968/*   return 0; */
969/* } */
970
971static irqreturn_t s626_irq_handler(int irq, void *d)
972{
973	struct comedi_device *dev = d;
974	struct comedi_subdevice *s;
975	struct comedi_cmd *cmd;
976	struct enc_private *k;
977	unsigned long flags;
978	int32_t *readaddr;
979	uint32_t irqtype, irqstatus;
980	int i = 0;
981	short tempdata;
982	uint8_t group;
983	uint16_t irqbit;
984
985	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
986
987	if (dev->attached == 0)
988		return IRQ_NONE;
989	/*  lock to avoid race with comedi_poll */
990	comedi_spin_lock_irqsave(&dev->spinlock, flags);
991
992	/* save interrupt enable register state */
993	irqstatus = readl(devpriv->base_addr + P_IER);
994
995	/* read interrupt type */
996	irqtype = readl(devpriv->base_addr + P_ISR);
997
998	/* disable master interrupt */
999	writel(0, devpriv->base_addr + P_IER);
1000
1001	/* clear interrupt */
1002	writel(irqtype, devpriv->base_addr + P_ISR);
1003
1004	/* do somethings */
1005	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1006
1007	switch (irqtype) {
1008	case IRQ_RPS1:		/*  end_of_scan occurs */
1009
1010		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1011
1012		/*  manage ai subdevice */
1013		s = dev->subdevices;
1014		cmd = &(s->async->cmd);
1015
1016		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1017		 * first uint16_t in the buffer because it contains junk data from
1018		 * the final ADC of the previous poll list scan.
1019		 */
1020		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1021
1022		/*  get the data and hand it over to comedi */
1023		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1024			/*  Convert ADC data to 16-bit integer values and copy to application */
1025			/*  buffer. */
1026			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1027			readaddr++;
1028
1029			/* put data into read buffer */
1030			/*  comedi_buf_put(s->async, tempdata); */
1031			if (cfc_write_to_buffer(s, tempdata) == 0)
1032				printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1033
1034			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1035				i, tempdata);
1036		}
1037
1038		/* end of scan occurs */
1039		s->async->events |= COMEDI_CB_EOS;
1040
1041		if (!(devpriv->ai_continous))
1042			devpriv->ai_sample_count--;
1043		if (devpriv->ai_sample_count <= 0) {
1044			devpriv->ai_cmd_running = 0;
1045
1046			/*  Stop RPS program. */
1047			MC_DISABLE(P_MC1, MC1_ERPS1);
1048
1049			/* send end of acquisition */
1050			s->async->events |= COMEDI_CB_EOA;
1051
1052			/* disable master interrupt */
1053			irqstatus = 0;
1054		}
1055
1056		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1057			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1058
1059			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1060
1061			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1062		}
1063		/*  tell comedi that data is there */
1064		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1065		comedi_event(dev, s);
1066		break;
1067	case IRQ_GPIO3:	/* check dio and conter interrupt */
1068
1069		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1070
1071		/*  manage ai subdevice */
1072		s = dev->subdevices;
1073		cmd = &(s->async->cmd);
1074
1075		/* s626_dio_clear_irq(dev); */
1076
1077		for (group = 0; group < S626_DIO_BANKS; group++) {
1078			irqbit = 0;
1079			/* read interrupt type */
1080			irqbit = DEBIread(dev,
1081				((struct dio_private *) (dev->subdevices + 2 +
1082						group)->private)->RDCapFlg);
1083
1084			/* check if interrupt is generated from dio channels */
1085			if (irqbit) {
1086				s626_dio_reset_irq(dev, group, irqbit);
1087				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1088				if (devpriv->ai_cmd_running) {
1089					/* check if interrupt is an ai acquisition start trigger */
1090					if ((irqbit >> (cmd->start_arg -
1091								(16 * group)))
1092						== 1
1093						&& cmd->start_src == TRIG_EXT) {
1094						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1095
1096						/*  Start executing the RPS program. */
1097						MC_ENABLE(P_MC1, MC1_ERPS1);
1098
1099						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1100
1101						if (cmd->scan_begin_src ==
1102							TRIG_EXT) {
1103							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1104
1105							s626_dio_set_irq(dev,
1106								cmd->
1107								scan_begin_arg);
1108
1109							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1110						}
1111					}
1112					if ((irqbit >> (cmd->scan_begin_arg -
1113								(16 * group)))
1114						== 1
1115						&& cmd->scan_begin_src ==
1116						TRIG_EXT) {
1117						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1118
1119						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1120						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1121
1122						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1123						if (cmd->convert_src ==
1124							TRIG_EXT) {
1125
1126							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1127
1128							devpriv->
1129								ai_convert_count
1130								=
1131								cmd->
1132								chanlist_len;
1133
1134							s626_dio_set_irq(dev,
1135								cmd->
1136								convert_arg);
1137
1138							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1139						}
1140
1141						if (cmd->convert_src ==
1142							TRIG_TIMER) {
1143							k = &encpriv[5];
1144							devpriv->
1145								ai_convert_count
1146								=
1147								cmd->
1148								chanlist_len;
1149							k->SetEnable(dev, k,
1150								CLKENAB_ALWAYS);
1151						}
1152					}
1153					if ((irqbit >> (cmd->convert_arg -
1154								(16 * group)))
1155						== 1
1156						&& cmd->convert_src ==
1157						TRIG_EXT) {
1158						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1159
1160						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1161						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1162
1163						DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1164
1165						devpriv->ai_convert_count--;
1166
1167						if (devpriv->ai_convert_count >
1168							0) {
1169
1170							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1171
1172							s626_dio_set_irq(dev,
1173								cmd->
1174								convert_arg);
1175
1176							DEBUG("s626_irq_handler: External trigger is set!!!\n");
1177						}
1178					}
1179				}
1180				break;
1181			}
1182		}
1183
1184		/* read interrupt type */
1185		irqbit = DEBIread(dev, LP_RDMISC2);
1186
1187		/* check interrupt on counters */
1188		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1189			irqbit);
1190
1191		if (irqbit & IRQ_COINT1A) {
1192			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1193			k = &encpriv[0];
1194
1195			/* clear interrupt capture flag */
1196			k->ResetCapFlags(dev, k);
1197		}
1198		if (irqbit & IRQ_COINT2A) {
1199			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1200			k = &encpriv[1];
1201
1202			/* clear interrupt capture flag */
1203			k->ResetCapFlags(dev, k);
1204		}
1205		if (irqbit & IRQ_COINT3A) {
1206			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1207			k = &encpriv[2];
1208
1209			/* clear interrupt capture flag */
1210			k->ResetCapFlags(dev, k);
1211		}
1212		if (irqbit & IRQ_COINT1B) {
1213			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1214			k = &encpriv[3];
1215
1216			/* clear interrupt capture flag */
1217			k->ResetCapFlags(dev, k);
1218		}
1219		if (irqbit & IRQ_COINT2B) {
1220			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1221			k = &encpriv[4];
1222
1223			/* clear interrupt capture flag */
1224			k->ResetCapFlags(dev, k);
1225
1226			if (devpriv->ai_convert_count > 0) {
1227				devpriv->ai_convert_count--;
1228				if (devpriv->ai_convert_count == 0)
1229					k->SetEnable(dev, k, CLKENAB_INDEX);
1230
1231				if (cmd->convert_src == TRIG_TIMER) {
1232					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1233
1234					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1235					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1236				}
1237			}
1238		}
1239		if (irqbit & IRQ_COINT3B) {
1240			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1241			k = &encpriv[5];
1242
1243			/* clear interrupt capture flag */
1244			k->ResetCapFlags(dev, k);
1245
1246			if (cmd->scan_begin_src == TRIG_TIMER) {
1247				DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1248
1249				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1250				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1251			}
1252
1253			if (cmd->convert_src == TRIG_TIMER) {
1254				DEBUG("s626_irq_handler: convert timer trigger is set\n");
1255				k = &encpriv[4];
1256				devpriv->ai_convert_count = cmd->chanlist_len;
1257				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1258			}
1259		}
1260	}
1261
1262	/* enable interrupt */
1263	writel(irqstatus, devpriv->base_addr + P_IER);
1264
1265	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1266
1267	comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
1268	return IRQ_HANDLED;
1269}
1270
1271static int s626_detach(struct comedi_device *dev)
1272{
1273	if (devpriv) {
1274		/* stop ai_command */
1275		devpriv->ai_cmd_running = 0;
1276
1277		if (devpriv->base_addr) {
1278			/* interrupt mask */
1279			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1280			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1281
