s626.c revision ae6eb75c63bcc21ffdb8c617a09d35b4a4ef11fe
1/*
2  comedi/drivers/s626.c
3  Sensoray s626 Comedi driver
4
5  COMEDI - Linux Control and Measurement Device Interface
6  Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7
8  Based on Sensoray Model 626 Linux driver Version 0.2
9  Copyright (C) 2002-2004 Sensoray Co., Inc.
10
11  This program is free software; you can redistribute it and/or modify
12  it under the terms of the GNU General Public License as published by
13  the Free Software Foundation; either version 2 of the License, or
14  (at your option) any later version.
15
16  This program is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  GNU General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24
25*/
26
27/*
28Driver: s626
29Description: Sensoray 626 driver
30Devices: [Sensoray] 626 (s626)
31Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32Updated: Fri, 15 Feb 2008 10:28:42 +0000
33Status: experimental
34
35Configuration options:
36  [0] - PCI bus of device (optional)
37  [1] - PCI slot of device (optional)
38  If bus/slot is not specified, the first supported
39  PCI device found will be used.
40
41INSN_CONFIG instructions:
42  analog input:
43   none
44
45  analog output:
46   none
47
48  digital channel:
49   s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50   supported configuration options:
51   INSN_CONFIG_DIO_QUERY
52   COMEDI_INPUT
53   COMEDI_OUTPUT
54
55  encoder:
56   Every channel must be configured before reading.
57
58   Example code
59
60   insn.insn=INSN_CONFIG;   //configuration instruction
61   insn.n=1;                //number of operation (must be 1)
62   insn.data=&initialvalue; //initial value loaded into encoder
63				//during configuration
64   insn.subdev=5;           //encoder subdevice
65   insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66							//to configure
67
68   comedi_do_insn(cf,&insn); //executing configuration
69*/
70
71#include <linux/interrupt.h>
72#include <linux/kernel.h>
73#include <linux/types.h>
74
75#include "../comedidev.h"
76
77#include "comedi_pci.h"
78
79#include "comedi_fc.h"
80#include "s626.h"
81
82MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
83MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
84MODULE_LICENSE("GPL");
85
86struct s626_board {
87	const char *name;
88	int ai_chans;
89	int ai_bits;
90	int ao_chans;
91	int ao_bits;
92	int dio_chans;
93	int dio_banks;
94	int enc_chans;
95};
96
97static const struct s626_board s626_boards[] = {
98	{
99	 .name = "s626",
100	 .ai_chans = S626_ADC_CHANNELS,
101	 .ai_bits = 14,
102	 .ao_chans = S626_DAC_CHANNELS,
103	 .ao_bits = 13,
104	 .dio_chans = S626_DIO_CHANNELS,
105	 .dio_banks = S626_DIO_BANKS,
106	 .enc_chans = S626_ENCODER_CHANNELS,
107	 }
108};
109
110#define thisboard ((const struct s626_board *)dev->board_ptr)
111#define PCI_VENDOR_ID_S626 0x1131
112#define PCI_DEVICE_ID_S626 0x7146
113
114/*
115 * For devices with vendor:device id == 0x1131:0x7146 you must specify
116 * also subvendor:subdevice ids, because otherwise it will conflict with
117 * Philips SAA7146 media/dvb based cards.
118 */
119static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
120	{PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, 0x6000, 0x0272, 0, 0, 0},
121	{0}
122};
123
124MODULE_DEVICE_TABLE(pci, s626_pci_table);
125
126static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
127static int s626_detach(struct comedi_device *dev);
128
129static struct comedi_driver driver_s626 = {
130	.driver_name = "s626",
131	.module = THIS_MODULE,
132	.attach = s626_attach,
133	.detach = s626_detach,
134};
135
136struct s626_private {
137	struct pci_dev *pdev;
138	void *base_addr;
139	int got_regions;
140	short allocatedBuf;
141	uint8_t ai_cmd_running;	/*  ai_cmd is running */
142	uint8_t ai_continous;	/*  continous aquisition */
143	int ai_sample_count;	/*  number of samples to acquire */
144	unsigned int ai_sample_timer;
145	/*  time between samples in  units of the timer */
146	int ai_convert_count;	/*  conversion counter */
147	unsigned int ai_convert_timer;
148	/*  time between conversion in  units of the timer */
149	uint16_t CounterIntEnabs;
150	/* Counter interrupt enable  mask for MISC2 register. */
151	uint8_t AdcItems;	/* Number of items in ADC poll  list. */
152	struct bufferDMA RPSBuf;	/* DMA buffer used to hold ADC (RPS1) program. */
153	struct bufferDMA ANABuf;
154	/* DMA buffer used to receive ADC data and hold DAC data. */
155	uint32_t *pDacWBuf;
156	/* Pointer to logical adrs of DMA buffer used to hold DAC  data. */
157	uint16_t Dacpol;	/* Image of DAC polarity register. */
158	uint8_t TrimSetpoint[12];	/* Images of TrimDAC setpoints */
159	uint16_t ChargeEnabled;	/* Image of MISC2 Battery */
160	/* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
161	uint16_t WDInterval;	/* Image of MISC2 watchdog interval control bits. */
162	uint32_t I2CAdrs;
163	/* I2C device address for onboard EEPROM (board rev dependent). */
164	/*   short         I2Cards; */
165	unsigned int ao_readback[S626_DAC_CHANNELS];
166};
167
168struct dio_private {
169	uint16_t RDDIn;
170	uint16_t WRDOut;
171	uint16_t RDEdgSel;
172	uint16_t WREdgSel;
173	uint16_t RDCapSel;
174	uint16_t WRCapSel;
175	uint16_t RDCapFlg;
176	uint16_t RDIntSel;
177	uint16_t WRIntSel;
178};
179
180static struct dio_private dio_private_A = {
181	.RDDIn = LP_RDDINA,
182	.WRDOut = LP_WRDOUTA,
183	.RDEdgSel = LP_RDEDGSELA,
184	.WREdgSel = LP_WREDGSELA,
185	.RDCapSel = LP_RDCAPSELA,
186	.WRCapSel = LP_WRCAPSELA,
187	.RDCapFlg = LP_RDCAPFLGA,
188	.RDIntSel = LP_RDINTSELA,
189	.WRIntSel = LP_WRINTSELA,
190};
191
192static struct dio_private dio_private_B = {
193	.RDDIn = LP_RDDINB,
194	.WRDOut = LP_WRDOUTB,
195	.RDEdgSel = LP_RDEDGSELB,
196	.WREdgSel = LP_WREDGSELB,
197	.RDCapSel = LP_RDCAPSELB,
198	.WRCapSel = LP_WRCAPSELB,
199	.RDCapFlg = LP_RDCAPFLGB,
200	.RDIntSel = LP_RDINTSELB,
201	.WRIntSel = LP_WRINTSELB,
202};
203
204static struct dio_private dio_private_C = {
205	.RDDIn = LP_RDDINC,
206	.WRDOut = LP_WRDOUTC,
207	.RDEdgSel = LP_RDEDGSELC,
208	.WREdgSel = LP_WREDGSELC,
209	.RDCapSel = LP_RDCAPSELC,
210	.WRCapSel = LP_WRCAPSELC,
211	.RDCapFlg = LP_RDCAPFLGC,
212	.RDIntSel = LP_RDINTSELC,
213	.WRIntSel = LP_WRINTSELC,
214};
215
216/* to group dio devices (48 bits mask and data are not allowed ???)
217static struct dio_private *dio_private_word[]={
218  &dio_private_A,
219  &dio_private_B,
220  &dio_private_C,
221};
222*/
223
224#define devpriv ((struct s626_private *)dev->private)
225#define diopriv ((struct dio_private *)s->private)
226
227static int __devinit driver_s626_pci_probe(struct pci_dev *dev,
228					   const struct pci_device_id *ent)
229{
230	return comedi_pci_auto_config(dev, driver_s626.driver_name);
231}
232
233static void __devexit driver_s626_pci_remove(struct pci_dev *dev)
234{
235	comedi_pci_auto_unconfig(dev);
236}
237
238static struct pci_driver driver_s626_pci_driver = {
239	.id_table = s626_pci_table,
240	.probe = &driver_s626_pci_probe,
241	.remove = __devexit_p(&driver_s626_pci_remove)
242};
243
244static int __init driver_s626_init_module(void)
245{
246	int retval;
247
248	retval = comedi_driver_register(&driver_s626);
249	if (retval < 0)
250		return retval;
251
252	driver_s626_pci_driver.name = (char *)driver_s626.driver_name;
253	return pci_register_driver(&driver_s626_pci_driver);
254}
255
256static void __exit driver_s626_cleanup_module(void)
257{
258	pci_unregister_driver(&driver_s626_pci_driver);
259	comedi_driver_unregister(&driver_s626);
260}
261
262module_init(driver_s626_init_module);
263module_exit(driver_s626_cleanup_module);
264
265/* ioctl routines */
266static int s626_ai_insn_config(struct comedi_device *dev,
267			       struct comedi_subdevice *s,
268			       struct comedi_insn *insn, unsigned int *data);
269/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
270static int s626_ai_insn_read(struct comedi_device *dev,
271			     struct comedi_subdevice *s,
272			     struct comedi_insn *insn, unsigned int *data);
273static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
274static int s626_ai_cmdtest(struct comedi_device *dev,
275			   struct comedi_subdevice *s, struct comedi_cmd *cmd);
276static int s626_ai_cancel(struct comedi_device *dev,
277			  struct comedi_subdevice *s);
278static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
279			 struct comedi_insn *insn, unsigned int *data);
280static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
281			 struct comedi_insn *insn, unsigned int *data);
282static int s626_dio_insn_bits(struct comedi_device *dev,
283			      struct comedi_subdevice *s,
284			      struct comedi_insn *insn, unsigned int *data);
285static int s626_dio_insn_config(struct comedi_device *dev,
286				struct comedi_subdevice *s,
287				struct comedi_insn *insn, unsigned int *data);
288static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
289static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
290			      unsigned int mask);
291static int s626_dio_clear_irq(struct comedi_device *dev);
292static int s626_enc_insn_config(struct comedi_device *dev,
293				struct comedi_subdevice *s,
294				struct comedi_insn *insn, unsigned int *data);
295static int s626_enc_insn_read(struct comedi_device *dev,
296			      struct comedi_subdevice *s,
297			      struct comedi_insn *insn, unsigned int *data);
298static int s626_enc_insn_write(struct comedi_device *dev,
299			       struct comedi_subdevice *s,
300			       struct comedi_insn *insn, unsigned int *data);
301static int s626_ns_to_timer(int *nanosec, int round_mode);
302static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
303static int s626_ai_inttrig(struct comedi_device *dev,
304			   struct comedi_subdevice *s, unsigned int trignum);
305static irqreturn_t s626_irq_handler(int irq, void *d);
306static unsigned int s626_ai_reg_to_uint(int data);
307/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
308
309/* end ioctl routines */
310
311/* internal routines */
312static void s626_dio_init(struct comedi_device *dev);
313static void ResetADC(struct comedi_device *dev, uint8_t * ppl);
314static void LoadTrimDACs(struct comedi_device *dev);
315static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
316			 uint8_t DacData);
317static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
318static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
319static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
320static void SendDAC(struct comedi_device *dev, uint32_t val);
321static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
322static void DEBItransfer(struct comedi_device *dev);
323static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
324static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
325static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
326			uint16_t wdata);
327static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
328		      size_t bsize);
329
330/*  COUNTER OBJECT ------------------------------------------------ */
331struct enc_private {
332	/*  Pointers to functions that differ for A and B counters: */
333	uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *);	/* Return clock enable. */
334	uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *);	/* Return interrupt source. */
335	uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *);	/* Return preload trigger source. */
336	uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *);	/* Return standardized operating mode. */
337	void (*PulseIndex) (struct comedi_device *dev, struct enc_private *);	/* Generate soft index strobe. */
338	void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab);	/* Program clock enable. */
339	void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource);	/* Program interrupt source. */
340	void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig);	/* Program preload trigger source. */
341	void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc);	/* Program standardized operating mode. */
342	void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *);	/* Reset event capture flags. */
343
344	uint16_t MyCRA;		/*    Address of CRA register. */
345	uint16_t MyCRB;		/*    Address of CRB register. */
346	uint16_t MyLatchLsw;	/*    Address of Latch least-significant-word */
347	/*    register. */
348	uint16_t MyEventBits[4];	/*    Bit translations for IntSrc -->RDMISC2. */
349};
350
351#define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
352
353/* counters routines */
354static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
355			    int tick);
356static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
357static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
358static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
359static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
360static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
361static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
362		      uint16_t Setup, uint16_t DisableIntSrc);
363static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
364		      uint16_t Setup, uint16_t DisableIntSrc);
365static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
366			uint16_t enab);
367static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
368			uint16_t enab);
369static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
370static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
371static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
372			   uint16_t value);
373/* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
374static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
375			  uint16_t Trig);
376static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
377			  uint16_t Trig);
378static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
379static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
380static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
381			uint16_t IntSource);
382static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
383			uint16_t IntSource);
