s626.c revision a87e4f5a4a7be43e610399ebcbb09ba3da021094
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63                            //during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66                                                        //to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/kernel.h>
72#include <linux/types.h>
73
74#include "../comedidev.h"
75
76#include "comedi_pci.h"
77
78#include "comedi_fc.h"
79#include "s626.h"
80
81MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83MODULE_LICENSE("GPL");
84
85typedef struct s626_board_struct {
86	const char *name;
87	int ai_chans;
88	int ai_bits;
89	int ao_chans;
90	int ao_bits;
91	int dio_chans;
92	int dio_banks;
93	int enc_chans;
94} s626_board;
95
96static const s626_board s626_boards[] = {
97	{
98	      name:	"s626",
99	      ai_chans : S626_ADC_CHANNELS,
100	      ai_bits:	14,
101	      ao_chans : S626_DAC_CHANNELS,
102	      ao_bits:	13,
103	      dio_chans : S626_DIO_CHANNELS,
104	      dio_banks : S626_DIO_BANKS,
105	      enc_chans : S626_ENCODER_CHANNELS,
106		}
107};
108
109#define thisboard ((const s626_board *)dev->board_ptr)
110#define PCI_VENDOR_ID_S626 0x1131
111#define PCI_DEVICE_ID_S626 0x7146
112
113static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
115		0},
116	{0}
117};
118
119MODULE_DEVICE_TABLE(pci, s626_pci_table);
120
121static int s626_attach(comedi_device *dev, comedi_devconfig *it);
122static int s626_detach(comedi_device *dev);
123
124static comedi_driver driver_s626 = {
125      driver_name:"s626",
126      module : THIS_MODULE,
127      attach : s626_attach,
128      detach : s626_detach,
129};
130
131typedef struct {
132	struct pci_dev *pdev;
133	void *base_addr;
134	int got_regions;
135	short allocatedBuf;
136	uint8_t ai_cmd_running;	/*  ai_cmd is running */
137	uint8_t ai_continous;	/*  continous aquisition */
138	int ai_sample_count;	/*  number of samples to aquire */
139	unsigned int ai_sample_timer;
140	/*  time between samples in  units of the timer */
141	int ai_convert_count;	/*  conversion counter */
142	unsigned int ai_convert_timer;
143	/*  time between conversion in  units of the timer */
144	uint16_t CounterIntEnabs;
145	/* Counter interrupt enable  mask for MISC2 register. */
146	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
147	DMABUF RPSBuf;		/* DMA buffer used to hold ADC (RPS1) program. */
148	DMABUF ANABuf;
149	/* DMA buffer used to receive ADC data and hold DAC data. */
150	uint32_t *pDacWBuf;
151	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
152	uint16_t Dacpol;	/* Image of DAC polarity register. */
153	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
154	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
155	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
156	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
157	uint32_t I2CAdrs;
158	/* I2C device address for onboard EEPROM (board rev dependent). */
159	/*   short         I2Cards; */
160	lsampl_t ao_readback[S626_DAC_CHANNELS];
161} s626_private;
162
163typedef struct {
164	uint16_t RDDIn;
165	uint16_t WRDOut;
166	uint16_t RDEdgSel;
167	uint16_t WREdgSel;
168	uint16_t RDCapSel;
169	uint16_t WRCapSel;
170	uint16_t RDCapFlg;
171	uint16_t RDIntSel;
172	uint16_t WRIntSel;
173} dio_private;
174
175static dio_private dio_private_A = {
176      RDDIn:LP_RDDINA,
177      WRDOut : LP_WRDOUTA,
178      RDEdgSel : LP_RDEDGSELA,
179      WREdgSel : LP_WREDGSELA,
180      RDCapSel : LP_RDCAPSELA,
181      WRCapSel : LP_WRCAPSELA,
182      RDCapFlg : LP_RDCAPFLGA,
183      RDIntSel : LP_RDINTSELA,
184      WRIntSel : LP_WRINTSELA,
185};
186
187static dio_private dio_private_B = {
188      RDDIn:LP_RDDINB,
189      WRDOut : LP_WRDOUTB,
190      RDEdgSel : LP_RDEDGSELB,
191      WREdgSel : LP_WREDGSELB,
192      RDCapSel : LP_RDCAPSELB,
193      WRCapSel : LP_WRCAPSELB,
194      RDCapFlg : LP_RDCAPFLGB,
195      RDIntSel : LP_RDINTSELB,
196      WRIntSel : LP_WRINTSELB,
197};
198
199static dio_private dio_private_C = {
200      RDDIn:LP_RDDINC,
201      WRDOut : LP_WRDOUTC,
202      RDEdgSel : LP_RDEDGSELC,
203      WREdgSel : LP_WREDGSELC,
204      RDCapSel : LP_RDCAPSELC,
205      WRCapSel : LP_WRCAPSELC,
206      RDCapFlg : LP_RDCAPFLGC,
207      RDIntSel : LP_RDINTSELC,
208      WRIntSel : LP_WRINTSELC,
209};
210
211/* to group dio devices (48 bits mask and data are not allowed ???)
212static dio_private *dio_private_word[]={
213  &dio_private_A,
214  &dio_private_B,
215  &dio_private_C,
216};
217*/
218
219#define devpriv ((s626_private *)dev->private)
220#define diopriv ((dio_private *)s->private)
221
222COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
223
224/* ioctl routines */
225static int s626_ai_insn_config(comedi_device *dev, comedi_subdevice *s,
226	comedi_insn *insn, lsampl_t *data);
227/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data); */
228static int s626_ai_insn_read(comedi_device *dev, comedi_subdevice *s,
229	comedi_insn *insn, lsampl_t *data);
230static int s626_ai_cmd(comedi_device *dev, comedi_subdevice *s);
231static int s626_ai_cmdtest(comedi_device *dev, comedi_subdevice *s,
232	comedi_cmd *cmd);
233static int s626_ai_cancel(comedi_device *dev, comedi_subdevice *s);
234static int s626_ao_winsn(comedi_device *dev, comedi_subdevice *s,
235	comedi_insn *insn, lsampl_t *data);
236static int s626_ao_rinsn(comedi_device *dev, comedi_subdevice *s,
237	comedi_insn *insn, lsampl_t *data);
238static int s626_dio_insn_bits(comedi_device *dev, comedi_subdevice *s,
239	comedi_insn *insn, lsampl_t *data);
240static int s626_dio_insn_config(comedi_device *dev, comedi_subdevice *s,
241	comedi_insn *insn, lsampl_t *data);
242static int s626_dio_set_irq(comedi_device *dev, unsigned int chan);
243static int s626_dio_reset_irq(comedi_device *dev, unsigned int gruop,
244	unsigned int mask);
245static int s626_dio_clear_irq(comedi_device *dev);
246static int s626_enc_insn_config(comedi_device *dev, comedi_subdevice *s,
247	comedi_insn *insn, lsampl_t *data);
248static int s626_enc_insn_read(comedi_device *dev, comedi_subdevice *s,
249	comedi_insn *insn, lsampl_t *data);
250static int s626_enc_insn_write(comedi_device *dev, comedi_subdevice *s,
251	comedi_insn *insn, lsampl_t *data);
252static int s626_ns_to_timer(int *nanosec, int round_mode);
253static int s626_ai_load_polllist(uint8_t *ppl, comedi_cmd *cmd);
254static int s626_ai_inttrig(comedi_device *dev, comedi_subdevice *s,
255	unsigned int trignum);
256static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG);
257static lsampl_t s626_ai_reg_to_uint(int data);
258/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data); */
259
260/* end ioctl routines */
261
262/* internal routines */
263static void s626_dio_init(comedi_device *dev);
264static void ResetADC(comedi_device *dev, uint8_t *ppl);
265static void LoadTrimDACs(comedi_device *dev);
266static void WriteTrimDAC(comedi_device *dev, uint8_t LogicalChan,
267	uint8_t DacData);
268static uint8_t I2Cread(comedi_device *dev, uint8_t addr);
269static uint32_t I2Chandshake(comedi_device *dev, uint32_t val);
270static void SetDAC(comedi_device *dev, uint16_t chan, short dacdata);
271static void SendDAC(comedi_device *dev, uint32_t val);
272static void WriteMISC2(comedi_device *dev, uint16_t NewImage);
273static void DEBItransfer(comedi_device *dev);
274static uint16_t DEBIread(comedi_device *dev, uint16_t addr);
275static void DEBIwrite(comedi_device *dev, uint16_t addr, uint16_t wdata);
276static void DEBIreplace(comedi_device *dev, uint16_t addr, uint16_t mask,
277	uint16_t wdata);
278static void CloseDMAB(comedi_device *dev, DMABUF *pdma, size_t bsize);
279
280/*  COUNTER OBJECT ------------------------------------------------ */
281typedef struct enc_private_struct {
282	/*  Pointers to functions that differ for A and B counters: */
283	uint16_t(*GetEnable) (comedi_device *dev, struct enc_private_struct *);	/* Return clock enable. */
284	uint16_t(*GetIntSrc) (comedi_device *dev, struct enc_private_struct *);	/* Return interrupt source. */
285	uint16_t(*GetLoadTrig) (comedi_device *dev, struct enc_private_struct *);	/* Return preload trigger source. */
286	uint16_t(*GetMode) (comedi_device *dev, struct enc_private_struct *);	/* Return standardized operating mode. */
287	void (*PulseIndex) (comedi_device *dev, struct enc_private_struct *);	/* Generate soft index strobe. */
288	void (*SetEnable) (comedi_device *dev, struct enc_private_struct *, uint16_t enab);	/* Program clock enable. */
289	void (*SetIntSrc) (comedi_device *dev, struct enc_private_struct *, uint16_t IntSource);	/* Program interrupt source. */
290	void (*SetLoadTrig) (comedi_device *dev, struct enc_private_struct *, uint16_t Trig);	/* Program preload trigger source. */
291	void (*SetMode) (comedi_device *dev, struct enc_private_struct *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
292	void (*ResetCapFlags) (comedi_device *dev, struct enc_private_struct *);	/* Reset event capture flags. */
293
294	uint16_t MyCRA;		/*    Address of CRA register. */
295	uint16_t MyCRB;		/*    Address of CRB register. */
296	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
297	/*    register. */
298	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
299} enc_private;			/* counter object */
300
301#define encpriv ((enc_private *)(dev->subdevices+5)->private)
302
303/* counters routines */
304static void s626_timer_load(comedi_device *dev, enc_private *k, int tick);
305static uint32_t ReadLatch(comedi_device *dev, enc_private *k);
306static void ResetCapFlags_A(comedi_device *dev, enc_private *k);
307static void ResetCapFlags_B(comedi_device *dev, enc_private *k);
308static uint16_t GetMode_A(comedi_device *dev, enc_private *k);
309static uint16_t GetMode_B(comedi_device *dev, enc_private *k);
310static void SetMode_A(comedi_device *dev, enc_private *k, uint16_t Setup,
311	uint16_t DisableIntSrc);
312static void SetMode_B(comedi_device *dev, enc_private *k, uint16_t Setup,
313	uint16_t DisableIntSrc);
314static void SetEnable_A(comedi_device *dev, enc_private *k, uint16_t enab);
315static void SetEnable_B(comedi_device *dev, enc_private *k, uint16_t enab);
316static uint16_t GetEnable_A(comedi_device *dev, enc_private *k);
317static uint16_t GetEnable_B(comedi_device *dev, enc_private *k);
318static void SetLatchSource(comedi_device *dev, enc_private *k,
319	uint16_t value);
320/* static uint16_t GetLatchSource(comedi_device *dev, enc_private *k ); */
321static void SetLoadTrig_A(comedi_device *dev, enc_private *k, uint16_t Trig);
322static void SetLoadTrig_B(comedi_device *dev, enc_private *k, uint16_t Trig);
323static uint16_t GetLoadTrig_A(comedi_device *dev, enc_private *k);
324static uint16_t GetLoadTrig_B(comedi_device *dev, enc_private *k);
325static void SetIntSrc_B(comedi_device *dev, enc_private *k,
326	uint16_t IntSource);
327static void SetIntSrc_A(comedi_device *dev, enc_private *k,
328	uint16_t IntSource);
329static uint16_t GetIntSrc_A(comedi_device *dev, enc_private *k);
330static uint16_t GetIntSrc_B(comedi_device *dev, enc_private *k);
331/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value ) ; */
332/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k ) ; */
333/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value ); */
334/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k ) ; */
335/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
336/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k );  */
337/* static void SetIndexSrc( comedi_device *dev,enc_private *k, uint16_t value );  */
338/* static uint16_t GetIndexSrc( comedi_device *dev,enc_private *k );  */
339static void PulseIndex_A(comedi_device *dev, enc_private *k);
340static void PulseIndex_B(comedi_device *dev, enc_private *k);
341static void Preload(comedi_device *dev, enc_private *k, uint32_t value);
