lirc_serial.c revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7
1/*
2 * lirc_serial.c
3 *
4 * lirc_serial - Device driver that records pulse- and pause-lengths
5 *	       (space-lengths) between DDCD event on a serial port.
6 *
7 * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
8 * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
9 * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
10 * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
11 * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; either version 2 of the License, or
15 *  (at your option) any later version.
16 *
17 *  This program is distributed in the hope that it will be useful,
18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *  GNU General Public License for more details.
21 *
22 *  You should have received a copy of the GNU General Public License
23 *  along with this program; if not, write to the Free Software
24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 *
26 */
27
28/*
29 * Steve's changes to improve transmission fidelity:
30 *   - for systems with the rdtsc instruction and the clock counter, a
31 *     send_pule that times the pulses directly using the counter.
32 *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
33 *     not needed. Measurement shows very stable waveform, even where
34 *     PCI activity slows the access to the UART, which trips up other
35 *     versions.
36 *   - For other system, non-integer-microsecond pulse/space lengths,
37 *     done using fixed point binary. So, much more accurate carrier
38 *     frequency.
39 *   - fine tuned transmitter latency, taking advantage of fractional
40 *     microseconds in previous change
41 *   - Fixed bug in the way transmitter latency was accounted for by
42 *     tuning the pulse lengths down - the send_pulse routine ignored
43 *     this overhead as it timed the overall pulse length - so the
44 *     pulse frequency was right but overall pulse length was too
45 *     long. Fixed by accounting for latency on each pulse/space
46 *     iteration.
47 *
48 * Steve Davies <steve@daviesfam.org>  July 2001
49 */
50
51#include <linux/module.h>
52#include <linux/errno.h>
53#include <linux/signal.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/interrupt.h>
57#include <linux/ioport.h>
58#include <linux/kernel.h>
59#include <linux/serial_reg.h>
60#include <linux/time.h>
61#include <linux/string.h>
62#include <linux/types.h>
63#include <linux/wait.h>
64#include <linux/mm.h>
65#include <linux/delay.h>
66#include <linux/poll.h>
67#include <linux/platform_device.h>
68
69#include <asm/system.h>
70#include <linux/io.h>
71#include <linux/irq.h>
72#include <linux/fcntl.h>
73#include <linux/spinlock.h>
74
75#ifdef CONFIG_LIRC_SERIAL_NSLU2
76#include <asm/hardware.h>
77#endif
78/* From Intel IXP42X Developer's Manual (#252480-005): */
79/* ftp://download.intel.com/design/network/manuals/25248005.pdf */
80#define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
81#define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
82
83#include <media/lirc.h>
84#include <media/lirc_dev.h>
85
86#define LIRC_DRIVER_NAME "lirc_serial"
87
88struct lirc_serial {
89	int signal_pin;
90	int signal_pin_change;
91	u8 on;
92	u8 off;
93	long (*send_pulse)(unsigned long length);
94	void (*send_space)(long length);
95	int features;
96	spinlock_t lock;
97};
98
99#define LIRC_HOMEBREW		0
100#define LIRC_IRDEO		1
101#define LIRC_IRDEO_REMOTE	2
102#define LIRC_ANIMAX		3
103#define LIRC_IGOR		4
104#define LIRC_NSLU2		5
105
106/*** module parameters ***/
107static int type;
108static int io;
109static int irq;
110static bool iommap;
111static int ioshift;
112static bool softcarrier = 1;
113static bool share_irq;
114static bool debug;
115static int sense = -1;	/* -1 = auto, 0 = active high, 1 = active low */
116static bool txsense;	/* 0 = active high, 1 = active low */
117
118#define dprintk(fmt, args...)					\
119	do {							\
120		if (debug)					\
121			printk(KERN_DEBUG LIRC_DRIVER_NAME ": "	\
122			       fmt, ## args);			\
123	} while (0)
124
125/* forward declarations */
126static long send_pulse_irdeo(unsigned long length);
127static long send_pulse_homebrew(unsigned long length);
128static void send_space_irdeo(long length);
129static void send_space_homebrew(long length);
130
131static struct lirc_serial hardware[] = {
132	[LIRC_HOMEBREW] = {
133		.signal_pin        = UART_MSR_DCD,
134		.signal_pin_change = UART_MSR_DDCD,
135		.on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