384static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
385static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
386/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
387/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
388/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
389/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
390/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
391/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k );  */
392/* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value );  */
393/* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k );  */
394static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
395static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
396static void Preload(struct comedi_device *dev, struct enc_private *k,
397		    uint32_t value);
398static void CountersInit(struct comedi_device *dev);
399/* end internal routines */
400
401/*  Counter objects constructor. */
402
403/*  Counter overflow/index event flag masks for RDMISC2. */
404#define INDXMASK(C)		(1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
405#define OVERMASK(C)		(1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
406#define EVBITS(C)		{ 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
407
408/*  Translation table to map IntSrc into equivalent RDMISC2 event flag  bits. */
409/* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
410
411/* struct enc_private; */
412static struct enc_private enc_private_data[] = {
413	{
414	 .GetEnable = GetEnable_A,
415	 .GetIntSrc = GetIntSrc_A,
416	 .GetLoadTrig = GetLoadTrig_A,
417	 .GetMode = GetMode_A,
418	 .PulseIndex = PulseIndex_A,
419	 .SetEnable = SetEnable_A,
420	 .SetIntSrc = SetIntSrc_A,
421	 .SetLoadTrig = SetLoadTrig_A,
422	 .SetMode = SetMode_A,
423	 .ResetCapFlags = ResetCapFlags_A,
424	 .MyCRA = LP_CR0A,
425	 .MyCRB = LP_CR0B,
426	 .MyLatchLsw = LP_CNTR0ALSW,
427	 .MyEventBits = EVBITS(0),
428	 },
429	{
430	 .GetEnable = GetEnable_A,
431	 .GetIntSrc = GetIntSrc_A,
432	 .GetLoadTrig = GetLoadTrig_A,
433	 .GetMode = GetMode_A,
434	 .PulseIndex = PulseIndex_A,
435	 .SetEnable = SetEnable_A,
436	 .SetIntSrc = SetIntSrc_A,
437	 .SetLoadTrig = SetLoadTrig_A,
438	 .SetMode = SetMode_A,
439	 .ResetCapFlags = ResetCapFlags_A,
440	 .MyCRA = LP_CR1A,
441	 .MyCRB = LP_CR1B,
442	 .MyLatchLsw = LP_CNTR1ALSW,
443	 .MyEventBits = EVBITS(1),
444	 },
445	{
446	 .GetEnable = GetEnable_A,
447	 .GetIntSrc = GetIntSrc_A,
448	 .GetLoadTrig = GetLoadTrig_A,
449	 .GetMode = GetMode_A,
450	 .PulseIndex = PulseIndex_A,
451	 .SetEnable = SetEnable_A,
452	 .SetIntSrc = SetIntSrc_A,
453	 .SetLoadTrig = SetLoadTrig_A,
454	 .SetMode = SetMode_A,
455	 .ResetCapFlags = ResetCapFlags_A,
456	 .MyCRA = LP_CR2A,
457	 .MyCRB = LP_CR2B,
458	 .MyLatchLsw = LP_CNTR2ALSW,
459	 .MyEventBits = EVBITS(2),
460	 },
461	{
462	 .GetEnable = GetEnable_B,
463	 .GetIntSrc = GetIntSrc_B,
464	 .GetLoadTrig = GetLoadTrig_B,
465	 .GetMode = GetMode_B,
466	 .PulseIndex = PulseIndex_B,
467	 .SetEnable = SetEnable_B,
468	 .SetIntSrc = SetIntSrc_B,
469	 .SetLoadTrig = SetLoadTrig_B,
470	 .SetMode = SetMode_B,
471	 .ResetCapFlags = ResetCapFlags_B,
472	 .MyCRA = LP_CR0A,
473	 .MyCRB = LP_CR0B,
474	 .MyLatchLsw = LP_CNTR0BLSW,
475	 .MyEventBits = EVBITS(3),
476	 },
477	{
478	 .GetEnable = GetEnable_B,
479	 .GetIntSrc = GetIntSrc_B,
480	 .GetLoadTrig = GetLoadTrig_B,
481	 .GetMode = GetMode_B,
482	 .PulseIndex = PulseIndex_B,
483	 .SetEnable = SetEnable_B,
484	 .SetIntSrc = SetIntSrc_B,
485	 .SetLoadTrig = SetLoadTrig_B,
486	 .SetMode = SetMode_B,
487	 .ResetCapFlags = ResetCapFlags_B,
488	 .MyCRA = LP_CR1A,
489	 .MyCRB = LP_CR1B,
490	 .MyLatchLsw = LP_CNTR1BLSW,
491	 .MyEventBits = EVBITS(4),
492	 },
493	{
494	 .GetEnable = GetEnable_B,
495	 .GetIntSrc = GetIntSrc_B,
496	 .GetLoadTrig = GetLoadTrig_B,
497	 .GetMode = GetMode_B,
498	 .PulseIndex = PulseIndex_B,
499	 .SetEnable = SetEnable_B,
500	 .SetIntSrc = SetIntSrc_B,
501	 .SetLoadTrig = SetLoadTrig_B,
502	 .SetMode = SetMode_B,
503	 .ResetCapFlags = ResetCapFlags_B,
504	 .MyCRA = LP_CR2A,
505	 .MyCRB = LP_CR2B,
506	 .MyLatchLsw = LP_CNTR2BLSW,
507	 .MyEventBits = EVBITS(5),
508	 },
509};
510
511/*  enab/disable a function or test status bit(s) that are accessed */
512/*  through Main Control Registers 1 or 2. */
513#define MC_ENABLE(REGADRS, CTRLWORD)	writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
514
515#define MC_DISABLE(REGADRS, CTRLWORD)	writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
516
517#define MC_TEST(REGADRS, CTRLWORD)	((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
518
519/* #define WR7146(REGARDS,CTRLWORD)
520    writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
521#define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
522
523/* #define RR7146(REGARDS)
524    readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
525#define RR7146(REGARDS)		readl(devpriv->base_addr+(REGARDS))
526
527#define BUGFIX_STREG(REGADRS)   (REGADRS - 4)
528
529/*  Write a time slot control record to TSL2. */
530#define VECTPORT(VECTNUM)		(P_TSL2 + ((VECTNUM) << 2))
531#define SETVECT(VECTNUM, VECTVAL)	WR7146(VECTPORT(VECTNUM), (VECTVAL))
532
533/*  Code macros used for constructing I2C command bytes. */
534#define I2C_B2(ATTR, VAL)	(((ATTR) << 6) | ((VAL) << 24))
535#define I2C_B1(ATTR, VAL)	(((ATTR) << 4) | ((VAL) << 16))
536#define I2C_B0(ATTR, VAL)	(((ATTR) << 2) | ((VAL) <<  8))
537
538static const struct comedi_lrange s626_range_table = { 2, {
539							   RANGE(-5, 5),
540							   RANGE(-10, 10),
541							   }
542};
543
544static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
545{
546/*   uint8_t	PollList; */
547/*   uint16_t	AdcData; */
548/*   uint16_t	StartVal; */
549/*   uint16_t	index; */
550/*   unsigned int data[16]; */
551	int result;
552	int i;
553	int ret;
554	resource_size_t resourceStart;
555	dma_addr_t appdma;
556	struct comedi_subdevice *s;
557	const struct pci_device_id *ids;
558	struct pci_dev *pdev = NULL;
559
560	if (alloc_private(dev, sizeof(struct s626_private)) < 0)
561		return -ENOMEM;
562
563	for (i = 0; i < (ARRAY_SIZE(s626_pci_table) - 1) && !pdev; i++) {
564		ids = &s626_pci_table[i];
565		do {
566			pdev = pci_get_subsys(ids->vendor, ids->device,
567					      ids->subvendor, ids->subdevice,
568					      pdev);
569
570			if ((it->options[0] || it->options[1]) && pdev) {
571				/* matches requested bus/slot */
572				if (pdev->bus->number == it->options[0] &&
573				    PCI_SLOT(pdev->devfn) == it->options[1])
574					break;
575			} else
576				break;
577		} while (1);
578	}
579	devpriv->pdev = pdev;
580
581	if (pdev == NULL) {
582		printk(KERN_ERR "s626_attach: Board not present!!!\n");
583		return -ENODEV;
584	}
585
586	result = comedi_pci_enable(pdev, "s626");
587	if (result < 0) {
588		printk(KERN_ERR "s626_attach: comedi_pci_enable fails\n");
589		return -ENODEV;
590	}
591	devpriv->got_regions = 1;
592
593	resourceStart = pci_resource_start(devpriv->pdev, 0);
594
595	devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
596	if (devpriv->base_addr == NULL) {
597		printk(KERN_ERR "s626_attach: IOREMAP failed\n");
598		return -ENODEV;
599	}
600
601	if (devpriv->base_addr) {
602		/* disable master interrupt */
603		writel(0, devpriv->base_addr + P_IER);
604
605		/* soft reset */
606		writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
607
608		/* DMA FIXME DMA// */
609		DEBUG("s626_attach: DMA ALLOCATION\n");
610
611		/* adc buffer allocation */
612		devpriv->allocatedBuf = 0;
613
614		devpriv->ANABuf.LogicalBase =
615		    pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
616
617		if (devpriv->ANABuf.LogicalBase == NULL) {
618			printk(KERN_ERR "s626_attach: DMA Memory mapping error\n");
619			return -ENOMEM;
620		}
621
622		devpriv->ANABuf.PhysicalBase = appdma;
623
624		DEBUG
625		    ("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n",
626		     devpriv->ANABuf.LogicalBase, DMABUF_SIZE,
627		     (uint32_t) devpriv->ANABuf.PhysicalBase);
628
629		devpriv->allocatedBuf++;
630
631		devpriv->RPSBuf.LogicalBase =
632		    pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
633
634		if (devpriv->RPSBuf.LogicalBase == NULL) {
635			printk(KERN_ERR "s626_attach: DMA Memory mapping error\n");
636			return -ENOMEM;
637		}
638
639		devpriv->RPSBuf.PhysicalBase = appdma;
640
641		DEBUG
642		    ("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n",
643		     devpriv->RPSBuf.LogicalBase, DMABUF_SIZE,
644		     (uint32_t) devpriv->RPSBuf.PhysicalBase);
645
646		devpriv->allocatedBuf++;
647
648	}
649
650	dev->board_ptr = s626_boards;
651	dev->board_name = thisboard->name;
652
653	if (alloc_subdevices(dev, 6) < 0)
654		return -ENOMEM;
655
656	dev->iobase = (unsigned long)devpriv->base_addr;
657	dev->irq = devpriv->pdev->irq;
658
659	/* set up interrupt handler */
660	if (dev->irq == 0) {
661		printk(KERN_ERR " unknown irq (bad)\n");
662	} else {
663		ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
664				  "s626", dev);
665
666		if (ret < 0) {
667			printk(KERN_ERR " irq not available\n");
668			dev->irq = 0;
669		}
670	}
671
672	DEBUG("s626_attach: -- it opts  %d,%d --\n",
673	      it->options[0], it->options[1]);
674
675	s = dev->subdevices + 0;
676	/* analog input subdevice */
677	dev->read_subdev = s;
678	/* we support single-ended (ground) and differential */
679	s->type = COMEDI_SUBD_AI;
680	s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
681	s->n_chan = thisboard->ai_chans;
682	s->maxdata = (0xffff >> 2);
683	s->range_table = &s626_range_table;
684	s->len_chanlist = thisboard->ai_chans;	/* This is the maximum chanlist
685						   length that the board can
686						   handle */
687	s->insn_config = s626_ai_insn_config;
688	s->insn_read = s626_ai_insn_read;
689	s->do_cmd = s626_ai_cmd;
690	s->do_cmdtest = s626_ai_cmdtest;
691	s->cancel = s626_ai_cancel;
692
693	s = dev->subdevices + 1;
694	/* analog output subdevice */
695	s->type = COMEDI_SUBD_AO;
696	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
697	s->n_chan = thisboard->ao_chans;
698	s->maxdata = (0x3fff);
699	s->range_table = &range_bipolar10;
700	s->insn_write = s626_ao_winsn;
701	s->insn_read = s626_ao_rinsn;
702
703	s = dev->subdevices + 2;
704	/* digital I/O subdevice */
705	s->type = COMEDI_SUBD_DIO;
706	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
707	s->n_chan = S626_DIO_CHANNELS;
708	s->maxdata = 1;
709	s->io_bits = 0xffff;
710	s->private = &dio_private_A;
711	s->range_table = &range_digital;
712	s->insn_config = s626_dio_insn_config;
713	s->insn_bits = s626_dio_insn_bits;
714
715	s = dev->subdevices + 3;
716	/* digital I/O subdevice */
717	s->type = COMEDI_SUBD_DIO;
718	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
719	s->n_chan = 16;
720	s->maxdata = 1;
721	s->io_bits = 0xffff;
722	s->private = &dio_private_B;
723	s->range_table = &range_digital;
724	s->insn_config = s626_dio_insn_config;
725	s->insn_bits = s626_dio_insn_bits;
726
727	s = dev->subdevices + 4;
728	/* digital I/O subdevice */
729	s->type = COMEDI_SUBD_DIO;
730	s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
731	s->n_chan = 16;
732	s->maxdata = 1;
733	s->io_bits = 0xffff;
734	s->private = &dio_private_C;
735	s->range_table = &range_digital;
736	s->insn_config = s626_dio_insn_config;
737	s->insn_bits = s626_dio_insn_bits;
738
739	s = dev->subdevices + 5;
740	/* encoder (counter) subdevice */
741	s->type = COMEDI_SUBD_COUNTER;
742	s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
743	s->n_chan = thisboard->enc_chans;
744	s->private = enc_private_data;
745	s->insn_config = s626_enc_insn_config;
746	s->insn_read = s626_enc_insn_read;
747	s->insn_write = s626_enc_insn_write;
748	s->maxdata = 0xffffff;
749	s->range_table = &range_unknown;
750
751	/* stop ai_command */
752	devpriv->ai_cmd_running = 0;
753
754	if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
755		dma_addr_t pPhysBuf;
756		uint16_t chan;
757
758		/*  enab DEBI and audio pins, enable I2C interface. */
759		MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
760		/*  Configure DEBI operating mode. */
761		WR7146(P_DEBICFG, DEBI_CFG_SLAVE16	/*  Local bus is 16 */
762		       /*  bits wide. */
763		       | (DEBI_TOUT << DEBI_CFG_TOUT_BIT)
764
765		       /*  Declare DEBI */
766		       /*  transfer timeout */
767		       /*  interval. */
768		       |DEBI_SWAP	/*  Set up byte lane */
769		       /*  steering. */
770		       | DEBI_CFG_INTEL);	/*  Intel-compatible */
771		/*  local bus (DEBI */
772		/*  never times out). */
773		DEBUG("s626_attach: %d debi init -- %d\n",
774		      DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
775		      DEBI_SWAP | DEBI_CFG_INTEL,
776		      DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
777		      DEBI_CFG_16Q);
778
779		/* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
780		/* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
781
782		/*  Paging is disabled. */
783		WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE);	/*  Disable MMU paging. */
784
785		/*  Init GPIO so that ADC Start* is negated. */
786		WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
787
788		/* IsBoardRevA is a boolean that indicates whether the board is RevA.
789		 *
790		 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
791		 * EEPROM ADDRESS SELECTION.  Initialize the I2C interface, which
792		 * is used to access the onboard serial EEPROM.  The EEPROM's I2C
793		 * DeviceAddress is hardwired to a value that is dependent on the
794		 * 626 board revision.  On all board revisions, the EEPROM stores
795		 * TrimDAC calibration constants for analog I/O.  On RevB and
796		 * higher boards, the DeviceAddress is hardwired to 0 to enable
797		 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
798		 * this is the address at which the SAA7146 expects a
799		 * configuration EEPROM to reside.  On RevA boards, the EEPROM
800		 * device address, which is hardwired to 4, prevents the SAA7146
801		 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
802		 * default values, instead.