342static void CountersInit(comedi_device *dev);
343/* end internal routines */
344
345/*  Counter objects constructor. */
346
347/*  Counter overflow/index event flag masks for RDMISC2. */
348#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
349#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
350#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
351
352/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
353/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
354
355/* enc_private; */
356static enc_private enc_private_data[] = {
357	{
358	      GetEnable:GetEnable_A,
359	      GetIntSrc : GetIntSrc_A,
360	      GetLoadTrig : GetLoadTrig_A,
361	      GetMode :	GetMode_A,
362	      PulseIndex : PulseIndex_A,
363	      SetEnable : SetEnable_A,
364	      SetIntSrc : SetIntSrc_A,
365	      SetLoadTrig : SetLoadTrig_A,
366	      SetMode :	SetMode_A,
367	      ResetCapFlags : ResetCapFlags_A,
368	      MyCRA :	LP_CR0A,
369	      MyCRB :	LP_CR0B,
370	      MyLatchLsw : LP_CNTR0ALSW,
371	      MyEventBits : EVBITS(0),
372		},
373	{
374	      GetEnable:GetEnable_A,
375	      GetIntSrc : GetIntSrc_A,
376	      GetLoadTrig : GetLoadTrig_A,
377	      GetMode :	GetMode_A,
378	      PulseIndex : PulseIndex_A,
379	      SetEnable : SetEnable_A,
380	      SetIntSrc : SetIntSrc_A,
381	      SetLoadTrig : SetLoadTrig_A,
382	      SetMode :	SetMode_A,
383	      ResetCapFlags : ResetCapFlags_A,
384	      MyCRA :	LP_CR1A,
385	      MyCRB :	LP_CR1B,
386	      MyLatchLsw : LP_CNTR1ALSW,
387	      MyEventBits : EVBITS(1),
388		},
389	{
390	      GetEnable:GetEnable_A,
391	      GetIntSrc : GetIntSrc_A,
392	      GetLoadTrig : GetLoadTrig_A,
393	      GetMode :	GetMode_A,
394	      PulseIndex : PulseIndex_A,
395	      SetEnable : SetEnable_A,
396	      SetIntSrc : SetIntSrc_A,
397	      SetLoadTrig : SetLoadTrig_A,
398	      SetMode :	SetMode_A,
399	      ResetCapFlags : ResetCapFlags_A,
400	      MyCRA :	LP_CR2A,
401	      MyCRB :	LP_CR2B,
402	      MyLatchLsw : LP_CNTR2ALSW,
403	      MyEventBits : EVBITS(2),
404		},
405	{
406	      GetEnable:GetEnable_B,
407	      GetIntSrc : GetIntSrc_B,
408	      GetLoadTrig : GetLoadTrig_B,
409	      GetMode :	GetMode_B,
410	      PulseIndex : PulseIndex_B,
411	      SetEnable : SetEnable_B,
412	      SetIntSrc : SetIntSrc_B,
413	      SetLoadTrig : SetLoadTrig_B,
414	      SetMode :	SetMode_B,
415	      ResetCapFlags : ResetCapFlags_B,
416	      MyCRA :	LP_CR0A,
417	      MyCRB :	LP_CR0B,
418	      MyLatchLsw : LP_CNTR0BLSW,
419	      MyEventBits : EVBITS(3),
420		},
421	{
422	      GetEnable:GetEnable_B,
423	      GetIntSrc : GetIntSrc_B,
424	      GetLoadTrig : GetLoadTrig_B,
425	      GetMode :	GetMode_B,
426	      PulseIndex : PulseIndex_B,
427	      SetEnable : SetEnable_B,
428	      SetIntSrc : SetIntSrc_B,
429	      SetLoadTrig : SetLoadTrig_B,
430	      SetMode :	SetMode_B,
431	      ResetCapFlags : ResetCapFlags_B,
432	      MyCRA :	LP_CR1A,
433	      MyCRB :	LP_CR1B,
434	      MyLatchLsw : LP_CNTR1BLSW,
435	      MyEventBits : EVBITS(4),
436		},
437	{
438	      GetEnable:GetEnable_B,
439	      GetIntSrc : GetIntSrc_B,
440	      GetLoadTrig : GetLoadTrig_B,
441	      GetMode :	GetMode_B,
442	      PulseIndex : PulseIndex_B,
443	      SetEnable : SetEnable_B,
444	      SetIntSrc : SetIntSrc_B,
445	      SetLoadTrig : SetLoadTrig_B,
446	      SetMode :	SetMode_B,
447	      ResetCapFlags : ResetCapFlags_B,
448	      MyCRA :	LP_CR2A,
449	      MyCRB :	LP_CR2B,
450	      MyLatchLsw : LP_CNTR2BLSW,
451	      MyEventBits : EVBITS(5),
452		},
453};
454
455/*  enab/disable a function or test status bit(s) that are accessed */
456/*  through Main Control Registers 1 or 2. */
457#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
458
459#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
460
461#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
462
463/* #define WR7146(REGARDS,CTRLWORD)
464    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
465#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
466
467/* #define RR7146(REGARDS)
468    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
469#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
470
471#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
472
473/*  Write a time slot control record to TSL2. */
474#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
475#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
476
477/*  Code macros used for constructing I2C command bytes. */
478#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
479#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
480#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
481
482static const comedi_lrange s626_range_table = { 2, {
483			RANGE(-5, 5),
484			RANGE(-10, 10),
485	}
486};
487
488static int s626_attach(comedi_device *dev, comedi_devconfig *it)
489{
490/*   uint8_t	PollList; */
491/*   uint16_t	AdcData; */
492/*   uint16_t	StartVal; */
493/*   uint16_t	index; */
494/*   unsigned int data[16]; */
495	int result;
496	int i;
497	int ret;
498	resource_size_t resourceStart;
499	dma_addr_t appdma;
500	comedi_subdevice *s;
501	struct pci_dev *pdev;
502
503	if (alloc_private(dev, sizeof(s626_private)) < 0)
504		return -ENOMEM;
505
506	for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
507			NULL); pdev != NULL;
508		pdev = pci_get_device(PCI_VENDOR_ID_S626,
509			PCI_DEVICE_ID_S626, pdev)) {
510		if (it->options[0] || it->options[1]) {
511			if (pdev->bus->number == it->options[0] &&
512				PCI_SLOT(pdev->devfn) == it->options[1]) {
513				/* matches requested bus/slot */
514				break;
515			}
516		} else {
517			/* no bus/slot specified */
518			break;
519		}
520	}
521	devpriv->pdev = pdev;
522
523	if (pdev == NULL) {
524		printk("s626_attach: Board not present!!!\n");
525		return -ENODEV;
526	}
527
528	result = comedi_pci_enable(pdev, "s626");
529	if (result < 0) {
530		printk("s626_attach: comedi_pci_enable fails\n");
531		return -ENODEV;
532	}
533	devpriv->got_regions = 1;
534
535	resourceStart = pci_resource_start(devpriv->pdev, 0);
536
537	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
538	if (devpriv->base_addr == NULL) {
539		printk("s626_attach: IOREMAP failed\n");
540		return -ENODEV;
541	}
542
543	if (devpriv->base_addr) {
544		/* disable master interrupt */
545		writel(0, devpriv->base_addr + P_IER);
546
547		/* soft reset */
548		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
549
550		/* DMA FIXME DMA// */
551		DEBUG("s626_attach: DMA ALLOCATION\n");
552
553		/* adc buffer allocation */
554		devpriv->allocatedBuf = 0;
555
556		devpriv->ANABuf.LogicalBase =
557			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
558
559		if (devpriv->ANABuf.LogicalBase == NULL) {
560			printk("s626_attach: DMA Memory mapping error\n");
561			return -ENOMEM;
562		}
563
564		devpriv->ANABuf.PhysicalBase = appdma;
565
566		DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
567
568		devpriv->allocatedBuf++;
569
570		devpriv->RPSBuf.LogicalBase =
571			pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE,  &appdma);
572
573		if (devpriv->RPSBuf.LogicalBase == NULL) {
574			printk("s626_attach: DMA Memory mapping error\n");
575			return -ENOMEM;
576		}
577
578		devpriv->RPSBuf.PhysicalBase = appdma;
579
580		DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
581
582		devpriv->allocatedBuf++;
583
584	}
585
586	dev->board_ptr = s626_boards;
587	dev->board_name = thisboard->name;
588
589	if (alloc_subdevices(dev, 6) < 0)
590		return -ENOMEM;
591
592	dev->iobase = (unsigned long)devpriv->base_addr;
593	dev->irq = devpriv->pdev->irq;
594
595	/* set up interrupt handler */
596	if (dev->irq == 0) {
597		printk(" unknown irq (bad)\n");
598	} else {
599		ret = comedi_request_irq(dev->irq, s626_irq_handler,
600					 IRQF_SHARED, "s626", dev);
601
602		if (ret < 0) {
603			printk(" irq not available\n");
604			dev->irq = 0;
605		}
606	}
607
608	DEBUG("s626_attach: -- it opts  %d,%d -- \n",
609		it->options[0], it->options[1]);
610
611	s = dev->subdevices + 0;
612	/* analog input subdevice */
613	dev->read_subdev = s;
614	/* we support single-ended (ground) and differential */
615	s->type = COMEDI_SUBD_AI;
616	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
617	s->n_chan = thisboard->ai_chans;
618	s->maxdata = (0xffff >> 2);
619	s->range_table = &s626_range_table;
620	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
621						   length that the board can
622						   handle */
623	s->insn_config = s626_ai_insn_config;
624	s->insn_read = s626_ai_insn_read;
625	s->do_cmd = s626_ai_cmd;
626	s->do_cmdtest = s626_ai_cmdtest;
627	s->cancel = s626_ai_cancel;
628
629	s = dev->subdevices + 1;
630	/* analog output subdevice */
631	s->type = COMEDI_SUBD_AO;
632	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
633	s->n_chan = thisboard->ao_chans;
634	s->maxdata = (0x3fff);
635	s->range_table = &range_bipolar10;
636	s->insn_write = s626_ao_winsn;
637	s->insn_read = s626_ao_rinsn;
638
639	s = dev->subdevices + 2;
640	/* digital I/O subdevice */
641	s->type = COMEDI_SUBD_DIO;
642	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
643	s->n_chan = S626_DIO_CHANNELS;
644	s->maxdata = 1;
645	s->io_bits = 0xffff;
646	s->private = &dio_private_A;
647	s->range_table = &range_digital;
648	s->insn_config = s626_dio_insn_config;
649	s->insn_bits = s626_dio_insn_bits;
650
651	s = dev->subdevices + 3;
652	/* digital I/O subdevice */
653	s->type = COMEDI_SUBD_DIO;
654	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
655	s->n_chan = 16;
656	s->maxdata = 1;
657	s->io_bits = 0xffff;
658	s->private = &dio_private_B;
659	s->range_table = &range_digital;
660	s->insn_config = s626_dio_insn_config;
661	s->insn_bits = s626_dio_insn_bits;
662
663	s = dev->subdevices + 4;
664	/* digital I/O subdevice */
665	s->type = COMEDI_SUBD_DIO;
666	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
667	s->n_chan = 16;
668	s->maxdata = 1;
669	s->io_bits = 0xffff;
670	s->private = &dio_private_C;
671	s->range_table = &range_digital;
672	s->insn_config = s626_dio_insn_config;
673	s->insn_bits = s626_dio_insn_bits;
674
675	s = dev->subdevices + 5;
676	/* encoder (counter) subdevice */
677	s->type = COMEDI_SUBD_COUNTER;
678	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
679	s->n_chan = thisboard->enc_chans;
680	s->private = enc_private_data;
681	s->insn_config = s626_enc_insn_config;
682	s->insn_read = s626_enc_insn_read;
683	s->insn_write = s626_enc_insn_write;
684	s->maxdata = 0xffffff;
685	s->range_table = &range_unknown;
686
687	/* stop ai_command */
688	devpriv->ai_cmd_running = 0;
689
690	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
691		dma_addr_t pPhysBuf;
692		uint16_t chan;
693
694		/*  enab DEBI and audio pins, enable I2C interface. */
695		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
696		/*  Configure DEBI operating mode. */
697		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
698			/*  bits wide. */
699			| (DEBI_TOUT << DEBI_CFG_TOUT_BIT)	/*  Declare DEBI */
700			/*  transfer timeout */
701			/*  interval. */
702			| DEBI_SWAP	/*  Set up byte lane */
703			/*  steering. */
704			| DEBI_CFG_INTEL);	/*  Intel-compatible */
705		/*  local bus (DEBI */
706		/*  never times out). */
707		DEBUG("s626_attach: %d debi init -- %d\n",
708			DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
709			DEBI_SWAP | DEBI_CFG_INTEL,
710			DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
711			DEBI_CFG_16Q);
712
713		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
714		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
715
716		/*  Paging is disabled. */
717		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
718
719		/*  Init GPIO so that ADC Start* is negated. */
720		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
721
722    /* IsBoardRevA is a boolean that indicates whether the board is RevA.