1282			/*  Disable the watchdog timer and battery charger. */
1283			WriteMISC2(dev, 0);
1284
1285			/*  Close all interfaces on 7146 device. */
1286			WR7146(P_MC1, MC1_SHUTDOWN);
1287			WR7146(P_ACON1, ACON1_BASE);
1288
1289			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1290			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1291		}
1292
1293		if (dev->irq)
1294			comedi_free_irq(dev->irq, dev);
1295
1296		if (devpriv->base_addr)
1297			iounmap(devpriv->base_addr);
1298
1299		if (devpriv->pdev) {
1300			if (devpriv->got_regions)
1301				comedi_pci_disable(devpriv->pdev);
1302			pci_dev_put(devpriv->pdev);
1303		}
1304	}
1305
1306	DEBUG("s626_detach: S626 detached!\n");
1307
1308	return 0;
1309}
1310
1311/*
1312 * this functions build the RPS program for hardware driven acquistion
1313 */
1314void ResetADC(struct comedi_device *dev, uint8_t *ppl)
1315{
1316	register uint32_t *pRPS;
1317	uint32_t JmpAdrs;
1318	uint16_t i;
1319	uint16_t n;
1320	uint32_t LocalPPL;
1321	struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1322
1323	/*  Stop RPS program in case it is currently running. */
1324	MC_DISABLE(P_MC1, MC1_ERPS1);
1325
1326	/*  Set starting logical address to write RPS commands. */
1327	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1328
1329	/*  Initialize RPS instruction pointer. */
1330	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1331
1332	/*  Construct RPS program in RPSBuf DMA buffer */
1333
1334	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1335		DEBUG("ResetADC: scan_begin pause inserted\n");
1336		/*  Wait for Start trigger. */
1337		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1338		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1339	}
1340
1341	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1342	 * because the first RPS DEBI Write following a non-RPS DEBI write
1343	 * seems to always fail.  If we don't do this dummy write, the ADC
1344	 * gain might not be set to the value required for the first slot in
1345	 * the poll list; the ADC gain would instead remain unchanged from
1346	 * the previously programmed value.
1347	 */
1348	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1349	/* Write DEBI Write command and address to shadow RAM. */
1350
1351	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1352	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1353	/*  Write DEBI immediate data  to shadow RAM: */
1354
1355	*pRPS++ = GSEL_BIPOLAR5V;
1356	/*  arbitrary immediate data  value. */
1357
1358	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1359	/*  Reset "shadow RAM  uploaded" flag. */
1360	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1361	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1362
1363	/* Digitize all slots in the poll list. This is implemented as a
1364	 * for loop to limit the slot count to 16 in case the application
1365	 * forgot to set the EOPL flag in the final slot.
1366	 */
1367	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1368	 /* Convert application's poll list item to private board class
1369	  * format.  Each app poll list item is an uint8_t with form
1370	  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1371	  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1372	  */
1373		LocalPPL =
1374			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1375			GSEL_BIPOLAR10V);
1376
1377		/*  Switch ADC analog gain. */
1378		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1379		/*  and address to */
1380		/*  shadow RAM. */
1381		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1382		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1383		/*  immediate data to */
1384		/*  shadow RAM. */
1385		*pRPS++ = LocalPPL;
1386		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1387		/*  flag. */
1388		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1389		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1390		/*  finish. */
1391
1392		/*  Select ADC analog input channel. */
1393		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1394		/*  Write DEBI command and address to  shadow RAM. */
1395		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1396		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1397		/*  Write DEBI immediate data to shadow RAM. */
1398		*pRPS++ = LocalPPL;
1399		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1400		/*  Reset "shadow RAM uploaded"  flag. */
1401
1402		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1403		/*  Invoke shadow RAM upload. */
1404
1405		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1406		/*  Wait for shadow upload to finish. */
1407
1408		/* Delay at least 10 microseconds for analog input settling.
1409		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1410		 * here; this allows us to produce a longer delay than is
1411		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1412		 * instruction prefetch pipeline.
1413		 */
1414		JmpAdrs =
1415			(uint32_t) devpriv->RPSBuf.PhysicalBase +
1416			(uint32_t) ((unsigned long)pRPS -
1417			(unsigned long)devpriv->RPSBuf.LogicalBase);
1418		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1419			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1420			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1421			*pRPS++ = JmpAdrs;
1422		}
1423
1424		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1425			DEBUG("ResetADC: convert pause inserted\n");
1426			/*  Wait for Start trigger. */
1427			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1428			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1429		}
1430		/*  Start ADC by pulsing GPIO1. */
1431		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1432		*pRPS++ = GPIO_BASE | GPIO1_LO;
1433		*pRPS++ = RPS_NOP;
1434		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1435		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1436		*pRPS++ = GPIO_BASE | GPIO1_HI;
1437
1438		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1439		 * busy) and for data from previous conversion to shift into FB
1440		 * BUFFER 1 register.
1441		 */
1442		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1443
1444		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1445		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1446		*pRPS++ =
1447			(uint32_t) devpriv->ANABuf.PhysicalBase +
1448			(devpriv->AdcItems << 2);
1449
1450		/*  If this slot's EndOfPollList flag is set, all channels have */
1451		/*  now been processed. */
1452		if (*ppl++ & EOPL) {
1453			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1454			break;	/*  Exit poll list processing loop. */
1455		}
1456	}
1457	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1458
1459	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1460	 * ADC to stabilize for 2 microseconds before starting the final
1461	 * (dummy) conversion.  This delay is necessary to allow sufficient
1462	 * time between last conversion finished and the start of the dummy
1463	 * conversion.  Without this delay, the last conversion's data value
1464	 * is sometimes set to the previous conversion's data value.
1465	 */
1466	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1467		*pRPS++ = RPS_NOP;
1468
1469	/* Start a dummy conversion to cause the data from the last
1470	 * conversion of interest to be shifted in.
1471	 */
1472	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1473	*pRPS++ = GPIO_BASE | GPIO1_LO;
1474	*pRPS++ = RPS_NOP;
1475	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1476	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1477	*pRPS++ = GPIO_BASE | GPIO1_HI;
1478
1479	/* Wait for the data from the last conversion of interest to arrive
1480	 * in FB BUFFER 1 register.
1481	 */
1482	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1483
1484	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1485	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1486	*pRPS++ =
1487		(uint32_t) devpriv->ANABuf.PhysicalBase +
1488		(devpriv->AdcItems << 2);
1489
1490	/*  Indicate ADC scan loop is finished. */
1491	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1492
1493	/* invoke interrupt */
1494	if (devpriv->ai_cmd_running == 1) {
1495		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1496		*pRPS++ = RPS_IRQ;
1497	}
1498	/*  Restart RPS program at its beginning. */
1499	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1500	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1501
1502	/*  End of RPS program build */
1503}
1504
1505/* TO COMPLETE, IF NECESSARY */
1506static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
1507	struct comedi_insn *insn, unsigned int *data)
1508{
1509
1510	return -EINVAL;
1511}
1512
1513/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1514/* { */
1515/*   register uint8_t	i; */
1516/*   register int32_t	*readaddr; */
1517
1518/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
1519
1520/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1521/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1522
1523/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1524/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1525
1526/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1527 * first uint16_t in the buffer because it contains junk data from
1528 * the final ADC of the previous poll list scan.
