vt_ioctl.c revision 99edb3d10a9d384d69557bd09cc39b9ec62aa04e
1/*
2 *  Copyright (C) 1992 obz under the linux copyright
3 *
4 *  Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
5 *  Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
6 *  Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
7 *  Some code moved for less code duplication - Andi Kleen - Mar 1997
8 *  Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
9 */
10
11#include <linux/types.h>
12#include <linux/errno.h>
13#include <linux/sched.h>
14#include <linux/tty.h>
15#include <linux/timer.h>
16#include <linux/kernel.h>
17#include <linux/compat.h>
18#include <linux/module.h>
19#include <linux/kd.h>
20#include <linux/vt.h>
21#include <linux/string.h>
22#include <linux/slab.h>
23#include <linux/major.h>
24#include <linux/fs.h>
25#include <linux/console.h>
26#include <linux/consolemap.h>
27#include <linux/signal.h>
28#include <linux/timex.h>
29
30#include <asm/io.h>
31#include <asm/uaccess.h>
32
33#include <linux/kbd_kern.h>
34#include <linux/vt_kern.h>
35#include <linux/kbd_diacr.h>
36#include <linux/selection.h>
37
38char vt_dont_switch;
39extern struct tty_driver *console_driver;
40
41#define VT_IS_IN_USE(i)	(console_driver->ttys[i] && console_driver->ttys[i]->count)
42#define VT_BUSY(i)	(VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
43
44/*
45 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
46 * experimentation and study of X386 SYSV handling.
47 *
48 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
49 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
50 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
51 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
52 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
53 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
54 * to the current console is done by the main ioctl code.
55 */
56
57#ifdef CONFIG_X86
58#include <linux/syscalls.h>
59#endif
60
61static void complete_change_console(struct vc_data *vc);
62
63/*
64 *	User space VT_EVENT handlers
65 */
66
67struct vt_event_wait {
68	struct list_head list;
69	struct vt_event event;
70	int done;
71};
72
73static LIST_HEAD(vt_events);
74static DEFINE_SPINLOCK(vt_event_lock);
75static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
76
77/**
78 *	vt_event_post
79 *	@event: the event that occurred
80 *	@old: old console
81 *	@new: new console
82 *
83 *	Post an VT event to interested VT handlers
84 */
85
86void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
87{
88	struct list_head *pos, *head;
89	unsigned long flags;
90	int wake = 0;
91
92	spin_lock_irqsave(&vt_event_lock, flags);
93	head = &vt_events;
94
95	list_for_each(pos, head) {
96		struct vt_event_wait *ve = list_entry(pos,
97						struct vt_event_wait, list);
98		if (!(ve->event.event & event))
99			continue;
100		ve->event.event = event;
101		/* kernel view is consoles 0..n-1, user space view is
102		   console 1..n with 0 meaning current, so we must bias */
103		ve->event.oldev = old + 1;
104		ve->event.newev = new + 1;
105		wake = 1;
106		ve->done = 1;
107	}
108	spin_unlock_irqrestore(&vt_event_lock, flags);
109	if (wake)
110		wake_up_interruptible(&vt_event_waitqueue);
111}
112
113/**
114 *	vt_event_wait		-	wait for an event
115 *	@vw: our event
116 *
117 *	Waits for an event to occur which completes our vt_event_wait
118 *	structure. On return the structure has wv->done set to 1 for success
119 *	or 0 if some event such as a signal ended the wait.
120 */
121
122static void vt_event_wait(struct vt_event_wait *vw)
123{
124	unsigned long flags;
125	/* Prepare the event */
126	INIT_LIST_HEAD(&vw->list);
127	vw->done = 0;
128	/* Queue our event */
129	spin_lock_irqsave(&vt_event_lock, flags);
130	list_add(&vw->list, &vt_events);
131	spin_unlock_irqrestore(&vt_event_lock, flags);
132	/* Wait for it to pass */
133	wait_event_interruptible_tty(vt_event_waitqueue, vw->done);
134	/* Dequeue it */
135	spin_lock_irqsave(&vt_event_lock, flags);
136	list_del(&vw->list);
137	spin_unlock_irqrestore(&vt_event_lock, flags);
138}
139
140/**
141 *	vt_event_wait_ioctl	-	event ioctl handler
142 *	@arg: argument to ioctl
143 *
144 *	Implement the VT_WAITEVENT ioctl using the VT event interface
145 */
146
147static int vt_event_wait_ioctl(struct vt_event __user *event)
148{
149	struct vt_event_wait vw;
150
151	if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
152		return -EFAULT;
153	/* Highest supported event for now */
154	if (vw.event.event & ~VT_MAX_EVENT)
155		return -EINVAL;
156
157	vt_event_wait(&vw);
158	/* If it occurred report it */
159	if (vw.done) {
160		if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
161			return -EFAULT;
162		return 0;
163	}
164	return -EINTR;
165}
166
167/**
168 *	vt_waitactive	-	active console wait
169 *	@event: event code
170 *	@n: new console
171 *
172 *	Helper for event waits. Used to implement the legacy
173 *	event waiting ioctls in terms of events
174 */
175
176int vt_waitactive(int n)
177{
178	struct vt_event_wait vw;
179	do {
180		if (n == fg_console + 1)
181			break;
182		vw.event.event = VT_EVENT_SWITCH;
183		vt_event_wait(&vw);
184		if (vw.done == 0)
185			return -EINTR;
186	} while (vw.event.newev != n);
187	return 0;
188}
189
190/*
191 * these are the valid i/o ports we're allowed to change. they map all the
192 * video ports
193 */
194#define GPFIRST 0x3b4
195#define GPLAST 0x3df
196#define GPNUM (GPLAST - GPFIRST + 1)
197
198#define i (tmp.kb_index)
199#define s (tmp.kb_table)
200#define v (tmp.kb_value)
201static inline int
202do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd)
203{
204	struct kbentry tmp;
205	ushort *key_map, val, ov;
206