803		 */
804
805		/*     devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
806		/*  DeviceType (0xA0) */
807		/*  and DeviceAddress<<1. */
808
809		devpriv->I2CAdrs = 0xA0;	/*  I2C device address for onboard */
810		/*  eeprom(revb) */
811
812		/*  Issue an I2C ABORT command to halt any I2C operation in */
813		/* progress and reset BUSY flag. */
814		WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
815		/*  Write I2C control: abort any I2C activity. */
816		MC_ENABLE(P_MC2, MC2_UPLD_IIC);
817		/*  Invoke command  upload */
818		while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
819			;
820		/*  and wait for upload to complete. */
821
822		/* Per SAA7146 data sheet, write to STATUS reg twice to
823		 * reset all  I2C error flags. */
824		for (i = 0; i < 2; i++) {
825			WR7146(P_I2CSTAT, I2C_CLKSEL);
826			/*  Write I2C control: reset  error flags. */
827			MC_ENABLE(P_MC2, MC2_UPLD_IIC);	/*  Invoke command upload */
828			while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
829				;
830			/* and wait for upload to complete. */
831		}
832
833		/* Init audio interface functional attributes: set DAC/ADC
834		 * serial clock rates, invert DAC serial clock so that
835		 * DAC data setup times are satisfied, enable DAC serial
836		 * clock out.
837		 */
838
839		WR7146(P_ACON2, ACON2_INIT);
840
841		/* Set up TSL1 slot list, which is used to control the
842		 * accumulation of ADC data: RSD1 = shift data in on SD1.
843		 * SIB_A1  = store data uint8_t at next available location in
844		 * FB BUFFER1  register. */
845		WR7146(P_TSL1, RSD1 | SIB_A1);
846		/*  Fetch ADC high data uint8_t. */
847		WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
848		/*  Fetch ADC low data uint8_t; end of TSL1. */
849
850		/*  enab TSL1 slot list so that it executes all the time. */
851		WR7146(P_ACON1, ACON1_ADCSTART);
852
853		/*  Initialize RPS registers used for ADC. */
854
855		/* Physical start of RPS program. */
856		WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
857
858		WR7146(P_RPSPAGE1, 0);
859		/*  RPS program performs no explicit mem writes. */
860		WR7146(P_RPS1_TOUT, 0);	/*  Disable RPS timeouts. */
861
862		/* SAA7146 BUG WORKAROUND.  Initialize SAA7146 ADC interface
863		 * to a known state by invoking ADCs until FB BUFFER 1
864		 * register shows that it is correctly receiving ADC data.
865		 * This is necessary because the SAA7146 ADC interface does
866		 * not start up in a defined state after a PCI reset.
867		 */
868
869/*     PollList = EOPL;		// Create a simple polling */
870/*				// list for analog input */
871/*				// channel 0. */
872/*     ResetADC( dev, &PollList ); */
873
874/*     s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
875/*							//Get initial ADC */
876/*							//value. */
877
878/*     StartVal = data[0]; */
879
880/*     // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
881/*     // Invoke ADCs until the new ADC value differs from the initial */
882/*     // value or a timeout occurs.  The timeout protects against the */
883/*     // possibility that the driver is restarting and the ADC data is a */
884/*     // fixed value resulting from the applied ADC analog input being */
885/*     // unusually quiet or at the rail. */
886
887/*     for ( index = 0; index < 500; index++ ) */
888/*       { */
889/*	s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
890/*	AdcData = data[0];	//ReadADC(  &AdcData ); */
891/*	if ( AdcData != StartVal ) */
892/*		break; */
893/*       } */
894
895		/*  end initADC */
896
897		/*  init the DAC interface */
898
899		/* Init Audio2's output DMAC attributes: burst length = 1
900		 * DWORD,  threshold = 1 DWORD.
901		 */
902		WR7146(P_PCI_BT_A, 0);
903
904		/* Init Audio2's output DMA physical addresses.  The protection
905		 * address is set to 1 DWORD past the base address so that a
906		 * single DWORD will be transferred each time a DMA transfer is
907		 * enabled. */
908
909		pPhysBuf =
910		    devpriv->ANABuf.PhysicalBase +
911		    (DAC_WDMABUF_OS * sizeof(uint32_t));
912
913		WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf);	/*  Buffer base adrs. */
914		WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t)));	/*  Protection address. */
915
916		/* Cache Audio2's output DMA buffer logical address.  This is
917		 * where DAC data is buffered for A2 output DMA transfers. */
918		devpriv->pDacWBuf =
919		    (uint32_t *) devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS;
920
921		/* Audio2's output channels does not use paging.  The protection
922		 * violation handling bit is set so that the DMAC will
923		 * automatically halt and its PCI address pointer will be reset
924		 * when the protection address is reached. */
925
926		WR7146(P_PAGEA2_OUT, 8);
927
928		/* Initialize time slot list 2 (TSL2), which is used to control
929		 * the clock generation for and serialization of data to be sent
930		 * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
931		 * execution; this permits other slots to be safely modified
932		 * without first turning off the TSL sequencer (which is
933		 * apparently impossible to do).  Also, SD3 (which is driven by a
934		 * pull-up resistor) is shifted in and stored to the MSB of
935		 * FB_BUFFER2 to be used as evidence that the slot sequence has
936		 * not yet finished executing.
937		 */
938
939		SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
940		/*  Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
941
942		/* Initialize slot 1, which is constant.  Slot 1 causes a
943		 * DWORD to be transferred from audio channel 2's output FIFO
944		 * to the FIFO's output buffer so that it can be serialized
945		 * and sent to the DAC during subsequent slots.  All remaining
946		 * slots are dynamically populated as required by the target
947		 * DAC device.
948		 */
949		SETVECT(1, LF_A2);
950		/*  Slot 1: Fetch DWORD from Audio2's output FIFO. */
951
952		/*  Start DAC's audio interface (TSL2) running. */
953		WR7146(P_ACON1, ACON1_DACSTART);
954
955		/* end init DAC interface */
956
957		/* Init Trim DACs to calibrated values.  Do it twice because the
958		 * SAA7146 audio channel does not always reset properly and
959		 * sometimes causes the first few TrimDAC writes to malfunction.
960		 */
961
962		LoadTrimDACs(dev);
963		LoadTrimDACs(dev);	/*  Insurance. */
964
965		/* Manually init all gate array hardware in case this is a soft
966		 * reset (we have no way of determining whether this is a warm
967		 * or cold start).  This is necessary because the gate array will
968		 * reset only in response to a PCI hard reset; there is no soft
969		 * reset function. */
970
971		/* Init all DAC outputs to 0V and init all DAC setpoint and
972		 * polarity images.
973		 */
974		for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
975			SetDAC(dev, chan, 0);
976
977		/* Init image of WRMISC2 Battery Charger Enabled control bit.
978		 * This image is used when the state of the charger control bit,
979		 * which has no direct hardware readback mechanism, is queried.
980		 */
981		devpriv->ChargeEnabled = 0;
982
983		/* Init image of watchdog timer interval in WRMISC2.  This image
984		 * maintains the value of the control bits of MISC2 are
985		 * continuously reset to zero as long as the WD timer is disabled.
986		 */
987		devpriv->WDInterval = 0;
988
989		/* Init Counter Interrupt enab mask for RDMISC2.  This mask is
990		 * applied against MISC2 when testing to determine which timer
991		 * events are requesting interrupt service.
992		 */
993		devpriv->CounterIntEnabs = 0;
994
995		/*  Init counters. */
996		CountersInit(dev);
997
998		/* Without modifying the state of the Battery Backup enab, disable
999		 * the watchdog timer, set DIO channels 0-5 to operate in the
1000		 * standard DIO (vs. counter overflow) mode, disable the battery
1001		 * charger, and reset the watchdog interval selector to zero.
1002		 */
1003		WriteMISC2(dev, (uint16_t) (DEBIread(dev,
1004						     LP_RDMISC2) &
1005					    MISC2_BATT_ENABLE));
1006
1007		/*  Initialize the digital I/O subsystem. */
1008		s626_dio_init(dev);
1009
1010		/* enable interrupt test */
1011		/*  writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
1012	}
1013
1014	DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
1015	      (uint32_t) devpriv->base_addr);
1016
1017	return 1;
1018}
1019
1020static unsigned int s626_ai_reg_to_uint(int data)
1021{
1022	unsigned int tempdata;
1023
1024	tempdata = (data >> 18);
1025	if (tempdata & 0x2000)
1026		tempdata &= 0x1fff;
1027	else
1028		tempdata += (1 << 13);
1029
1030	return tempdata;
1031}
1032
1033/* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
1034/*   return 0; */
1035/* } */
1036
1037static irqreturn_t s626_irq_handler(int irq, void *d)
1038{
1039	struct comedi_device *dev = d;
1040	struct comedi_subdevice *s;
1041	struct comedi_cmd *cmd;
1042	struct enc_private *k;
1043	unsigned long flags;
1044	int32_t *readaddr;
1045	uint32_t irqtype, irqstatus;
1046	int i = 0;
1047	short tempdata;
1048	uint8_t group;
1049	uint16_t irqbit;
1050
1051	DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
1052
1053	if (dev->attached == 0)
1054		return IRQ_NONE;
1055	/*  lock to avoid race with comedi_poll */
1056	spin_lock_irqsave(&dev->spinlock, flags);
1057
1058	/* save interrupt enable register state */
1059	irqstatus = readl(devpriv->base_addr + P_IER);
1060
1061	/* read interrupt type */
1062	irqtype = readl(devpriv->base_addr + P_ISR);
1063
1064	/* disable master interrupt */
1065	writel(0, devpriv->base_addr + P_IER);
1066
1067	/* clear interrupt */
1068	writel(irqtype, devpriv->base_addr + P_ISR);
1069
1070	/* do somethings */
1071	DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1072
1073	switch (irqtype) {
1074	case IRQ_RPS1:		/*  end_of_scan occurs */
1075
1076		DEBUG("s626_irq_handler: RPS1 irq detected\n");
1077
1078		/*  manage ai subdevice */
1079		s = dev->subdevices;
1080		cmd = &(s->async->cmd);
1081
1082		/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1083		 * first uint16_t in the buffer because it contains junk data from
1084		 * the final ADC of the previous poll list scan.
1085		 */
1086		readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1087
1088		/*  get the data and hand it over to comedi */
1089		for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1090			/*  Convert ADC data to 16-bit integer values and copy to application */
1091			/*  buffer. */
1092			tempdata = s626_ai_reg_to_uint((int)*readaddr);
1093			readaddr++;
1094
1095			/* put data into read buffer */
1096			/*  comedi_buf_put(s->async, tempdata); */
1097			if (cfc_write_to_buffer(s, tempdata) == 0)
1098				printk
1099				    ("s626_irq_handler: cfc_write_to_buffer error!\n");
1100
1101			DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1102			      i, tempdata);
1103		}
1104
1105		/* end of scan occurs */
1106		s->async->events |= COMEDI_CB_EOS;
1107
1108		if (!(devpriv->ai_continous))
1109			devpriv->ai_sample_count--;
1110		if (devpriv->ai_sample_count <= 0) {
1111			devpriv->ai_cmd_running = 0;
1112
1113			/*  Stop RPS program. */
1114			MC_DISABLE(P_MC1, MC1_ERPS1);
1115
1116			/* send end of acquisition */
1117			s->async->events |= COMEDI_CB_EOA;
1118
1119			/* disable master interrupt */
1120			irqstatus = 0;
1121		}
1122
1123		if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1124			DEBUG
1125			    ("s626_irq_handler: enable interrupt on dio channel %d\n",
1126			     cmd->scan_begin_arg);
1127
1128			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1129
1130			DEBUG("s626_irq_handler: External trigger is set!!!\n");
1131		}
1132		/*  tell comedi that data is there */
1133		DEBUG("s626_irq_handler: events %d\n", s->async->events);
1134		comedi_event(dev, s);
1135		break;
1136	case IRQ_GPIO3:	/* check dio and conter interrupt */
1137
1138		DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1139
1140		/*  manage ai subdevice */
1141		s = dev->subdevices;
1142		cmd = &(s->async->cmd);
1143
1144		/* s626_dio_clear_irq(dev); */
1145
1146		for (group = 0; group < S626_DIO_BANKS; group++) {
1147			irqbit = 0;
1148			/* read interrupt type */
1149			irqbit = DEBIread(dev,
1150					  ((struct dio_private *)(dev->
1151								  subdevices +
1152								  2 +
1153								  group)->
1154					   private)->RDCapFlg);
1155
1156			/* check if interrupt is generated from dio channels */
1157			if (irqbit) {
1158				s626_dio_reset_irq(dev, group, irqbit);
1159				DEBUG
1160				    ("s626_irq_handler: check interrupt on dio group %d %d\n",
1161				     group, i);
1162				if (devpriv->ai_cmd_running) {
1163					/* check if interrupt is an ai acquisition start trigger */
1164					if ((irqbit >> (cmd->start_arg -
1165							(16 * group)))
1166					    == 1 && cmd->start_src == TRIG_EXT) {
1167						DEBUG
1168						    ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1169						     cmd->start_arg);
1170
1171						/*  Start executing the RPS program. */
1172						MC_ENABLE(P_MC1, MC1_ERPS1);
1173
1174						DEBUG
1175						    ("s626_irq_handler: aquisition start triggered!!!\n");
1176
1177						if (cmd->scan_begin_src ==
1178						    TRIG_EXT) {
1179							DEBUG
1180							    ("s626_ai_cmd: enable interrupt on dio channel %d\n",
1181							     cmd->
1182							     scan_begin_arg);
1183
1184							s626_dio_set_irq(dev,
1185									 cmd->scan_begin_arg);
1186
1187							DEBUG
1188							    ("s626_irq_handler: External scan trigger is set!!!\n");
1189						}
1190					}
1191					if ((irqbit >> (cmd->scan_begin_arg -
1192							(16 * group)))
1193					    == 1
1194					    && cmd->scan_begin_src ==
1195					    TRIG_EXT) {
1196						DEBUG
1197						    ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1198						     cmd->scan_begin_arg);
1199
1200						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1201						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1202
1203						DEBUG
1204						    ("s626_irq_handler: scan triggered!!! %d\n",
1205						     devpriv->ai_sample_count);
1206						if (cmd->convert_src ==
1207						    TRIG_EXT) {
1208
1209							DEBUG
1210							    ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1211							     cmd->convert_arg -
1212							     (16 * group),
1213							     group);
1214
1215							devpriv->ai_convert_count