136		.off = (UART_MCR_RTS | UART_MCR_OUT2),
137		.send_pulse = send_pulse_homebrew,
138		.send_space = send_space_homebrew,
139#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
140		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
141				LIRC_CAN_SET_SEND_CARRIER |
142				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
143#else
144		.features    = LIRC_CAN_REC_MODE2
145#endif
146	},
147
148	[LIRC_IRDEO] = {
149		.signal_pin        = UART_MSR_DSR,
150		.signal_pin_change = UART_MSR_DDSR,
151		.on  = UART_MCR_OUT2,
152		.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
153		.send_pulse  = send_pulse_irdeo,
154		.send_space  = send_space_irdeo,
155		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
156				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
157	},
158
159	[LIRC_IRDEO_REMOTE] = {
160		.signal_pin        = UART_MSR_DSR,
161		.signal_pin_change = UART_MSR_DDSR,
162		.on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
163		.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
164		.send_pulse  = send_pulse_irdeo,
165		.send_space  = send_space_irdeo,
166		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
167				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
168	},
169
170	[LIRC_ANIMAX] = {
171		.signal_pin        = UART_MSR_DCD,
172		.signal_pin_change = UART_MSR_DDCD,
173		.on  = 0,
174		.off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
175		.send_pulse = NULL,
176		.send_space = NULL,
177		.features   = LIRC_CAN_REC_MODE2
178	},
179
180	[LIRC_IGOR] = {
181		.signal_pin        = UART_MSR_DSR,
182		.signal_pin_change = UART_MSR_DDSR,
183		.on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
184		.off = (UART_MCR_RTS | UART_MCR_OUT2),
185		.send_pulse = send_pulse_homebrew,
186		.send_space = send_space_homebrew,
187#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
188		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
189				LIRC_CAN_SET_SEND_CARRIER |
190				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
191#else
192		.features    = LIRC_CAN_REC_MODE2
193#endif
194	},
195
196#ifdef CONFIG_LIRC_SERIAL_NSLU2
197	/*
198	 * Modified Linksys Network Storage Link USB 2.0 (NSLU2):
199	 * We receive on CTS of the 2nd serial port (R142,LHS), we
200	 * transmit with a IR diode between GPIO[1] (green status LED),
201	 * and ground (Matthias Goebl <matthias.goebl@goebl.net>).
202	 * See also http://www.nslu2-linux.org for this device
203	 */
204	[LIRC_NSLU2] = {
205		.signal_pin        = UART_MSR_CTS,
206		.signal_pin_change = UART_MSR_DCTS,
207		.on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
208		.off = (UART_MCR_RTS | UART_MCR_OUT2),
209		.send_pulse = send_pulse_homebrew,
210		.send_space = send_space_homebrew,
211#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
212		.features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
213				LIRC_CAN_SET_SEND_CARRIER |
214				LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
215#else
216		.features    = LIRC_CAN_REC_MODE2
217#endif
218	},
219#endif
220
221};
222
223#define RS_ISR_PASS_LIMIT 256
224
225/*
226 * A long pulse code from a remote might take up to 300 bytes.  The
227 * daemon should read the bytes as soon as they are generated, so take
228 * the number of keys you think you can push before the daemon runs
229 * and multiply by 300.  The driver will warn you if you overrun this
230 * buffer.  If you have a slow computer or non-busmastering IDE disks,
231 * maybe you will need to increase this.
232 */
233
234/* This MUST be a power of two!  It has to be larger than 1 as well. */
235
236#define RBUF_LEN 256
237
238static struct timeval lasttv = {0, 0};
239
240static struct lirc_buffer rbuf;
241
242static unsigned int freq = 38000;
243static unsigned int duty_cycle = 50;
244
245/* Initialized in init_timing_params() */
246static unsigned long period;
247static unsigned long pulse_width;
248static unsigned long space_width;
249
250#if defined(__i386__)
251/*
252 * From:
253 * Linux I/O port programming mini-HOWTO
254 * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
255 * v, 28 December 1997
256 *
257 * [...]
258 * Actually, a port I/O instruction on most ports in the 0-0x3ff range
259 * takes almost exactly 1 microsecond, so if you're, for example, using
260 * the parallel port directly, just do additional inb()s from that port
261 * to delay.
262 * [...]
263 */
264/* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
265 * comment above plus trimming to match actual measured frequency.