207	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
208		return -EFAULT;
209
210	if (!capable(CAP_SYS_TTY_CONFIG))
211		perm = 0;
212
213	switch (cmd) {
214	case KDGKBENT:
215		key_map = key_maps[s];
216		if (key_map) {
217		    val = U(key_map[i]);
218		    if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
219			val = K_HOLE;
220		} else
221		    val = (i ? K_HOLE : K_NOSUCHMAP);
222		return put_user(val, &user_kbe->kb_value);
223	case KDSKBENT:
224		if (!perm)
225			return -EPERM;
226		if (!i && v == K_NOSUCHMAP) {
227			/* deallocate map */
228			key_map = key_maps[s];
229			if (s && key_map) {
230			    key_maps[s] = NULL;
231			    if (key_map[0] == U(K_ALLOCATED)) {
232					kfree(key_map);
233					keymap_count--;
234			    }
235			}
236			break;
237		}
238
239		if (KTYP(v) < NR_TYPES) {
240		    if (KVAL(v) > max_vals[KTYP(v)])
241				return -EINVAL;
242		} else
243		    if (kbd->kbdmode != VC_UNICODE)
244				return -EINVAL;
245
246		/* ++Geert: non-PC keyboards may generate keycode zero */
247#if !defined(__mc68000__) && !defined(__powerpc__)
248		/* assignment to entry 0 only tests validity of args */
249		if (!i)
250			break;
251#endif
252
253		if (!(key_map = key_maps[s])) {
254			int j;
255
256			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
257			    !capable(CAP_SYS_RESOURCE))
258				return -EPERM;
259
260			key_map = kmalloc(sizeof(plain_map),
261						     GFP_KERNEL);
262			if (!key_map)
263				return -ENOMEM;
264			key_maps[s] = key_map;
265			key_map[0] = U(K_ALLOCATED);
266			for (j = 1; j < NR_KEYS; j++)
267				key_map[j] = U(K_HOLE);
268			keymap_count++;
269		}
270		ov = U(key_map[i]);
271		if (v == ov)
272			break;	/* nothing to do */
273		/*
274		 * Attention Key.
275		 */
276		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN))
277			return -EPERM;
278		key_map[i] = U(v);
279		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
280			compute_shiftstate();
281		break;
282	}
283	return 0;
284}
285#undef i
286#undef s
287#undef v
288
289static inline int
290do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm)
291{
292	struct kbkeycode tmp;
293	int kc = 0;
294
295	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
296		return -EFAULT;
297	switch (cmd) {
298	case KDGETKEYCODE:
299		kc = getkeycode(tmp.scancode);
300		if (kc >= 0)
301			kc = put_user(kc, &user_kbkc->keycode);
302		break;
303	case KDSETKEYCODE:
304		if (!perm)
305			return -EPERM;
306		kc = setkeycode(tmp.scancode, tmp.keycode);
307		break;
308	}
309	return kc;
310}
311
312static inline int
313do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
314{
315	struct kbsentry *kbs;
316	char *p;
317	u_char *q;
318	u_char __user *up;
319	int sz;
320	int delta;
321	char *first_free, *fj, *fnw;
322	int i, j, k;
323	int ret;
324
325	if (!capable(CAP_SYS_TTY_CONFIG))
326		perm = 0;
327
328	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
329	if (!kbs) {
330		ret = -ENOMEM;
331		goto reterr;
332	}
333
334	/* we mostly copy too much here (512bytes), but who cares ;) */
335	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
336		ret = -EFAULT;
337		goto reterr;
338	}
339	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
340	i = kbs->kb_func;
341
342	switch (cmd) {
343	case KDGKBSENT:
344		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
345						  a struct member */
346		up = user_kdgkb->kb_string;
347		p = func_table[i];
348		if(p)
349			for ( ; *p && sz; p++, sz--)
350				if (put_user(*p, up++)) {
351					ret = -EFAULT;
352					goto reterr;
353				}
354		if (put_user('\0', up)) {
355			ret = -EFAULT;
356			goto reterr;
357		}
358		kfree(kbs);
359		return ((p && *p) ? -EOVERFLOW : 0);
360	case KDSKBSENT:
361		if (!perm) {
362			ret = -EPERM;
363			goto reterr;
364		}
365
366		q = func_table[i];
367		first_free = funcbufptr + (funcbufsize - funcbufleft);
368		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
369			;
370		if (j < MAX_NR_FUNC)
371			fj = func_table[j];
372		else
373			fj = first_free;
374
375		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
376		if (delta <= funcbufleft) { 	/* it fits in current buf */
377		    if (j < MAX_NR_FUNC) {
378			memmove(fj + delta, fj, first_free - fj);
379			for (k = j; k < MAX_NR_FUNC; k++)
380			    if (func_table[k])
381				func_table[k] += delta;
382		    }
383		    if (!q)
384		      func_table[i] = fj;
385		    funcbufleft -= delta;
386		} else {			/* allocate a larger buffer */
387		    sz = 256;
388		    while (sz < funcbufsize - funcbufleft + delta)
389		      sz <<= 1;
390		    fnw = kmalloc(sz, GFP_KERNEL);
391		    if(!fnw) {
392		      ret = -ENOMEM;
393		      goto reterr;
394		    }
395
396		    if (!q)
397		      func_table[i] = fj;
398		    if (fj > funcbufptr)
399			memmove(fnw, funcbufptr, fj - funcbufptr);
400		    for (k = 0; k < j; k++)
401		      if (func_table[k])
402			func_table[k] = fnw + (func_table[k] - funcbufptr);
403
404		    if (first_free > fj) {
405			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
406			for (k = j; k < MAX_NR_FUNC; k++)
407			  if (func_table[k])
408			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
409		    }
410		    if (funcbufptr != func_buf)
411		      kfree(funcbufptr);
412		    funcbufptr = fnw;
413		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
414		    funcbufsize = sz;
415		}
416		strcpy(func_table[i], kbs->kb_string);
417		break;
418	}
419	ret = 0;
420reterr:
421	kfree(kbs);
422	return ret;
423}
424
425static inline int
426do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
427{
428	struct consolefontdesc cfdarg;
429	int i;
430
431	if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
432		return -EFAULT;
433
434	switch (cmd) {