1529 */
1530/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1531
1532/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1533/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1534/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1535/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
1536/*     data++; */
1537/*   } */
1538
1539/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1540/*   return i; */
1541/* } */
1542
1543static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
1544	struct comedi_insn *insn, unsigned int *data)
1545{
1546	uint16_t chan = CR_CHAN(insn->chanspec);
1547	uint16_t range = CR_RANGE(insn->chanspec);
1548	uint16_t AdcSpec = 0;
1549	uint32_t GpioImage;
1550	int n;
1551
1552 /* interrupt call test  */
1553/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1554	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1555	 * corresponding interrupt to be generated if enabled
1556	 */
1557
1558	DEBUG("s626_ai_insn_read: entering\n");
1559
1560	/* Convert application's ADC specification into form
1561	 *  appropriate for register programming.
1562	 */
1563	if (range == 0)
1564		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1565	else
1566		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1567
1568	/*  Switch ADC analog gain. */
1569	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1570
1571	/*  Select ADC analog input channel. */
1572	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1573
1574	for (n = 0; n < insn->n; n++) {
1575
1576		/*  Delay 10 microseconds for analog input settling. */
1577		comedi_udelay(10);
1578
1579		/*  Start ADC by pulsing GPIO1 low. */
1580		GpioImage = RR7146(P_GPIO);
1581		/*  Assert ADC Start command */
1582		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1583		/*    and stretch it out. */
1584		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1585		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1586		/*  Negate ADC Start command. */
1587		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1588
1589		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1590		/*  ADC not busy) and for data from previous conversion to */
1591		/*  shift into FB BUFFER 1 register. */
1592
1593		/*  Wait for ADC done. */
1594		while (!(RR7146(P_PSR) & PSR_GPIO2))
1595			;
1596
1597		/*  Fetch ADC data. */
1598		if (n != 0)
1599			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1600
1601		/* Allow the ADC to stabilize for 4 microseconds before
1602		 * starting the next (final) conversion.  This delay is
1603		 * necessary to allow sufficient time between last
1604		 * conversion finished and the start of the next
1605		 * conversion.  Without this delay, the last conversion's
1606		 * data value is sometimes set to the previous
1607		 * conversion's data value.
1608		 */
1609		comedi_udelay(4);
1610	}
1611
1612	/* Start a dummy conversion to cause the data from the
1613	 * previous conversion to be shifted in. */
1614	GpioImage = RR7146(P_GPIO);
1615
1616	/* Assert ADC Start command */
1617	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1618	/*    and stretch it out. */
1619	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1620	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1621	/*  Negate ADC Start command. */
1622	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1623
1624	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1625
1626	/*  Wait for ADC done. */
1627	while (!(RR7146(P_PSR) & PSR_GPIO2))
1628		;
1629
1630	/*  Fetch ADC data from audio interface's input shift register. */
1631
1632	/*  Fetch ADC data. */
1633	if (n != 0)
1634		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1635
1636	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1637
1638	return n;
1639}
1640
1641static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1642{
1643
1644	int n;
1645
1646	for (n = 0; n < cmd->chanlist_len; n++) {
1647		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1648			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1649		else
1650			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1651	}
1652	ppl[n - 1] |= EOPL;
1653
1654	return n;
1655}
1656
1657static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
1658	unsigned int trignum)
1659{
1660	if (trignum != 0)
1661		return -EINVAL;
1662
1663	DEBUG("s626_ai_inttrig: trigger adc start...");
1664
1665	/*  Start executing the RPS program. */
1666	MC_ENABLE(P_MC1, MC1_ERPS1);
1667
1668	s->async->inttrig = NULL;
1669
1670	DEBUG(" done\n");
1671
1672	return 1;
1673}
1674
1675/*  TO COMPLETE  */
1676static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1677{
1678
1679	uint8_t ppl[16];
1680	struct comedi_cmd *cmd = &s->async->cmd;
1681	struct enc_private *k;
1682	int tick;
1683
1684	DEBUG("s626_ai_cmd: entering command function\n");
1685
1686	if (devpriv->ai_cmd_running) {
1687		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1688			dev->minor);
1689		return -EBUSY;
1690	}
1691	/* disable interrupt */
1692	writel(0, devpriv->base_addr + P_IER);
1693
1694	/* clear interrupt request */
1695	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1696
1697	/* clear any pending interrupt */
1698	s626_dio_clear_irq(dev);
1699	/*   s626_enc_clear_irq(dev); */
1700
1701	/* reset ai_cmd_running flag */
1702	devpriv->ai_cmd_running = 0;
1703
1704	/*  test if cmd is valid */
1705	if (cmd == NULL) {
1706		DEBUG("s626_ai_cmd: NULL command\n");
1707		return -EINVAL;
1708	} else {
1709		DEBUG("s626_ai_cmd: command recieved!!!\n");
1710	}
1711
1712	if (dev->irq == 0) {
1713		comedi_error(dev,
1714			"s626_ai_cmd: cannot run command without an irq");
1715		return -EIO;
1716	}
1717
1718	s626_ai_load_polllist(ppl, cmd);
1719	devpriv->ai_cmd_running = 1;
1720	devpriv->ai_convert_count = 0;
1721
1722	switch (cmd->scan_begin_src) {
1723	case TRIG_FOLLOW:
1724		break;
1725	case TRIG_TIMER:
1726		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1727		k = &encpriv[5];
1728		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1729			cmd->flags & TRIG_ROUND_MASK);
1730
1731		/* load timer value and enable interrupt */
1732		s626_timer_load(dev, k, tick);
1733		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1734
1735		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1736			tick);
1737
1738		break;
1739	case TRIG_EXT:
1740		/*  set the digital line and interrupt for scan trigger */
1741		if (cmd->start_src != TRIG_EXT)
1742			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1743
1744		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1745
1746		break;
1747	}
1748
1749	switch (cmd->convert_src) {
1750	case TRIG_NOW:
1751		break;
1752	case TRIG_TIMER:
1753		/*  set a conter to generate adc trigger at convert_arg interval */
1754		k = &encpriv[4];
1755		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1756			cmd->flags & TRIG_ROUND_MASK);
1757
1758		/* load timer value and enable interrupt */
1759		s626_timer_load(dev, k, tick);
1760		k->SetEnable(dev, k, CLKENAB_INDEX);
1761
1762		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1763		break;
1764	case TRIG_EXT:
1765		/*  set the digital line and interrupt for convert trigger */
1766		if (cmd->scan_begin_src != TRIG_EXT
1767			&& cmd->start_src == TRIG_EXT)
1768			s626_dio_set_irq(dev, cmd->convert_arg);
1769
1770		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1771
1772		break;
1773	}
1774
1775	switch (cmd->stop_src) {
1776	case TRIG_COUNT:
1777		/*  data arrives as one packet */
1778		devpriv->ai_sample_count = cmd->stop_arg;
1779		devpriv->ai_continous = 0;
1780		break;
1781	case TRIG_NONE:
1782		/*  continous aquisition */
1783		devpriv->ai_continous = 1;
1784		devpriv->ai_sample_count = 0;
1785		break;
1786	}
1787
1788	ResetADC(dev, ppl);
1789
1790	switch (cmd->start_src) {
1791	case TRIG_NOW:
1792		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1793		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1794
1795		/*  Start executing the RPS program. */
1796		MC_ENABLE(P_MC1, MC1_ERPS1);
1797
1798		DEBUG("s626_ai_cmd: ADC triggered\n");
1799		s->async->inttrig = NULL;
1800		break;
1801	case TRIG_EXT:
1802		/* configure DIO channel for acquisition trigger */
1803		s626_dio_set_irq(dev, cmd->start_arg);
1804
1805		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1806
1807		s->async->inttrig = NULL;
1808		break;
1809	case TRIG_INT:
1810		s->async->inttrig = s626_ai_inttrig;
1811		break;
1812	}
1813
1814	/* enable interrupt */
1815	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1816
1817	DEBUG("s626_ai_cmd: command function terminated\n");
1818
1819	return 0;
1820}
1821
1822static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
1823	struct comedi_cmd *cmd)
1824{
1825	int err = 0;
1826	int tmp;
1827
1828	/* cmdtest tests a particular command to see if it is valid.  Using
1829	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1830	 * executes by the cmd ioctl.