266 * This will be sensitive to cpu speed, though hopefully most of the 1.5us
267 * is spent in the uart access.  Still - for reference test machine was a
268 * 1.13GHz Athlon system - Steve
269 */
270
271/*
272 * changed from 400 to 450 as this works better on slower machines;
273 * faster machines will use the rdtsc code anyway
274 */
275#define LIRC_SERIAL_TRANSMITTER_LATENCY 450
276
277#else
278
279/* does anybody have information on other platforms ? */
280/* 256 = 1<<8 */
281#define LIRC_SERIAL_TRANSMITTER_LATENCY 256
282
283#endif  /* __i386__ */
284/*
285 * FIXME: should we be using hrtimers instead of this
286 * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
287 */
288
289/* fetch serial input packet (1 byte) from register offset */
290static u8 sinp(int offset)
291{
292	if (iommap != 0)
293		/* the register is memory-mapped */
294		offset <<= ioshift;
295
296	return inb(io + offset);
297}
298
299/* write serial output packet (1 byte) of value to register offset */
300static void soutp(int offset, u8 value)
301{
302	if (iommap != 0)
303		/* the register is memory-mapped */
304		offset <<= ioshift;
305
306	outb(value, io + offset);
307}
308
309static void on(void)
310{
311#ifdef CONFIG_LIRC_SERIAL_NSLU2
312	/*
313	 * On NSLU2, we put the transmit diode between the output of the green
314	 * status LED and ground
315	 */
316	if (type == LIRC_NSLU2) {
317		gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_LOW);
318		return;
319	}
320#endif
321	if (txsense)
322		soutp(UART_MCR, hardware[type].off);
323	else
324		soutp(UART_MCR, hardware[type].on);
325}
326
327static void off(void)
328{
329#ifdef CONFIG_LIRC_SERIAL_NSLU2
330	if (type == LIRC_NSLU2) {
331		gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_HIGH);
332		return;
333	}
334#endif
335	if (txsense)
336		soutp(UART_MCR, hardware[type].on);
337	else
338		soutp(UART_MCR, hardware[type].off);
339}
340
341#ifndef MAX_UDELAY_MS
342#define MAX_UDELAY_US 5000
343#else
344#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
345#endif
346
347static void safe_udelay(unsigned long usecs)
348{
349	while (usecs > MAX_UDELAY_US) {
350		udelay(MAX_UDELAY_US);
351		usecs -= MAX_UDELAY_US;
352	}
353	udelay(usecs);
354}
355
356#ifdef USE_RDTSC
357/*
358 * This is an overflow/precision juggle, complicated in that we can't
359 * do long long divide in the kernel
360 */
361
362/*
363 * When we use the rdtsc instruction to measure clocks, we keep the
364 * pulse and space widths as clock cycles.  As this is CPU speed
365 * dependent, the widths must be calculated in init_port and ioctl
366 * time
367 */
368
369/* So send_pulse can quickly convert microseconds to clocks */
370static unsigned long conv_us_to_clocks;
371
372static int init_timing_params(unsigned int new_duty_cycle,
373		unsigned int new_freq)
374{
375	__u64 loops_per_sec, work;
376
377	duty_cycle = new_duty_cycle;
378	freq = new_freq;
379
380	loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
381	loops_per_sec *= HZ;
382
383	/* How many clocks in a microsecond?, avoiding long long divide */
384	work = loops_per_sec;
385	work *= 4295;  /* 4295 = 2^32 / 1e6 */
386	conv_us_to_clocks = (work >> 32);
387
388	/*
389	 * Carrier period in clocks, approach good up to 32GHz clock,
390	 * gets carrier frequency within 8Hz
391	 */
392	period = loops_per_sec >> 3;
393	period /= (freq >> 3);
394
395	/* Derive pulse and space from the period */
396	pulse_width = period * duty_cycle / 100;
397	space_width = period - pulse_width;
398	dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
399		"clk/jiffy=%ld, pulse=%ld, space=%ld, "
400		"conv_us_to_clocks=%ld\n",
401		freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
402		pulse_width, space_width, conv_us_to_clocks);
403	return 0;
404}
405#else /* ! USE_RDTSC */
406static int init_timing_params(unsigned int new_duty_cycle,
407		unsigned int new_freq)
408{
409/*
410 * period, pulse/space width are kept with 8 binary places -
411 * IE multiplied by 256.
412 */
413	if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
414	    LIRC_SERIAL_TRANSMITTER_LATENCY)
415		return -EINVAL;
416	if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
417	    LIRC_SERIAL_TRANSMITTER_LATENCY)
418		return -EINVAL;
419	duty_cycle = new_duty_cycle;
420	freq = new_freq;
421	period = 256 * 1000000L / freq;
422	pulse_width = period * duty_cycle / 100;
423	space_width = period - pulse_width;
424	dprintk("in init_timing_params, freq=%d pulse=%ld, "
425		"space=%ld\n", freq, pulse_width, space_width);
426	return 0;
427}
428#endif /* USE_RDTSC */
429
430
431/* return value: space length delta */
432
433static long send_pulse_irdeo(unsigned long length)
434{
435	long rawbits, ret;
436	int i;
437	unsigned char output;
438	unsigned char chunk, shifted;
439
440	/* how many bits have to be sent ? */
441	rawbits = length * 1152 / 10000;
442	if (duty_cycle > 50)
443		chunk = 3;
444	else
445		chunk = 1;
446	for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
447		shifted = chunk << (i * 3);
448		shifted >>= 1;
449		output &= (~shifted);
450		i++;
451		if (i == 3) {
452			soutp(UART_TX, output);
453			while (!(sinp(UART_LSR) & UART_LSR_THRE))
454				;
455			output = 0x7f;
456			i = 0;
457		}
458	}
459	if (i != 0) {
460		soutp(UART_TX, output);
461		while (!(sinp(UART_LSR) & UART_LSR_TEMT))
462			;
463	}
464
465	if (i == 0)
466		ret = (-rawbits) * 10000 / 1152;
467	else
468		ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
469
470	return ret;
471}
472
473#ifdef USE_RDTSC
474/* Version that uses Pentium rdtsc instruction to measure clocks */
475
476/*
477 * This version does sub-microsecond timing using rdtsc instruction,
478 * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
479 * Implicitly i586 architecture...  - Steve
480 */
481
482static long send_pulse_homebrew_softcarrier(unsigned long length)
483{
484	int flag;
485	unsigned long target, start, now;
486
487	/* Get going quick as we can */
488	rdtscl(start);
489	on();
490	/* Convert length from microseconds to clocks */
491	length *= conv_us_to_clocks;
492	/* And loop till time is up - flipping at right intervals */
493	now = start;
494	target = pulse_width;
495	flag = 1;
496	/*
497	 * FIXME: This looks like a hard busy wait, without even an occasional,
498	 * polite, cpu_relax() call.  There's got to be a better way?