435	case PIO_FONTX:
436		if (!perm)
437			return -EPERM;
438		op->op = KD_FONT_OP_SET;
439		op->flags = KD_FONT_FLAG_OLD;
440		op->width = 8;
441		op->height = cfdarg.charheight;
442		op->charcount = cfdarg.charcount;
443		op->data = cfdarg.chardata;
444		return con_font_op(vc_cons[fg_console].d, op);
445	case GIO_FONTX: {
446		op->op = KD_FONT_OP_GET;
447		op->flags = KD_FONT_FLAG_OLD;
448		op->width = 8;
449		op->height = cfdarg.charheight;
450		op->charcount = cfdarg.charcount;
451		op->data = cfdarg.chardata;
452		i = con_font_op(vc_cons[fg_console].d, op);
453		if (i)
454			return i;
455		cfdarg.charheight = op->height;
456		cfdarg.charcount = op->charcount;
457		if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
458			return -EFAULT;
459		return 0;
460		}
461	}
462	return -EINVAL;
463}
464
465static inline int
466do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
467{
468	struct unimapdesc tmp;
469
470	if (copy_from_user(&tmp, user_ud, sizeof tmp))
471		return -EFAULT;
472	if (tmp.entries)
473		if (!access_ok(VERIFY_WRITE, tmp.entries,
474				tmp.entry_ct*sizeof(struct unipair)))
475			return -EFAULT;
476	switch (cmd) {
477	case PIO_UNIMAP:
478		if (!perm)
479			return -EPERM;
480		return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
481	case GIO_UNIMAP:
482		if (!perm && fg_console != vc->vc_num)
483			return -EPERM;
484		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
485	}
486	return 0;
487}
488
489
490
491/*
492 * We handle the console-specific ioctl's here.  We allow the
493 * capability to modify any console, not just the fg_console.
494 */
495int vt_ioctl(struct tty_struct *tty,
496	     unsigned int cmd, unsigned long arg)
497{
498	struct vc_data *vc = tty->driver_data;
499	struct console_font_op op;	/* used in multiple places here */
500	struct kbd_struct * kbd;
501	unsigned int console;
502	unsigned char ucval;
503	unsigned int uival;
504	void __user *up = (void __user *)arg;
505	int i, perm;
506	int ret = 0;
507
508	console = vc->vc_num;
509
510	tty_lock();
511
512	if (!vc_cons_allocated(console)) { 	/* impossible? */
513		ret = -ENOIOCTLCMD;
514		goto out;
515	}
516
517
518	/*
519	 * To have permissions to do most of the vt ioctls, we either have
520	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
521	 */
522	perm = 0;
523	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
524		perm = 1;
525
526	kbd = kbd_table + console;
527	switch (cmd) {
528	case TIOCLINUX:
529		ret = tioclinux(tty, arg);
530		break;
531	case KIOCSOUND:
532		if (!perm)
533			goto eperm;
534		/*
535		 * The use of PIT_TICK_RATE is historic, it used to be
536		 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
537		 * and 2.6.36, which was a minor but unfortunate ABI
538		 * change.
539		 */
540		if (arg)
541			arg = PIT_TICK_RATE / arg;
542		kd_mksound(arg, 0);
543		break;
544
545	case KDMKTONE:
546		if (!perm)
547			goto eperm;
548	{
549		unsigned int ticks, count;
550
551		/*
552		 * Generate the tone for the appropriate number of ticks.
553		 * If the time is zero, turn off sound ourselves.
554		 */
555		ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
556		count = ticks ? (arg & 0xffff) : 0;
557		if (count)
558			count = PIT_TICK_RATE / count;
559		kd_mksound(count, ticks);
560		break;
561	}
562
563	case KDGKBTYPE:
564		/*
565		 * this is naive.
566		 */
567		ucval = KB_101;
568		goto setchar;
569
570		/*
571		 * These cannot be implemented on any machine that implements
572		 * ioperm() in user level (such as Alpha PCs) or not at all.
573		 *
574		 * XXX: you should never use these, just call ioperm directly..
575		 */
576#ifdef CONFIG_X86
577	case KDADDIO:
578	case KDDELIO:
579		/*
580		 * KDADDIO and KDDELIO may be able to add ports beyond what
581		 * we reject here, but to be safe...
582		 */
583		if (arg < GPFIRST || arg > GPLAST) {
584			ret = -EINVAL;
585			break;
586		}
587		ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
588		break;
589
590	case KDENABIO:
591	case KDDISABIO:
592		ret = sys_ioperm(GPFIRST, GPNUM,
593				  (cmd == KDENABIO)) ? -ENXIO : 0;
594		break;
595#endif
596
597	/* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
598
599	case KDKBDREP:
600	{
601		struct kbd_repeat kbrep;
602
603		if (!capable(CAP_SYS_TTY_CONFIG))
604			goto eperm;
605
606		if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) {
607			ret =  -EFAULT;
608			break;
609		}
610		ret = kbd_rate(&kbrep);
611		if (ret)
612			break;
613		if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
614			ret = -EFAULT;
615		break;
616	}
617
618	case KDSETMODE:
619		/*
620		 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
621		 * doesn't do a whole lot. i'm not sure if it should do any
622		 * restoration of modes or what...
623		 *
624		 * XXX It should at least call into the driver, fbdev's definitely
625		 * need to restore their engine state. --BenH
626		 */
627		if (!perm)
628			goto eperm;
629		switch (arg) {
630		case KD_GRAPHICS:
631			break;
632		case KD_TEXT0:
633		case KD_TEXT1:
634			arg = KD_TEXT;
635		case KD_TEXT:
636			break;
637		default:
638			ret = -EINVAL;
639			goto out;
640		}
641		if (vc->vc_mode == (unsigned char) arg)
642			break;
643		vc->vc_mode = (unsigned char) arg;
644		if (console != fg_console)
645			break;
646		/*
647		 * explicitly blank/unblank the screen if switching modes
648		 */
649		console_lock();
650		if (arg == KD_TEXT)
651			do_unblank_screen(1);
652		else
653			do_blank_screen(1);
654		console_unlock();
655		break;
656
657	case KDGETMODE:
658		uival = vc->vc_mode;
659		goto setint;
660
661	case KDMAPDISP:
662	case KDUNMAPDISP:
663		/*
664		 * these work like a combination of mmap and KDENABIO.