1831	 *
1832	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1833	 * command passes. */
1834
1835	/* step 1: make sure trigger sources are trivially valid */
1836
1837	tmp = cmd->start_src;
1838	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1839	if (!cmd->start_src || tmp != cmd->start_src)
1840		err++;
1841
1842	tmp = cmd->scan_begin_src;
1843	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1844	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1845		err++;
1846
1847	tmp = cmd->convert_src;
1848	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1849	if (!cmd->convert_src || tmp != cmd->convert_src)
1850		err++;
1851
1852	tmp = cmd->scan_end_src;
1853	cmd->scan_end_src &= TRIG_COUNT;
1854	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1855		err++;
1856
1857	tmp = cmd->stop_src;
1858	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1859	if (!cmd->stop_src || tmp != cmd->stop_src)
1860		err++;
1861
1862	if (err)
1863		return 1;
1864
1865	/* step 2: make sure trigger sources are unique and mutually
1866	   compatible */
1867
1868	/* note that mutual compatiblity is not an issue here */
1869	if (cmd->scan_begin_src != TRIG_TIMER &&
1870		cmd->scan_begin_src != TRIG_EXT
1871		&& cmd->scan_begin_src != TRIG_FOLLOW)
1872		err++;
1873	if (cmd->convert_src != TRIG_TIMER &&
1874		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1875		err++;
1876	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1877		err++;
1878
1879	if (err)
1880		return 2;
1881
1882	/* step 3: make sure arguments are trivially compatible */
1883
1884	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1885		cmd->start_arg = 0;
1886		err++;
1887	}
1888
1889	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1890		cmd->start_arg = 39;
1891		err++;
1892	}
1893
1894	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1895		cmd->scan_begin_arg = 39;
1896		err++;
1897	}
1898
1899	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1900		cmd->convert_arg = 39;
1901		err++;
1902	}
1903#define MAX_SPEED	200000	/* in nanoseconds */
1904#define MIN_SPEED	2000000000	/* in nanoseconds */
1905
1906	if (cmd->scan_begin_src == TRIG_TIMER) {
1907		if (cmd->scan_begin_arg < MAX_SPEED) {
1908			cmd->scan_begin_arg = MAX_SPEED;
1909			err++;
1910		}
1911		if (cmd->scan_begin_arg > MIN_SPEED) {
1912			cmd->scan_begin_arg = MIN_SPEED;
1913			err++;
1914		}
1915	} else {
1916		/* external trigger */
1917		/* should be level/edge, hi/lo specification here */
1918		/* should specify multiple external triggers */
1919/*     if(cmd->scan_begin_arg>9){ */
1920/*       cmd->scan_begin_arg=9; */
1921/*       err++; */
1922/*     } */
1923	}
1924	if (cmd->convert_src == TRIG_TIMER) {
1925		if (cmd->convert_arg < MAX_SPEED) {
1926			cmd->convert_arg = MAX_SPEED;
1927			err++;
1928		}
1929		if (cmd->convert_arg > MIN_SPEED) {
1930			cmd->convert_arg = MIN_SPEED;
1931			err++;
1932		}
1933	} else {
1934		/* external trigger */
1935		/* see above */
1936/*     if(cmd->convert_arg>9){ */
1937/*       cmd->convert_arg=9; */
1938/*       err++; */
1939/*     } */
1940	}
1941
1942	if (cmd->scan_end_arg != cmd->chanlist_len) {
1943		cmd->scan_end_arg = cmd->chanlist_len;
1944		err++;
1945	}
1946	if (cmd->stop_src == TRIG_COUNT) {
1947		if (cmd->stop_arg > 0x00ffffff) {
1948			cmd->stop_arg = 0x00ffffff;
1949			err++;
1950		}
1951	} else {
1952		/* TRIG_NONE */
1953		if (cmd->stop_arg != 0) {
1954			cmd->stop_arg = 0;
1955			err++;
1956		}
1957	}
1958
1959	if (err)
1960		return 3;
1961
1962	/* step 4: fix up any arguments */
1963
1964	if (cmd->scan_begin_src == TRIG_TIMER) {
1965		tmp = cmd->scan_begin_arg;
1966		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1967			cmd->flags & TRIG_ROUND_MASK);
1968		if (tmp != cmd->scan_begin_arg)
1969			err++;
1970	}
1971	if (cmd->convert_src == TRIG_TIMER) {
1972		tmp = cmd->convert_arg;
1973		s626_ns_to_timer((int *)&cmd->convert_arg,
1974			cmd->flags & TRIG_ROUND_MASK);
1975		if (tmp != cmd->convert_arg)
1976			err++;
1977		if (cmd->scan_begin_src == TRIG_TIMER &&
1978			cmd->scan_begin_arg <
1979			cmd->convert_arg * cmd->scan_end_arg) {
1980			cmd->scan_begin_arg =
1981				cmd->convert_arg * cmd->scan_end_arg;
1982			err++;
1983		}
1984	}
1985
1986	if (err)
1987		return 4;
1988
1989	return 0;
1990}
1991
1992static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1993{
1994	/*  Stop RPS program in case it is currently running. */
1995	MC_DISABLE(P_MC1, MC1_ERPS1);
1996
1997	/* disable master interrupt */
1998	writel(0, devpriv->base_addr + P_IER);
1999
2000	devpriv->ai_cmd_running = 0;
2001
2002	return 0;
2003}
2004
2005/* This function doesn't require a particular form, this is just what
2006 * happens to be used in some of the drivers.  It should convert ns
2007 * nanoseconds to a counter value suitable for programming the device.
2008 * Also, it should adjust ns so that it cooresponds to the actual time
2009 * that the device will use. */
2010static int s626_ns_to_timer(int *nanosec, int round_mode)
2011{
2012	int divider, base;
2013
2014	base = 500;		/* 2MHz internal clock */
2015
2016	switch (round_mode) {
2017	case TRIG_ROUND_NEAREST:
2018	default:
2019		divider = (*nanosec + base / 2) / base;
2020		break;
2021	case TRIG_ROUND_DOWN:
2022		divider = (*nanosec) / base;
2023		break;
2024	case TRIG_ROUND_UP:
2025		divider = (*nanosec + base - 1) / base;
2026		break;
2027	}
2028
2029	*nanosec = base * divider;
2030	return divider - 1;
2031}
2032
2033static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2034	struct comedi_insn *insn, unsigned int *data)
2035{
2036
2037	int i;
2038	uint16_t chan = CR_CHAN(insn->chanspec);
2039	int16_t dacdata;
2040
2041	for (i = 0; i < insn->n; i++) {
2042		dacdata = (int16_t) data[i];
2043		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2044		dacdata -= (0x1fff);
2045
2046		SetDAC(dev, chan, dacdata);
2047	}
2048
2049	return i;
2050}
2051
2052static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2053	struct comedi_insn *insn, unsigned int *data)
2054{
2055	int i;
2056
2057	for (i = 0; i < insn->n; i++)
2058		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2059
2060	return i;
2061}
2062
2063/* *************** DIGITAL I/O FUNCTIONS ***************
2064 * All DIO functions address a group of DIO channels by means of
2065 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2066 * ports A, B and C, respectively.