1216							    = cmd->chanlist_len;
1217
1218							s626_dio_set_irq(dev,
1219									 cmd->convert_arg);
1220
1221							DEBUG
1222							    ("s626_irq_handler: External convert trigger is set!!!\n");
1223						}
1224
1225						if (cmd->convert_src ==
1226						    TRIG_TIMER) {
1227							k = &encpriv[5];
1228							devpriv->ai_convert_count
1229							    = cmd->chanlist_len;
1230							k->SetEnable(dev, k,
1231								     CLKENAB_ALWAYS);
1232						}
1233					}
1234					if ((irqbit >> (cmd->convert_arg -
1235							(16 * group)))
1236					    == 1
1237					    && cmd->convert_src == TRIG_EXT) {
1238						DEBUG
1239						    ("s626_irq_handler: Edge capture interrupt recieved from channel %d\n",
1240						     cmd->convert_arg);
1241
1242						/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1243						MC_ENABLE(P_MC2, MC2_ADC_RPS);
1244
1245						DEBUG
1246						    ("s626_irq_handler: adc convert triggered!!!\n");
1247
1248						devpriv->ai_convert_count--;
1249
1250						if (devpriv->ai_convert_count >
1251						    0) {
1252
1253							DEBUG
1254							    ("s626_ai_cmd: enable interrupt on dio channel %d group %d\n",
1255							     cmd->convert_arg -
1256							     (16 * group),
1257							     group);
1258
1259							s626_dio_set_irq(dev,
1260									 cmd->convert_arg);
1261
1262							DEBUG
1263							    ("s626_irq_handler: External trigger is set!!!\n");
1264						}
1265					}
1266				}
1267				break;
1268			}
1269		}
1270
1271		/* read interrupt type */
1272		irqbit = DEBIread(dev, LP_RDMISC2);
1273
1274		/* check interrupt on counters */
1275		DEBUG("s626_irq_handler: check counters interrupt %d\n",
1276		      irqbit);
1277
1278		if (irqbit & IRQ_COINT1A) {
1279			DEBUG
1280			    ("s626_irq_handler: interrupt on counter 1A overflow\n");
1281			k = &encpriv[0];
1282
1283			/* clear interrupt capture flag */
1284			k->ResetCapFlags(dev, k);
1285		}
1286		if (irqbit & IRQ_COINT2A) {
1287			DEBUG
1288			    ("s626_irq_handler: interrupt on counter 2A overflow\n");
1289			k = &encpriv[1];
1290
1291			/* clear interrupt capture flag */
1292			k->ResetCapFlags(dev, k);
1293		}
1294		if (irqbit & IRQ_COINT3A) {
1295			DEBUG
1296			    ("s626_irq_handler: interrupt on counter 3A overflow\n");
1297			k = &encpriv[2];
1298
1299			/* clear interrupt capture flag */
1300			k->ResetCapFlags(dev, k);
1301		}
1302		if (irqbit & IRQ_COINT1B) {
1303			DEBUG
1304			    ("s626_irq_handler: interrupt on counter 1B overflow\n");
1305			k = &encpriv[3];
1306
1307			/* clear interrupt capture flag */
1308			k->ResetCapFlags(dev, k);
1309		}
1310		if (irqbit & IRQ_COINT2B) {
1311			DEBUG
1312			    ("s626_irq_handler: interrupt on counter 2B overflow\n");
1313			k = &encpriv[4];
1314
1315			/* clear interrupt capture flag */
1316			k->ResetCapFlags(dev, k);
1317
1318			if (devpriv->ai_convert_count > 0) {
1319				devpriv->ai_convert_count--;
1320				if (devpriv->ai_convert_count == 0)
1321					k->SetEnable(dev, k, CLKENAB_INDEX);
1322
1323				if (cmd->convert_src == TRIG_TIMER) {
1324					DEBUG
1325					    ("s626_irq_handler: conver timer trigger!!! %d\n",
1326					     devpriv->ai_convert_count);
1327
1328					/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1329					MC_ENABLE(P_MC2, MC2_ADC_RPS);
1330				}
1331			}
1332		}
1333		if (irqbit & IRQ_COINT3B) {
1334			DEBUG
1335			    ("s626_irq_handler: interrupt on counter 3B overflow\n");
1336			k = &encpriv[5];
1337
1338			/* clear interrupt capture flag */
1339			k->ResetCapFlags(dev, k);
1340
1341			if (cmd->scan_begin_src == TRIG_TIMER) {
1342				DEBUG
1343				    ("s626_irq_handler: scan timer trigger!!!\n");
1344
1345				/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1346				MC_ENABLE(P_MC2, MC2_ADC_RPS);
1347			}
1348
1349			if (cmd->convert_src == TRIG_TIMER) {
1350				DEBUG
1351				    ("s626_irq_handler: convert timer trigger is set\n");
1352				k = &encpriv[4];
1353				devpriv->ai_convert_count = cmd->chanlist_len;
1354				k->SetEnable(dev, k, CLKENAB_ALWAYS);
1355			}
1356		}
1357	}
1358
1359	/* enable interrupt */
1360	writel(irqstatus, devpriv->base_addr + P_IER);
1361
1362	DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1363
1364	spin_unlock_irqrestore(&dev->spinlock, flags);
1365	return IRQ_HANDLED;
1366}
1367
1368static int s626_detach(struct comedi_device *dev)
1369{
1370	if (devpriv) {
1371		/* stop ai_command */
1372		devpriv->ai_cmd_running = 0;
1373
1374		if (devpriv->base_addr) {
1375			/* interrupt mask */
1376			WR7146(P_IER, 0);	/*  Disable master interrupt. */
1377			WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1);	/*  Clear board's IRQ status flag. */
1378
1379			/*  Disable the watchdog timer and battery charger. */
1380			WriteMISC2(dev, 0);
1381
1382			/*  Close all interfaces on 7146 device. */
1383			WR7146(P_MC1, MC1_SHUTDOWN);
1384			WR7146(P_ACON1, ACON1_BASE);
1385
1386			CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1387			CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1388		}
1389
1390		if (dev->irq)
1391			free_irq(dev->irq, dev);
1392
1393		if (devpriv->base_addr)
1394			iounmap(devpriv->base_addr);
1395
1396		if (devpriv->pdev) {
1397			if (devpriv->got_regions)
1398				comedi_pci_disable(devpriv->pdev);
1399			pci_dev_put(devpriv->pdev);
1400		}
1401	}
1402
1403	DEBUG("s626_detach: S626 detached!\n");
1404
1405	return 0;
1406}
1407
1408/*
1409 * this functions build the RPS program for hardware driven acquistion
1410 */
1411void ResetADC(struct comedi_device *dev, uint8_t * ppl)
1412{
1413	register uint32_t *pRPS;
1414	uint32_t JmpAdrs;
1415	uint16_t i;
1416	uint16_t n;
1417	uint32_t LocalPPL;
1418	struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1419
1420	/*  Stop RPS program in case it is currently running. */
1421	MC_DISABLE(P_MC1, MC1_ERPS1);
1422
1423	/*  Set starting logical address to write RPS commands. */
1424	pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1425
1426	/*  Initialize RPS instruction pointer. */
1427	WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1428
1429	/*  Construct RPS program in RPSBuf DMA buffer */
1430
1431	if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1432		DEBUG("ResetADC: scan_begin pause inserted\n");
1433		/*  Wait for Start trigger. */
1434		*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1435		*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1436	}
1437
1438	/* SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1439	 * because the first RPS DEBI Write following a non-RPS DEBI write
1440	 * seems to always fail.  If we don't do this dummy write, the ADC
1441	 * gain might not be set to the value required for the first slot in
1442	 * the poll list; the ADC gain would instead remain unchanged from
1443	 * the previously programmed value.
1444	 */
1445	*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1446	/* Write DEBI Write command and address to shadow RAM. */
1447
1448	*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1449	*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1450	/*  Write DEBI immediate data  to shadow RAM: */
1451
1452	*pRPS++ = GSEL_BIPOLAR5V;
1453	/*  arbitrary immediate data  value. */
1454
1455	*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1456	/*  Reset "shadow RAM  uploaded" flag. */
1457	*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1458	*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to finish. */
1459
1460	/* Digitize all slots in the poll list. This is implemented as a
1461	 * for loop to limit the slot count to 16 in case the application
1462	 * forgot to set the EOPL flag in the final slot.
1463	 */
1464	for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1465		/* Convert application's poll list item to private board class
1466		 * format.  Each app poll list item is an uint8_t with form
1467		 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1468		 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1469		 */
1470		LocalPPL =
1471		    (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1472				   GSEL_BIPOLAR10V);
1473
1474		/*  Switch ADC analog gain. */
1475		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);	/*  Write DEBI command */
1476		/*  and address to */
1477		/*  shadow RAM. */
1478		*pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1479		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);	/*  Write DEBI */
1480		/*  immediate data to */
1481		/*  shadow RAM. */
1482		*pRPS++ = LocalPPL;
1483		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;	/*  Reset "shadow RAM uploaded" */
1484		/*  flag. */
1485		*pRPS++ = RPS_UPLOAD | RPS_DEBI;	/*  Invoke shadow RAM upload. */
1486		*pRPS++ = RPS_PAUSE | RPS_DEBI;	/*  Wait for shadow upload to */
1487		/*  finish. */
1488
1489		/*  Select ADC analog input channel. */
1490		*pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1491		/*  Write DEBI command and address to  shadow RAM. */
1492		*pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1493		*pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1494		/*  Write DEBI immediate data to shadow RAM. */
1495		*pRPS++ = LocalPPL;
1496		*pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1497		/*  Reset "shadow RAM uploaded"  flag. */
1498
1499		*pRPS++ = RPS_UPLOAD | RPS_DEBI;
1500		/*  Invoke shadow RAM upload. */
1501
1502		*pRPS++ = RPS_PAUSE | RPS_DEBI;
1503		/*  Wait for shadow upload to finish. */
1504
1505		/* Delay at least 10 microseconds for analog input settling.
1506		 * Instead of padding with NOPs, we use RPS_JUMP instructions
1507		 * here; this allows us to produce a longer delay than is
1508		 * possible with NOPs because each RPS_JUMP flushes the RPS'
1509		 * instruction prefetch pipeline.
1510		 */
1511		JmpAdrs =
1512		    (uint32_t) devpriv->RPSBuf.PhysicalBase +
1513		    (uint32_t) ((unsigned long)pRPS -
1514				(unsigned long)devpriv->RPSBuf.LogicalBase);
1515		for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1516			JmpAdrs += 8;	/*  Repeat to implement time delay: */
1517			*pRPS++ = RPS_JUMP;	/*  Jump to next RPS instruction. */
1518			*pRPS++ = JmpAdrs;
1519		}
1520
1521		if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1522			DEBUG("ResetADC: convert pause inserted\n");
1523			/*  Wait for Start trigger. */
1524			*pRPS++ = RPS_PAUSE | RPS_SIGADC;
1525			*pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1526		}
1527		/*  Start ADC by pulsing GPIO1. */
1528		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1529		*pRPS++ = GPIO_BASE | GPIO1_LO;
1530		*pRPS++ = RPS_NOP;
1531		/*  VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1532		*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1533		*pRPS++ = GPIO_BASE | GPIO1_HI;
1534
1535		/* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1536		 * busy) and for data from previous conversion to shift into FB
1537		 * BUFFER 1 register.
1538		 */
1539		*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1540
1541		/*  Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1542		*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1543		*pRPS++ =
1544		    (uint32_t) devpriv->ANABuf.PhysicalBase +
1545		    (devpriv->AdcItems << 2);
1546
1547		/*  If this slot's EndOfPollList flag is set, all channels have */
1548		/*  now been processed. */
1549		if (*ppl++ & EOPL) {
1550			devpriv->AdcItems++;	/*  Adjust poll list item count. */
1551			break;	/*  Exit poll list processing loop. */
1552		}
1553	}
1554	DEBUG("ResetADC: ADC items %d\n", devpriv->AdcItems);
1555
1556	/* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1557	 * ADC to stabilize for 2 microseconds before starting the final
1558	 * (dummy) conversion.  This delay is necessary to allow sufficient
1559	 * time between last conversion finished and the start of the dummy
1560	 * conversion.  Without this delay, the last conversion's data value
1561	 * is sometimes set to the previous conversion's data value.
1562	 */
1563	for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1564		*pRPS++ = RPS_NOP;
1565
1566	/* Start a dummy conversion to cause the data from the last
1567	 * conversion of interest to be shifted in.
1568	 */
1569	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  Begin ADC Start pulse. */
1570	*pRPS++ = GPIO_BASE | GPIO1_LO;
1571	*pRPS++ = RPS_NOP;
1572	/* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1573	*pRPS++ = RPS_LDREG | (P_GPIO >> 2);	/*  End ADC Start pulse. */
1574	*pRPS++ = GPIO_BASE | GPIO1_HI;
1575
1576	/* Wait for the data from the last conversion of interest to arrive
1577	 * in FB BUFFER 1 register.
1578	 */
1579	*pRPS++ = RPS_PAUSE | RPS_GPIO2;	/*  Wait for ADC done. */
1580
1581	/*  Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1582	*pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);	/*  */
1583	*pRPS++ =
1584	    (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2);
1585
1586	/*  Indicate ADC scan loop is finished. */
1587	/*  *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ;  // Signal ReadADC() that scan is done. */
1588
1589	/* invoke interrupt */
1590	if (devpriv->ai_cmd_running == 1) {
1591		DEBUG("ResetADC: insert irq in ADC RPS task\n");
1592		*pRPS++ = RPS_IRQ;
1593	}
1594	/*  Restart RPS program at its beginning. */
1595	*pRPS++ = RPS_JUMP;	/*  Branch to start of RPS program. */
1596	*pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1597
1598	/*  End of RPS program build */
1599}
1600
1601/* TO COMPLETE, IF NECESSARY */
1602static int s626_ai_insn_config(struct comedi_device *dev,
1603			       struct comedi_subdevice *s,
1604			       struct comedi_insn *insn, unsigned int *data)
1605{
1606
1607	return -EINVAL;
1608}
1609
1610/* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1611/* { */
1612/*   register uint8_t	i; */
1613/*   register int32_t	*readaddr; */
1614
1615/*   DEBUG("as626_ai_rinsn: ai_rinsn enter\n");  */
1616
1617/*   Trigger ADC scan loop start by setting RPS Signal 0. */
1618/*   MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1619
1620/*   Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1621/*   while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1622
1623/* Init ptr to DMA buffer that holds new ADC data.  We skip the
1624 * first uint16_t in the buffer because it contains junk data from
1625 * the final ADC of the previous poll list scan.