665		 * this could be easily finished.
666		 */
667		ret = -EINVAL;
668		break;
669
670	case KDSKBMODE:
671		if (!perm)
672			goto eperm;
673		switch(arg) {
674		  case K_RAW:
675			kbd->kbdmode = VC_RAW;
676			break;
677		  case K_MEDIUMRAW:
678			kbd->kbdmode = VC_MEDIUMRAW;
679			break;
680		  case K_XLATE:
681			kbd->kbdmode = VC_XLATE;
682			compute_shiftstate();
683			break;
684		  case K_UNICODE:
685			kbd->kbdmode = VC_UNICODE;
686			compute_shiftstate();
687			break;
688		  case K_OFF:
689			kbd->kbdmode = VC_OFF;
690			break;
691		  default:
692			ret = -EINVAL;
693			goto out;
694		}
695		tty_ldisc_flush(tty);
696		break;
697
698	case KDGKBMODE:
699		switch (kbd->kbdmode) {
700		case VC_RAW:
701			uival = K_RAW;
702			break;
703		case VC_MEDIUMRAW:
704			uival = K_MEDIUMRAW;
705			break;
706		case VC_UNICODE:
707			uival = K_UNICODE;
708			break;
709		case VC_OFF:
710			uival = K_OFF;
711			break;
712		default:
713			uival = K_XLATE;
714			break;
715		}
716		goto setint;
717
718	/* this could be folded into KDSKBMODE, but for compatibility
719	   reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
720	case KDSKBMETA:
721		switch(arg) {
722		  case K_METABIT:
723			clr_vc_kbd_mode(kbd, VC_META);
724			break;
725		  case K_ESCPREFIX:
726			set_vc_kbd_mode(kbd, VC_META);
727			break;
728		  default:
729			ret = -EINVAL;
730		}
731		break;
732
733	case KDGKBMETA:
734		uival = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT);
735	setint:
736		ret = put_user(uival, (int __user *)arg);
737		break;
738
739	case KDGETKEYCODE:
740	case KDSETKEYCODE:
741		if(!capable(CAP_SYS_TTY_CONFIG))
742			perm = 0;
743		ret = do_kbkeycode_ioctl(cmd, up, perm);
744		break;
745
746	case KDGKBENT:
747	case KDSKBENT:
748		ret = do_kdsk_ioctl(cmd, up, perm, kbd);
749		break;
750
751	case KDGKBSENT:
752	case KDSKBSENT:
753		ret = do_kdgkb_ioctl(cmd, up, perm);
754		break;
755
756	case KDGKBDIACR:
757	{
758		struct kbdiacrs __user *a = up;
759		struct kbdiacr diacr;
760		int i;
761
762		if (put_user(accent_table_size, &a->kb_cnt)) {
763			ret = -EFAULT;
764			break;
765		}
766		for (i = 0; i < accent_table_size; i++) {
767			diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr);
768			diacr.base = conv_uni_to_8bit(accent_table[i].base);
769			diacr.result = conv_uni_to_8bit(accent_table[i].result);
770			if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) {
771				ret = -EFAULT;
772				break;
773			}
774		}
775		break;
776	}
777	case KDGKBDIACRUC:
778	{
779		struct kbdiacrsuc __user *a = up;
780
781		if (put_user(accent_table_size, &a->kb_cnt))
782			ret = -EFAULT;
783		else if (copy_to_user(a->kbdiacruc, accent_table,
784				accent_table_size*sizeof(struct kbdiacruc)))
785			ret = -EFAULT;
786		break;
787	}
788
789	case KDSKBDIACR:
790	{
791		struct kbdiacrs __user *a = up;
792		struct kbdiacr diacr;
793		unsigned int ct;
794		int i;
795
796		if (!perm)
797			goto eperm;
798		if (get_user(ct,&a->kb_cnt)) {
799			ret = -EFAULT;
800			break;
801		}
802		if (ct >= MAX_DIACR) {
803			ret = -EINVAL;
804			break;
805		}
806		accent_table_size = ct;
807		for (i = 0; i < ct; i++) {
808			if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) {
809				ret = -EFAULT;
810				break;
811			}
812			accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr);
813			accent_table[i].base = conv_8bit_to_uni(diacr.base);
814			accent_table[i].result = conv_8bit_to_uni(diacr.result);
815		}
816		break;
817	}
818
819	case KDSKBDIACRUC:
820	{
821		struct kbdiacrsuc __user *a = up;
822		unsigned int ct;
823
824		if (!perm)
825			goto eperm;
826		if (get_user(ct,&a->kb_cnt)) {
827			ret = -EFAULT;
828			break;
829		}
830		if (ct >= MAX_DIACR) {
831			ret = -EINVAL;
832			break;
833		}
834		accent_table_size = ct;
835		if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc)))
836			ret = -EFAULT;
837		break;
838	}
839
840	/* the ioctls below read/set the flags usually shown in the leds */
841	/* don't use them - they will go away without warning */
842	case KDGKBLED:
843		ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
844		goto setchar;
845
846	case KDSKBLED:
847		if (!perm)
848			goto eperm;
849		if (arg & ~0x77) {
850			ret = -EINVAL;
851			break;
852		}
853		kbd->ledflagstate = (arg & 7);
854		kbd->default_ledflagstate = ((arg >> 4) & 7);
855		set_leds();
856		break;
857
858	/* the ioctls below only set the lights, not the functions */
859	/* for those, see KDGKBLED and KDSKBLED above */
860	case KDGETLED:
861		ucval = getledstate();
862	setchar:
863		ret = put_user(ucval, (char __user *)arg);
864		break;
865
866	case KDSETLED:
867		if (!perm)
868			goto eperm;
869		setledstate(kbd, arg);
870		break;
871
872	/*
873	 * A process can indicate its willingness to accept signals
874	 * generated by pressing an appropriate key combination.