2067 */
2068
2069static void s626_dio_init(struct comedi_device *dev)
2070{
2071	uint16_t group;
2072	struct comedi_subdevice *s;
2073
2074	/*  Prepare to treat writes to WRCapSel as capture disables. */
2075	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2076
2077	/*  For each group of sixteen channels ... */
2078	for (group = 0; group < S626_DIO_BANKS; group++) {
2079		s = dev->subdevices + 2 + group;
2080		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2081		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2082		/*  captures. */
2083		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2084		/*  default edge */
2085		/*  polarity. */
2086		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2087		/*  to inactive state. */
2088	}
2089	DEBUG("s626_dio_init: DIO initialized \n");
2090}
2091
2092/* DIO devices are slightly special.  Although it is possible to
2093 * implement the insn_read/insn_write interface, it is much more
2094 * useful to applications if you implement the insn_bits interface.
2095 * This allows packed reading/writing of the DIO channels.  The comedi
2096 * core can convert between insn_bits and insn_read/write */
2097
2098static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
2099	struct comedi_insn *insn, unsigned int *data)
2100{
2101
2102	/* Length of data must be 2 (mask and new data, see below) */
2103	if (insn->n == 0)
2104		return 0;
2105
2106	if (insn->n != 2) {
2107		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2108		return -EINVAL;
2109	}
2110
2111	/*
2112	 * The insn data consists of a mask in data[0] and the new data in
2113	 * data[1]. The mask defines which bits we are concerning about.
2114	 * The new data must be anded with the mask.  Each channel
2115	 * corresponds to a bit.
2116	 */
2117	if (data[0]) {
2118		/* Check if requested ports are configured for output */
2119		if ((s->io_bits & data[0]) != data[0])
2120			return -EIO;
2121
2122		s->state &= ~data[0];
2123		s->state |= data[0] & data[1];
2124
2125		/* Write out the new digital output lines */
2126
2127		DEBIwrite(dev, diopriv->WRDOut, s->state);
2128	}
2129	data[1] = DEBIread(dev, diopriv->RDDIn);
2130
2131	return 2;
2132}
2133
2134static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2135	struct comedi_insn *insn, unsigned int *data)
2136{
2137
2138	switch (data[0]) {
2139	case INSN_CONFIG_DIO_QUERY:
2140		data[1] =
2141			(s->io_bits & (1 << CR_CHAN(insn->
2142					chanspec))) ? COMEDI_OUTPUT :
2143			COMEDI_INPUT;
2144		return insn->n;
2145		break;
2146	case COMEDI_INPUT:
2147		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2148		break;
2149	case COMEDI_OUTPUT:
2150		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2151		break;
2152	default:
2153		return -EINVAL;
2154		break;
2155	}
2156	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2157
2158	return 1;
2159}
2160
2161static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2162{
2163	unsigned int group;
2164	unsigned int bitmask;
2165	unsigned int status;
2166
2167	/* select dio bank */
2168	group = chan / 16;
2169	bitmask = 1 << (chan - (16 * group));
2170	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2171		chan - (16 * group), group);
2172
2173	/* set channel to capture positive edge */
2174	status = DEBIread(dev,
2175		((struct dio_private *) (dev->subdevices + 2 +
2176				group)->private)->RDEdgSel);
2177	DEBIwrite(dev,
2178		((struct dio_private *) (dev->subdevices + 2 +
2179				group)->private)->WREdgSel, bitmask | status);
2180
2181	/* enable interrupt on selected channel */
2182	status = DEBIread(dev,
2183		((struct dio_private *) (dev->subdevices + 2 +
2184				group)->private)->RDIntSel);
2185	DEBIwrite(dev,
2186		((struct dio_private *) (dev->subdevices + 2 +
2187				group)->private)->WRIntSel, bitmask | status);
2188
2189	/* enable edge capture write command */
2190	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2191
2192	/* enable edge capture on selected channel */
2193	status = DEBIread(dev,
2194		((struct dio_private *) (dev->subdevices + 2 +
2195				group)->private)->RDCapSel);
2196	DEBIwrite(dev,
2197		((struct dio_private *) (dev->subdevices + 2 +
2198				group)->private)->WRCapSel, bitmask | status);
2199
2200	return 0;
2201}
2202
2203static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2204	unsigned int mask)
2205{
2206	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);
2207
2208	/* disable edge capture write command */
2209	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2210
2211	/* enable edge capture on selected channel */
2212	DEBIwrite(dev,
2213		((struct dio_private *) (dev->subdevices + 2 +
2214				group)->private)->WRCapSel, mask);
2215
2216	return 0;
2217}
2218
2219static int s626_dio_clear_irq(struct comedi_device *dev)
2220{
2221	unsigned int group;
2222
2223	/* disable edge capture write command */
2224	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2225
2226	for (group = 0; group < S626_DIO_BANKS; group++) {
2227		/* clear pending events and interrupt */
2228		DEBIwrite(dev,
2229			((struct dio_private *) (dev->subdevices + 2 +
2230					group)->private)->WRCapSel, 0xffff);
2231	}
2232
2233	return 0;
2234}
2235
2236/* Now this function initializes the value of the counter (data[0])
2237   and set the subdevice. To complete with trigger and interrupt
2238   configuration */
2239static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2240	struct comedi_insn *insn, unsigned int *data)
2241{
2242	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2243		/*  index. */
2244		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2245		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2246		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2247		/* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2248		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2249		(CLKENAB_INDEX << BF_CLKENAB);
2250	/*   uint16_t DisableIntSrc=TRUE; */
2251	/*  uint32_t Preloadvalue;              //Counter initial value */
2252	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2253	uint16_t enab = CLKENAB_ALWAYS;
2254	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2255
2256	DEBUG("s626_enc_insn_config: encoder config\n");
2257
2258	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2259
2260	k->SetMode(dev, k, Setup, TRUE);
2261	Preload(dev, k, *(insn->data));
2262	k->PulseIndex(dev, k);
2263	SetLatchSource(dev, k, valueSrclatch);
2264	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2265
2266	return insn->n;
2267}
2268
2269static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
2270	struct comedi_insn *insn, unsigned int *data)
2271{
2272
2273	int n;
2274	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2275
2276	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2277		CR_CHAN(insn->chanspec));
2278
2279	for (n = 0; n < insn->n; n++)
2280		data[n] = ReadLatch(dev, k);
2281
2282	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2283
2284	return n;
2285}
2286
2287static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
2288	struct comedi_insn *insn, unsigned int *data)
2289{
2290
2291	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2292
2293	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2294		CR_CHAN(insn->chanspec));
2295
2296	/*  Set the preload register */
2297	Preload(dev, k, data[0]);
2298
2299	/*  Software index pulse forces the preload register to load */
2300	/*  into the counter */
2301	k->SetLoadTrig(dev, k, 0);
2302	k->PulseIndex(dev, k);
2303	k->SetLoadTrig(dev, k, 2);
2304
2305	DEBUG("s626_enc_insn_write: End encoder write\n");
2306
2307	return 1;
2308}
2309
2310static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick)
2311{
2312	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2313		/*  index. */
2314		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2315		(CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2316		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2317		(CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2318		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2319		(CLKENAB_INDEX << BF_CLKENAB);
2320	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2321	/*   uint16_t enab=CLKENAB_ALWAYS; */
2322
2323	k->SetMode(dev, k, Setup, FALSE);
2324
2325	/*  Set the preload register */
2326	Preload(dev, k, tick);
2327
2328	/*  Software index pulse forces the preload register to load */
2329	/*  into the counter */
2330	k->SetLoadTrig(dev, k, 0);
2331	k->PulseIndex(dev, k);
2332
2333	/* set reload on counter overflow */
2334	k->SetLoadTrig(dev, k, 1);
2335
2336	/* set interrupt on overflow */
2337	k->SetIntSrc(dev, k, INTSRC_OVER);
2338
2339	SetLatchSource(dev, k, valueSrclatch);
2340	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2341}
2342
2343/* ***********  DAC FUNCTIONS *********** */
2344
2345/*  Slot 0 base settings. */
2346#define VECT0	(XSD2 | RSD3 | SIB_A2)
2347/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2348
2349/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2350static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2351
2352/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2353static uint8_t trimadrs[] =
2354	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2355
2356static void LoadTrimDACs(struct comedi_device *dev)
2357{
2358	register uint8_t i;
2359
2360	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2361	for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2362		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2363}
2364
2365static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2366	uint8_t DacData)
2367{
2368	uint32_t chan;
2369
2370	/*  Save the new setpoint in case the application needs to read it back later. */
2371	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2372
2373	/*  Map logical channel number to physical channel number. */
2374	chan = (uint32_t) trimchan[LogicalChan];
2375
2376	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2377	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2378	 * can be detected.