723     *
724     * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
725     * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
726     * is used to access the onboard serial EEPROM.  The EEPROM's I2C
727     * DeviceAddress is hardwired to a value that is dependent on the
728     * 626 board revision.  On all board revisions, the EEPROM stores
729     * TrimDAC calibration constants for analog I/O.  On RevB and
730     * higher boards, the DeviceAddress is hardwired to 0 to enable
731     * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
732     * this is the address at which the SAA7146 expects a
733     * configuration EEPROM to reside.  On RevA boards, the EEPROM
734     * device address, which is hardwired to 4, prevents the SAA7146
735     * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
736     * default values, instead.
737     */
738
739		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
740		/*  DeviceType (0xA0) */
741		/*  and DeviceAddress<<1. */
742
743		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
744		/*  eeprom(revb) */
745
746		/*  Issue an I2C ABORT command to halt any I2C operation in */
747		/* progress and reset BUSY flag. */
748		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
749		/*  Write I2C control: abort any I2C activity. */
750		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
751		/*  Invoke command  upload */
752		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
753			;
754		/*  and wait for upload to complete. */
755
756		/* Per SAA7146 data sheet, write to STATUS reg twice to
757		 * reset all  I2C error flags. */
758		for (i = 0; i < 2; i++) {
759			WR7146(P_I2CSTAT, I2C_CLKSEL);
760			/*  Write I2C control: reset  error flags. */
761			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
762			while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
763				;
764			/* and wait for upload to complete. */
765		}
766
767		/* Init audio interface functional attributes: set DAC/ADC
768		 * serial clock rates, invert DAC serial clock so that
769		 * DAC data setup times are satisfied, enable DAC serial
770		 * clock out.
771		 */
772
773		WR7146(P_ACON2, ACON2_INIT);
774
775		/* Set up TSL1 slot list, which is used to control the
776		 * accumulation of ADC data: RSD1 = shift data in on SD1.
777		 * SIB_A1  = store data uint8_t at next available location in
778		 * FB BUFFER1  register. */
779		WR7146(P_TSL1, RSD1 | SIB_A1);
780		/*  Fetch ADC high data uint8_t. */
781		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
782		/*  Fetch ADC low data uint8_t; end of TSL1. */
783
784		/*  enab TSL1 slot list so that it executes all the time. */
785		WR7146(P_ACON1, ACON1_ADCSTART);
786
787		/*  Initialize RPS registers used for ADC. */
788
789		/* Physical start of RPS program. */
790		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
791
792		WR7146(P_RPSPAGE1, 0);
793		/*  RPS program performs no explicit mem writes. */
794		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
795
796		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
797		 * to a known state by invoking ADCs until FB BUFFER 1
798		 * register shows that it is correctly receiving ADC data.
799		 * This is necessary because the SAA7146 ADC interface does
800		 * not start up in a defined state after a PCI reset.
801		 */
802
803/*     PollList = EOPL;			// Create a simple polling */
804/* 					// list for analog input */
805/* 					// channel 0. */
806/*     ResetADC( dev, &PollList ); */
807
808/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
809/* 						  //Get initial ADC */
810/* 						  //value. */
811
812/*     StartVal = data[0]; */
813
814/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
815/*     // Invoke ADCs until the new ADC value differs from the initial */
816/*     // value or a timeout occurs.  The timeout protects against the */
817/*     // possibility that the driver is restarting and the ADC data is a */
818/*     // fixed value resulting from the applied ADC analog input being */
819/*     // unusually quiet or at the rail. */
820
821/*     for ( index = 0; index < 500; index++ ) */
822/*       { */
823/* 	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
824/* 	AdcData = data[0];	//ReadADC(  &AdcData ); */
825/* 	if ( AdcData != StartVal ) */
826/* 	  break; */
827/*       } */
828
829		/*  end initADC */
830
831		/*  init the DAC interface */
832
833		/* Init Audio2's output DMAC attributes: burst length = 1
834		 * DWORD,  threshold = 1 DWORD.
835		 */
836		WR7146(P_PCI_BT_A, 0);
837
838		/* Init Audio2's output DMA physical addresses.  The protection
839		 * address is set to 1 DWORD past the base address so that a
840		 * single DWORD will be transferred each time a DMA transfer is
841		 * enabled. */
842
843		pPhysBuf =
844			devpriv->ANABuf.PhysicalBase +
845			(DAC_WDMABUF_OS * sizeof(uint32_t));
846
847		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
848		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
849
850		/* Cache Audio2's output DMA buffer logical address.  This is
851		 * where DAC data is buffered for A2 output DMA transfers. */
852		devpriv->pDacWBuf =
853			(uint32_t *) devpriv->ANABuf.LogicalBase +
854			DAC_WDMABUF_OS;
855
856		/* Audio2's output channels does not use paging.  The protection
857		 * violation handling bit is set so that the DMAC will
858		 * automatically halt and its PCI address pointer will be reset
859		 * when the protection address is reached. */
860
861		WR7146(P_PAGEA2_OUT, 8);
862
863		/* Initialize time slot list 2 (TSL2), which is used to control
864		 * the clock generation for and serialization of data to be sent
865		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
866		 * execution; this permits other slots to be safely modified
867		 * without first turning off the TSL sequencer (which is
868		 * apparently impossible to do).  Also, SD3 (which is driven by a
869		 * pull-up resistor) is shifted in and stored to the MSB of
870		 * FB_BUFFER2 to be used as evidence that the slot sequence has
871		 * not yet finished executing.
872		 */
873
874		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
875		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
876
877		/* Initialize slot 1, which is constant.  Slot 1 causes a
878		 * DWORD to be transferred from audio channel 2's output FIFO
879		 * to the FIFO's output buffer so that it can be serialized
880		 * and sent to the DAC during subsequent slots.  All remaining
881		 * slots are dynamically populated as required by the target
882		 * DAC device.
883		 */
884		SETVECT(1, LF_A2);
885		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
886
887		/*  Start DAC's audio interface (TSL2) running. */
888		WR7146(P_ACON1, ACON1_DACSTART);
889
890		/* end init DAC interface */
891
892		/* Init Trim DACs to calibrated values.  Do it twice because the
893		 * SAA7146 audio channel does not always reset properly and
894		 * sometimes causes the first few TrimDAC writes to malfunction.
895		 */
896
897		LoadTrimDACs(dev);
898		LoadTrimDACs(dev);	/*  Insurance. */
899
900		/* Manually init all gate array hardware in case this is a soft
901		 * reset (we have no way of determining whether this is a warm
902		 * or cold start).  This is necessary because the gate array will
903		 * reset only in response to a PCI hard reset; there is no soft
904		 * reset function. */
905
906		/* Init all DAC outputs to 0V and init all DAC setpoint and
907		 * polarity images.
908		 */
909		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
910			SetDAC(dev, chan, 0);
911
912		/* Init image of WRMISC2 Battery Charger Enabled control bit.
913		 * This image is used when the state of the charger control bit,
914		 * which has no direct hardware readback mechanism, is queried.
915		 */
916		devpriv->ChargeEnabled = 0;
917
918		/* Init image of watchdog timer interval in WRMISC2.  This image
919		 * maintains the value of the control bits of MISC2 are
920		 * continuously reset to zero as long as the WD timer is disabled.
921		 */
922		devpriv->WDInterval = 0;
923
924		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
925		 * applied against MISC2 when testing to determine which timer
926		 * events are requesting interrupt service.
927		 */
928		devpriv->CounterIntEnabs = 0;
929
930		/*  Init counters. */
931		CountersInit(dev);
932
933		/* Without modifying the state of the Battery Backup enab, disable
934		 * the watchdog timer, set DIO channels 0-5 to operate in the
935		 * standard DIO (vs. counter overflow) mode, disable the battery
936		 * charger, and reset the watchdog interval selector to zero.
937		 */
938		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
939					LP_RDMISC2) & MISC2_BATT_ENABLE));
940
941		/*  Initialize the digital I/O subsystem. */
942		s626_dio_init(dev);
943
944		/* enable interrupt test */
945		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
946	}
947
948	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
949		(uint32_t) devpriv->base_addr);
950
951	return 1;
952}
953
954static lsampl_t s626_ai_reg_to_uint(int data)
955{
956	lsampl_t tempdata;
957
958	tempdata = (data >> 18);
959	if (tempdata & 0x2000)
960		tempdata &= 0x1fff;
961	else
962		tempdata += (1 << 13);
963
964	return tempdata;
965}
966
967/* static lsampl_t s626_uint_to_reg(comedi_subdevice *s, int data){ */
968/*   return 0; */
969/* } */
970
971static irqreturn_t s626_irq_handler(int irq, void *d PT_REGS_ARG)
972{
973	comedi_device *dev = d;
974	comedi_subdevice *s;
975	comedi_cmd *cmd;
976	enc_private *k;
977	unsigned long flags;
978	int32_t *readaddr;
979	uint32_t irqtype, irqstatus;
980	int i = 0;
981	sampl_t tempdata;
982	uint8_t group;
983	uint16_t irqbit;
984
985	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
986
987	if (dev->attached == 0)
988		return IRQ_NONE;
989	/*  lock to avoid race with comedi_poll */
990	comedi_spin_lock_irqsave(&dev->spinlock, flags);
991
992	/* save interrupt enable register state */
993	irqstatus = readl(devpriv->base_addr + P_IER);
994
995	/* read interrupt type */
996	irqtype = readl(devpriv->base_addr + P_ISR);
997
998	/* disable master interrupt */
999	writel(0, devpriv->base_addr + P_IER);
1000
1001	/* clear interrupt */
1002	writel(irqtype, devpriv->base_addr + P_ISR);
1003
1004	/* do somethings */
1005	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1006
1007	switch (irqtype) {
1008	case IRQ_RPS1:		/*  end_of_scan occurs */
1009
1010		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1011
1012		/*  manage ai subdevice */
1013		s = dev->subdevices;
1014		cmd = &(s->async->cmd);
1015
1016		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1017		 * first uint16_t in the buffer because it contains junk data from
1018		 * the final ADC of the previous poll list scan.