875	 * Thus, one can have a daemon that e.g. spawns a new console
876	 * upon a keypress and then changes to it.
877	 * See also the kbrequest field of inittab(5).
878	 */
879	case KDSIGACCEPT:
880	{
881		if (!perm || !capable(CAP_KILL))
882			goto eperm;
883		if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
884			ret = -EINVAL;
885		else {
886			spin_lock_irq(&vt_spawn_con.lock);
887			put_pid(vt_spawn_con.pid);
888			vt_spawn_con.pid = get_pid(task_pid(current));
889			vt_spawn_con.sig = arg;
890			spin_unlock_irq(&vt_spawn_con.lock);
891		}
892		break;
893	}
894
895	case VT_SETMODE:
896	{
897		struct vt_mode tmp;
898
899		if (!perm)
900			goto eperm;
901		if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) {
902			ret = -EFAULT;
903			goto out;
904		}
905		if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) {
906			ret = -EINVAL;
907			goto out;
908		}
909		console_lock();
910		vc->vt_mode = tmp;
911		/* the frsig is ignored, so we set it to 0 */
912		vc->vt_mode.frsig = 0;
913		put_pid(vc->vt_pid);
914		vc->vt_pid = get_pid(task_pid(current));
915		/* no switch is required -- saw@shade.msu.ru */
916		vc->vt_newvt = -1;
917		console_unlock();
918		break;
919	}
920
921	case VT_GETMODE:
922	{
923		struct vt_mode tmp;
924		int rc;
925
926		console_lock();
927		memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
928		console_unlock();
929
930		rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
931		if (rc)
932			ret = -EFAULT;
933		break;
934	}
935
936	/*
937	 * Returns global vt state. Note that VT 0 is always open, since
938	 * it's an alias for the current VT, and people can't use it here.
939	 * We cannot return state for more than 16 VTs, since v_state is short.
940	 */
941	case VT_GETSTATE:
942	{
943		struct vt_stat __user *vtstat = up;
944		unsigned short state, mask;
945
946		if (put_user(fg_console + 1, &vtstat->v_active))
947			ret = -EFAULT;
948		else {
949			state = 1;	/* /dev/tty0 is always open */
950			for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
951							++i, mask <<= 1)
952				if (VT_IS_IN_USE(i))
953					state |= mask;
954			ret = put_user(state, &vtstat->v_state);
955		}
956		break;
957	}
958
959	/*
960	 * Returns the first available (non-opened) console.
961	 */
962	case VT_OPENQRY:
963		for (i = 0; i < MAX_NR_CONSOLES; ++i)
964			if (! VT_IS_IN_USE(i))
965				break;
966		uival = i < MAX_NR_CONSOLES ? (i+1) : -1;
967		goto setint;
968
969	/*
970	 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
971	 * with num >= 1 (switches to vt 0, our console, are not allowed, just
972	 * to preserve sanity).
973	 */
974	case VT_ACTIVATE:
975		if (!perm)
976			goto eperm;
977		if (arg == 0 || arg > MAX_NR_CONSOLES)
978			ret =  -ENXIO;
979		else {
980			arg--;
981			console_lock();
982			ret = vc_allocate(arg);
983			console_unlock();
984			if (ret)
985				break;
986			set_console(arg);
987		}
988		break;
989
990	case VT_SETACTIVATE:
991	{
992		struct vt_setactivate vsa;
993
994		if (!perm)
995			goto eperm;
996
997		if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg,
998					sizeof(struct vt_setactivate))) {
999			ret = -EFAULT;
1000			goto out;
1001		}
1002		if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
1003			ret = -ENXIO;
1004		else {
1005			vsa.console--;
1006			console_lock();
1007			ret = vc_allocate(vsa.console);
1008			if (ret == 0) {
1009				struct vc_data *nvc;
1010				/* This is safe providing we don't drop the
1011				   console sem between vc_allocate and
1012				   finishing referencing nvc */
1013				nvc = vc_cons[vsa.console].d;
1014				nvc->vt_mode = vsa.mode;
1015				nvc->vt_mode.frsig = 0;
1016				put_pid(nvc->vt_pid);
1017				nvc->vt_pid = get_pid(task_pid(current));
1018			}
1019			console_unlock();
1020			if (ret)
1021				break;
1022			/* Commence switch and lock */
1023			set_console(vsa.console);
1024		}
1025		break;
1026	}
1027
1028	/*
1029	 * wait until the specified VT has been activated
1030	 */
1031	case VT_WAITACTIVE:
1032		if (!perm)
1033			goto eperm;
1034		if (arg == 0 || arg > MAX_NR_CONSOLES)
1035			ret = -ENXIO;
1036		else
1037			ret = vt_waitactive(arg);
1038		break;
1039
1040	/*
1041	 * If a vt is under process control, the kernel will not switch to it
1042	 * immediately, but postpone the operation until the process calls this
1043	 * ioctl, allowing the switch to complete.
1044	 *
1045	 * According to the X sources this is the behavior:
1046	 *	0:	pending switch-from not OK
1047	 *	1:	pending switch-from OK
1048	 *	2:	completed switch-to OK
1049	 */
1050	case VT_RELDISP:
1051		if (!perm)
1052			goto eperm;
1053
1054		if (vc->vt_mode.mode != VT_PROCESS) {
1055			ret = -EINVAL;
1056			break;
1057		}
1058		/*
1059		 * Switching-from response
1060		 */
1061		console_lock();
1062		if (vc->vt_newvt >= 0) {
1063			if (arg == 0)
1064				/*
1065				 * Switch disallowed, so forget we were trying
1066				 * to do it.
1067				 */
1068				vc->vt_newvt = -1;
1069
1070			else {
1071				/*
1072				 * The current vt has been released, so
1073				 * complete the switch.