2379	 */
2380
2381	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2382	/* Slot 2: Send high uint8_t to target TrimDac. */
2383	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2384	/* Slot 3: Send low uint8_t to target TrimDac. */
2385	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2386	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2387	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2388	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2389
2390	/* Construct and transmit target DAC's serial packet:
2391	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2392	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2393	 * WORD value (that writes a channel 0 NOP command to a non-existent
2394	 * main DAC channel) that serves to keep the clock running after the
2395	 * packet has been sent to the target DAC.
2396	 */
2397
2398	/*  Address the DAC channel within the trimdac device. */
2399	SendDAC(dev, ((uint32_t) chan << 8)
2400		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2401}
2402
2403/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2404/*  Read uint8_t from EEPROM. */
2405
2406static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2407{
2408	uint8_t rtnval;
2409
2410	/*  Send EEPROM target address. */
2411	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2412			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2413			| I2C_B1(I2C_ATTRSTOP, addr)
2414			 /* Byte1 = EEPROM internal target address. */
2415			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
2416		/*  Abort function and declare error if handshake failed. */
2417		DEBUG("I2Cread: error handshake I2Cread  a\n");
2418		return 0;
2419	}
2420	/*  Execute EEPROM read. */
2421	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	/*  Byte2 = I2C */
2422			/*  command: read */
2423			/*  from I2C EEPROM */
2424			/*  device. */
2425			| I2C_B1(I2C_ATTRSTOP, 0)	/*  Byte1 receives */
2426			/*  uint8_t from */
2427			/*  EEPROM. */
2428			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */
2429
2430		/*  Abort function and declare error if handshake failed. */
2431		DEBUG("I2Cread: error handshake I2Cread b\n");
2432		return 0;
2433	}
2434	/*  Return copy of EEPROM value. */
2435	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2436	return rtnval;
2437}
2438
2439static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2440{
2441	/*  Write I2C command to I2C Transfer Control shadow register. */
2442	WR7146(P_I2CCTRL, val);
2443
2444	/*  Upload I2C shadow registers into working registers and wait for */
2445	/*  upload confirmation. */
2446
2447	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2448	while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2449		;
2450
2451	/*  Wait until I2C bus transfer is finished or an error occurs. */
2452	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2453		;
2454
2455	/*  Return non-zero if I2C error occured. */
2456	return RR7146(P_I2CCTRL) & I2C_ERR;
2457
2458}
2459
2460/*  Private helper function: Write setpoint to an application DAC channel. */
2461
2462static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2463{
2464	register uint16_t signmask;
2465	register uint32_t WSImage;
2466
2467	/*  Adjust DAC data polarity and set up Polarity Control Register */
2468	/*  image. */
2469	signmask = 1 << chan;
2470	if (dacdata < 0) {
2471		dacdata = -dacdata;
2472		devpriv->Dacpol |= signmask;
2473	} else
2474		devpriv->Dacpol &= ~signmask;
2475
2476	/*  Limit DAC setpoint value to valid range. */
2477	if ((uint16_t) dacdata > 0x1FFF)
2478		dacdata = 0x1FFF;
2479
2480	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2481	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2482	 * data to a non-existent TrimDac channel just to keep the clock
2483	 * running after sending data to the target DAC.  This is necessary
2484	 * to eliminate the clock glitch that would otherwise occur at the
2485	 * end of the target DAC's serial data stream.  When the sequence
2486	 * restarts at V0 (after executing V5), the gate array automatically
2487	 * disables gating for the DAC clock and all DAC chip selects.
2488	 */
2489
2490	WSImage = (chan & 2) ? WS1 : WS2;
2491	/* Choose DAC chip select to be asserted. */
2492	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2493	/* Slot 2: Transmit high data byte to target DAC. */
2494	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2495	/* Slot 3: Transmit low data byte to target DAC. */
2496	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2497	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2498	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2499	/* Slot 5: running after writing target DAC's low data byte. */
2500
2501	/*  Construct and transmit target DAC's serial packet:
2502	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2503	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2504	 * to a  non-existent TrimDac channel) that serves to keep the clock
2505	 * running after the packet has been sent to the target DAC.
2506	 */
2507	SendDAC(dev, 0x0F000000
2508		/* Continue clock after target DAC data (write to non-existent trimdac). */
2509		| 0x00004000
2510		/* Address the two main dual-DAC devices (TSL's chip select enables
2511		 * target device). */
2512		| ((uint32_t) (chan & 1) << 15)
2513		/*  Address the DAC channel within the  device. */
2514		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2515
2516}
2517
2518/* Private helper function: Transmit serial data to DAC via Audio
2519 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2520 * Dacpol contains valid target image.
2521 */
2522
2523static void SendDAC(struct comedi_device *dev, uint32_t val)
2524{
2525
2526	/* START THE SERIAL CLOCK RUNNING ------------- */
2527
2528	/* Assert DAC polarity control and enable gating of DAC serial clock
2529	 * and audio bit stream signals.  At this point in time we must be
2530	 * assured of being in time slot 0.  If we are not in slot 0, the
2531	 * serial clock and audio stream signals will be disabled; this is
2532	 * because the following DEBIwrite statement (which enables signals
2533	 * to be passed through the gate array) would execute before the
2534	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2535	 * causing the signals to be inactive during the DAC write.
2536	 */
2537	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2538
2539	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2540
2541	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2542
2543	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2544	*devpriv->pDacWBuf = val;
2545
2546	/* enab the output DMA transfer.  This will cause the DMAC to copy
2547	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2548	 * then immediately terminate because the protection address is
2549	 * reached upon transfer of the first DWORD value.
2550	 */
2551	MC_ENABLE(P_MC1, MC1_A2OUT);
2552
2553	/*  While the DMA transfer is executing ... */
2554
2555	/* Reset Audio2 output FIFO's underflow flag (along with any other
2556	 * FIFO underflow/overflow flags).  When set, this flag will
2557	 * indicate that we have emerged from slot 0.
2558	 */
2559	WR7146(P_ISR, ISR_AFOU);
2560
2561	/* Wait for the DMA transfer to finish so that there will be data
2562	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2563	 * from the FIFO to the output buffer register.  We test for DMA
2564	 * Done by polling the DMAC enable flag; this flag is automatically
2565	 * cleared when the transfer has finished.
2566	 */
2567	while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2568		;
2569
2570	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2571
2572	/* FIFO data is now available, so we enable execution of time slots
2573	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2574	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2575	 * detection.
2576	 */
2577	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2578
2579	/* Wait for slot 1 to execute to ensure that the Packet will be
2580	 * transmitted.  This is detected by polling the Audio2 output FIFO
2581	 * underflow flag, which will be set when slot 1 execution has
2582	 * finished transferring the DAC's data DWORD from the output FIFO
2583	 * to the output buffer register.