499	 *
500	 * The i2c code has the result of a lot of bit-banging work, I wonder if
501	 * there's something there which could be helpful here.
502	 */
503	while ((now - start) < length) {
504		/* Delay till flip time */
505		do {
506			rdtscl(now);
507		} while ((now - start) < target);
508
509		/* flip */
510		if (flag) {
511			rdtscl(now);
512			off();
513			target += space_width;
514		} else {
515			rdtscl(now); on();
516			target += pulse_width;
517		}
518		flag = !flag;
519	}
520	rdtscl(now);
521	return ((now - start) - length) / conv_us_to_clocks;
522}
523#else /* ! USE_RDTSC */
524/* Version using udelay() */
525
526/*
527 * here we use fixed point arithmetic, with 8
528 * fractional bits.  that gets us within 0.1% or so of the right average
529 * frequency, albeit with some jitter in pulse length - Steve
530 */
531
532/* To match 8 fractional bits used for pulse/space length */
533
534static long send_pulse_homebrew_softcarrier(unsigned long length)
535{
536	int flag;
537	unsigned long actual, target, d;
538	length <<= 8;
539
540	actual = 0; target = 0; flag = 0;
541	while (actual < length) {
542		if (flag) {
543			off();
544			target += space_width;
545		} else {
546			on();
547			target += pulse_width;
548		}
549		d = (target - actual -
550		     LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
551		/*
552		 * Note - we've checked in ioctl that the pulse/space
553		 * widths are big enough so that d is > 0
554		 */
555		udelay(d);
556		actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
557		flag = !flag;
558	}
559	return (actual-length) >> 8;
560}
561#endif /* USE_RDTSC */
562
563static long send_pulse_homebrew(unsigned long length)
564{
565	if (length <= 0)
566		return 0;
567
568	if (softcarrier)
569		return send_pulse_homebrew_softcarrier(length);
570	else {
571		on();
572		safe_udelay(length);
573		return 0;
574	}
575}
576
577static void send_space_irdeo(long length)
578{
579	if (length <= 0)
580		return;
581
582	safe_udelay(length);
583}
584
585static void send_space_homebrew(long length)
586{
587	off();
588	if (length <= 0)
589		return;
590	safe_udelay(length);
591}
592
593static void rbwrite(int l)
594{
595	if (lirc_buffer_full(&rbuf)) {
596		/* no new signals will be accepted */
597		dprintk("Buffer overrun\n");
598		return;
599	}
600	lirc_buffer_write(&rbuf, (void *)&l);
601}
602
603static void frbwrite(int l)
604{
605	/* simple noise filter */
606	static int pulse, space;
607	static unsigned int ptr;
608
609	if (ptr > 0 && (l & PULSE_BIT)) {
610		pulse += l & PULSE_MASK;
611		if (pulse > 250) {
612			rbwrite(space);
613			rbwrite(pulse | PULSE_BIT);
614			ptr = 0;
615			pulse = 0;
616		}
617		return;
618	}
619	if (!(l & PULSE_BIT)) {
620		if (ptr == 0) {
621			if (l > 20000) {
622				space = l;
623				ptr++;
624				return;
625			}
626		} else {
627			if (l > 20000) {
628				space += pulse;
629				if (space > PULSE_MASK)
630					space = PULSE_MASK;
631				space += l;
632				if (space > PULSE_MASK)
633					space = PULSE_MASK;
634				pulse = 0;
635				return;
636			}
637			rbwrite(space);
638			rbwrite(pulse | PULSE_BIT);
639			ptr = 0;
640			pulse = 0;
641		}
642	}
643	rbwrite(l);
644}
645
646static irqreturn_t irq_handler(int i, void *blah)
647{
648	struct timeval tv;
649	int counter, dcd;
650	u8 status;
651	long deltv;
652	int data;
653	static int last_dcd = -1;
654
655	if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
656		/* not our interrupt */
657		return IRQ_NONE;
658	}
659
660	counter = 0;
661	do {
662		counter++;
663		status = sinp(UART_MSR);
664		if (counter > RS_ISR_PASS_LIMIT) {
665			printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: "
666			       "We're caught!\n");
667			break;
668		}
669		if ((status & hardware[type].signal_pin_change)
670		    && sense != -1) {
671			/* get current time */
672			do_gettimeofday(&tv);
673
674			/* New mode, written by Trent Piepho
675			   <xyzzy@u.washington.edu>. */
676
677			/*
678			 * The old format was not very portable.
679			 * We now use an int to pass pulses
680			 * and spaces to user space.