1626 */
1627/*   readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1628
1629/*  Convert ADC data to 16-bit integer values and copy to application buffer. */
1630/*   for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1631/*     *data = s626_ai_reg_to_uint( *readaddr++ ); */
1632/*     DEBUG("s626_ai_rinsn: data %d\n",*data); */
1633/*     data++; */
1634/*   } */
1635
1636/*   DEBUG("s626_ai_rinsn: ai_rinsn escape\n"); */
1637/*   return i; */
1638/* } */
1639
1640static int s626_ai_insn_read(struct comedi_device *dev,
1641			     struct comedi_subdevice *s,
1642			     struct comedi_insn *insn, unsigned int *data)
1643{
1644	uint16_t chan = CR_CHAN(insn->chanspec);
1645	uint16_t range = CR_RANGE(insn->chanspec);
1646	uint16_t AdcSpec = 0;
1647	uint32_t GpioImage;
1648	int n;
1649
1650	/* interrupt call test  */
1651/*   writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1652	/* Writing a logical 1 into any of the RPS_PSR bits causes the
1653	 * corresponding interrupt to be generated if enabled
1654	 */
1655
1656	DEBUG("s626_ai_insn_read: entering\n");
1657
1658	/* Convert application's ADC specification into form
1659	 *  appropriate for register programming.
1660	 */
1661	if (range == 0)
1662		AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1663	else
1664		AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1665
1666	/*  Switch ADC analog gain. */
1667	DEBIwrite(dev, LP_GSEL, AdcSpec);	/*  Set gain. */
1668
1669	/*  Select ADC analog input channel. */
1670	DEBIwrite(dev, LP_ISEL, AdcSpec);	/*  Select channel. */
1671
1672	for (n = 0; n < insn->n; n++) {
1673
1674		/*  Delay 10 microseconds for analog input settling. */
1675		udelay(10);
1676
1677		/*  Start ADC by pulsing GPIO1 low. */
1678		GpioImage = RR7146(P_GPIO);
1679		/*  Assert ADC Start command */
1680		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1681		/*    and stretch it out. */
1682		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1683		WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1684		/*  Negate ADC Start command. */
1685		WR7146(P_GPIO, GpioImage | GPIO1_HI);
1686
1687		/*  Wait for ADC to complete (GPIO2 is asserted high when */
1688		/*  ADC not busy) and for data from previous conversion to */
1689		/*  shift into FB BUFFER 1 register. */
1690
1691		/*  Wait for ADC done. */
1692		while (!(RR7146(P_PSR) & PSR_GPIO2))
1693			;
1694
1695		/*  Fetch ADC data. */
1696		if (n != 0)
1697			data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1698
1699		/* Allow the ADC to stabilize for 4 microseconds before
1700		 * starting the next (final) conversion.  This delay is
1701		 * necessary to allow sufficient time between last
1702		 * conversion finished and the start of the next
1703		 * conversion.  Without this delay, the last conversion's
1704		 * data value is sometimes set to the previous
1705		 * conversion's data value.
1706		 */
1707		udelay(4);
1708	}
1709
1710	/* Start a dummy conversion to cause the data from the
1711	 * previous conversion to be shifted in. */
1712	GpioImage = RR7146(P_GPIO);
1713
1714	/* Assert ADC Start command */
1715	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1716	/*    and stretch it out. */
1717	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1718	WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1719	/*  Negate ADC Start command. */
1720	WR7146(P_GPIO, GpioImage | GPIO1_HI);
1721
1722	/*  Wait for the data to arrive in FB BUFFER 1 register. */
1723
1724	/*  Wait for ADC done. */
1725	while (!(RR7146(P_PSR) & PSR_GPIO2))
1726		;
1727
1728	/*  Fetch ADC data from audio interface's input shift register. */
1729
1730	/*  Fetch ADC data. */
1731	if (n != 0)
1732		data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1733
1734	DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1735
1736	return n;
1737}
1738
1739static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1740{
1741
1742	int n;
1743
1744	for (n = 0; n < cmd->chanlist_len; n++) {
1745		if (CR_RANGE((cmd->chanlist)[n]) == 0)
1746			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1747		else
1748			ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1749	}
1750	if (n != 0)
1751		ppl[n - 1] |= EOPL;
1752
1753	return n;
1754}
1755
1756static int s626_ai_inttrig(struct comedi_device *dev,
1757			   struct comedi_subdevice *s, unsigned int trignum)
1758{
1759	if (trignum != 0)
1760		return -EINVAL;
1761
1762	DEBUG("s626_ai_inttrig: trigger adc start...");
1763
1764	/*  Start executing the RPS program. */
1765	MC_ENABLE(P_MC1, MC1_ERPS1);
1766
1767	s->async->inttrig = NULL;
1768
1769	DEBUG(" done\n");
1770
1771	return 1;
1772}
1773
1774/*  TO COMPLETE  */
1775static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1776{
1777
1778	uint8_t ppl[16];
1779	struct comedi_cmd *cmd = &s->async->cmd;
1780	struct enc_private *k;
1781	int tick;
1782
1783	DEBUG("s626_ai_cmd: entering command function\n");
1784
1785	if (devpriv->ai_cmd_running) {
1786		printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n",
1787		       dev->minor);
1788		return -EBUSY;
1789	}
1790	/* disable interrupt */
1791	writel(0, devpriv->base_addr + P_IER);
1792
1793	/* clear interrupt request */
1794	writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1795
1796	/* clear any pending interrupt */
1797	s626_dio_clear_irq(dev);
1798	/*   s626_enc_clear_irq(dev); */
1799
1800	/* reset ai_cmd_running flag */
1801	devpriv->ai_cmd_running = 0;
1802
1803	/*  test if cmd is valid */
1804	if (cmd == NULL) {
1805		DEBUG("s626_ai_cmd: NULL command\n");
1806		return -EINVAL;
1807	} else {
1808		DEBUG("s626_ai_cmd: command recieved!!!\n");
1809	}
1810
1811	if (dev->irq == 0) {
1812		comedi_error(dev,
1813			     "s626_ai_cmd: cannot run command without an irq");
1814		return -EIO;
1815	}
1816
1817	s626_ai_load_polllist(ppl, cmd);
1818	devpriv->ai_cmd_running = 1;
1819	devpriv->ai_convert_count = 0;
1820
1821	switch (cmd->scan_begin_src) {
1822	case TRIG_FOLLOW:
1823		break;
1824	case TRIG_TIMER:
1825		/*  set a conter to generate adc trigger at scan_begin_arg interval */
1826		k = &encpriv[5];
1827		tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1828					cmd->flags & TRIG_ROUND_MASK);
1829
1830		/* load timer value and enable interrupt */
1831		s626_timer_load(dev, k, tick);
1832		k->SetEnable(dev, k, CLKENAB_ALWAYS);
1833
1834		DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1835		      tick);
1836
1837		break;
1838	case TRIG_EXT:
1839		/*  set the digital line and interrupt for scan trigger */
1840		if (cmd->start_src != TRIG_EXT)
1841			s626_dio_set_irq(dev, cmd->scan_begin_arg);
1842
1843		DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1844
1845		break;
1846	}
1847
1848	switch (cmd->convert_src) {
1849	case TRIG_NOW:
1850		break;
1851	case TRIG_TIMER:
1852		/*  set a conter to generate adc trigger at convert_arg interval */
1853		k = &encpriv[4];
1854		tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1855					cmd->flags & TRIG_ROUND_MASK);
1856
1857		/* load timer value and enable interrupt */
1858		s626_timer_load(dev, k, tick);
1859		k->SetEnable(dev, k, CLKENAB_INDEX);
1860
1861		DEBUG
1862		    ("s626_ai_cmd: convert trigger timer is set with value %d\n",
1863		     tick);
1864		break;
1865	case TRIG_EXT:
1866		/*  set the digital line and interrupt for convert trigger */
1867		if (cmd->scan_begin_src != TRIG_EXT
1868		    && cmd->start_src == TRIG_EXT)
1869			s626_dio_set_irq(dev, cmd->convert_arg);
1870
1871		DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1872
1873		break;
1874	}
1875
1876	switch (cmd->stop_src) {
1877	case TRIG_COUNT:
1878		/*  data arrives as one packet */
1879		devpriv->ai_sample_count = cmd->stop_arg;
1880		devpriv->ai_continous = 0;
1881		break;
1882	case TRIG_NONE:
1883		/*  continous aquisition */
1884		devpriv->ai_continous = 1;
1885		devpriv->ai_sample_count = 0;
1886		break;
1887	}
1888
1889	ResetADC(dev, ppl);
1890
1891	switch (cmd->start_src) {
1892	case TRIG_NOW:
1893		/*  Trigger ADC scan loop start by setting RPS Signal 0. */
1894		/*  MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1895
1896		/*  Start executing the RPS program. */
1897		MC_ENABLE(P_MC1, MC1_ERPS1);
1898
1899		DEBUG("s626_ai_cmd: ADC triggered\n");
1900		s->async->inttrig = NULL;
1901		break;
1902	case TRIG_EXT:
1903		/* configure DIO channel for acquisition trigger */
1904		s626_dio_set_irq(dev, cmd->start_arg);
1905
1906		DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1907
1908		s->async->inttrig = NULL;
1909		break;
1910	case TRIG_INT:
1911		s->async->inttrig = s626_ai_inttrig;
1912		break;
1913	}
1914
1915	/* enable interrupt */
1916	writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1917
1918	DEBUG("s626_ai_cmd: command function terminated\n");
1919
1920	return 0;
1921}
1922
1923static int s626_ai_cmdtest(struct comedi_device *dev,
1924			   struct comedi_subdevice *s, struct comedi_cmd *cmd)
1925{
1926	int err = 0;
1927	int tmp;
1928
1929	/* cmdtest tests a particular command to see if it is valid.  Using
1930	 * the cmdtest ioctl, a user can create a valid cmd and then have it
1931	 * executes by the cmd ioctl.
1932	 *
1933	 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1934	 * command passes. */
1935
1936	/* step 1: make sure trigger sources are trivially valid */
1937
1938	tmp = cmd->start_src;
1939	cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1940	if (!cmd->start_src || tmp != cmd->start_src)
1941		err++;
1942
1943	tmp = cmd->scan_begin_src;
1944	cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1945	if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1946		err++;
1947
1948	tmp = cmd->convert_src;
1949	cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1950	if (!cmd->convert_src || tmp != cmd->convert_src)
1951		err++;
1952
1953	tmp = cmd->scan_end_src;
1954	cmd->scan_end_src &= TRIG_COUNT;
1955	if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1956		err++;
1957
1958	tmp = cmd->stop_src;
1959	cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1960	if (!cmd->stop_src || tmp != cmd->stop_src)
1961		err++;
1962
1963	if (err)
1964		return 1;
1965
1966	/* step 2: make sure trigger sources are unique and mutually
1967	   compatible */
1968
1969	/* note that mutual compatibility is not an issue here */
1970	if (cmd->scan_begin_src != TRIG_TIMER &&
1971	    cmd->scan_begin_src != TRIG_EXT
1972	    && cmd->scan_begin_src != TRIG_FOLLOW)
1973		err++;
1974	if (cmd->convert_src != TRIG_TIMER &&
1975	    cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1976		err++;
1977	if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1978		err++;
1979
1980	if (err)
1981		return 2;
1982
1983	/* step 3: make sure arguments are trivially compatible */
1984
1985	if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1986		cmd->start_arg = 0;
1987		err++;
1988	}
1989
1990	if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1991		cmd->start_arg = 39;
1992		err++;
1993	}
1994
1995	if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1996		cmd->scan_begin_arg = 39;
1997		err++;
1998	}
1999
2000	if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
2001		cmd->convert_arg = 39;
2002		err++;
2003	}
2004#define MAX_SPEED	200000	/* in nanoseconds */
2005#define MIN_SPEED	2000000000	/* in nanoseconds */
2006
2007	if (cmd->scan_begin_src == TRIG_TIMER) {
2008		if (cmd->scan_begin_arg < MAX_SPEED) {
2009			cmd->scan_begin_arg = MAX_SPEED;
2010			err++;
2011		}
2012		if (cmd->scan_begin_arg > MIN_SPEED) {
2013			cmd->scan_begin_arg = MIN_SPEED;
2014			err++;
2015		}
2016	} else {
2017		/* external trigger */
2018		/* should be level/edge, hi/lo specification here */
2019		/* should specify multiple external triggers */
2020/*     if(cmd->scan_begin_arg>9){ */
2021/*       cmd->scan_begin_arg=9; */
2022/*       err++; */
2023/*     } */
2024	}
2025	if (cmd->convert_src == TRIG_TIMER) {
2026		if (cmd->convert_arg < MAX_SPEED) {
2027			cmd->convert_arg = MAX_SPEED;
2028			err++;
2029		}
2030		if (cmd->convert_arg > MIN_SPEED) {
2031			cmd->convert_arg = MIN_SPEED;
2032			err++;
2033		}
2034	} else {
2035		/* external trigger */
2036		/* see above */
2037/*     if(cmd->convert_arg>9){ */
2038/*       cmd->convert_arg=9; */
2039/*       err++; */
2040/*     } */
2041	}
2042
2043	if (cmd->scan_end_arg != cmd->chanlist_len) {
2044		cmd->scan_end_arg = cmd->chanlist_len;
2045		err++;
2046	}
2047	if (cmd->stop_src == TRIG_COUNT) {
2048		if (cmd->stop_arg > 0x00ffffff) {
2049			cmd->stop_arg = 0x00ffffff;
2050			err++;
2051		}
2052	} else {
2053		/* TRIG_NONE */
2054		if (cmd->stop_arg != 0) {
2055			cmd->stop_arg = 0;
2056			err++;
2057		}
2058	}
2059
2060	if (err)
2061		return 3;
2062
2063	/* step 4: fix up any arguments */
2064
2065	if (cmd->scan_begin_src == TRIG_TIMER) {
2066		tmp = cmd->scan_begin_arg;
2067		s626_ns_to_timer((int *)&cmd->scan_begin_arg,
2068				 cmd->flags & TRIG_ROUND_MASK);
2069		if (tmp != cmd->scan_begin_arg)
2070			err++;
2071	}
2072	if (cmd->convert_src == TRIG_TIMER) {
2073		tmp = cmd->convert_arg;
2074		s626_ns_to_timer((int *)&cmd->convert_arg,
2075				 cmd->flags & TRIG_ROUND_MASK);
2076		if (tmp != cmd->convert_arg)
2077			err++;
2078		if (cmd->scan_begin_src == TRIG_TIMER &&
2079		    cmd->scan_begin_arg <
2080		    cmd->convert_arg * cmd->scan_end_arg) {
2081			cmd->scan_begin_arg =
2082			    cmd->convert_arg * cmd->scan_end_arg;
2083			err++;
2084		}
2085	}
2086
2087	if (err)
2088		return 4;
2089
2090	return 0;
2091}
2092
2093static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
2094{
2095	/*  Stop RPS program in case it is currently running. */
2096	MC_DISABLE(P_MC1, MC1_ERPS1);
2097
2098	/* disable master interrupt */
2099	writel(0, devpriv->base_addr + P_IER);
2100
2101	devpriv->ai_cmd_running = 0;
2102
2103	return 0;
2104}
2105
2106/* This function doesn't require a particular form, this is just what
2107 * happens to be used in some of the drivers.  It should convert ns
2108 * nanoseconds to a counter value suitable for programming the device.