1074				 */
1075				int newvt;
1076				newvt = vc->vt_newvt;
1077				vc->vt_newvt = -1;
1078				ret = vc_allocate(newvt);
1079				if (ret) {
1080					console_unlock();
1081					break;
1082				}
1083				/*
1084				 * When we actually do the console switch,
1085				 * make sure we are atomic with respect to
1086				 * other console switches..
1087				 */
1088				complete_change_console(vc_cons[newvt].d);
1089			}
1090		} else {
1091			/*
1092			 * Switched-to response
1093			 */
1094			/*
1095			 * If it's just an ACK, ignore it
1096			 */
1097			if (arg != VT_ACKACQ)
1098				ret = -EINVAL;
1099		}
1100		console_unlock();
1101		break;
1102
1103	 /*
1104	  * Disallocate memory associated to VT (but leave VT1)
1105	  */
1106	 case VT_DISALLOCATE:
1107		if (arg > MAX_NR_CONSOLES) {
1108			ret = -ENXIO;
1109			break;
1110		}
1111		if (arg == 0) {
1112		    /* deallocate all unused consoles, but leave 0 */
1113			console_lock();
1114			for (i=1; i<MAX_NR_CONSOLES; i++)
1115				if (! VT_BUSY(i))
1116					vc_deallocate(i);
1117			console_unlock();
1118		} else {
1119			/* deallocate a single console, if possible */
1120			arg--;
1121			if (VT_BUSY(arg))
1122				ret = -EBUSY;
1123			else if (arg) {			      /* leave 0 */
1124				console_lock();
1125				vc_deallocate(arg);
1126				console_unlock();
1127			}
1128		}
1129		break;
1130
1131	case VT_RESIZE:
1132	{
1133		struct vt_sizes __user *vtsizes = up;
1134		struct vc_data *vc;
1135
1136		ushort ll,cc;
1137		if (!perm)
1138			goto eperm;
1139		if (get_user(ll, &vtsizes->v_rows) ||
1140		    get_user(cc, &vtsizes->v_cols))
1141			ret = -EFAULT;
1142		else {
1143			console_lock();
1144			for (i = 0; i < MAX_NR_CONSOLES; i++) {
1145				vc = vc_cons[i].d;
1146
1147				if (vc) {
1148					vc->vc_resize_user = 1;
1149					vc_resize(vc_cons[i].d, cc, ll);
1150				}
1151			}
1152			console_unlock();
1153		}
1154		break;
1155	}
1156
1157	case VT_RESIZEX:
1158	{
1159		struct vt_consize __user *vtconsize = up;
1160		ushort ll,cc,vlin,clin,vcol,ccol;
1161		if (!perm)
1162			goto eperm;
1163		if (!access_ok(VERIFY_READ, vtconsize,
1164				sizeof(struct vt_consize))) {
1165			ret = -EFAULT;
1166			break;
1167		}
1168		/* FIXME: Should check the copies properly */
1169		__get_user(ll, &vtconsize->v_rows);
1170		__get_user(cc, &vtconsize->v_cols);
1171		__get_user(vlin, &vtconsize->v_vlin);
1172		__get_user(clin, &vtconsize->v_clin);
1173		__get_user(vcol, &vtconsize->v_vcol);
1174		__get_user(ccol, &vtconsize->v_ccol);
1175		vlin = vlin ? vlin : vc->vc_scan_lines;
1176		if (clin) {
1177			if (ll) {
1178				if (ll != vlin/clin) {
1179					/* Parameters don't add up */
1180					ret = -EINVAL;
1181					break;
1182				}
1183			} else
1184				ll = vlin/clin;
1185		}
1186		if (vcol && ccol) {
1187			if (cc) {
1188				if (cc != vcol/ccol) {
1189					ret = -EINVAL;
1190					break;
1191				}
1192			} else
1193				cc = vcol/ccol;
1194		}
1195
1196		if (clin > 32) {
1197			ret =  -EINVAL;
1198			break;
1199		}
1200
1201		for (i = 0; i < MAX_NR_CONSOLES; i++) {
1202			if (!vc_cons[i].d)
1203				continue;
1204			console_lock();
1205			if (vlin)
1206				vc_cons[i].d->vc_scan_lines = vlin;
1207			if (clin)
1208				vc_cons[i].d->vc_font.height = clin;
1209			vc_cons[i].d->vc_resize_user = 1;
1210			vc_resize(vc_cons[i].d, cc, ll);
1211			console_unlock();
1212		}
1213		break;
1214	}
1215
1216	case PIO_FONT: {
1217		if (!perm)
1218			goto eperm;
1219		op.op = KD_FONT_OP_SET;
1220		op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC;	/* Compatibility */
1221		op.width = 8;
1222		op.height = 0;
1223		op.charcount = 256;
1224		op.data = up;
1225		ret = con_font_op(vc_cons[fg_console].d, &op);
1226		break;
1227	}
1228
1229	case GIO_FONT: {
1230		op.op = KD_FONT_OP_GET;
1231		op.flags = KD_FONT_FLAG_OLD;
1232		op.width = 8;
1233		op.height = 32;
1234		op.charcount = 256;
1235		op.data = up;
1236		ret = con_font_op(vc_cons[fg_console].d, &op);
1237		break;
1238	}
1239
1240	case PIO_CMAP:
1241                if (!perm)
1242			ret = -EPERM;
1243		else
1244	                ret = con_set_cmap(up);
1245		break;
1246
1247	case GIO_CMAP:
1248                ret = con_get_cmap(up);
1249		break;
1250
1251	case PIO_FONTX:
1252	case GIO_FONTX:
1253		ret = do_fontx_ioctl(cmd, up, perm, &op);
1254		break;
1255
1256	case PIO_FONTRESET:
1257	{
1258		if (!perm)
1259			goto eperm;
1260
1261#ifdef BROKEN_GRAPHICS_PROGRAMS
1262		/* With BROKEN_GRAPHICS_PROGRAMS defined, the default
1263		   font is not saved. */
1264		ret = -ENOSYS;
1265		break;
1266#else
1267		{
1268		op.op = KD_FONT_OP_SET_DEFAULT;
1269		op.data = NULL;
1270		ret = con_font_op(vc_cons[fg_console].d, &op);
1271		if (ret)
1272			break;
1273		con_set_default_unimap(vc_cons[fg_console].d);
1274		break;
1275		}
1276#endif