681			 *
682			 * If PULSE_BIT is set a pulse has been
683			 * received, otherwise a space has been
684			 * received.  The driver needs to know if your
685			 * receiver is active high or active low, or
686			 * the space/pulse sense could be
687			 * inverted. The bits denoted by PULSE_MASK are
688			 * the length in microseconds. Lengths greater
689			 * than or equal to 16 seconds are clamped to
690			 * PULSE_MASK.  All other bits are unused.
691			 * This is a much simpler interface for user
692			 * programs, as well as eliminating "out of
693			 * phase" errors with space/pulse
694			 * autodetection.
695			 */
696
697			/* calc time since last interrupt in microseconds */
698			dcd = (status & hardware[type].signal_pin) ? 1 : 0;
699
700			if (dcd == last_dcd) {
701				printk(KERN_WARNING LIRC_DRIVER_NAME
702				": ignoring spike: %d %d %lx %lx %lx %lx\n",
703				dcd, sense,
704				tv.tv_sec, lasttv.tv_sec,
705				tv.tv_usec, lasttv.tv_usec);
706				continue;
707			}
708
709			deltv = tv.tv_sec-lasttv.tv_sec;
710			if (tv.tv_sec < lasttv.tv_sec ||
711			    (tv.tv_sec == lasttv.tv_sec &&
712			     tv.tv_usec < lasttv.tv_usec)) {
713				printk(KERN_WARNING LIRC_DRIVER_NAME
714				       ": AIEEEE: your clock just jumped "
715				       "backwards\n");
716				printk(KERN_WARNING LIRC_DRIVER_NAME
717				       ": %d %d %lx %lx %lx %lx\n",
718				       dcd, sense,
719				       tv.tv_sec, lasttv.tv_sec,
720				       tv.tv_usec, lasttv.tv_usec);
721				data = PULSE_MASK;
722			} else if (deltv > 15) {
723				data = PULSE_MASK; /* really long time */
724				if (!(dcd^sense)) {
725					/* sanity check */
726					printk(KERN_WARNING LIRC_DRIVER_NAME
727					       ": AIEEEE: "
728					       "%d %d %lx %lx %lx %lx\n",
729					       dcd, sense,
730					       tv.tv_sec, lasttv.tv_sec,
731					       tv.tv_usec, lasttv.tv_usec);
732					/*
733					 * detecting pulse while this
734					 * MUST be a space!
735					 */
736					sense = sense ? 0 : 1;
737				}
738			} else
739				data = (int) (deltv*1000000 +
740					       tv.tv_usec -
741					       lasttv.tv_usec);
742			frbwrite(dcd^sense ? data : (data|PULSE_BIT));
743			lasttv = tv;
744			last_dcd = dcd;
745			wake_up_interruptible(&rbuf.wait_poll);
746		}
747	} while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
748	return IRQ_HANDLED;
749}
750
751
752static int hardware_init_port(void)
753{
754	u8 scratch, scratch2, scratch3;
755
756	/*
757	 * This is a simple port existence test, borrowed from the autoconfig
758	 * function in drivers/serial/8250.c
759	 */
760	scratch = sinp(UART_IER);
761	soutp(UART_IER, 0);
762#ifdef __i386__
763	outb(0xff, 0x080);
764#endif
765	scratch2 = sinp(UART_IER) & 0x0f;
766	soutp(UART_IER, 0x0f);
767#ifdef __i386__
768	outb(0x00, 0x080);
769#endif
770	scratch3 = sinp(UART_IER) & 0x0f;
771	soutp(UART_IER, scratch);
772	if (scratch2 != 0 || scratch3 != 0x0f) {
773		/* we fail, there's nothing here */
774		printk(KERN_ERR LIRC_DRIVER_NAME ": port existence test "
775		       "failed, cannot continue\n");
776		return -EINVAL;
777	}
778
779
780
781	/* Set DLAB 0. */
782	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
783
784	/* First of all, disable all interrupts */
785	soutp(UART_IER, sinp(UART_IER) &
786	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
787
788	/* Clear registers. */
789	sinp(UART_LSR);
790	sinp(UART_RX);
791	sinp(UART_IIR);
792	sinp(UART_MSR);
793
794#ifdef CONFIG_LIRC_SERIAL_NSLU2
795	if (type == LIRC_NSLU2) {
796		/* Setup NSLU2 UART */
797
798		/* Enable UART */
799		soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
800		/* Disable Receiver data Time out interrupt */
801		soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
802		/* set out2 = interrupt unmask; off() doesn't set MCR
803		   on NSLU2 */
804		soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
805	}
806#endif
807
808	/* Set line for power source */
809	off();
810
811	/* Clear registers again to be sure. */
812	sinp(UART_LSR);
813	sinp(UART_RX);
814	sinp(UART_IIR);
815	sinp(UART_MSR);
816
817	switch (type) {
818	case LIRC_IRDEO:
819	case LIRC_IRDEO_REMOTE:
820		/* setup port to 7N1 @ 115200 Baud */
821		/* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
822
823		/* Set DLAB 1. */
824		soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
825		/* Set divisor to 1 => 115200 Baud */
826		soutp(UART_DLM, 0);
827		soutp(UART_DLL, 1);
828		/* Set DLAB 0 +  7N1 */
829		soutp(UART_LCR, UART_LCR_WLEN7);
830		/* THR interrupt already disabled at this point */
831		break;
832	default:
833		break;
834	}
835
836	return 0;
837}
838
839static int init_port(void)
840{
841	int i, nlow, nhigh, result;
842
843	result = request_irq(irq, irq_handler,
844			     (share_irq ? IRQF_SHARED : 0),
845			     LIRC_DRIVER_NAME, (void *)&hardware);
846
847	switch (result) {
848	case -EBUSY:
849		printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq);
850		return -EBUSY;
851	case -EINVAL:
852		printk(KERN_ERR LIRC_DRIVER_NAME
853		       ": Bad irq number or handler\n");
854		return -EINVAL;
855	default:
856		break;
857	};
858
859	/* Reserve io region. */
860	/*
861	 * Future MMAP-Developers: Attention!