2109 * Also, it should adjust ns so that it cooresponds to the actual time
2110 * that the device will use. */
2111static int s626_ns_to_timer(int *nanosec, int round_mode)
2112{
2113	int divider, base;
2114
2115	base = 500;		/* 2MHz internal clock */
2116
2117	switch (round_mode) {
2118	case TRIG_ROUND_NEAREST:
2119	default:
2120		divider = (*nanosec + base / 2) / base;
2121		break;
2122	case TRIG_ROUND_DOWN:
2123		divider = (*nanosec) / base;
2124		break;
2125	case TRIG_ROUND_UP:
2126		divider = (*nanosec + base - 1) / base;
2127		break;
2128	}
2129
2130	*nanosec = base * divider;
2131	return divider - 1;
2132}
2133
2134static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2135			 struct comedi_insn *insn, unsigned int *data)
2136{
2137
2138	int i;
2139	uint16_t chan = CR_CHAN(insn->chanspec);
2140	int16_t dacdata;
2141
2142	for (i = 0; i < insn->n; i++) {
2143		dacdata = (int16_t) data[i];
2144		devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2145		dacdata -= (0x1fff);
2146
2147		SetDAC(dev, chan, dacdata);
2148	}
2149
2150	return i;
2151}
2152
2153static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2154			 struct comedi_insn *insn, unsigned int *data)
2155{
2156	int i;
2157
2158	for (i = 0; i < insn->n; i++)
2159		data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2160
2161	return i;
2162}
2163
2164/* *************** DIGITAL I/O FUNCTIONS ***************
2165 * All DIO functions address a group of DIO channels by means of
2166 * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
2167 * ports A, B and C, respectively.
2168 */
2169
2170static void s626_dio_init(struct comedi_device *dev)
2171{
2172	uint16_t group;
2173	struct comedi_subdevice *s;
2174
2175	/*  Prepare to treat writes to WRCapSel as capture disables. */
2176	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2177
2178	/*  For each group of sixteen channels ... */
2179	for (group = 0; group < S626_DIO_BANKS; group++) {
2180		s = dev->subdevices + 2 + group;
2181		DEBIwrite(dev, diopriv->WRIntSel, 0);	/*  Disable all interrupts. */
2182		DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF);	/*  Disable all event */
2183		/*  captures. */
2184		DEBIwrite(dev, diopriv->WREdgSel, 0);	/*  Init all DIOs to */
2185		/*  default edge */
2186		/*  polarity. */
2187		DEBIwrite(dev, diopriv->WRDOut, 0);	/*  Program all outputs */
2188		/*  to inactive state. */
2189	}
2190	DEBUG("s626_dio_init: DIO initialized\n");
2191}
2192
2193/* DIO devices are slightly special.  Although it is possible to
2194 * implement the insn_read/insn_write interface, it is much more
2195 * useful to applications if you implement the insn_bits interface.
2196 * This allows packed reading/writing of the DIO channels.  The comedi
2197 * core can convert between insn_bits and insn_read/write */
2198
2199static int s626_dio_insn_bits(struct comedi_device *dev,
2200			      struct comedi_subdevice *s,
2201			      struct comedi_insn *insn, unsigned int *data)
2202{
2203
2204	/* Length of data must be 2 (mask and new data, see below) */
2205	if (insn->n == 0)
2206		return 0;
2207
2208	if (insn->n != 2) {
2209		printk
2210		    ("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n",
2211		     dev->minor);
2212		return -EINVAL;
2213	}
2214
2215	/*
2216	 * The insn data consists of a mask in data[0] and the new data in
2217	 * data[1]. The mask defines which bits we are concerning about.
2218	 * The new data must be anded with the mask.  Each channel
2219	 * corresponds to a bit.
2220	 */
2221	if (data[0]) {
2222		/* Check if requested ports are configured for output */
2223		if ((s->io_bits & data[0]) != data[0])
2224			return -EIO;
2225
2226		s->state &= ~data[0];
2227		s->state |= data[0] & data[1];
2228
2229		/* Write out the new digital output lines */
2230
2231		DEBIwrite(dev, diopriv->WRDOut, s->state);
2232	}
2233	data[1] = DEBIread(dev, diopriv->RDDIn);
2234
2235	return 2;
2236}
2237
2238static int s626_dio_insn_config(struct comedi_device *dev,
2239				struct comedi_subdevice *s,
2240				struct comedi_insn *insn, unsigned int *data)
2241{
2242
2243	switch (data[0]) {
2244	case INSN_CONFIG_DIO_QUERY:
2245		data[1] =
2246		    (s->
2247		     io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT :
2248		    COMEDI_INPUT;
2249		return insn->n;
2250		break;
2251	case COMEDI_INPUT:
2252		s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2253		break;
2254	case COMEDI_OUTPUT:
2255		s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2256		break;
2257	default:
2258		return -EINVAL;
2259		break;
2260	}
2261	DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2262
2263	return 1;
2264}
2265
2266static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2267{
2268	unsigned int group;
2269	unsigned int bitmask;
2270	unsigned int status;
2271
2272	/* select dio bank */
2273	group = chan / 16;
2274	bitmask = 1 << (chan - (16 * group));
2275	DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2276	      chan - (16 * group), group);
2277
2278	/* set channel to capture positive edge */
2279	status = DEBIread(dev,
2280			  ((struct dio_private *)(dev->subdevices + 2 +
2281						  group)->private)->RDEdgSel);
2282	DEBIwrite(dev,
2283		  ((struct dio_private *)(dev->subdevices + 2 +
2284					  group)->private)->WREdgSel,
2285		  bitmask | status);
2286
2287	/* enable interrupt on selected channel */
2288	status = DEBIread(dev,
2289			  ((struct dio_private *)(dev->subdevices + 2 +
2290						  group)->private)->RDIntSel);
2291	DEBIwrite(dev,
2292		  ((struct dio_private *)(dev->subdevices + 2 +
2293					  group)->private)->WRIntSel,
2294		  bitmask | status);
2295
2296	/* enable edge capture write command */
2297	DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2298
2299	/* enable edge capture on selected channel */
2300	status = DEBIread(dev,
2301			  ((struct dio_private *)(dev->subdevices + 2 +
2302						  group)->private)->RDCapSel);
2303	DEBIwrite(dev,
2304		  ((struct dio_private *)(dev->subdevices + 2 +
2305					  group)->private)->WRCapSel,
2306		  bitmask | status);
2307
2308	return 0;
2309}
2310
2311static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2312			      unsigned int mask)
2313{
2314	DEBUG
2315	    ("s626_dio_reset_irq: disable  interrupt on dio channel %d group %d\n",
2316	     mask, group);
2317
2318	/* disable edge capture write command */
2319	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2320
2321	/* enable edge capture on selected channel */
2322	DEBIwrite(dev,
2323		  ((struct dio_private *)(dev->subdevices + 2 +
2324					  group)->private)->WRCapSel, mask);
2325
2326	return 0;
2327}
2328
2329static int s626_dio_clear_irq(struct comedi_device *dev)
2330{
2331	unsigned int group;
2332
2333	/* disable edge capture write command */
2334	DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2335
2336	for (group = 0; group < S626_DIO_BANKS; group++) {
2337		/* clear pending events and interrupt */
2338		DEBIwrite(dev,
2339			  ((struct dio_private *)(dev->subdevices + 2 +
2340						  group)->private)->WRCapSel,
2341			  0xffff);
2342	}
2343
2344	return 0;
2345}
2346
2347/* Now this function initializes the value of the counter (data[0])
2348   and set the subdevice. To complete with trigger and interrupt
2349   configuration */
2350static int s626_enc_insn_config(struct comedi_device *dev,
2351				struct comedi_subdevice *s,
2352				struct comedi_insn *insn, unsigned int *data)
2353{
2354	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2355	    /*  index. */
2356	    (INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2357	    (CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is Counter. */
2358	    (CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2359	    /* ( CNTDIR_UP << BF_CLKPOL ) |      // Count direction is Down. */
2360	    (CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2361	    (CLKENAB_INDEX << BF_CLKENAB);
2362	/*   uint16_t DisableIntSrc=TRUE; */
2363	/*  uint32_t Preloadvalue;              //Counter initial value */
2364	uint16_t valueSrclatch = LATCHSRC_AB_READ;
2365	uint16_t enab = CLKENAB_ALWAYS;
2366	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2367
2368	DEBUG("s626_enc_insn_config: encoder config\n");
2369
2370	/*   (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2371
2372	k->SetMode(dev, k, Setup, TRUE);
2373	Preload(dev, k, *(insn->data));
2374	k->PulseIndex(dev, k);
2375	SetLatchSource(dev, k, valueSrclatch);
2376	k->SetEnable(dev, k, (uint16_t) (enab != 0));
2377
2378	return insn->n;
2379}
2380
2381static int s626_enc_insn_read(struct comedi_device *dev,
2382			      struct comedi_subdevice *s,
2383			      struct comedi_insn *insn, unsigned int *data)
2384{
2385
2386	int n;
2387	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2388
2389	DEBUG("s626_enc_insn_read: encoder read channel %d\n",
2390	      CR_CHAN(insn->chanspec));
2391
2392	for (n = 0; n < insn->n; n++)
2393		data[n] = ReadLatch(dev, k);
2394
2395	DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2396
2397	return n;
2398}
2399
2400static int s626_enc_insn_write(struct comedi_device *dev,
2401			       struct comedi_subdevice *s,
2402			       struct comedi_insn *insn, unsigned int *data)
2403{
2404
2405	struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2406
2407	DEBUG("s626_enc_insn_write: encoder write channel %d\n",
2408	      CR_CHAN(insn->chanspec));
2409
2410	/*  Set the preload register */
2411	Preload(dev, k, data[0]);
2412
2413	/*  Software index pulse forces the preload register to load */
2414	/*  into the counter */
2415	k->SetLoadTrig(dev, k, 0);
2416	k->PulseIndex(dev, k);
2417	k->SetLoadTrig(dev, k, 2);
2418
2419	DEBUG("s626_enc_insn_write: End encoder write\n");
2420
2421	return 1;
2422}
2423
2424static void s626_timer_load(struct comedi_device *dev, struct enc_private *k,
2425			    int tick)
2426{
2427	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
2428	    /*  index. */
2429	    (INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
2430	    (CLKSRC_TIMER << BF_CLKSRC) |	/*  Operating mode is Timer. */
2431	    (CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
2432	    (CNTDIR_DOWN << BF_CLKPOL) |	/*  Count direction is Down. */
2433	    (CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
2434	    (CLKENAB_INDEX << BF_CLKENAB);
2435	uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2436	/*   uint16_t enab=CLKENAB_ALWAYS; */
2437
2438	k->SetMode(dev, k, Setup, FALSE);
2439
2440	/*  Set the preload register */
2441	Preload(dev, k, tick);
2442
2443	/*  Software index pulse forces the preload register to load */
2444	/*  into the counter */
2445	k->SetLoadTrig(dev, k, 0);
2446	k->PulseIndex(dev, k);
2447
2448	/* set reload on counter overflow */
2449	k->SetLoadTrig(dev, k, 1);
2450
2451	/* set interrupt on overflow */
2452	k->SetIntSrc(dev, k, INTSRC_OVER);
2453
2454	SetLatchSource(dev, k, valueSrclatch);
2455	/*   k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2456}
2457
2458/* ***********  DAC FUNCTIONS *********** */
2459
2460/*  Slot 0 base settings. */
2461#define VECT0	(XSD2 | RSD3 | SIB_A2)
2462/*  Slot 0 always shifts in  0xFF and store it to  FB_BUFFER2. */
2463
2464/*  TrimDac LogicalChan-to-PhysicalChan mapping table. */
2465static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2466
2467/*  TrimDac LogicalChan-to-EepromAdrs mapping table. */
2468static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2469
2470static void LoadTrimDACs(struct comedi_device *dev)
2471{
2472	register uint8_t i;
2473
2474	/*  Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2475	for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2476		WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2477}
2478
2479static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2480			 uint8_t DacData)
2481{
2482	uint32_t chan;
2483
2484	/*  Save the new setpoint in case the application needs to read it back later. */
2485	devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2486
2487	/*  Map logical channel number to physical channel number. */
2488	chan = (uint32_t) trimchan[LogicalChan];
2489
2490	/* Set up TSL2 records for TrimDac write operation.  All slots shift
2491	 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2492	 * can be detected.
2493	 */
2494
2495	SETVECT(2, XSD2 | XFIFO_1 | WS3);
2496	/* Slot 2: Send high uint8_t to target TrimDac. */
2497	SETVECT(3, XSD2 | XFIFO_0 | WS3);
2498	/* Slot 3: Send low uint8_t to target TrimDac. */
2499	SETVECT(4, XSD2 | XFIFO_3 | WS1);
2500	/* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2501	SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2502	/* Slot 5: Send NOP low  uint8_t to DAC0. */
2503
2504	/* Construct and transmit target DAC's serial packet:
2505	 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2506	 * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
2507	 * WORD value (that writes a channel 0 NOP command to a non-existent
2508	 * main DAC channel) that serves to keep the clock running after the
2509	 * packet has been sent to the target DAC.