1277	}
1278
1279	case KDFONTOP: {
1280		if (copy_from_user(&op, up, sizeof(op))) {
1281			ret = -EFAULT;
1282			break;
1283		}
1284		if (!perm && op.op != KD_FONT_OP_GET)
1285			goto eperm;
1286		ret = con_font_op(vc, &op);
1287		if (ret)
1288			break;
1289		if (copy_to_user(up, &op, sizeof(op)))
1290			ret = -EFAULT;
1291		break;
1292	}
1293
1294	case PIO_SCRNMAP:
1295		if (!perm)
1296			ret = -EPERM;
1297		else
1298			ret = con_set_trans_old(up);
1299		break;
1300
1301	case GIO_SCRNMAP:
1302		ret = con_get_trans_old(up);
1303		break;
1304
1305	case PIO_UNISCRNMAP:
1306		if (!perm)
1307			ret = -EPERM;
1308		else
1309			ret = con_set_trans_new(up);
1310		break;
1311
1312	case GIO_UNISCRNMAP:
1313		ret = con_get_trans_new(up);
1314		break;
1315
1316	case PIO_UNIMAPCLR:
1317	      { struct unimapinit ui;
1318		if (!perm)
1319			goto eperm;
1320		ret = copy_from_user(&ui, up, sizeof(struct unimapinit));
1321		if (ret)
1322			ret = -EFAULT;
1323		else
1324			con_clear_unimap(vc, &ui);
1325		break;
1326	      }
1327
1328	case PIO_UNIMAP:
1329	case GIO_UNIMAP:
1330		ret = do_unimap_ioctl(cmd, up, perm, vc);
1331		break;
1332
1333	case VT_LOCKSWITCH:
1334		if (!capable(CAP_SYS_TTY_CONFIG))
1335			goto eperm;
1336		vt_dont_switch = 1;
1337		break;
1338	case VT_UNLOCKSWITCH:
1339		if (!capable(CAP_SYS_TTY_CONFIG))
1340			goto eperm;
1341		vt_dont_switch = 0;
1342		break;
1343	case VT_GETHIFONTMASK:
1344		ret = put_user(vc->vc_hi_font_mask,
1345					(unsigned short __user *)arg);
1346		break;
1347	case VT_WAITEVENT:
1348		ret = vt_event_wait_ioctl((struct vt_event __user *)arg);
1349		break;
1350	default:
1351		ret = -ENOIOCTLCMD;
1352	}
1353out:
1354	tty_unlock();
1355	return ret;
1356eperm:
1357	ret = -EPERM;
1358	goto out;
1359}
1360
1361void reset_vc(struct vc_data *vc)
1362{
1363	vc->vc_mode = KD_TEXT;
1364	kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1365	vc->vt_mode.mode = VT_AUTO;
1366	vc->vt_mode.waitv = 0;
1367	vc->vt_mode.relsig = 0;
1368	vc->vt_mode.acqsig = 0;
1369	vc->vt_mode.frsig = 0;
1370	put_pid(vc->vt_pid);
1371	vc->vt_pid = NULL;
1372	vc->vt_newvt = -1;
1373	if (!in_interrupt())    /* Via keyboard.c:SAK() - akpm */
1374		reset_palette(vc);
1375}
1376
1377void vc_SAK(struct work_struct *work)
1378{
1379	struct vc *vc_con =
1380		container_of(work, struct vc, SAK_work);
1381	struct vc_data *vc;
1382	struct tty_struct *tty;
1383
1384	console_lock();
1385	vc = vc_con->d;
1386	if (vc) {
1387		tty = vc->port.tty;
1388		/*
1389		 * SAK should also work in all raw modes and reset
1390		 * them properly.
1391		 */
1392		if (tty)
1393			__do_SAK(tty);
1394		reset_vc(vc);
1395	}
1396	console_unlock();
1397}
1398
1399#ifdef CONFIG_COMPAT
1400
1401struct compat_consolefontdesc {
1402	unsigned short charcount;       /* characters in font (256 or 512) */
1403	unsigned short charheight;      /* scan lines per character (1-32) */
1404	compat_caddr_t chardata;	/* font data in expanded form */
1405};
1406
1407static inline int
1408compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd,
1409			 int perm, struct console_font_op *op)
1410{
1411	struct compat_consolefontdesc cfdarg;
1412	int i;
1413
1414	if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc)))
1415		return -EFAULT;
1416
1417	switch (cmd) {
1418	case PIO_FONTX:
1419		if (!perm)
1420			return -EPERM;
1421		op->op = KD_FONT_OP_SET;
1422		op->flags = KD_FONT_FLAG_OLD;
1423		op->width = 8;
1424		op->height = cfdarg.charheight;
1425		op->charcount = cfdarg.charcount;
1426		op->data = compat_ptr(cfdarg.chardata);
1427		return con_font_op(vc_cons[fg_console].d, op);
1428	case GIO_FONTX:
1429		op->op = KD_FONT_OP_GET;
1430		op->flags = KD_FONT_FLAG_OLD;
1431		op->width = 8;
1432		op->height = cfdarg.charheight;
1433		op->charcount = cfdarg.charcount;
1434		op->data = compat_ptr(cfdarg.chardata);
1435		i = con_font_op(vc_cons[fg_console].d, op);
1436		if (i)
1437			return i;
1438		cfdarg.charheight = op->height;
1439		cfdarg.charcount = op->charcount;
1440		if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc)))
1441			return -EFAULT;
1442		return 0;
1443	}
1444	return -EINVAL;
1445}
1446
1447struct compat_console_font_op {
1448	compat_uint_t op;        /* operation code KD_FONT_OP_* */
1449	compat_uint_t flags;     /* KD_FONT_FLAG_* */
1450	compat_uint_t width, height;     /* font size */
1451	compat_uint_t charcount;
1452	compat_caddr_t data;    /* font data with height fixed to 32 */
1453};
1454
1455static inline int
1456compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1457			 int perm, struct console_font_op *op, struct vc_data *vc)
1458{
1459	int i;
1460
1461	if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1462		return -EFAULT;
1463	if (!perm && op->op != KD_FONT_OP_GET)