862	 * For memory mapped I/O you *might* need to use ioremap() first,
863	 * for the NSLU2 it's done in boot code.
864	 */
865	if (((iommap != 0)
866	     && (request_mem_region(iommap, 8 << ioshift,
867				    LIRC_DRIVER_NAME) == NULL))
868	   || ((iommap == 0)
869	       && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
870		printk(KERN_ERR  LIRC_DRIVER_NAME
871		       ": port %04x already in use\n", io);
872		printk(KERN_WARNING LIRC_DRIVER_NAME
873		       ": use 'setserial /dev/ttySX uart none'\n");
874		printk(KERN_WARNING LIRC_DRIVER_NAME
875		       ": or compile the serial port driver as module and\n");
876		printk(KERN_WARNING LIRC_DRIVER_NAME
877		       ": make sure this module is loaded first\n");
878		return -EBUSY;
879	}
880
881	if (hardware_init_port() < 0)
882		return -EINVAL;
883
884	/* Initialize pulse/space widths */
885	init_timing_params(duty_cycle, freq);
886
887	/* If pin is high, then this must be an active low receiver. */
888	if (sense == -1) {
889		/* wait 1/2 sec for the power supply */
890		msleep(500);
891
892		/*
893		 * probe 9 times every 0.04s, collect "votes" for
894		 * active high/low
895		 */
896		nlow = 0;
897		nhigh = 0;
898		for (i = 0; i < 9; i++) {
899			if (sinp(UART_MSR) & hardware[type].signal_pin)
900				nlow++;
901			else
902				nhigh++;
903			msleep(40);
904		}
905		sense = (nlow >= nhigh ? 1 : 0);
906		printk(KERN_INFO LIRC_DRIVER_NAME  ": auto-detected active "
907		       "%s receiver\n", sense ? "low" : "high");
908	} else
909		printk(KERN_INFO LIRC_DRIVER_NAME  ": Manually using active "
910		       "%s receiver\n", sense ? "low" : "high");
911
912	dprintk("Interrupt %d, port %04x obtained\n", irq, io);
913	return 0;
914}
915
916static int set_use_inc(void *data)
917{
918	unsigned long flags;
919
920	/* initialize timestamp */
921	do_gettimeofday(&lasttv);
922
923	spin_lock_irqsave(&hardware[type].lock, flags);
924
925	/* Set DLAB 0. */
926	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
927
928	soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
929
930	spin_unlock_irqrestore(&hardware[type].lock, flags);
931
932	return 0;
933}
934
935static void set_use_dec(void *data)
936{	unsigned long flags;
937
938	spin_lock_irqsave(&hardware[type].lock, flags);
939
940	/* Set DLAB 0. */
941	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
942
943	/* First of all, disable all interrupts */
944	soutp(UART_IER, sinp(UART_IER) &
945	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
946	spin_unlock_irqrestore(&hardware[type].lock, flags);
947}
948
949static ssize_t lirc_write(struct file *file, const char *buf,
950			 size_t n, loff_t *ppos)
951{
952	int i, count;
953	unsigned long flags;
954	long delta = 0;
955	int *wbuf;
956
957	if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
958		return -EBADF;
959
960	count = n / sizeof(int);
961	if (n % sizeof(int) || count % 2 == 0)
962		return -EINVAL;
963	wbuf = memdup_user(buf, n);
964	if (IS_ERR(wbuf))
965		return PTR_ERR(wbuf);
966	spin_lock_irqsave(&hardware[type].lock, flags);
967	if (type == LIRC_IRDEO) {
968		/* DTR, RTS down */
969		on();
970	}
971	for (i = 0; i < count; i++) {
972		if (i%2)
973			hardware[type].send_space(wbuf[i] - delta);
974		else
975			delta = hardware[type].send_pulse(wbuf[i]);
976	}
977	off();
978	spin_unlock_irqrestore(&hardware[type].lock, flags);
979	kfree(wbuf);
980	return n;
981}
982
983static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
984{
985	int result;
986	__u32 value;
987
988	switch (cmd) {
989	case LIRC_GET_SEND_MODE:
990		if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
991			return -ENOIOCTLCMD;
992
993		result = put_user(LIRC_SEND2MODE
994				  (hardware[type].features&LIRC_CAN_SEND_MASK),
995				  (__u32 *) arg);
996		if (result)
997			return result;
998		break;
999
1000	case LIRC_SET_SEND_MODE:
1001		if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1002			return -ENOIOCTLCMD;
1003
1004		result = get_user(value, (__u32 *) arg);
1005		if (result)
1006			return result;
1007		/* only LIRC_MODE_PULSE supported */
1008		if (value != LIRC_MODE_PULSE)
1009			return -ENOSYS;
1010		break;
1011