1019		 */
1020		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1021
1022		/*  get the data and hand it over to comedi */
1023		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1024			/*  Convert ADC data to 16-bit integer values and copy to application */
1025			/*  buffer. */
1026			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1027			readaddr++;
1028
1029			/* put data into read buffer */
1030			/*  comedi_buf_put(s->async, tempdata); */
1031			if (cfc_write_to_buffer(s, tempdata) == 0)
1032				printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1033
1034			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1035				i, tempdata);
1036		}
1037
1038		/* end of scan occurs */
1039		s->async->events |= COMEDI_CB_EOS;
1040
1041		if (!(devpriv->ai_continous))
1042			devpriv->ai_sample_count--;
1043		if (devpriv->ai_sample_count <= 0) {
1044			devpriv->ai_cmd_running = 0;
1045
1046			/*  Stop RPS program. */
1047			MC_DISABLE(P_MC1, MC1_ERPS1);
1048
1049			/* send end of acquisition */
1050			s->async->events |= COMEDI_CB_EOA;
1051
1052			/* disable master interrupt */
1053			irqstatus = 0;
1054		}
1055
1056		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1057			DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1058
1059			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1060
1061			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1062		}
1063		/*  tell comedi that data is there */
1064		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1065		comedi_event(dev, s);
1066		break;
1067	case IRQ_GPIO3:	/* check dio and conter interrupt */
1068
1069		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1070
1071		/*  manage ai subdevice */
1072		s = dev->subdevices;
1073		cmd = &(s->async->cmd);
1074
1075		/* s626_dio_clear_irq(dev); */
1076
1077		for (group = 0; group < S626_DIO_BANKS; group++) {
1078			irqbit = 0;
1079			/* read interrupt type */
1080			irqbit = DEBIread(dev,
1081				((dio_private *) (dev->subdevices + 2 +
1082						group)->private)->RDCapFlg);
1083
1084			/* check if interrupt is generated from dio channels */
1085			if (irqbit) {
1086				s626_dio_reset_irq(dev, group, irqbit);
1087				DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1088				if (devpriv->ai_cmd_running) {
1089					/* check if interrupt is an ai acquisition start trigger */
1090					if ((irqbit >> (cmd->start_arg -
1091								(16 * group)))
1092						== 1
1093						&& cmd->start_src == TRIG_EXT) {
1094						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1095
1096						/*  Start executing the RPS program. */
1097						MC_ENABLE(P_MC1, MC1_ERPS1);
1098
1099						DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1100
1101						if (cmd->scan_begin_src ==
1102							TRIG_EXT) {
1103							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1104
1105							s626_dio_set_irq(dev,
1106								cmd->
1107								scan_begin_arg);
1108
1109							DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1110						}
1111					}
1112					if ((irqbit >> (cmd->scan_begin_arg -
1113								(16 * group)))
1114						== 1
1115						&& cmd->scan_begin_src ==
1116						TRIG_EXT) {
1117						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1118
1119						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1120						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1121
1122						DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1123						if (cmd->convert_src ==
1124							TRIG_EXT) {
1125
1126							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1127
1128							devpriv->
1129								ai_convert_count
1130								=
1131								cmd->
1132								chanlist_len;
1133
1134							s626_dio_set_irq(dev,
1135								cmd->
1136								convert_arg);
1137
1138							DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1139						}
1140
1141						if (cmd->convert_src ==
1142							TRIG_TIMER) {
1143							k = &encpriv[5];
1144							devpriv->
1145								ai_convert_count
1146								=
1147								cmd->
1148								chanlist_len;
1149							k->SetEnable(dev, k,
1150								CLKENAB_ALWAYS);
1151						}
1152					}
1153					if ((irqbit >> (cmd->convert_arg -
1154								(16 * group)))
1155						== 1
1156						&& cmd->convert_src ==
1157						TRIG_EXT) {
1158						DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1159
1160						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1161						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1162
1163						DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1164
1165						devpriv->ai_convert_count--;
1166
1167						if (devpriv->ai_convert_count >
1168							0) {
1169
1170							DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1171
1172							s626_dio_set_irq(dev,
1173								cmd->
1174								convert_arg);
1175
1176							DEBUG("s626_irq_handler: External trigger is set!!!\n");
1177						}
1178					}
1179				}
1180				break;
1181			}
1182		}
1183
1184		/* read interrupt type */
1185		irqbit = DEBIread(dev, LP_RDMISC2);
1186
1187		/* check interrupt on counters */
1188		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1189			irqbit);
1190
1191		if (irqbit & IRQ_COINT1A) {
1192			DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1193			k = &encpriv[0];
1194
1195			/* clear interrupt capture flag */
1196			k->ResetCapFlags(dev, k);
1197		}
1198		if (irqbit & IRQ_COINT2A) {
1199			DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1200			k = &encpriv[1];
1201
1202			/* clear interrupt capture flag */
1203			k->ResetCapFlags(dev, k);
1204		}
1205		if (irqbit & IRQ_COINT3A) {
1206			DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1207			k = &encpriv[2];
1208
1209			/* clear interrupt capture flag */
1210			k->ResetCapFlags(dev, k);
1211		}
1212		if (irqbit & IRQ_COINT1B) {
1213			DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1214			k = &encpriv[3];
1215
1216			/* clear interrupt capture flag */
1217			k->ResetCapFlags(dev, k);
1218		}
1219		if (irqbit & IRQ_COINT2B) {
1220			DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1221			k = &encpriv[4];
1222
1223			/* clear interrupt capture flag */
1224			k->ResetCapFlags(dev, k);
1225
1226			if (devpriv->ai_convert_count > 0) {
1227				devpriv->ai_convert_count--;
1228				if (devpriv->ai_convert_count == 0)
1229					k->SetEnable(dev, k, CLKENAB_INDEX);
1230
1231				if (cmd->convert_src == TRIG_TIMER) {
1232					DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1233
1234					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1235					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1236				}
1237			}
1238		}
1239		if (irqbit & IRQ_COINT3B) {
1240			DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1241			k = &encpriv[5];
1242
1243			/* clear interrupt capture flag */
1244			k->ResetCapFlags(dev, k);
1245
1246			if (cmd->scan_begin_src == TRIG_TIMER) {
1247				DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1248
1249				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1250				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1251			}
1252
1253			if (cmd->convert_src == TRIG_TIMER) {
1254				DEBUG("s626_irq_handler: convert timer trigger is set\n");
1255				k = &encpriv[4];
1256				devpriv->ai_convert_count = cmd->chanlist_len;
1257				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1258			}
1259		}
1260	}
1261
1262	/* enable interrupt */
1263	writel(irqstatus, devpriv->base_addr + P_IER);
1264
1265	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1266
1267	comedi_spin_unlock_irqrestore(&dev->spinlock, flags);
1268	return IRQ_HANDLED;
1269}
1270
1271static int s626_detach(comedi_device *dev)
1272{
1273	if (devpriv) {
1274		/* stop ai_command */
1275		devpriv->ai_cmd_running = 0;
1276
1277		if (devpriv->base_addr) {
1278			/* interrupt mask */
1279			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1280			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1281
1282			/*  Disable the watchdog timer and battery charger. */
1283			WriteMISC2(dev, 0);
1284
1285			/*  Close all interfaces on 7146 device. */
1286			WR7146(P_MC1, MC1_SHUTDOWN);
1287			WR7146(P_ACON1, ACON1_BASE);
1288
1289			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1290			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1291		}
1292
1293		if (dev->irq) {
1294			comedi_free_irq(dev->irq, dev);
1295		}
1296
1297		if (devpriv->base_addr) {
1298			iounmap(devpriv->base_addr);
1299		}
1300
1301		if (devpriv->pdev) {
1302			if (devpriv->got_regions) {
1303				comedi_pci_disable(devpriv->pdev);
1304			}
1305			pci_dev_put(devpriv->pdev);
1306		}
1307	}
1308
1309	DEBUG("s626_detach: S626 detached!\n");
1310
1311	return 0;
1312}
1313
1314/*
1315 * this functions build the RPS program for hardware driven acquistion
1316 */
1317void ResetADC(comedi_device *dev, uint8_t *ppl)
1318{
1319	register uint32_t *pRPS;
1320	uint32_t JmpAdrs;
1321	uint16_t i;
1322	uint16_t n;
1323	uint32_t LocalPPL;
1324	comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1325
1326	/*  Stop RPS program in case it is currently running. */
1327	MC_DISABLE(P_MC1, MC1_ERPS1);
1328
1329	/*  Set starting logical address to write RPS commands. */
1330	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1331
1332	/*  Initialize RPS instruction pointer. */
1333	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1334
1335	/*  Construct RPS program in RPSBuf DMA buffer */
1336
1337	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1338		DEBUG("ResetADC: scan_begin pause inserted\n");
1339		/*  Wait for Start trigger. */
1340		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1341		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1342	}
1343
1344	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1345	 * because the first RPS DEBI Write following a non-RPS DEBI write
1346	 * seems to always fail.  If we don't do this dummy write, the ADC
1347	 * gain might not be set to the value required for the first slot in
1348	 * the poll list; the ADC gain would instead remain unchanged from
1349	 * the previously programmed value.
1350	 */
1351	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1352	/* Write DEBI Write command and address to shadow RAM. */
1353
1354	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1355	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1356	/*  Write DEBI immediate data  to shadow RAM: */
1357
1358	*pRPS++ = GSEL_BIPOLAR5V;
1359	/*  arbitrary immediate data  value. */
1360
1361	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1362	/*  Reset "shadow RAM  uploaded" flag. */
1363	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1364	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1365
1366	/* Digitize all slots in the poll list. This is implemented as a
1367	 * for loop to limit the slot count to 16 in case the application
1368	 * forgot to set the EOPL flag in the final slot.
1369	 */
1370	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1371	 /* Convert application's poll list item to private board class
1372	  * format.  Each app poll list item is an uint8_t with form
1373	  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1374	  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1375	  */
1376		LocalPPL =
1377			(*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1378			GSEL_BIPOLAR10V);
1379
1380		/*  Switch ADC analog gain. */
1381		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1382		/*  and address to */
1383		/*  shadow RAM. */
1384		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1385		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1386		/*  immediate data to */
1387		/*  shadow RAM. */
1388		*pRPS++ = LocalPPL;
1389		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1390		/*  flag. */
1391		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1392		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1393		/*  finish. */
1394
1395		/*  Select ADC analog input channel. */
1396		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1397		/*  Write DEBI command and address to  shadow RAM. */
1398		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1399		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1400		/*  Write DEBI immediate data to shadow RAM. */
1401		*pRPS++ = LocalPPL;
1402		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1403		/*  Reset "shadow RAM uploaded"  flag. */
1404
1405		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1406		/*  Invoke shadow RAM upload. */
1407
1408		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1409		/*  Wait for shadow upload to finish. */
1410
1411		/* Delay at least 10 microseconds for analog input settling.
1412		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1413		 * here; this allows us to produce a longer delay than is
1414		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1415		 * instruction prefetch pipeline.
1416		 */
1417		JmpAdrs =
1418			(uint32_t) devpriv->RPSBuf.PhysicalBase +
1419			(uint32_t) ((unsigned long)pRPS -
1420			(unsigned long)devpriv->RPSBuf.LogicalBase);
1421		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1422			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1423			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1424			*pRPS++ = JmpAdrs;
1425		}
1426
1427		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1428			DEBUG("ResetADC: convert pause inserted\n");
1429			/*  Wait for Start trigger. */
1430			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1431			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1432		}
1433		/*  Start ADC by pulsing GPIO1. */
1434		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1435		*pRPS++ = GPIO_BASE | GPIO1_LO;
1436		*pRPS++ = RPS_NOP;
1437		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1438		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1439		*pRPS++ = GPIO_BASE | GPIO1_HI;
1440
1441		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1442		 * busy) and for data from previous conversion to shift into FB
1443		 * BUFFER 1 register.
1444		 */
1445		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1446
1447		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1448		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1449		*pRPS++ =
1450			(uint32_t) devpriv->ANABuf.PhysicalBase +
1451			(devpriv->AdcItems << 2);
1452
1453		/*  If this slot's EndOfPollList flag is set, all channels have */
1454		/*  now been processed. */
1455		if (*ppl++ & EOPL) {
1456			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1457			break;	/*  Exit poll list processing loop. */
1458		}
1459	}
1460	DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1461
1462	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1463	 * ADC to stabilize for 2 microseconds before starting the final
1464	 * (dummy) conversion.  This delay is necessary to allow sufficient
1465	 * time between last conversion finished and the start of the dummy
1466	 * conversion.  Without this delay, the last conversion's data value
1467	 * is sometimes set to the previous conversion's data value.
1468	 */
1469	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1470		*pRPS++ = RPS_NOP;
1471
1472	/* Start a dummy conversion to cause the data from the last
1473	 * conversion of interest to be shifted in.
1474	 */
1475	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1476	*pRPS++ = GPIO_BASE | GPIO1_LO;
1477	*pRPS++ = RPS_NOP;
1478	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1479	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1480	*pRPS++ = GPIO_BASE | GPIO1_HI;
1481
1482	/* Wait for the data from the last conversion of interest to arrive
1483	 * in FB BUFFER 1 register.
1484	 */
1485	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1486
1487	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1488	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1489	*pRPS++ =
1490		(uint32_t) devpriv->ANABuf.PhysicalBase +
1491		(devpriv->AdcItems << 2);
1492
1493	/*  Indicate ADC scan loop is finished. */
1494	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1495
1496	/* invoke interrupt */
1497	if (devpriv->ai_cmd_running == 1) {
1498		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1499		*pRPS++ = RPS_IRQ;
1500	}
1501	/*  Restart RPS program at its beginning. */
1502	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1503	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1504
1505	/*  End of RPS program build */
1506}
1507
1508/* TO COMPLETE, IF NECESSARY */
1509static int s626_ai_insn_config(comedi_device *dev, comedi_subdevice *s,
1510	comedi_insn *insn, lsampl_t *data)
1511{
1512
1513	return -EINVAL;
1514}
1515
1516/* static int s626_ai_rinsn(comedi_device *dev,comedi_subdevice *s,comedi_insn *insn,lsampl_t *data) */
1517/* { */
1518/*   register uint8_t	i; */
1519/*   register int32_t	*readaddr; */
1520
1521/*   DEBUG("as626_ai_rinsn: ai_rinsn enter \n");  */
1522
1523/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1524/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1525
1526/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1527/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1528
1529/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1530 * first uint16_t in the buffer because it contains junk data from
1531 * the final ADC of the previous poll list scan.