2510	 */
2511
2512	/*  Address the DAC channel within the trimdac device. */
2513	SendDAC(dev, ((uint32_t) chan << 8)
2514		| (uint32_t) DacData);	/*  Include DAC setpoint data. */
2515}
2516
2517/* **************  EEPROM ACCESS FUNCTIONS  ************** */
2518/*  Read uint8_t from EEPROM. */
2519
2520static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2521{
2522	uint8_t rtnval;
2523
2524	/*  Send EEPROM target address. */
2525	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2526			 /* Byte2 = I2C command: write to I2C EEPROM  device. */
2527			 | I2C_B1(I2C_ATTRSTOP, addr)
2528			 /* Byte1 = EEPROM internal target address. */
2529			 | I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not sent. */
2530		/*  Abort function and declare error if handshake failed. */
2531		DEBUG("I2Cread: error handshake I2Cread  a\n");
2532		return 0;
2533	}
2534	/*  Execute EEPROM read. */
2535	if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR)
2536
2537			 /*  Byte2 = I2C */
2538			 /*  command: read */
2539			 /*  from I2C EEPROM */
2540			 /*  device. */
2541			 |I2C_B1(I2C_ATTRSTOP, 0)
2542
2543			 /*  Byte1 receives */
2544			 /*  uint8_t from */
2545			 /*  EEPROM. */
2546			 |I2C_B0(I2C_ATTRNOP, 0))) {	/*  Byte0 = Not  sent. */
2547
2548		/*  Abort function and declare error if handshake failed. */
2549		DEBUG("I2Cread: error handshake I2Cread b\n");
2550		return 0;
2551	}
2552	/*  Return copy of EEPROM value. */
2553	rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2554	return rtnval;
2555}
2556
2557static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2558{
2559	/*  Write I2C command to I2C Transfer Control shadow register. */
2560	WR7146(P_I2CCTRL, val);
2561
2562	/*  Upload I2C shadow registers into working registers and wait for */
2563	/*  upload confirmation. */
2564
2565	MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2566	while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2567		;
2568
2569	/*  Wait until I2C bus transfer is finished or an error occurs. */
2570	while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2571		;
2572
2573	/*  Return non-zero if I2C error occured. */
2574	return RR7146(P_I2CCTRL) & I2C_ERR;
2575
2576}
2577
2578/*  Private helper function: Write setpoint to an application DAC channel. */
2579
2580static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2581{
2582	register uint16_t signmask;
2583	register uint32_t WSImage;
2584
2585	/*  Adjust DAC data polarity and set up Polarity Control Register */
2586	/*  image. */
2587	signmask = 1 << chan;
2588	if (dacdata < 0) {
2589		dacdata = -dacdata;
2590		devpriv->Dacpol |= signmask;
2591	} else
2592		devpriv->Dacpol &= ~signmask;
2593
2594	/*  Limit DAC setpoint value to valid range. */
2595	if ((uint16_t) dacdata > 0x1FFF)
2596		dacdata = 0x1FFF;
2597
2598	/* Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
2599	 * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
2600	 * data to a non-existent TrimDac channel just to keep the clock
2601	 * running after sending data to the target DAC.  This is necessary
2602	 * to eliminate the clock glitch that would otherwise occur at the
2603	 * end of the target DAC's serial data stream.  When the sequence
2604	 * restarts at V0 (after executing V5), the gate array automatically
2605	 * disables gating for the DAC clock and all DAC chip selects.
2606	 */
2607
2608	WSImage = (chan & 2) ? WS1 : WS2;
2609	/* Choose DAC chip select to be asserted. */
2610	SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2611	/* Slot 2: Transmit high data byte to target DAC. */
2612	SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2613	/* Slot 3: Transmit low data byte to target DAC. */
2614	SETVECT(4, XSD2 | XFIFO_3 | WS3);
2615	/* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2616	SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2617	/* Slot 5: running after writing target DAC's low data byte. */
2618
2619	/*  Construct and transmit target DAC's serial packet:
2620	 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2621	 * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
2622	 * to a  non-existent TrimDac channel) that serves to keep the clock
2623	 * running after the packet has been sent to the target DAC.
2624	 */
2625	SendDAC(dev, 0x0F000000
2626		/* Continue clock after target DAC data (write to non-existent trimdac). */
2627		| 0x00004000
2628		/* Address the two main dual-DAC devices (TSL's chip select enables
2629		 * target device). */
2630		| ((uint32_t) (chan & 1) << 15)
2631		/*  Address the DAC channel within the  device. */
2632		| (uint32_t) dacdata);	/*  Include DAC setpoint data. */
2633
2634}
2635
2636/* Private helper function: Transmit serial data to DAC via Audio
2637 * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
2638 * Dacpol contains valid target image.
2639 */
2640
2641static void SendDAC(struct comedi_device *dev, uint32_t val)
2642{
2643
2644	/* START THE SERIAL CLOCK RUNNING ------------- */
2645
2646	/* Assert DAC polarity control and enable gating of DAC serial clock
2647	 * and audio bit stream signals.  At this point in time we must be
2648	 * assured of being in time slot 0.  If we are not in slot 0, the
2649	 * serial clock and audio stream signals will be disabled; this is
2650	 * because the following DEBIwrite statement (which enables signals
2651	 * to be passed through the gate array) would execute before the
2652	 * trailing edge of WS1/WS3 (which turns off the signals), thus
2653	 * causing the signals to be inactive during the DAC write.
2654	 */
2655	DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2656
2657	/* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2658
2659	/* Copy DAC setpoint value to DAC's output DMA buffer. */
2660
2661	/* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2662	*devpriv->pDacWBuf = val;
2663
2664	/* enab the output DMA transfer.  This will cause the DMAC to copy
2665	 * the DAC's data value to A2's output FIFO.  The DMA transfer will
2666	 * then immediately terminate because the protection address is
2667	 * reached upon transfer of the first DWORD value.
2668	 */
2669	MC_ENABLE(P_MC1, MC1_A2OUT);
2670
2671	/*  While the DMA transfer is executing ... */
2672
2673	/* Reset Audio2 output FIFO's underflow flag (along with any other
2674	 * FIFO underflow/overflow flags).  When set, this flag will
2675	 * indicate that we have emerged from slot 0.
2676	 */
2677	WR7146(P_ISR, ISR_AFOU);
2678
2679	/* Wait for the DMA transfer to finish so that there will be data
2680	 * available in the FIFO when time slot 1 tries to transfer a DWORD
2681	 * from the FIFO to the output buffer register.  We test for DMA
2682	 * Done by polling the DMAC enable flag; this flag is automatically
2683	 * cleared when the transfer has finished.
2684	 */
2685	while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2686		;
2687
2688	/* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2689
2690	/* FIFO data is now available, so we enable execution of time slots
2691	 * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
2692	 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2693	 * detection.
2694	 */
2695	SETVECT(0, XSD2 | RSD3 | SIB_A2);
2696
2697	/* Wait for slot 1 to execute to ensure that the Packet will be
2698	 * transmitted.  This is detected by polling the Audio2 output FIFO
2699	 * underflow flag, which will be set when slot 1 execution has
2700	 * finished transferring the DAC's data DWORD from the output FIFO
2701	 * to the output buffer register.
2702	 */
2703	while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2704		;
2705
2706	/* Set up to trap execution at slot 0 when the TSL sequencer cycles
2707	 * back to slot 0 after executing the EOS in slot 5.  Also,
2708	 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2709	 * stored in the last byte to be shifted out of the FIFO's DWORD
2710	 * buffer register.
2711	 */
2712	SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2713
2714	/* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2715
2716	/* Wait for the TSL to finish executing all time slots before
2717	 * exiting this function.  We must do this so that the next DAC
2718	 * write doesn't start, thereby enabling clock/chip select signals:
2719	 *
2720	 * 1. Before the TSL sequence cycles back to slot 0, which disables
2721	 *    the clock/cs signal gating and traps slot // list execution.
2722	 *    we have not yet finished slot 5 then the clock/cs signals are
2723	 *    still gated and we have not finished transmitting the stream.
2724	 *
2725	 * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
2726	 *    this case, the slot sequence is currently repeating, but with
2727	 *    clock/cs signals disabled.  We must wait for slot 0 to trap
2728	 *    execution before setting up the next DAC setpoint DMA transfer
2729	 *    and enabling the clock/cs signals.  To detect the end of slot 5,
2730	 *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
2731	 *    the TSL has not yet finished executing slot 5 ...
2732	 */
2733	if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2734		/* The trap was set on time and we are still executing somewhere
2735		 * in slots 2-5, so we now wait for slot 0 to execute and trap
2736		 * TSL execution.  This is detected when FB_BUFFER2 MSB changes
2737		 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2738		 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2739		 */
2740		while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2741			;
2742	}
2743	/* Either (1) we were too late setting the slot 0 trap; the TSL
2744	 * sequencer restarted slot 0 before we could set the EOS trap flag,
2745	 * or (2) we were not late and execution is now trapped at slot 0.
2746	 * In either case, we must now change slot 0 so that it will store
2747	 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2748	 * In order to do this, we reprogram slot 0 so that it will shift in
2749	 * SD3, which is driven only by a pull-up resistor.
2750	 */
2751	SETVECT(0, RSD3 | SIB_A2 | EOS);
2752
2753	/* Wait for slot 0 to execute, at which time the TSL is setup for
2754	 * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
2755	 * from 0x00 to 0xFF.
2756	 */
2757	while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2758		;
2759}
2760
2761static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2762{
2763	DEBIwrite(dev, LP_MISC1, MISC1_WENABLE);	/*  enab writes to */
2764	/*  MISC2 register. */
2765	DEBIwrite(dev, LP_WRMISC2, NewImage);	/*  Write new image to MISC2. */
2766	DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE);	/*  Disable writes to MISC2. */
2767}
2768
2769/*  Initialize the DEBI interface for all transfers. */
2770
2771static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2772{
2773	uint16_t retval;
2774
2775	/*  Set up DEBI control register value in shadow RAM. */
2776	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2777
2778	/*  Execute the DEBI transfer. */
2779	DEBItransfer(dev);
2780
2781	/*  Fetch target register value. */
2782	retval = (uint16_t) RR7146(P_DEBIAD);
2783
2784	/*  Return register value. */
2785	return retval;
2786}
2787
2788/*  Execute a DEBI transfer.  This must be called from within a */
2789/*  critical section. */
2790static void DEBItransfer(struct comedi_device *dev)
2791{
2792	/*  Initiate upload of shadow RAM to DEBI control register. */
2793	MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2794
2795	/*  Wait for completion of upload from shadow RAM to DEBI control */
2796	/*  register. */
2797	while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2798		;
2799
2800	/*  Wait until DEBI transfer is done. */
2801	while (RR7146(P_PSR) & PSR_DEBI_S)
2802		;
2803}
2804
2805/*  Write a value to a gate array register. */
2806static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2807{
2808
2809	/*  Set up DEBI control register value in shadow RAM. */
2810	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2811	WR7146(P_DEBIAD, wdata);
2812
2813	/*  Execute the DEBI transfer. */
2814	DEBItransfer(dev);
2815}
2816
2817/* Replace the specified bits in a gate array register.  Imports: mask
2818 * specifies bits that are to be preserved, wdata is new value to be
2819 * or'd with the masked original.
2820 */
2821static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2822			uint16_t wdata)
2823{
2824
2825	/*  Copy target gate array register into P_DEBIAD register. */
2826	WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2827	/* Set up DEBI control reg value in shadow RAM. */
2828	DEBItransfer(dev);	/*  Execute the DEBI Read transfer. */
2829
2830	/*  Write back the modified image. */
2831	WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2832	/* Set up DEBI control reg value in shadow  RAM. */
2833
2834	WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2835	/* Modify the register image. */
2836	DEBItransfer(dev);	/*  Execute the DEBI Write transfer. */
2837}
2838
2839static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma,
2840		      size_t bsize)
2841{
2842	void *vbptr;
2843	dma_addr_t vpptr;
2844
2845	DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2846	if (pdma == NULL)
2847		return;
2848	/* find the matching allocation from the board struct */
2849
2850	vbptr = pdma->LogicalBase;
2851	vpptr = pdma->PhysicalBase;
2852	if (vbptr) {
2853		pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2854		pdma->LogicalBase = 0;
2855		pdma->PhysicalBase = 0;
2856
2857		DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2858		      vbptr, bsize, (uint32_t) vpptr);
2859	}
2860}
2861
2862/* ******  COUNTER FUNCTIONS  ******* */
2863/* All counter functions address a specific counter by means of the
2864 * "Counter" argument, which is a logical counter number.  The Counter
2865 * argument may have any of the following legal values: 0=0A, 1=1A,
2866 * 2=2A, 3=0B, 4=1B, 5=2B.