1012	case LIRC_GET_LENGTH:
1013		return -ENOSYS;
1014		break;
1015
1016	case LIRC_SET_SEND_DUTY_CYCLE:
1017		dprintk("SET_SEND_DUTY_CYCLE\n");
1018		if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
1019			return -ENOIOCTLCMD;
1020
1021		result = get_user(value, (__u32 *) arg);
1022		if (result)
1023			return result;
1024		if (value <= 0 || value > 100)
1025			return -EINVAL;
1026		return init_timing_params(value, freq);
1027		break;
1028
1029	case LIRC_SET_SEND_CARRIER:
1030		dprintk("SET_SEND_CARRIER\n");
1031		if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
1032			return -ENOIOCTLCMD;
1033
1034		result = get_user(value, (__u32 *) arg);
1035		if (result)
1036			return result;
1037		if (value > 500000 || value < 20000)
1038			return -EINVAL;
1039		return init_timing_params(duty_cycle, value);
1040		break;
1041
1042	default:
1043		return lirc_dev_fop_ioctl(filep, cmd, arg);
1044	}
1045	return 0;
1046}
1047
1048static const struct file_operations lirc_fops = {
1049	.owner		= THIS_MODULE,
1050	.write		= lirc_write,
1051	.unlocked_ioctl	= lirc_ioctl,
1052#ifdef CONFIG_COMPAT
1053	.compat_ioctl	= lirc_ioctl,
1054#endif
1055	.read		= lirc_dev_fop_read,
1056	.poll		= lirc_dev_fop_poll,
1057	.open		= lirc_dev_fop_open,
1058	.release	= lirc_dev_fop_close,
1059	.llseek		= no_llseek,
1060};
1061
1062static struct lirc_driver driver = {
1063	.name		= LIRC_DRIVER_NAME,
1064	.minor		= -1,
1065	.code_length	= 1,
1066	.sample_rate	= 0,
1067	.data		= NULL,
1068	.add_to_buf	= NULL,
1069	.rbuf		= &rbuf,
1070	.set_use_inc	= set_use_inc,
1071	.set_use_dec	= set_use_dec,
1072	.fops		= &lirc_fops,
1073	.dev		= NULL,
1074	.owner		= THIS_MODULE,
1075};
1076
1077static struct platform_device *lirc_serial_dev;
1078
1079static int __devinit lirc_serial_probe(struct platform_device *dev)
1080{
1081	return 0;
1082}
1083
1084static int __devexit lirc_serial_remove(struct platform_device *dev)
1085{
1086	return 0;
1087}
1088
1089static int lirc_serial_suspend(struct platform_device *dev,
1090			       pm_message_t state)
1091{
1092	/* Set DLAB 0. */
1093	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1094
1095	/* Disable all interrupts */
1096	soutp(UART_IER, sinp(UART_IER) &
1097	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1098
1099	/* Clear registers. */
1100	sinp(UART_LSR);
1101	sinp(UART_RX);
1102	sinp(UART_IIR);
1103	sinp(UART_MSR);
1104
1105	return 0;
1106}
1107
1108/* twisty maze... need a forward-declaration here... */
1109static void lirc_serial_exit(void);
1110
1111static int lirc_serial_resume(struct platform_device *dev)
1112{
1113	unsigned long flags;
1114
1115	if (hardware_init_port() < 0) {
1116		lirc_serial_exit();
1117		return -EINVAL;
1118	}
1119
1120	spin_lock_irqsave(&hardware[type].lock, flags);
1121	/* Enable Interrupt */
1122	do_gettimeofday(&lasttv);
1123	soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1124	off();
1125
1126	lirc_buffer_clear(&rbuf);
1127
1128	spin_unlock_irqrestore(&hardware[type].lock, flags);
1129
1130	return 0;
1131}
1132
1133static struct platform_driver lirc_serial_driver = {
1134	.probe		= lirc_serial_probe,
1135	.remove		= __devexit_p(lirc_serial_remove),
1136	.suspend	= lirc_serial_suspend,
1137	.resume		= lirc_serial_resume,
1138	.driver		= {
1139		.name	= "lirc_serial",
1140		.owner	= THIS_MODULE,
1141	},
1142};
1143
1144static int __init lirc_serial_init(void)
1145{
1146	int result;
1147
1148	/* Init read buffer. */
1149	result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1150	if (result < 0)
1151		return -ENOMEM;
1152
1153	result = platform_driver_register(&lirc_serial_driver);
1154	if (result) {
1155		printk("lirc register returned %d\n", result);
1156		goto exit_buffer_free;
1157	}
1158
1159	lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1160	if (!lirc_serial_dev) {
1161		result = -ENOMEM;
1162		goto exit_driver_unregister;
1163	}
1164
1165	result = platform_device_add(lirc_serial_dev);
1166	if (result)
1167		goto exit_device_put;
1168
1169	return 0;
1170
1171exit_device_put:
1172	platform_device_put(lirc_serial_dev);
1173exit_driver_unregister:
1174	platform_driver_unregister(&lirc_serial_driver);