2584	 */
2585	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2586		;
2587
2588	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2589	 * back to slot 0 after executing the EOS in slot 5.  Also,
2590	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2591	 * stored in the last byte to be shifted out of the FIFO's DWORD
2592	 * buffer register.
2593	 */
2594	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2595
2596	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2597
2598	/* Wait for the TSL to finish executing all time slots before
2599	 * exiting this function.  We must do this so that the next DAC
2600	 * write doesn't start, thereby enabling clock/chip select signals:
2601	 *
2602	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2603	 *    the clock/cs signal gating and traps slot // list execution.
2604	 *    we have not yet finished slot 5 then the clock/cs signals are
2605	 *    still gated and we have not finished transmitting the stream.
2606	 *
2607	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2608	 *    this case, the slot sequence is currently repeating, but with
2609	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2610	 *    execution before setting up the next DAC setpoint DMA transfer
2611	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2612	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2613	 *    the TSL has not yet finished executing slot 5 ...
2614	 */
2615	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2616		/* The trap was set on time and we are still executing somewhere
2617		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2618		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2619		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2620		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2621		 */
2622		 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2623			;
2624	}
2625	/* Either (1) we were too late setting the slot 0 trap; the TSL
2626	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2627	 * or (2) we were not late and execution is now trapped at slot 0.
2628	 * In either case, we must now change slot 0 so that it will store
2629	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2630	 * In order to do this, we reprogram slot 0 so that it will shift in
2631	 * SD3, which is driven only by a pull-up resistor.
2632	 */
2633	SETVECT(0, RSD3 | SIB_A2 | EOS);
2634
2635	/* Wait for slot 0 to execute, at which time the TSL is setup for
2636	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2637	 * from 0x00 to 0xFF.
2638	 */
2639	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2640		;
2641}
2642
2643static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2644{
2645	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2646	/*  MISC2 register. */
2647	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2648	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2649}
2650
2651/*  Initialize the DEBI interface for all transfers. */
2652
2653static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2654{
2655	uint16_t retval;
2656
2657	/*  Set up DEBI control register value in shadow RAM. */
2658	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2659
2660	/*  Execute the DEBI transfer. */
2661	DEBItransfer(dev);
2662
2663	/*  Fetch target register value. */
2664	retval = (uint16_t) RR7146(P_DEBIAD);
2665
2666	/*  Return register value. */
2667	return retval;
2668}
2669
2670/*  Execute a DEBI transfer.  This must be called from within a */
2671/*  critical section. */
2672static void DEBItransfer(struct comedi_device *dev)
2673{
2674	/*  Initiate upload of shadow RAM to DEBI control register. */
2675	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2676
2677	/*  Wait for completion of upload from shadow RAM to DEBI control */
2678	/*  register. */
2679	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2680		;
2681
2682	/*  Wait until DEBI transfer is done. */
2683	while (RR7146(P_PSR) & PSR_DEBI_S)
2684		;
2685}
2686
2687/*  Write a value to a gate array register. */
2688static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2689{
2690
2691	/*  Set up DEBI control register value in shadow RAM. */
2692	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2693	WR7146(P_DEBIAD, wdata);
2694
2695	/*  Execute the DEBI transfer. */
2696	DEBItransfer(dev);
2697}
2698
2699/* Replace the specified bits in a gate array register.  Imports: mask
2700 * specifies bits that are to be preserved, wdata is new value to be
2701 * or'd with the masked original.
2702 */
2703static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2704	uint16_t wdata)
2705{
2706
2707	/*  Copy target gate array register into P_DEBIAD register. */
2708	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2709	/* Set up DEBI control reg value in shadow RAM. */
2710	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2711
2712	/*  Write back the modified image. */
2713	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2714	/* Set up DEBI control reg value in shadow  RAM. */
2715
2716	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2717	/* Modify the register image. */
2718	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2719}
2720
2721static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize)
2722{
2723	void *vbptr;
2724	dma_addr_t vpptr;
2725
2726	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2727	if (pdma == NULL)
2728		return;
2729	/* find the matching allocation from the board struct */
2730
2731	vbptr = pdma->LogicalBase;
2732	vpptr = pdma->PhysicalBase;
2733	if (vbptr) {
2734		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2735		pdma->LogicalBase = 0;
2736		pdma->PhysicalBase = 0;
2737
2738		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2739			vbptr, bsize, (uint32_t) vpptr);
2740	}
2741}
2742
2743/* ******  COUNTER FUNCTIONS  ******* */
2744/* All counter functions address a specific counter by means of the
2745 * "Counter" argument, which is a logical counter number.  The Counter
2746 * argument may have any of the following legal values: 0=0A, 1=1A,
2747 * 2=2A, 3=0B, 4=1B, 5=2B.
2748 */
2749
2750/* Forward declarations for functions that are common to both A and B counters: */
2751
2752/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2753
2754/*  Read a counter's output latch. */
2755
2756static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2757{
2758	register uint32_t value;
2759	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2760
2761	/*  Latch counts and fetch LSW of latched counts value. */
2762	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2763
2764	/*  Fetch MSW of latched counts and combine with LSW. */
2765	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2766
2767	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2768
2769	/*  Return latched counts. */
2770	return value;
2771}
2772
2773/*  Reset a counter's index and overflow event capture flags. */
2774
2775static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2776{
2777	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2778		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2779}
2780
2781static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2782{
2783	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2784		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2785}
2786
2787/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2788/*  for both A and B counters. */
2789
2790static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2791{
2792	register uint16_t cra;
2793	register uint16_t crb;
2794	register uint16_t setup;
2795
2796	/*  Fetch CRA and CRB register images. */
2797	cra = DEBIread(dev, k->MyCRA);
2798	crb = DEBIread(dev, k->MyCRB);
2799
2800	/*  Populate the standardized counter setup bit fields.  Note: */
2801	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2802	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2803		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2804		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2805		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2806		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2807		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2808
2809	/*  Adjust mode-dependent parameters. */
2810	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2811		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2812			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2813			| (MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2814
2815	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2816		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2817			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2818			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2819				(MULT_X1 << STDBIT_CLKMULT) :
2820				((cra >> (CRABIT_CLKMULT_A -
2821							STDBIT_CLKMULT)) &
2822					STDMSK_CLKMULT)));
2823
2824	/*  Return adjusted counter setup. */
2825	return setup;
2826}
2827
2828static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2829{
2830	register uint16_t cra;
2831	register uint16_t crb;
2832	register uint16_t setup;
2833
2834	/*  Fetch CRA and CRB register images. */
2835	cra = DEBIread(dev, k->MyCRA);
2836	crb = DEBIread(dev, k->MyCRB);
2837
2838	/*  Populate the standardized counter setup bit fields.  Note: */
2839	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2840	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2841		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2842		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2843		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2844		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2845		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2846
2847	/*  Adjust mode-dependent parameters. */
2848	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2849		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2850			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2851			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2852
2853	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2854		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2855			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2856			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2857
2858	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2859		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2860			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2861			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2862
2863	/*  Return adjusted counter setup. */
2864	return setup;
2865}
2866
2867/*
2868 * Set the operating mode for the specified counter.  The setup
2869 * parameter is treated as a COUNTER_SETUP data type.  The following
2870 * parameters are programmable (all other parms are ignored): ClkMult,
2871 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2872 */
2873
2874static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2875	uint16_t DisableIntSrc)
2876{
2877	register uint16_t cra;
2878	register uint16_t crb;
2879	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2880
2881	/*  Initialize CRA and CRB images. */
2882	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
2883		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2884
2885	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
2886		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
2887
2888	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2889	if (!DisableIntSrc)
2890		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2891				CRABIT_INTSRC_A));
2892
2893	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2894	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2895	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
2896		/*  (Extender valid only for B counters). */
2897
2898	case CLKSRC_TIMER:	/*  Timer Mode: */