2867 */
2868
2869/* Forward declarations for functions that are common to both A and B counters: */
2870
2871/* ******  PRIVATE COUNTER FUNCTIONS ****** */
2872
2873/*  Read a counter's output latch. */
2874
2875static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2876{
2877	register uint32_t value;
2878	/* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2879
2880	/*  Latch counts and fetch LSW of latched counts value. */
2881	value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2882
2883	/*  Fetch MSW of latched counts and combine with LSW. */
2884	value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2885
2886	/*  DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2887
2888	/*  Return latched counts. */
2889	return value;
2890}
2891
2892/*  Reset a counter's index and overflow event capture flags. */
2893
2894static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2895{
2896	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2897		    CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2898}
2899
2900static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2901{
2902	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2903		    CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2904}
2905
2906/*  Return counter setup in a format (COUNTER_SETUP) that is consistent */
2907/*  for both A and B counters. */
2908
2909static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2910{
2911	register uint16_t cra;
2912	register uint16_t crb;
2913	register uint16_t setup;
2914
2915	/*  Fetch CRA and CRB register images. */
2916	cra = DEBIread(dev, k->MyCRA);
2917	crb = DEBIread(dev, k->MyCRB);
2918
2919	/*  Populate the standardized counter setup bit fields.  Note: */
2920	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2921	setup = ((cra & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcA. */
2922		 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcA. */
2923		 |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcA. */
2924		 |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC)	/*  IndxSrc  = IndxSrcA<1>. */
2925		 |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolA. */
2926		 |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB));	/*  ClkEnab  = ClkEnabA. */
2927
2928	/*  Adjust mode-dependent parameters. */
2929	if (cra & (2 << CRABIT_CLKSRC_A))	/*  If Timer mode (ClkSrcA<1> == 1): */
2930		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2931			  |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL)	/*    Set ClkPol to indicate count direction (ClkSrcA<0>). */
2932			  |(MULT_X1 << STDBIT_CLKMULT));	/*    ClkMult must be 1x in Timer mode. */
2933
2934	else			/*  If Counter mode (ClkSrcA<1> == 0): */
2935		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Counter mode. */
2936			  |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL)	/*    Pass through ClkPol. */
2937			  |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ?	/*    Force ClkMult to 1x if not legal, else pass through. */
2938			    (MULT_X1 << STDBIT_CLKMULT) :
2939			    ((cra >> (CRABIT_CLKMULT_A -
2940				      STDBIT_CLKMULT)) & STDMSK_CLKMULT)));
2941
2942	/*  Return adjusted counter setup. */
2943	return setup;
2944}
2945
2946static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2947{
2948	register uint16_t cra;
2949	register uint16_t crb;
2950	register uint16_t setup;
2951
2952	/*  Fetch CRA and CRB register images. */
2953	cra = DEBIread(dev, k->MyCRA);
2954	crb = DEBIread(dev, k->MyCRB);
2955
2956	/*  Populate the standardized counter setup bit fields.  Note: */
2957	/*  IndexSrc is restricted to ENC_X or IndxPol. */
2958	setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC)	/*  IntSrc   = IntSrcB. */
2959		 |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC)	/*  LatchSrc = LatchSrcB. */
2960		 |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC)	/*  LoadSrc  = LoadSrcB. */
2961		 |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL)	/*  IndxPol  = IndxPolB. */
2962		 |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB)	/*  ClkEnab  = ClkEnabB. */
2963		 |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC));	/*  IndxSrc  = IndxSrcB<1>. */
2964
2965	/*  Adjust mode-dependent parameters. */
2966	if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B))	/*  If Extender mode (ClkMultB == MULT_X0): */
2967		setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC)	/*    Indicate Extender mode. */
2968			  |(MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2969			  |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2970
2971	else if (cra & (2 << CRABIT_CLKSRC_B))	/*  If Timer mode (ClkSrcB<1> == 1): */
2972		setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2973			  |(MULT_X1 << STDBIT_CLKMULT)	/*    Indicate multiplier is 1x. */
2974			  |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL));	/*    Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2975
2976	else			/*  If Counter mode (ClkSrcB<1> == 0): */
2977		setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC)	/*    Indicate Timer mode. */
2978			  |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT)	/*    Clock multiplier is passed through. */
2979			  |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL));	/*    Clock polarity is passed through. */
2980
2981	/*  Return adjusted counter setup. */
2982	return setup;
2983}
2984
2985/*
2986 * Set the operating mode for the specified counter.  The setup
2987 * parameter is treated as a COUNTER_SETUP data type.  The following
2988 * parameters are programmable (all other parms are ignored): ClkMult,
2989 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2990 */
2991
2992static void SetMode_A(struct comedi_device *dev, struct enc_private *k,
2993		      uint16_t Setup, uint16_t DisableIntSrc)
2994{
2995	register uint16_t cra;
2996	register uint16_t crb;
2997	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
2998
2999	/*  Initialize CRA and CRB images. */
3000	cra = ((setup & CRAMSK_LOADSRC_A)	/*  Preload trigger is passed through. */
3001	       |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))));	/*  IndexSrc is restricted to ENC_X or IndxPol. */
3002
3003	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A	/*  Reset any pending CounterA event captures. */
3004	       | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)));	/*  Clock enable is passed through. */
3005
3006	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
3007	if (!DisableIntSrc)
3008		cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
3009						    CRABIT_INTSRC_A));
3010
3011	/*  Populate all mode-dependent attributes of CRA & CRB images. */
3012	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
3013	case CLKSRC_EXTENDER:	/*  Extender Mode: Force to Timer mode */
3014		/*  (Extender valid only for B counters). */
3015
3016	case CLKSRC_TIMER:	/*  Timer Mode: */
3017		cra |= ((2 << CRABIT_CLKSRC_A)	/*    ClkSrcA<1> selects system clock */
3018			|((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A))	/*      with count direction (ClkSrcA<0>) obtained from ClkPol. */
3019			|(1 << CRABIT_CLKPOL_A)	/*    ClkPolA behaves as always-on clock enable. */
3020			|(MULT_X1 << CRABIT_CLKMULT_A));	/*    ClkMult must be 1x. */
3021		break;
3022
3023	default:		/*  Counter Mode: */
3024		cra |= (CLKSRC_COUNTER	/*    Select ENC_C and ENC_D as clock/direction inputs. */
3025			| ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL))	/*    Clock polarity is passed through. */
3026			|(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force multiplier to x1 if not legal, otherwise pass through. */
3027			  (MULT_X1 << CRABIT_CLKMULT_A) :
3028			  ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
3029							STDBIT_CLKMULT))));
3030	}
3031
3032	/*  Force positive index polarity if IndxSrc is software-driven only, */
3033	/*  otherwise pass it through. */
3034	if (~setup & STDMSK_INDXSRC)
3035		cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
3036						     STDBIT_INDXPOL));
3037
3038	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
3039	/*  enable mask to indicate the counter interrupt is disabled. */
3040	if (DisableIntSrc)
3041		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
3042
3043	/*  While retaining CounterB and LatchSrc configurations, program the */
3044	/*  new counter operating mode. */
3045	DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
3046	DEBIreplace(dev, k->MyCRB,
3047		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
3048}
3049
3050static void SetMode_B(struct comedi_device *dev, struct enc_private *k,
3051		      uint16_t Setup, uint16_t DisableIntSrc)
3052{
3053	register uint16_t cra;
3054	register uint16_t crb;
3055	register uint16_t setup = Setup;	/*  Cache the Standard Setup. */
3056
3057	/*  Initialize CRA and CRB images. */
3058	cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC));	/*  IndexSrc field is restricted to ENC_X or IndxPol. */
3059
3060	crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B	/*  Reset event captures and disable interrupts. */
3061	       | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB))	/*  Clock enable is passed through. */
3062	       |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)));	/*  Preload trigger source is passed through. */
3063
3064	/*  Force IntSrc to Disabled if DisableIntSrc is asserted. */
3065	if (!DisableIntSrc)
3066		crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
3067						    CRBBIT_INTSRC_B));
3068
3069	/*  Populate all mode-dependent attributes of CRA & CRB images. */
3070	switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
3071	case CLKSRC_TIMER:	/*  Timer Mode: */
3072		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB<1> selects system clock */
3073			|((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction (ClkSrcB<0>) obtained from ClkPol. */
3074		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB behaves as always-on clock enable. */
3075			|(MULT_X1 << CRBBIT_CLKMULT_B));	/*    ClkMultB must be 1x. */
3076		break;
3077
3078	case CLKSRC_EXTENDER:	/*  Extender Mode: */
3079		cra |= ((2 << CRABIT_CLKSRC_B)	/*    ClkSrcB source is OverflowA (same as "timer") */
3080			|((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL)));	/*      with direction obtained from ClkPol. */
3081		crb |= ((1 << CRBBIT_CLKPOL_B)	/*    ClkPolB controls IndexB -- always set to active. */
3082			|(MULT_X0 << CRBBIT_CLKMULT_B));	/*    ClkMultB selects OverflowA as the clock source. */
3083		break;
3084
3085	default:		/*  Counter Mode: */
3086		cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B);	/*    Select ENC_C and ENC_D as clock/direction inputs. */
3087		crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B))	/*    ClkPol is passed through. */
3088			|(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ?	/*    Force ClkMult to x1 if not legal, otherwise pass through. */
3089			  (MULT_X1 << CRBBIT_CLKMULT_B) :
3090			  ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
3091							STDBIT_CLKMULT))));
3092	}
3093
3094	/*  Force positive index polarity if IndxSrc is software-driven only, */
3095	/*  otherwise pass it through. */
3096	if (~setup & STDMSK_INDXSRC)
3097		crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
3098						     CRBBIT_INDXPOL_B));
3099
3100	/*  If IntSrc has been forced to Disabled, update the MISC2 interrupt */
3101	/*  enable mask to indicate the counter interrupt is disabled. */
3102	if (DisableIntSrc)
3103		devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
3104
3105	/*  While retaining CounterA and LatchSrc configurations, program the */
3106	/*  new counter operating mode. */
3107	DEBIreplace(dev, k->MyCRA,
3108		    (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
3109	DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
3110}
3111
3112/*  Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index. */
3113
3114static void SetEnable_A(struct comedi_device *dev, struct enc_private *k,
3115			uint16_t enab)
3116{
3117	DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
3118	DEBIreplace(dev, k->MyCRB,
3119		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3120		    (uint16_t) (enab << CRBBIT_CLKENAB_A));
3121}
3122
3123static void SetEnable_B(struct comedi_device *dev, struct enc_private *k,
3124			uint16_t enab)
3125{
3126	DEBIreplace(dev, k->MyCRB,
3127		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3128		    (uint16_t) (enab << CRBBIT_CLKENAB_B));
3129}
3130
3131static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3132{
3133	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3134}
3135
3136static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3137{
3138	return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3139}
3140
3141/* Return/set a counter pair's latch trigger source.  0: On read
3142 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3143 * latches B.
3144 */
3145
3146static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
3147			   uint16_t value)
3148{
3149	DEBUG("SetLatchSource: SetLatchSource enter 3550\n");
3150	DEBIreplace(dev, k->MyCRB,
3151		    (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3152		    (uint16_t) (value << CRBBIT_LATCHSRC));
3153
3154	DEBUG("SetLatchSource: SetLatchSource exit\n");
3155}
3156
3157/*
3158 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3159 * {
3160 *	return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3161 * }
3162 */
3163
3164/*
3165 * Return/set the event that will trigger transfer of the preload
3166 * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
3167 * 2=OverflowA (B counters only), 3=disabled.
3168 */
3169
3170static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k,
3171			  uint16_t Trig)
3172{
3173	DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3174		    (uint16_t) (Trig << CRABIT_LOADSRC_A));
3175}
3176
3177static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k,
3178			  uint16_t Trig)
3179{
3180	DEBIreplace(dev, k->MyCRB,
3181		    (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3182		    (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3183}
3184
3185static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3186{
3187	return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3188}
3189
3190static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3191{
3192	return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3193}
3194
3195/* Return/set counter interrupt source and clear any captured
3196 * index/overflow events.  IntSource: 0=Disabled, 1=OverflowOnly,
3197 * 2=IndexOnly, 3=IndexAndOverflow.
3198 */
3199
3200static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3201			uint16_t IntSource)
3202{
3203	/*  Reset any pending counter overflow or index captures. */
3204	DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3205		    CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3206
3207	/*  Program counter interrupt source. */
3208	DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3209		    (uint16_t) (IntSource << CRABIT_INTSRC_A));
3210
3211	/*  Update MISC2 interrupt enable mask. */
3212	devpriv->CounterIntEnabs =
3213	    (devpriv->CounterIntEnabs & ~k->
3214	     MyEventBits[3]) | k->MyEventBits[IntSource];
3215}
3216
3217static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3218			uint16_t IntSource)
3219{
3220	uint16_t crb;
3221
3222	/*  Cache writeable CRB register image. */
3223	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3224
3225	/*  Reset any pending counter overflow or index captures. */
3226	DEBIwrite(dev, k->MyCRB,
3227		  (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3228
3229	/*  Program counter interrupt source. */
3230	DEBIwrite(dev, k->MyCRB,
3231		  (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3232							  CRBBIT_INTSRC_B)));
3233
3234	/*  Update MISC2 interrupt enable mask. */
3235	devpriv->CounterIntEnabs =
3236	    (devpriv->CounterIntEnabs & ~k->
3237	     MyEventBits[3]) | k->MyEventBits[IntSource];
3238}
3239
3240static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3241{
3242	return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3243}
3244
3245static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3246{
3247	return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3248}
3249
3250/*  Return/set the clock multiplier. */
3251
3252/* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3253/* { */
3254/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3255/* } */
3256
3257/* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k )  */
3258/* { */
3259/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3260/* } */
3261
3262/* Return/set the clock polarity. */
3263
3264/* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3265/* { */
3266/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3267/* } */
3268
3269/* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k )  */
3270/* { */
3271/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3272/* } */
3273
3274/* Return/set the clock source.  */
3275
3276/* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value )  */
3277/* { */
3278/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3279/* } */
3280
3281/* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k )  */
3282/* { */
3283/*   return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3284/* } */
3285
3286/* Return/set the index polarity. */
3287
3288/* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3289/* { */
3290/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3291/* } */
3292
3293/* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k )  */
3294/* { */
3295/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3296/* } */
3297
3298/*  Return/set the index source. */
3299
3300/* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value )  */
3301/* { */
3302/*   DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3303/*   k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3304/* } */
3305
3306/* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k )  */
3307/* { */
3308/*   return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3309/* } */
3310
3311/*  Generate an index pulse. */
3312
3313static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3314{
3315	register uint16_t cra;
3316
3317	DEBUG("PulseIndex_A: pulse index enter\n");
3318
3319	cra = DEBIread(dev, k->MyCRA);	/*  Pulse index. */
3320	DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3321	DEBUG("PulseIndex_A: pulse index step1\n");
3322	DEBIwrite(dev, k->MyCRA, cra);
3323}
3324
3325static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3326{
3327	register uint16_t crb;
3328
3329	crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;	/*  Pulse index. */
3330	DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3331	DEBIwrite(dev, k->MyCRB, crb);
3332}
3333
3334/*  Write value into counter preload register. */
3335
3336static void Preload(struct comedi_device *dev, struct enc_private *k,
3337		    uint32_t value)
3338{
3339	DEBUG("Preload: preload enter\n");
3340	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value);	/*  Write value to preload register. */
3341	DEBUG("Preload: preload step 1\n");
3342	DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3343		  (uint16_t) (value >> 16));
3344}
3345
3346static void CountersInit(struct comedi_device *dev)
3347{
3348	int chan;
3349	struct enc_private *k;
3350	uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) |	/*  Preload upon */
3351	    /*  index. */
3352	    (INDXSRC_SOFT << BF_INDXSRC) |	/*  Disable hardware index. */
3353	    (CLKSRC_COUNTER << BF_CLKSRC) |	/*  Operating mode is counter. */
3354	    (CLKPOL_POS << BF_CLKPOL) |	/*  Active high clock. */
3355	    (CNTDIR_UP << BF_CLKPOL) |	/*  Count direction is up. */
3356	    (CLKMULT_1X << BF_CLKMULT) |	/*  Clock multiplier is 1x. */
3357	    (CLKENAB_INDEX << BF_CLKENAB);	/*  Enabled by index */
3358
3359	/*  Disable all counter interrupts and clear any captured counter events. */
3360	for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3361		k = &encpriv[chan];
3362		k->SetMode(dev, k, Setup, TRUE);
3363		k->SetIntSrc(dev, k, 0);
3364		k->ResetCapFlags(dev, k);
3365		k->SetEnable(dev, k, CLKENAB_ALWAYS);
3366	}
3367	DEBUG("CountersInit: counters initialized\n");
3368
3369}
3370