1532 */
1533/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1534
1535/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1536/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1537/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1538/*     DEBUG("s626_ai_rinsn: data %d \n",*data); */
1539/*     data++; */
1540/*   } */
1541
1542/*   DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1543/*   return i; */
1544/* } */
1545
1546static int s626_ai_insn_read(comedi_device *dev, comedi_subdevice *s,
1547	comedi_insn *insn, lsampl_t *data)
1548{
1549	uint16_t chan = CR_CHAN(insn->chanspec);
1550	uint16_t range = CR_RANGE(insn->chanspec);
1551	uint16_t AdcSpec = 0;
1552	uint32_t GpioImage;
1553	int n;
1554
1555 /* interrupt call test  */
1556/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1557	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1558	 * corresponding interrupt to be generated if enabled
1559	 */
1560
1561	DEBUG("s626_ai_insn_read: entering\n");
1562
1563	/* Convert application's ADC specification into form
1564	 *  appropriate for register programming.
1565	 */
1566	if (range == 0)
1567		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1568	else
1569		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1570
1571	/*  Switch ADC analog gain. */
1572	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1573
1574	/*  Select ADC analog input channel. */
1575	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1576
1577	for (n = 0; n < insn->n; n++) {
1578
1579		/*  Delay 10 microseconds for analog input settling. */
1580		comedi_udelay(10);
1581
1582		/*  Start ADC by pulsing GPIO1 low. */
1583		GpioImage = RR7146(P_GPIO);
1584		/*  Assert ADC Start command */
1585		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1586		/*    and stretch it out. */
1587		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1588		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1589		/*  Negate ADC Start command. */
1590		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1591
1592		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1593		/*  ADC not busy) and for data from previous conversion to */
1594		/*  shift into FB BUFFER 1 register. */
1595
1596		/*  Wait for ADC done. */
1597		while (!(RR7146(P_PSR) & PSR_GPIO2))
1598			;
1599
1600		/*  Fetch ADC data. */
1601		if (n != 0)
1602			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1603
1604		/* Allow the ADC to stabilize for 4 microseconds before
1605		 * starting the next (final) conversion.  This delay is
1606		 * necessary to allow sufficient time between last
1607		 * conversion finished and the start of the next
1608		 * conversion.  Without this delay, the last conversion's
1609		 * data value is sometimes set to the previous
1610		 * conversion's data value.
1611		 */
1612		comedi_udelay(4);
1613	}
1614
1615	/* Start a dummy conversion to cause the data from the
1616	 * previous conversion to be shifted in. */
1617	GpioImage = RR7146(P_GPIO);
1618
1619	/* Assert ADC Start command */
1620	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1621	/*    and stretch it out. */
1622	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1623	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1624	/*  Negate ADC Start command. */
1625	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1626
1627	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1628
1629	/*  Wait for ADC done. */
1630	while (!(RR7146(P_PSR) & PSR_GPIO2))
1631		;
1632
1633	/*  Fetch ADC data from audio interface's input shift register. */
1634
1635	/*  Fetch ADC data. */
1636	if (n != 0)
1637		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1638
1639	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1640
1641	return n;
1642}
1643
1644static int s626_ai_load_polllist(uint8_t *ppl, comedi_cmd *cmd)
1645{
1646
1647	int n;
1648
1649	for (n = 0; n < cmd->chanlist_len; n++) {
1650		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1651			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1652		else
1653			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1654	}
1655	ppl[n - 1] |= EOPL;
1656
1657	return n;
1658}
1659
1660static int s626_ai_inttrig(comedi_device *dev, comedi_subdevice *s,
1661	unsigned int trignum)
1662{
1663	if (trignum != 0)
1664		return -EINVAL;
1665
1666	DEBUG("s626_ai_inttrig: trigger adc start...");
1667
1668	/*  Start executing the RPS program. */
1669	MC_ENABLE(P_MC1, MC1_ERPS1);
1670
1671	s->async->inttrig = NULL;
1672
1673	DEBUG(" done\n");
1674
1675	return 1;
1676}
1677
1678/*  TO COMPLETE  */
1679static int s626_ai_cmd(comedi_device *dev, comedi_subdevice *s)
1680{
1681
1682	uint8_t ppl[16];
1683	comedi_cmd *cmd = &s->async->cmd;
1684	enc_private *k;
1685	int tick;
1686
1687	DEBUG("s626_ai_cmd: entering command function\n");
1688
1689	if (devpriv->ai_cmd_running) {
1690		printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1691			dev->minor);
1692		return -EBUSY;
1693	}
1694	/* disable interrupt */
1695	writel(0, devpriv->base_addr + P_IER);
1696
1697	/* clear interrupt request */
1698	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1699
1700	/* clear any pending interrupt */
1701	s626_dio_clear_irq(dev);
1702	/*   s626_enc_clear_irq(dev); */
1703
1704	/* reset ai_cmd_running flag */
1705	devpriv->ai_cmd_running = 0;
1706
1707	/*  test if cmd is valid */
1708	if (cmd == NULL) {
1709		DEBUG("s626_ai_cmd: NULL command\n");
1710		return -EINVAL;
1711	} else {
1712		DEBUG("s626_ai_cmd: command recieved!!!\n");
1713	}
1714
1715	if (dev->irq == 0) {
1716		comedi_error(dev,
1717			"s626_ai_cmd: cannot run command without an irq");
1718		return -EIO;
1719	}
1720
1721	s626_ai_load_polllist(ppl, cmd);
1722	devpriv->ai_cmd_running = 1;
1723	devpriv->ai_convert_count = 0;
1724
1725	switch (cmd->scan_begin_src) {
1726	case TRIG_FOLLOW:
1727		break;
1728	case TRIG_TIMER:
1729		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1730		k = &encpriv[5];
1731		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1732			cmd->flags & TRIG_ROUND_MASK);
1733
1734		/* load timer value and enable interrupt */
1735		s626_timer_load(dev, k, tick);
1736		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1737
1738		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1739			tick);
1740
1741		break;
1742	case TRIG_EXT:
1743		/*  set the digital line and interrupt for scan trigger */
1744		if (cmd->start_src != TRIG_EXT)
1745			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1746
1747		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1748
1749		break;
1750	}
1751
1752	switch (cmd->convert_src) {
1753	case TRIG_NOW:
1754		break;
1755	case TRIG_TIMER:
1756		/*  set a conter to generate adc trigger at convert_arg interval */
1757		k = &encpriv[4];
1758		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1759			cmd->flags & TRIG_ROUND_MASK);
1760
1761		/* load timer value and enable interrupt */
1762		s626_timer_load(dev, k, tick);
1763		k->SetEnable(dev, k, CLKENAB_INDEX);
1764
1765		DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1766		break;
1767	case TRIG_EXT:
1768		/*  set the digital line and interrupt for convert trigger */
1769		if (cmd->scan_begin_src != TRIG_EXT
1770			&& cmd->start_src == TRIG_EXT)
1771			s626_dio_set_irq(dev, cmd->convert_arg);
1772
1773		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1774
1775		break;
1776	}
1777
1778	switch (cmd->stop_src) {
1779	case TRIG_COUNT:
1780		/*  data arrives as one packet */
1781		devpriv->ai_sample_count = cmd->stop_arg;
1782		devpriv->ai_continous = 0;
1783		break;
1784	case TRIG_NONE:
1785		/*  continous aquisition */
1786		devpriv->ai_continous = 1;
1787		devpriv->ai_sample_count = 0;
1788		break;
1789	}
1790
1791	ResetADC(dev, ppl);
1792
1793	switch (cmd->start_src) {
1794	case TRIG_NOW:
1795		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1796		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1797
1798		/*  Start executing the RPS program. */
1799		MC_ENABLE(P_MC1, MC1_ERPS1);
1800
1801		DEBUG("s626_ai_cmd: ADC triggered\n");
1802		s->async->inttrig = NULL;
1803		break;
1804	case TRIG_EXT:
1805		/* configure DIO channel for acquisition trigger */
1806		s626_dio_set_irq(dev, cmd->start_arg);
1807
1808		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1809
1810		s->async->inttrig = NULL;
1811		break;
1812	case TRIG_INT:
1813		s->async->inttrig = s626_ai_inttrig;
1814		break;
1815	}
1816
1817	/* enable interrupt */
1818	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1819
1820	DEBUG("s626_ai_cmd: command function terminated\n");
1821
1822	return 0;
1823}
1824
1825static int s626_ai_cmdtest(comedi_device *dev, comedi_subdevice *s,
1826	comedi_cmd *cmd)
1827{
1828	int err = 0;
1829	int tmp;
1830
1831	/* cmdtest tests a particular command to see if it is valid.  Using
1832	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1833	 * executes by the cmd ioctl.
1834	 *
1835	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1836	 * command passes. */
1837
1838	/* step 1: make sure trigger sources are trivially valid */
1839
1840	tmp = cmd->start_src;
1841	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1842	if (!cmd->start_src || tmp != cmd->start_src)
1843		err++;
1844
1845	tmp = cmd->scan_begin_src;
1846	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1847	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1848		err++;
1849
1850	tmp = cmd->convert_src;
1851	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1852	if (!cmd->convert_src || tmp != cmd->convert_src)
1853		err++;
1854
1855	tmp = cmd->scan_end_src;
1856	cmd->scan_end_src &= TRIG_COUNT;
1857	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1858		err++;
1859
1860	tmp = cmd->stop_src;
1861	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1862	if (!cmd->stop_src || tmp != cmd->stop_src)
1863		err++;
1864
1865	if (err)
1866		return 1;
1867
1868	/* step 2: make sure trigger sources are unique and mutually
1869	   compatible */
1870
1871	/* note that mutual compatiblity is not an issue here */
1872	if (cmd->scan_begin_src != TRIG_TIMER &&
1873		cmd->scan_begin_src != TRIG_EXT
1874		&& cmd->scan_begin_src != TRIG_FOLLOW)
1875		err++;
1876	if (cmd->convert_src != TRIG_TIMER &&
1877		cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1878		err++;
1879	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1880		err++;
1881
1882	if (err)
1883		return 2;
1884
1885	/* step 3: make sure arguments are trivially compatible */
1886
1887	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1888		cmd->start_arg = 0;
1889		err++;
1890	}
1891
1892	if (cmd->start_src == TRIG_EXT && cmd->start_arg < 0) {
1893		cmd->start_arg = 0;
1894		err++;
1895	}
1896
1897	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1898		cmd->start_arg = 39;
1899		err++;
1900	}
1901
1902	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg < 0) {
1903		cmd->scan_begin_arg = 0;
1904		err++;
1905	}
1906
1907	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1908		cmd->scan_begin_arg = 39;
1909		err++;
1910	}
1911
1912	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg < 0) {
1913		cmd->convert_arg = 0;
1914		err++;
1915	}
1916
1917	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1918		cmd->convert_arg = 39;
1919		err++;
1920	}
1921#define MAX_SPEED	200000	/* in nanoseconds */
1922#define MIN_SPEED	2000000000	/* in nanoseconds */
1923
1924	if (cmd->scan_begin_src == TRIG_TIMER) {
1925		if (cmd->scan_begin_arg < MAX_SPEED) {
1926			cmd->scan_begin_arg = MAX_SPEED;
1927			err++;
1928		}
1929		if (cmd->scan_begin_arg > MIN_SPEED) {
1930			cmd->scan_begin_arg = MIN_SPEED;
1931			err++;
1932		}
1933	} else {
1934		/* external trigger */
1935		/* should be level/edge, hi/lo specification here */
1936		/* should specify multiple external triggers */
1937/*     if(cmd->scan_begin_arg>9){ */
1938/*       cmd->scan_begin_arg=9; */
1939/*       err++; */
1940/*     } */
1941	}
1942	if (cmd->convert_src == TRIG_TIMER) {
1943		if (cmd->convert_arg < MAX_SPEED) {
1944			cmd->convert_arg = MAX_SPEED;
1945			err++;
1946		}
1947		if (cmd->convert_arg > MIN_SPEED) {
1948			cmd->convert_arg = MIN_SPEED;
1949			err++;
1950		}
1951	} else {
1952		/* external trigger */
1953		/* see above */
1954/*     if(cmd->convert_arg>9){ */
1955/*       cmd->convert_arg=9; */
1956/*       err++; */
1957/*     } */
1958	}
1959
1960	if (cmd->scan_end_arg != cmd->chanlist_len) {
1961		cmd->scan_end_arg = cmd->chanlist_len;
1962		err++;
1963	}
1964	if (cmd->stop_src == TRIG_COUNT) {
1965		if (cmd->stop_arg > 0x00ffffff) {
1966			cmd->stop_arg = 0x00ffffff;
1967			err++;
1968		}
1969	} else {
1970		/* TRIG_NONE */
1971		if (cmd->stop_arg != 0) {
1972			cmd->stop_arg = 0;
1973			err++;
1974		}
1975	}
1976
1977	if (err)
1978		return 3;
1979
1980	/* step 4: fix up any arguments */
1981
1982	if (cmd->scan_begin_src == TRIG_TIMER) {
1983		tmp = cmd->scan_begin_arg;
1984		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1985			cmd->flags & TRIG_ROUND_MASK);
1986		if (tmp != cmd->scan_begin_arg)
1987			err++;
1988	}
1989	if (cmd->convert_src == TRIG_TIMER) {
1990		tmp = cmd->convert_arg;
1991		s626_ns_to_timer((int *)&cmd->convert_arg,
1992			cmd->flags & TRIG_ROUND_MASK);
1993		if (tmp != cmd->convert_arg)
1994			err++;
1995		if (cmd->scan_begin_src == TRIG_TIMER &&
1996			cmd->scan_begin_arg <
1997			cmd->convert_arg * cmd->scan_end_arg) {
1998			cmd->scan_begin_arg =
1999				cmd->convert_arg * cmd->scan_end_arg;
2000			err++;
2001		}
2002	}
2003
2004	if (err)
2005		return 4;
2006
2007	return 0;
2008}
2009
2010static int s626_ai_cancel(comedi_device *dev, comedi_subdevice *s)
2011{
2012	/*  Stop RPS program in case it is currently running. */
2013	MC_DISABLE(P_MC1, MC1_ERPS1);
2014
2015	/* disable master interrupt */
2016	writel(0, devpriv->base_addr + P_IER);
2017
2018	devpriv->ai_cmd_running = 0;
2019
2020	return 0;
2021}
2022
2023/* This function doesn't require a particular form, this is just what
2024 * happens to be used in some of the drivers.  It should convert ns
2025 * nanoseconds to a counter value suitable for programming the device.