2899		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
2900			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
2901			| (1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
2902			| (MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
2903		break;
2904
2905	default:		/*  Counter Mode: */
2906		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2907			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
2908			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
2909				(MULT_X1 << CRABIT_CLKMULT_A) :
2910				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2911						STDBIT_CLKMULT))));
2912	}
2913
2914	/*  Force positive index polarity if IndxSrc is software-driven only, */
2915	/*  otherwise pass it through. */
2916	if (~setup & STDMSK_INDXSRC)
2917		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2918				STDBIT_INDXPOL));
2919
2920	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2921	/*  enable mask to indicate the counter interrupt is disabled. */
2922	if (DisableIntSrc)
2923		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2924
2925	/*  While retaining CounterB and LatchSrc configurations, program the */
2926	/*  new counter operating mode. */
2927	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2928	DEBIreplace(dev, k->MyCRB,
2929		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2930}
2931
2932static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2933	uint16_t DisableIntSrc)
2934{
2935	register uint16_t cra;
2936	register uint16_t crb;
2937	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2938
2939	/*  Initialize CRA and CRB images. */
2940	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
2941
2942	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
2943		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
2944		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
2945
2946	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2947	if (!DisableIntSrc)
2948		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2949				CRBBIT_INTSRC_B));
2950
2951	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2952	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2953	case CLKSRC_TIMER:	/*  Timer Mode: */
2954		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
2955			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
2956		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
2957			| (MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
2958		break;
2959
2960	case CLKSRC_EXTENDER:	/*  Extender Mode: */
2961		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
2962			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
2963		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
2964			| (MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
2965		break;
2966
2967	default:		/*  Counter Mode: */
2968		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2969		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
2970			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
2971				(MULT_X1 << CRBBIT_CLKMULT_B) :
2972				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2973						STDBIT_CLKMULT))));
2974	}
2975
2976	/*  Force positive index polarity if IndxSrc is software-driven only, */
2977	/*  otherwise pass it through. */
2978	if (~setup & STDMSK_INDXSRC)
2979		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2980				CRBBIT_INDXPOL_B));
2981
2982	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2983	/*  enable mask to indicate the counter interrupt is disabled. */
2984	if (DisableIntSrc)
2985		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2986
2987	/*  While retaining CounterA and LatchSrc configurations, program the */
2988	/*  new counter operating mode. */
2989	DEBIreplace(dev, k->MyCRA,
2990		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2991	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2992}
2993
2994/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
2995
2996static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
2997{
2998	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
2999	DEBIreplace(dev, k->MyCRB,
3000		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3001		(uint16_t) (enab << CRBBIT_CLKENAB_A));
3002}
3003
3004static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3005{
3006	DEBIreplace(dev, k->MyCRB,
3007		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3008		(uint16_t) (enab << CRBBIT_CLKENAB_B));
3009}
3010
3011static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3012{
3013	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3014}
3015
3016static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3017{
3018	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3019}
3020
3021/* Return/set a counter pair's latch trigger source.  0: On read
3022 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3023 * latches B.
3024 */
3025
3026static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, uint16_t value)
3027{
3028	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3029	DEBIreplace(dev, k->MyCRB,
3030		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3031		(uint16_t) (value << CRBBIT_LATCHSRC));
3032
3033	DEBUG("SetLatchSource: SetLatchSource exit \n");
3034}
3035
3036/*
3037 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3038 * {
3039 * 	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3040 * }
3041 */
3042
3043/*
3044 * Return/set the event that will trigger transfer of the preload
3045 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3046 * 2=OverflowA (B counters only), 3=disabled.
3047 */
3048
3049static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3050{
3051	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3052		(uint16_t) (Trig << CRABIT_LOADSRC_A));
3053}
3054
3055static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3056{
3057	DEBIreplace(dev, k->MyCRB,
3058		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3059		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
3060}
3061
3062static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3063{
3064	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3065}
3066
3067static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3068{
3069	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3070}
3071
3072/* Return/set counter interrupt source and clear any captured
3073 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3074 * 2=IndexOnly, 3=IndexAndOverflow.
3075 */
3076
3077static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3078	uint16_t IntSource)
3079{
3080	/*  Reset any pending counter overflow or index captures. */
3081	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3082		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3083
3084	/*  Program counter interrupt source. */
3085	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3086		(uint16_t) (IntSource << CRABIT_INTSRC_A));
3087
3088	/*  Update MISC2 interrupt enable mask. */
3089	devpriv->CounterIntEnabs =
3090		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3091		MyEventBits[IntSource];
3092}
3093
3094static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3095	uint16_t IntSource)
3096{
3097	uint16_t crb;
3098
3099	/*  Cache writeable CRB register image. */
3100	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3101
3102	/*  Reset any pending counter overflow or index captures. */
3103	DEBIwrite(dev, k->MyCRB,
3104		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3105
3106	/*  Program counter interrupt source. */
3107	DEBIwrite(dev, k->MyCRB,
3108		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3109				CRBBIT_INTSRC_B)));
3110
3111	/*  Update MISC2 interrupt enable mask. */
3112	devpriv->CounterIntEnabs =
3113		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3114		MyEventBits[IntSource];
3115}
3116
3117static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3118{
3119	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3120}
3121
3122static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3123{
3124	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3125}
3126
3127/*  Return/set the clock multiplier. */
3128
3129/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3130/* { */
3131/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3132/* } */
3133
3134/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k )  */
3135/* { */
3136/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3137/* } */
3138
3139/* Return/set the clock polarity. */
3140
3141/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3142/* { */
3143/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3144/* } */
3145
3146/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k )  */
3147/* { */
3148/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3149/* } */
3150
3151/* Return/set the clock source.  */
3152
3153/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3154/* { */
3155/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3156/* } */
3157
3158/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k )  */
3159/* { */
3160/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3161/* } */
3162
3163/* Return/set the index polarity. */
3164
3165/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3166/* { */
3167/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3168/* } */
3169
3170/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k )  */
3171/* { */
3172/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3173/* } */
3174
3175/*  Return/set the index source. */
3176
3177/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3178/* { */
3179/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3180/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3181/* } */
3182
3183/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k )  */
3184/* { */
3185/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3186/* } */
3187
3188/*  Generate an index pulse. */
3189
3190static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3191{
3192	register uint16_t cra;
3193
3194	DEBUG("PulseIndex_A: pulse index enter\n");
3195
3196	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3197	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3198	DEBUG("PulseIndex_A: pulse index step1\n");
3199	DEBIwrite(dev, k->MyCRA, cra);
3200}
3201
3202static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3203{
3204	register uint16_t crb;
3205
3206	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3207	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3208	DEBIwrite(dev, k->MyCRB, crb);
3209}
3210
3211/*  Write value into counter preload register. */
3212
3213static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value)
3214{
3215	DEBUG("Preload: preload enter\n");
3216	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3217	DEBUG("Preload: preload step 1\n");
3218	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3219		(uint16_t) (value >> 16));
3220}
3221
3222static void CountersInit(struct comedi_device *dev)
3223{
3224	int chan;
3225	struct enc_private *k;
3226	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3227		/*  index. */
3228		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3229		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3230		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3231		(CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3232		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3233		(CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3234
3235	/*  Disable all counter interrupts and clear any captured counter events. */
3236	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3237		k = &encpriv[chan];
3238		k->SetMode(dev, k, Setup, TRUE);
3239		k->SetIntSrc(dev, k, 0);
3240		k->ResetCapFlags(dev, k);
3241		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3242	}
3243	DEBUG("CountersInit: counters initialized \n");
3244
3245}
3246