1175exit_buffer_free:
1176	lirc_buffer_free(&rbuf);
1177	return result;
1178}
1179
1180static void lirc_serial_exit(void)
1181{
1182	platform_device_unregister(lirc_serial_dev);
1183	platform_driver_unregister(&lirc_serial_driver);
1184	lirc_buffer_free(&rbuf);
1185}
1186
1187static int __init lirc_serial_init_module(void)
1188{
1189	int result;
1190
1191	result = lirc_serial_init();
1192	if (result)
1193		return result;
1194
1195	switch (type) {
1196	case LIRC_HOMEBREW:
1197	case LIRC_IRDEO:
1198	case LIRC_IRDEO_REMOTE:
1199	case LIRC_ANIMAX:
1200	case LIRC_IGOR:
1201		/* if nothing specified, use ttyS0/com1 and irq 4 */
1202		io = io ? io : 0x3f8;
1203		irq = irq ? irq : 4;
1204		break;
1205#ifdef CONFIG_LIRC_SERIAL_NSLU2
1206	case LIRC_NSLU2:
1207		io = io ? io : IRQ_IXP4XX_UART2;
1208		irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
1209		iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
1210		ioshift = ioshift ? ioshift : 2;
1211		break;
1212#endif
1213	default:
1214		result = -EINVAL;
1215		goto exit_serial_exit;
1216	}
1217	if (!softcarrier) {
1218		switch (type) {
1219		case LIRC_HOMEBREW:
1220		case LIRC_IGOR:
1221#ifdef CONFIG_LIRC_SERIAL_NSLU2
1222		case LIRC_NSLU2:
1223#endif
1224			hardware[type].features &=
1225				~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1226				  LIRC_CAN_SET_SEND_CARRIER);
1227			break;
1228		}
1229	}
1230
1231	result = init_port();
1232	if (result < 0)
1233		goto exit_serial_exit;
1234	driver.features = hardware[type].features;
1235	driver.dev = &lirc_serial_dev->dev;
1236	driver.minor = lirc_register_driver(&driver);
1237	if (driver.minor < 0) {
1238		printk(KERN_ERR  LIRC_DRIVER_NAME
1239		       ": register_chrdev failed!\n");
1240		result = -EIO;
1241		goto exit_release;
1242	}
1243	return 0;
1244exit_release:
1245	release_region(io, 8);
1246exit_serial_exit:
1247	lirc_serial_exit();
1248	return result;
1249}
1250
1251static void __exit lirc_serial_exit_module(void)
1252{
1253	lirc_serial_exit();
1254
1255	free_irq(irq, (void *)&hardware);
1256
1257	if (iommap != 0)
1258		release_mem_region(iommap, 8 << ioshift);
1259	else
1260		release_region(io, 8);
1261	lirc_unregister_driver(driver.minor);
1262	dprintk("cleaned up module\n");
1263}
1264
1265
1266module_init(lirc_serial_init_module);
1267module_exit(lirc_serial_exit_module);
1268
1269MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1270MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1271	      "Christoph Bartelmus, Andrei Tanas");
1272MODULE_LICENSE("GPL");
1273
1274module_param(type, int, S_IRUGO);
1275MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1276		 " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1277		 " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1278
1279module_param(io, int, S_IRUGO);
1280MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1281
1282/* some architectures (e.g. intel xscale) have memory mapped registers */
1283module_param(iommap, bool, S_IRUGO);
1284MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1285		" (0 = no memory mapped io)");
1286
1287/*
1288 * some architectures (e.g. intel xscale) align the 8bit serial registers
1289 * on 32bit word boundaries.
1290 * See linux-kernel/serial/8250.c serial_in()/out()
1291 */
1292module_param(ioshift, int, S_IRUGO);
1293MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1294
1295module_param(irq, int, S_IRUGO);
1296MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1297
1298module_param(share_irq, bool, S_IRUGO);
1299MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1300
1301module_param(sense, bool, S_IRUGO);
1302MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1303		 " (0 = active high, 1 = active low )");
1304
1305#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1306module_param(txsense, bool, S_IRUGO);
1307MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1308		 " (0 = active high, 1 = active low )");
1309#endif
1310
1311module_param(softcarrier, bool, S_IRUGO);
1312MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1313
1314module_param(debug, bool, S_IRUGO | S_IWUSR);
1315MODULE_PARM_DESC(debug, "Enable debugging messages");
1316