2026 * Also, it should adjust ns so that it cooresponds to the actual time
2027 * that the device will use. */
2028static int s626_ns_to_timer(int *nanosec, int round_mode)
2029{
2030	int divider, base;
2031
2032	base = 500;		/* 2MHz internal clock */
2033
2034	switch (round_mode) {
2035	case TRIG_ROUND_NEAREST:
2036	default:
2037		divider = (*nanosec + base / 2) / base;
2038		break;
2039	case TRIG_ROUND_DOWN:
2040		divider = (*nanosec) / base;
2041		break;
2042	case TRIG_ROUND_UP:
2043		divider = (*nanosec + base - 1) / base;
2044		break;
2045	}
2046
2047	*nanosec = base * divider;
2048	return divider - 1;
2049}
2050
2051static int s626_ao_winsn(comedi_device *dev, comedi_subdevice *s,
2052	comedi_insn *insn, lsampl_t *data)
2053{
2054
2055	int i;
2056	uint16_t chan = CR_CHAN(insn->chanspec);
2057	int16_t dacdata;
2058
2059	for (i = 0; i < insn->n; i++) {
2060		dacdata = (int16_t) data[i];
2061		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2062		dacdata -= (0x1fff);
2063
2064		SetDAC(dev, chan, dacdata);
2065	}
2066
2067	return i;
2068}
2069
2070static int s626_ao_rinsn(comedi_device *dev, comedi_subdevice *s,
2071	comedi_insn *insn, lsampl_t *data)
2072{
2073	int i;
2074
2075	for (i = 0; i < insn->n; i++) {
2076		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2077	}
2078
2079	return i;
2080}
2081
2082/* *************** DIGITAL I/O FUNCTIONS ***************
2083 * All DIO functions address a group of DIO channels by means of
2084 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2085 * ports A, B and C, respectively.
2086 */
2087
2088static void s626_dio_init(comedi_device *dev)
2089{
2090	uint16_t group;
2091	comedi_subdevice *s;
2092
2093	/*  Prepare to treat writes to WRCapSel as capture disables. */
2094	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2095
2096	/*  For each group of sixteen channels ... */
2097	for (group = 0; group < S626_DIO_BANKS; group++) {
2098		s = dev->subdevices + 2 + group;
2099		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2100		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2101		/*  captures. */
2102		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2103		/*  default edge */
2104		/*  polarity. */
2105		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2106		/*  to inactive state. */
2107	}
2108	DEBUG("s626_dio_init: DIO initialized \n");
2109}
2110
2111/* DIO devices are slightly special.  Although it is possible to
2112 * implement the insn_read/insn_write interface, it is much more
2113 * useful to applications if you implement the insn_bits interface.
2114 * This allows packed reading/writing of the DIO channels.  The comedi
2115 * core can convert between insn_bits and insn_read/write */
2116
2117static int s626_dio_insn_bits(comedi_device *dev, comedi_subdevice *s,
2118	comedi_insn *insn, lsampl_t *data)
2119{
2120
2121	/* Length of data must be 2 (mask and new data, see below) */
2122	if (insn->n == 0) {
2123		return 0;
2124	}
2125	if (insn->n != 2) {
2126		printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2127		return -EINVAL;
2128	}
2129
2130	/*
2131	 * The insn data consists of a mask in data[0] and the new data in
2132	 * data[1]. The mask defines which bits we are concerning about.
2133	 * The new data must be anded with the mask.  Each channel
2134	 * corresponds to a bit.
2135	 */
2136	if (data[0]) {
2137		/* Check if requested ports are configured for output */
2138		if ((s->io_bits & data[0]) != data[0])
2139			return -EIO;
2140
2141		s->state &= ~data[0];
2142		s->state |= data[0] & data[1];
2143
2144		/* Write out the new digital output lines */
2145
2146		DEBIwrite(dev, diopriv->WRDOut, s->state);
2147	}
2148	data[1] = DEBIread(dev, diopriv->RDDIn);
2149
2150	return 2;
2151}
2152
2153static int s626_dio_insn_config(comedi_device *dev, comedi_subdevice *s,
2154	comedi_insn *insn, lsampl_t *data)
2155{
2156
2157	switch (data[0]) {
2158	case INSN_CONFIG_DIO_QUERY:
2159		data[1] =
2160			(s->io_bits & (1 << CR_CHAN(insn->
2161					chanspec))) ? COMEDI_OUTPUT :
2162			COMEDI_INPUT;
2163		return insn->n;
2164		break;
2165	case COMEDI_INPUT:
2166		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2167		break;
2168	case COMEDI_OUTPUT:
2169		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2170		break;
2171	default:
2172		return -EINVAL;
2173		break;
2174	}
2175	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2176
2177	return 1;
2178}
2179
2180static int s626_dio_set_irq(comedi_device *dev, unsigned int chan)
2181{
2182	unsigned int group;
2183	unsigned int bitmask;
2184	unsigned int status;
2185
2186	/* select dio bank */
2187	group = chan / 16;
2188	bitmask = 1 << (chan - (16 * group));
2189	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2190		chan - (16 * group), group);
2191
2192	/* set channel to capture positive edge */
2193	status = DEBIread(dev,
2194		((dio_private *) (dev->subdevices + 2 +
2195				group)->private)->RDEdgSel);
2196	DEBIwrite(dev,
2197		((dio_private *) (dev->subdevices + 2 +
2198				group)->private)->WREdgSel, bitmask | status);
2199
2200	/* enable interrupt on selected channel */
2201	status = DEBIread(dev,
2202		((dio_private *) (dev->subdevices + 2 +
2203				group)->private)->RDIntSel);
2204	DEBIwrite(dev,
2205		((dio_private *) (dev->subdevices + 2 +
2206				group)->private)->WRIntSel, bitmask | status);
2207
2208	/* enable edge capture write command */
2209	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2210
2211	/* enable edge capture on selected channel */
2212	status = DEBIread(dev,
2213		((dio_private *) (dev->subdevices + 2 +
2214				group)->private)->RDCapSel);
2215	DEBIwrite(dev,
2216		((dio_private *) (dev->subdevices + 2 +
2217				group)->private)->WRCapSel, bitmask | status);
2218
2219	return 0;
2220}
2221
2222static int s626_dio_reset_irq(comedi_device *dev, unsigned int group,
2223	unsigned int mask)
2224{
2225	DEBUG("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n", mask, group);
2226
2227	/* disable edge capture write command */
2228	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2229
2230	/* enable edge capture on selected channel */
2231	DEBIwrite(dev,
2232		((dio_private *) (dev->subdevices + 2 +
2233				group)->private)->WRCapSel, mask);
2234
2235	return 0;
2236}
2237
2238static int s626_dio_clear_irq(comedi_device *dev)
2239{
2240	unsigned int group;
2241
2242	/* disable edge capture write command */
2243	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2244
2245	for (group = 0; group < S626_DIO_BANKS; group++) {
2246		/* clear pending events and interrupt */
2247		DEBIwrite(dev,
2248			((dio_private *) (dev->subdevices + 2 +
2249					group)->private)->WRCapSel, 0xffff);
2250	}
2251
2252	return 0;
2253}
2254
2255/* Now this function initializes the value of the counter (data[0])
2256   and set the subdevice. To complete with trigger and interrupt
2257   configuration */
2258static int s626_enc_insn_config(comedi_device *dev, comedi_subdevice *s,
2259	comedi_insn *insn, lsampl_t *data)
2260{
2261	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2262		/*  index. */
2263		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2264		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2265		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2266		/* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2267		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2268		(CLKENAB_INDEX << BF_CLKENAB);
2269	/*   uint16_t DisableIntSrc=TRUE; */
2270	/*  uint32_t Preloadvalue;              //Counter initial value */
2271	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2272	uint16_t enab = CLKENAB_ALWAYS;
2273	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2274
2275	DEBUG("s626_enc_insn_config: encoder config\n");
2276
2277	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2278
2279	k->SetMode(dev, k, Setup, TRUE);
2280	Preload(dev, k, *(insn->data));
2281	k->PulseIndex(dev, k);
2282	SetLatchSource(dev, k, valueSrclatch);
2283	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2284
2285	return insn->n;
2286}
2287
2288static int s626_enc_insn_read(comedi_device *dev, comedi_subdevice *s,
2289	comedi_insn *insn, lsampl_t *data)
2290{
2291
2292	int n;
2293	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2294
2295	DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2296		CR_CHAN(insn->chanspec));
2297
2298	for (n = 0; n < insn->n; n++)
2299		data[n] = ReadLatch(dev, k);
2300
2301	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2302
2303	return n;
2304}
2305
2306static int s626_enc_insn_write(comedi_device *dev, comedi_subdevice *s,
2307	comedi_insn *insn, lsampl_t *data)
2308{
2309
2310	enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2311
2312	DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2313		CR_CHAN(insn->chanspec));
2314
2315	/*  Set the preload register */
2316	Preload(dev, k, data[0]);
2317
2318	/*  Software index pulse forces the preload register to load */
2319	/*  into the counter */
2320	k->SetLoadTrig(dev, k, 0);
2321	k->PulseIndex(dev, k);
2322	k->SetLoadTrig(dev, k, 2);
2323
2324	DEBUG("s626_enc_insn_write: End encoder write\n");
2325
2326	return 1;
2327}
2328
2329static void s626_timer_load(comedi_device *dev, enc_private *k, int tick)
2330{
2331	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2332		/*  index. */
2333		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2334		(CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2335		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2336		(CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2337		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2338		(CLKENAB_INDEX << BF_CLKENAB);
2339	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2340	/*   uint16_t enab=CLKENAB_ALWAYS; */
2341
2342	k->SetMode(dev, k, Setup, FALSE);
2343
2344	/*  Set the preload register */
2345	Preload(dev, k, tick);
2346
2347	/*  Software index pulse forces the preload register to load */
2348	/*  into the counter */
2349	k->SetLoadTrig(dev, k, 0);
2350	k->PulseIndex(dev, k);
2351
2352	/* set reload on counter overflow */
2353	k->SetLoadTrig(dev, k, 1);
2354
2355	/* set interrupt on overflow */
2356	k->SetIntSrc(dev, k, INTSRC_OVER);
2357
2358	SetLatchSource(dev, k, valueSrclatch);
2359	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2360}
2361
2362/* ***********  DAC FUNCTIONS *********** */
2363
2364/*  Slot 0 base settings. */
2365#define VECT0	(XSD2 | RSD3 | SIB_A2)
2366/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2367
2368/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2369static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2370
2371/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2372static uint8_t trimadrs[] =
2373	{ 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2374
2375static void LoadTrimDACs(comedi_device *dev)
2376{
2377	register uint8_t i;
2378
2379	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2380	for (i = 0; i < (sizeof(trimchan) / sizeof(trimchan[0])); i++)
2381		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2382}
2383
2384static void WriteTrimDAC(comedi_device *dev, uint8_t LogicalChan,
2385	uint8_t DacData)
2386{
2387	uint32_t chan;
2388
2389	/*  Save the new setpoint in case the application needs to read it back later. */
2390	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2391
2392	/*  Map logical channel number to physical channel number. */
2393	chan = (uint32_t) trimchan[LogicalChan];
2394
2395	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2396	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2397	 * can be detected.
2398	 */
2399
2400	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2401	/* Slot 2: Send high uint8_t to target TrimDac. */
2402	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2403	/* Slot 3: Send low uint8_t to target TrimDac. */
2404	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2405	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2406	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2407	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2408
2409	/* Construct and transmit target DAC's serial packet:
2410	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2411	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2412	 * WORD value (that writes a channel 0 NOP command to a non-existent
2413	 * main DAC channel) that serves to keep the clock running after the
2414	 * packet has been sent to the target DAC.
2415	 */
2416
2417	/*  Address the DAC channel within the trimdac device. */
2418	SendDAC(dev, ((uint32_t) chan << 8)
2419		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2420}
2421
2422/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2423/*  Read uint8_t from EEPROM. */
2424
2425static uint8_t I2Cread(comedi_device *dev, uint8_t addr)
2426{
2427	uint8_t rtnval;
2428
2429	/*  Send EEPROM target address. */
2430	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2431			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2432			| I2C_B1(I2C_ATTRSTOP, addr)
2433			 /* Byte1 = EEPROM internal target address. */
2434			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
2435		/*  Abort function and declare error if handshake failed. */
2436		DEBUG("I2Cread: error handshake I2Cread  a\n");
2437		return 0;
2438	}
2439	/*  Execute EEPROM read. */
2440	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)	/*  Byte2 = I2C */
2441			/*  command: read */
2442			/*  from I2C EEPROM */
2443			/*  device. */
2444			| I2C_B1(I2C_ATTRSTOP, 0)	/*  Byte1 receives */
2445			/*  uint8_t from */
2446			/*  EEPROM. */
2447			| I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */
2448
2449		/*  Abort function and declare error if handshake failed. */
2450		DEBUG("I2Cread: error handshake I2Cread b\n");
2451		return 0;
2452	}
2453	/*  Return copy of EEPROM value. */
2454	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2455	return rtnval;
2456}
2457
2458static uint32_t I2Chandshake(comedi_device *dev, uint32_t val)
2459{
2460	/*  Write I2C command to I2C Transfer Control shadow register. */
2461	WR7146(P_I2CCTRL, val);
2462
2463	/*  Upload I2C shadow registers into working registers and wait for */
2464	/*  upload confirmation. */
2465
2466	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2467	while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2468		;
2469
2470	/*  Wait until I2C bus transfer is finished or an error occurs. */
2471	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2472		;
2473
2474	/*  Return non-zero if I2C error occured. */
2475	return RR7146(P_I2CCTRL) & I2C_ERR;
2476
2477}
2478
2479/*  Private helper function: Write setpoint to an application DAC channel. */
2480
2481static void SetDAC(comedi_device *dev, uint16_t chan, short dacdata)
2482{
2483	register uint16_t signmask;
2484	register uint32_t WSImage;
2485
2486	/*  Adjust DAC data polarity and set up Polarity Control Register */
2487	/*  image. */
2488	signmask = 1 << chan;
2489	if (dacdata < 0) {
2490		dacdata = -dacdata;
2491		devpriv->Dacpol |= signmask;
2492	} else
2493		devpriv->Dacpol &= ~signmask;
2494
2495	/*  Limit DAC setpoint value to valid range. */
2496	if ((uint16_t) dacdata > 0x1FFF)
2497		dacdata = 0x1FFF;
2498
2499	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2500	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2501	 * data to a non-existent TrimDac channel just to keep the clock
2502	 * running after sending data to the target DAC.  This is necessary
2503	 * to eliminate the clock glitch that would otherwise occur at the
2504	 * end of the target DAC's serial data stream.  When the sequence
2505	 * restarts at V0 (after executing V5), the gate array automatically
2506	 * disables gating for the DAC clock and all DAC chip selects.
2507	 */
2508
2509	WSImage = (chan & 2) ? WS1 : WS2;
2510	/* Choose DAC chip select to be asserted. */
2511	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2512	/* Slot 2: Transmit high data byte to target DAC. */
2513	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2514	/* Slot 3: Transmit low data byte to target DAC. */
2515	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2516	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2517	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2518	/* Slot 5: running after writing target DAC's low data byte. */
2519
2520	/*  Construct and transmit target DAC's serial packet:
2521	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2522	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2523	 * to a  non-existent TrimDac channel) that serves to keep the clock
2524	 * running after the packet has been sent to the target DAC.
2525	 */
2526	SendDAC(dev, 0x0F000000
2527		/* Continue clock after target DAC data (write to non-existent trimdac). */
2528		| 0x00004000
2529		/* Address the two main dual-DAC devices (TSL's chip select enables
2530		 * target device). */
2531		| ((uint32_t) (chan & 1) << 15)
2532		/*  Address the DAC channel within the  device. */
2533		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2534
2535}
2536
2537/* Private helper function: Transmit serial data to DAC via Audio
2538 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2539 * Dacpol contains valid target image.
2540 */
2541
2542static void SendDAC(comedi_device *dev, uint32_t val)
2543{
2544
2545	/* START THE SERIAL CLOCK RUNNING ------------- */
2546
2547	/* Assert DAC polarity control and enable gating of DAC serial clock
2548	 * and audio bit stream signals.  At this point in time we must be
2549	 * assured of being in time slot 0.  If we are not in slot 0, the
2550	 * serial clock and audio stream signals will be disabled; this is
2551	 * because the following DEBIwrite statement (which enables signals
2552	 * to be passed through the gate array) would execute before the
2553	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2554	 * causing the signals to be inactive during the DAC write.
2555	 */
2556	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2557
2558	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2559
2560	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2561
2562	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2563	*devpriv->pDacWBuf = val;
2564
2565	/* enab the output DMA transfer.  This will cause the DMAC to copy
2566	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2567	 * then immediately terminate because the protection address is
2568	 * reached upon transfer of the first DWORD value.
2569	 */
2570	MC_ENABLE(P_MC1, MC1_A2OUT);
2571
2572	/*  While the DMA transfer is executing ... */
2573
2574	/* Reset Audio2 output FIFO's underflow flag (along with any other
2575	 * FIFO underflow/overflow flags).  When set, this flag will
2576	 * indicate that we have emerged from slot 0.
2577	 */
2578	WR7146(P_ISR, ISR_AFOU);
2579
2580	/* Wait for the DMA transfer to finish so that there will be data
2581	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2582	 * from the FIFO to the output buffer register.  We test for DMA
2583	 * Done by polling the DMAC enable flag; this flag is automatically
2584	 * cleared when the transfer has finished.
2585	 */
2586	while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2587		;
2588
2589	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2590
2591	/* FIFO data is now available, so we enable execution of time slots
2592	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2593	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2594	 * detection.
2595	 */
2596	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2597
2598	/* Wait for slot 1 to execute to ensure that the Packet will be
2599	 * transmitted.  This is detected by polling the Audio2 output FIFO
2600	 * underflow flag, which will be set when slot 1 execution has
2601	 * finished transferring the DAC's data DWORD from the output FIFO
2602	 * to the output buffer register.
2603	 */
2604	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2605		;
2606
2607	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2608	 * back to slot 0 after executing the EOS in slot 5.  Also,
2609	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2610	 * stored in the last byte to be shifted out of the FIFO's DWORD
2611	 * buffer register.
2612	 */
2613	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2614
2615	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2616
2617	/* Wait for the TSL to finish executing all time slots before
2618	 * exiting this function.  We must do this so that the next DAC
2619	 * write doesn't start, thereby enabling clock/chip select signals:
2620	 *
2621	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2622	 *    the clock/cs signal gating and traps slot // list execution.
2623	 *    we have not yet finished slot 5 then the clock/cs signals are
2624	 *    still gated and we have not finished transmitting the stream.
2625	 *
2626	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2627	 *    this case, the slot sequence is currently repeating, but with
2628	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2629	 *    execution before setting up the next DAC setpoint DMA transfer
2630	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2631	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2632	 *    the TSL has not yet finished executing slot 5 ...
2633	 */
2634	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2635		/* The trap was set on time and we are still executing somewhere
2636		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2637		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2638		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2639		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2640		 */
2641		 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2642			;
2643	}
2644	/* Either (1) we were too late setting the slot 0 trap; the TSL
2645	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2646	 * or (2) we were not late and execution is now trapped at slot 0.
2647	 * In either case, we must now change slot 0 so that it will store
2648	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2649	 * In order to do this, we reprogram slot 0 so that it will shift in
2650	 * SD3, which is driven only by a pull-up resistor.
2651	 */
2652	SETVECT(0, RSD3 | SIB_A2 | EOS);
2653
2654	/* Wait for slot 0 to execute, at which time the TSL is setup for
2655	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2656	 * from 0x00 to 0xFF.
2657	 */
2658	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2659		;
2660}
2661
2662static void WriteMISC2(comedi_device *dev, uint16_t NewImage)
2663{
2664	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2665	/*  MISC2 register. */
2666	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2667	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2668}
2669
2670/*  Initialize the DEBI interface for all transfers. */
2671
2672static uint16_t DEBIread(comedi_device *dev, uint16_t addr)
2673{
2674	uint16_t retval;
2675
2676	/*  Set up DEBI control register value in shadow RAM. */
2677	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2678
2679	/*  Execute the DEBI transfer. */
2680	DEBItransfer(dev);
2681
2682	/*  Fetch target register value. */
2683	retval = (uint16_t) RR7146(P_DEBIAD);
2684
2685	/*  Return register value. */
2686	return retval;
2687}
2688
2689/*  Execute a DEBI transfer.  This must be called from within a */
2690/*  critical section. */
2691static void DEBItransfer(comedi_device *dev)
2692{
2693	/*  Initiate upload of shadow RAM to DEBI control register. */
2694	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2695
2696	/*  Wait for completion of upload from shadow RAM to DEBI control */
2697	/*  register. */
2698	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2699		;
2700
2701	/*  Wait until DEBI transfer is done. */
2702	while (RR7146(P_PSR) & PSR_DEBI_S)
2703		;
2704}
2705
2706/*  Write a value to a gate array register. */
2707static void DEBIwrite(comedi_device *dev, uint16_t addr, uint16_t wdata)
2708{
2709
2710	/*  Set up DEBI control register value in shadow RAM. */
2711	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2712	WR7146(P_DEBIAD, wdata);
2713
2714	/*  Execute the DEBI transfer. */
2715	DEBItransfer(dev);
2716}
2717
2718/* Replace the specified bits in a gate array register.  Imports: mask
2719 * specifies bits that are to be preserved, wdata is new value to be
2720 * or'd with the masked original.
2721 */
2722static void DEBIreplace(comedi_device *dev, uint16_t addr, uint16_t mask,
2723	uint16_t wdata)
2724{
2725
2726	/*  Copy target gate array register into P_DEBIAD register. */
2727	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2728	/* Set up DEBI control reg value in shadow RAM. */
2729	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2730
2731	/*  Write back the modified image. */
2732	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2733	/* Set up DEBI control reg value in shadow  RAM. */
2734
2735	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2736	/* Modify the register image. */
2737	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2738}
2739
2740static void CloseDMAB(comedi_device *dev, DMABUF *pdma, size_t bsize)
2741{
2742	void *vbptr;
2743	dma_addr_t vpptr;
2744
2745	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2746	if (pdma == NULL)
2747		return;
2748	/* find the matching allocation from the board struct */
2749
2750	vbptr = pdma->LogicalBase;
2751	vpptr = pdma->PhysicalBase;
2752	if (vbptr) {
2753		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2754		pdma->LogicalBase = 0;
2755		pdma->PhysicalBase = 0;
2756
2757		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2758			vbptr, bsize, (uint32_t) vpptr);
2759	}
2760}
2761
2762/* ******  COUNTER FUNCTIONS  ******* */
2763/* All counter functions address a specific counter by means of the
2764 * "Counter" argument, which is a logical counter number.  The Counter
2765 * argument may have any of the following legal values: 0=0A, 1=1A,
2766 * 2=2A, 3=0B, 4=1B, 5=2B.
2767 */
2768
2769/* Forward declarations for functions that are common to both A and B counters: */
2770
2771/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2772
2773/*  Read a counter's output latch. */
2774
2775static uint32_t ReadLatch(comedi_device *dev, enc_private *k)
2776{
2777	register uint32_t value;
2778	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2779
2780	/*  Latch counts and fetch LSW of latched counts value. */
2781	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2782
2783	/*  Fetch MSW of latched counts and combine with LSW. */
2784	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2785
2786	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2787
2788	/*  Return latched counts. */
2789	return value;
2790}
2791
2792/*  Reset a counter's index and overflow event capture flags. */
2793
2794static void ResetCapFlags_A(comedi_device *dev, enc_private *k)
2795{
2796	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2797		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2798}
2799
2800static void ResetCapFlags_B(comedi_device *dev, enc_private *k)
2801{
2802	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2803		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2804}
2805
2806/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2807/*  for both A and B counters. */
2808
2809static uint16_t GetMode_A(comedi_device *dev, enc_private *k)
2810{
2811	register uint16_t cra;
2812	register uint16_t crb;
2813	register uint16_t setup;
2814
2815	/*  Fetch CRA and CRB register images. */
2816	cra = DEBIread(dev, k->MyCRA);
2817	crb = DEBIread(dev, k->MyCRB);
2818
2819	/*  Populate the standardized counter setup bit fields.  Note: */
2820	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2821	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2822		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2823		| ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2824		| ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2825		| ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2826		| ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2827
2828	/*  Adjust mode-dependent parameters. */
2829	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2830		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2831			| ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2832			| (MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2833
2834	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2835		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2836			| ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2837			| (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2838				(MULT_X1 << STDBIT_CLKMULT) :
2839				((cra >> (CRABIT_CLKMULT_A -
2840							STDBIT_CLKMULT)) &
2841					STDMSK_CLKMULT)));
2842
2843	/*  Return adjusted counter setup. */
2844	return setup;
2845}
2846
2847static uint16_t GetMode_B(comedi_device *dev, enc_private *k)
2848{
2849	register uint16_t cra;
2850	register uint16_t crb;
2851	register uint16_t setup;
2852
2853	/*  Fetch CRA and CRB register images. */
2854	cra = DEBIread(dev, k->MyCRA);
2855	crb = DEBIread(dev, k->MyCRB);
2856
2857	/*  Populate the standardized counter setup bit fields.  Note: */
2858	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2859	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2860		| ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2861		| ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2862		| ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2863		| ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2864		| ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2865
2866	/*  Adjust mode-dependent parameters. */
2867	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2868		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2869			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2870			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2871
2872	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2873		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2874			| (MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2875			| ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2876
2877	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2878		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2879			| ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2880			| ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2881
2882	/*  Return adjusted counter setup. */
2883	return setup;
2884}
2885
2886/*
2887 * Set the operating mode for the specified counter.  The setup
2888 * parameter is treated as a COUNTER_SETUP data type.  The following
2889 * parameters are programmable (all other parms are ignored): ClkMult,
2890 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2891 */
2892
2893static void SetMode_A(comedi_device *dev, enc_private *k, uint16_t Setup,
2894	uint16_t DisableIntSrc)
2895{
2896	register uint16_t cra;
2897	register uint16_t crb;
2898	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2899
2900	/*  Initialize CRA and CRB images. */
2901	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
2902		| ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2903
2904	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
2905		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
2906
2907	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2908	if (!DisableIntSrc)
2909		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2910				CRABIT_INTSRC_A));
2911
2912	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2913	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2914	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
2915		/*  (Extender valid only for B counters). */
2916
2917	case CLKSRC_TIMER:	/*  Timer Mode: */
2918		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
2919			| ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
2920			| (1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
2921			| (MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
2922		break;
2923
2924	default:		/*  Counter Mode: */
2925		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2926			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
2927			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
2928				(MULT_X1 << CRABIT_CLKMULT_A) :
2929				((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2930						STDBIT_CLKMULT))));
2931	}
2932
2933	/*  Force positive index polarity if IndxSrc is software-driven only, */
2934	/*  otherwise pass it through. */
2935	if (~setup & STDMSK_INDXSRC)
2936		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2937				STDBIT_INDXPOL));
2938
2939	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2940	/*  enable mask to indicate the counter interrupt is disabled. */
2941	if (DisableIntSrc)
2942		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2943
2944	/*  While retaining CounterB and LatchSrc configurations, program the */
2945	/*  new counter operating mode. */
2946	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2947	DEBIreplace(dev, k->MyCRB,
2948		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2949}
2950
2951static void SetMode_B(comedi_device *dev, enc_private *k, uint16_t Setup,
2952	uint16_t DisableIntSrc)
2953{
2954	register uint16_t cra;
2955	register uint16_t crb;
2956	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2957
2958	/*  Initialize CRA and CRB images. */
2959	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
2960
2961	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
2962		| ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
2963		| ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
2964
2965	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
2966	if (!DisableIntSrc)
2967		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2968				CRBBIT_INTSRC_B));
2969
2970	/*  Populate all mode-dependent attributes of CRA & CRB images. */
2971	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2972	case CLKSRC_TIMER:	/*  Timer Mode: */
2973		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
2974			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
2975		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
2976			| (MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
2977		break;
2978
2979	case CLKSRC_EXTENDER:	/*  Extender Mode: */
2980		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
2981			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
2982		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
2983			| (MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
2984		break;
2985
2986	default:		/*  Counter Mode: */
2987		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
2988		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
2989			| (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
2990				(MULT_X1 << CRBBIT_CLKMULT_B) :
2991				((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2992						STDBIT_CLKMULT))));
2993	}
2994
2995	/*  Force positive index polarity if IndxSrc is software-driven only, */
2996	/*  otherwise pass it through. */
2997	if (~setup & STDMSK_INDXSRC)
2998		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2999				CRBBIT_INDXPOL_B));
3000
3001	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
3002	/*  enable mask to indicate the counter interrupt is disabled. */
3003	if (DisableIntSrc)
3004		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
3005
3006	/*  While retaining CounterA and LatchSrc configurations, program the */
3007	/*  new counter operating mode. */
3008	DEBIreplace(dev, k->MyCRA,
3009		(uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
3010	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
3011}
3012
3013/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
3014
3015static void SetEnable_A(comedi_device *dev, enc_private *k, uint16_t enab)
3016{
3017	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3018	DEBIreplace(dev, k->MyCRB,
3019		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3020		(uint16_t) (enab << CRBBIT_CLKENAB_A));
3021}
3022
3023static void SetEnable_B(comedi_device *dev, enc_private *k, uint16_t enab)
3024{
3025	DEBIreplace(dev, k->MyCRB,
3026		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3027		(uint16_t) (enab << CRBBIT_CLKENAB_B));
3028}
3029
3030static uint16_t GetEnable_A(comedi_device *dev, enc_private *k)
3031{
3032	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3033}
3034
3035static uint16_t GetEnable_B(comedi_device *dev, enc_private *k)
3036{
3037	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3038}
3039
3040/* Return/set a counter pair's latch trigger source.  0: On read
3041 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3042 * latches B.
3043 */
3044
3045static void SetLatchSource(comedi_device *dev, enc_private *k, uint16_t value)
3046{
3047	DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3048	DEBIreplace(dev, k->MyCRB,
3049		(uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3050		(uint16_t) (value << CRBBIT_LATCHSRC));
3051
3052	DEBUG("SetLatchSource: SetLatchSource exit \n");
3053}
3054
3055/*
3056 * static uint16_t GetLatchSource(comedi_device *dev, enc_private *k )
3057 * {
3058 * 	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3059 * }
3060 */
3061
3062/*
3063 * Return/set the event that will trigger transfer of the preload
3064 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3065 * 2=OverflowA (B counters only), 3=disabled.
3066 */
3067
3068static void SetLoadTrig_A(comedi_device *dev, enc_private *k, uint16_t Trig)
3069{
3070	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3071		(uint16_t) (Trig << CRABIT_LOADSRC_A));
3072}
3073
3074static void SetLoadTrig_B(comedi_device *dev, enc_private *k, uint16_t Trig)
3075{
3076	DEBIreplace(dev, k->MyCRB,
3077		(uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3078		(uint16_t) (Trig << CRBBIT_LOADSRC_B));
3079}
3080
3081static uint16_t GetLoadTrig_A(comedi_device *dev, enc_private *k)
3082{
3083	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3084}
3085
3086static uint16_t GetLoadTrig_B(comedi_device *dev, enc_private *k)
3087{
3088	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3089}
3090
3091/* Return/set counter interrupt source and clear any captured
3092 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3093 * 2=IndexOnly, 3=IndexAndOverflow.
3094 */
3095
3096static void SetIntSrc_A(comedi_device *dev, enc_private *k,
3097	uint16_t IntSource)
3098{
3099	/*  Reset any pending counter overflow or index captures. */
3100	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3101		CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3102
3103	/*  Program counter interrupt source. */
3104	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3105		(uint16_t) (IntSource << CRABIT_INTSRC_A));
3106
3107	/*  Update MISC2 interrupt enable mask. */
3108	devpriv->CounterIntEnabs =
3109		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3110		MyEventBits[IntSource];
3111}
3112
3113static void SetIntSrc_B(comedi_device *dev, enc_private *k,
3114	uint16_t IntSource)
3115{
3116	uint16_t crb;
3117
3118	/*  Cache writeable CRB register image. */
3119	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3120
3121	/*  Reset any pending counter overflow or index captures. */
3122	DEBIwrite(dev, k->MyCRB,
3123		(uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3124
3125	/*  Program counter interrupt source. */
3126	DEBIwrite(dev, k->MyCRB,
3127		(uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3128				CRBBIT_INTSRC_B)));
3129
3130	/*  Update MISC2 interrupt enable mask. */
3131	devpriv->CounterIntEnabs =
3132		(devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3133		MyEventBits[IntSource];
3134}
3135
3136static uint16_t GetIntSrc_A(comedi_device *dev, enc_private *k)
3137{
3138	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3139}
3140
3141static uint16_t GetIntSrc_B(comedi_device *dev, enc_private *k)
3142{
3143	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3144}
3145
3146/*  Return/set the clock multiplier. */
3147
3148/* static void SetClkMult(comedi_device *dev, enc_private *k, uint16_t value )  */
3149/* { */
3150/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3151/* } */
3152
3153/* static uint16_t GetClkMult(comedi_device *dev, enc_private *k )  */
3154/* { */
3155/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3156/* } */
3157
3158/* Return/set the clock polarity. */
3159
3160/* static void SetClkPol( comedi_device *dev,enc_private *k, uint16_t value )  */
3161/* { */
3162/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3163/* } */
3164
3165/* static uint16_t GetClkPol(comedi_device *dev, enc_private *k )  */
3166/* { */
3167/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3168/* } */
3169
3170/* Return/set the clock source.  */
3171
3172/* static void SetClkSrc( comedi_device *dev,enc_private *k, uint16_t value )  */
3173/* { */
3174/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3175/* } */
3176
3177/* static uint16_t GetClkSrc( comedi_device *dev,enc_private *k )  */
3178/* { */
3179/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3180/* } */
3181
3182/* Return/set the index polarity. */
3183
3184/* static void SetIndexPol(comedi_device *dev, enc_private *k, uint16_t value )  */
3185/* { */
3186/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3187/* } */
3188
3189/* static uint16_t GetIndexPol(comedi_device *dev, enc_private *k )  */
3190/* { */
3191/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3192/* } */
3193
3194/*  Return/set the index source. */
3195
3196/* static void SetIndexSrc(comedi_device *dev, enc_private *k, uint16_t value )  */
3197/* { */
3198/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3199/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3200/* } */
3201
3202/* static uint16_t GetIndexSrc(comedi_device *dev, enc_private *k )  */
3203/* { */
3204/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3205/* } */
3206
3207/*  Generate an index pulse. */
3208
3209static void PulseIndex_A(comedi_device *dev, enc_private *k)
3210{
3211	register uint16_t cra;
3212
3213	DEBUG("PulseIndex_A: pulse index enter\n");
3214
3215	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3216	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3217	DEBUG("PulseIndex_A: pulse index step1\n");
3218	DEBIwrite(dev, k->MyCRA, cra);
3219}
3220
3221static void PulseIndex_B(comedi_device *dev, enc_private *k)
3222{
3223	register uint16_t crb;
3224
3225	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3226	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3227	DEBIwrite(dev, k->MyCRB, crb);
3228}
3229
3230/*  Write value into counter preload register. */
3231
3232static void Preload(comedi_device *dev, enc_private *k, uint32_t value)
3233{
3234	DEBUG("Preload: preload enter\n");
3235	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3236	DEBUG("Preload: preload step 1\n");
3237	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3238		(uint16_t) (value >> 16));
3239}
3240
3241static void CountersInit(comedi_device *dev)
3242{
3243	int chan;
3244	enc_private *k;
3245	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3246		/*  index. */
3247		(INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3248		(CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3249		(CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3250		(CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3251		(CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3252		(CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3253
3254	/*  Disable all counter interrupts and clear any captured counter events. */
3255	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3256		k = &encpriv[chan];
3257		k->SetMode(dev, k, Setup, TRUE);
3258		k->SetIntSrc(dev, k, 0);
3259		k->ResetCapFlags(dev, k);
3260		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3261	}
3262	DEBUG("CountersInit: counters initialized \n");
3263
3264}
3265