1464		return -EPERM;
1465	op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1466	op->flags |= KD_FONT_FLAG_OLD;
1467	i = con_font_op(vc, op);
1468	if (i)
1469		return i;
1470	((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1471	if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1472		return -EFAULT;
1473	return 0;
1474}
1475
1476struct compat_unimapdesc {
1477	unsigned short entry_ct;
1478	compat_caddr_t entries;
1479};
1480
1481static inline int
1482compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1483			 int perm, struct vc_data *vc)
1484{
1485	struct compat_unimapdesc tmp;
1486	struct unipair __user *tmp_entries;
1487
1488	if (copy_from_user(&tmp, user_ud, sizeof tmp))
1489		return -EFAULT;
1490	tmp_entries = compat_ptr(tmp.entries);
1491	if (tmp_entries)
1492		if (!access_ok(VERIFY_WRITE, tmp_entries,
1493				tmp.entry_ct*sizeof(struct unipair)))
1494			return -EFAULT;
1495	switch (cmd) {
1496	case PIO_UNIMAP:
1497		if (!perm)
1498			return -EPERM;
1499		return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1500	case GIO_UNIMAP:
1501		if (!perm && fg_console != vc->vc_num)
1502			return -EPERM;
1503		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1504	}
1505	return 0;
1506}
1507
1508long vt_compat_ioctl(struct tty_struct *tty,
1509	     unsigned int cmd, unsigned long arg)
1510{
1511	struct vc_data *vc = tty->driver_data;
1512	struct console_font_op op;	/* used in multiple places here */
1513	unsigned int console;
1514	void __user *up = (void __user *)arg;
1515	int perm;
1516	int ret = 0;
1517
1518	console = vc->vc_num;
1519
1520	tty_lock();
1521
1522	if (!vc_cons_allocated(console)) { 	/* impossible? */
1523		ret = -ENOIOCTLCMD;
1524		goto out;
1525	}
1526
1527	/*
1528	 * To have permissions to do most of the vt ioctls, we either have
1529	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1530	 */
1531	perm = 0;
1532	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1533		perm = 1;
1534
1535	switch (cmd) {
1536	/*
1537	 * these need special handlers for incompatible data structures
1538	 */
1539	case PIO_FONTX:
1540	case GIO_FONTX:
1541		ret = compat_fontx_ioctl(cmd, up, perm, &op);
1542		break;
1543
1544	case KDFONTOP:
1545		ret = compat_kdfontop_ioctl(up, perm, &op, vc);
1546		break;
1547
1548	case PIO_UNIMAP:
1549	case GIO_UNIMAP:
1550		ret = compat_unimap_ioctl(cmd, up, perm, vc);
1551		break;
1552
1553	/*
1554	 * all these treat 'arg' as an integer
1555	 */
1556	case KIOCSOUND:
1557	case KDMKTONE:
1558#ifdef CONFIG_X86
1559	case KDADDIO:
1560	case KDDELIO:
1561#endif
1562	case KDSETMODE:
1563	case KDMAPDISP:
1564	case KDUNMAPDISP:
1565	case KDSKBMODE:
1566	case KDSKBMETA:
1567	case KDSKBLED:
1568	case KDSETLED:
1569	case KDSIGACCEPT:
1570	case VT_ACTIVATE:
1571	case VT_WAITACTIVE:
1572	case VT_RELDISP:
1573	case VT_DISALLOCATE:
1574	case VT_RESIZE:
1575	case VT_RESIZEX:
1576		goto fallback;
1577
1578	/*
1579	 * the rest has a compatible data structure behind arg,
1580	 * but we have to convert it to a proper 64 bit pointer.
1581	 */
1582	default:
1583		arg = (unsigned long)compat_ptr(arg);
1584		goto fallback;
1585	}
1586out:
1587	tty_unlock();
1588	return ret;
1589
1590fallback:
1591	tty_unlock();
1592	return vt_ioctl(tty, cmd, arg);
1593}
1594
1595
1596#endif /* CONFIG_COMPAT */
1597
1598
1599/*
1600 * Performs the back end of a vt switch. Called under the console
1601 * semaphore.
1602 */
1603static void complete_change_console(struct vc_data *vc)
1604{
1605	unsigned char old_vc_mode;
1606	int old = fg_console;
1607
1608	last_console = fg_console;
1609
1610	/*
1611	 * If we're switching, we could be going from KD_GRAPHICS to
1612	 * KD_TEXT mode or vice versa, which means we need to blank or
1613	 * unblank the screen later.
1614	 */
1615	old_vc_mode = vc_cons[fg_console].d->vc_mode;
1616	switch_screen(vc);
1617
1618	/*
1619	 * This can't appear below a successful kill_pid().  If it did,
1620	 * then the *blank_screen operation could occur while X, having
1621	 * received acqsig, is waking up on another processor.  This
1622	 * condition can lead to overlapping accesses to the VGA range
1623	 * and the framebuffer (causing system lockups).
1624	 *
1625	 * To account for this we duplicate this code below only if the
1626	 * controlling process is gone and we've called reset_vc.
1627	 */
1628	if (old_vc_mode != vc->vc_mode) {
1629		if (vc->vc_mode == KD_TEXT)
1630			do_unblank_screen(1);
1631		else
1632			do_blank_screen(1);
1633	}
1634
1635	/*
1636	 * If this new console is under process control, send it a signal
1637	 * telling it that it has acquired. Also check if it has died and
1638	 * clean up (similar to logic employed in change_console())
1639	 */
1640	if (vc->vt_mode.mode == VT_PROCESS) {
1641		/*
1642		 * Send the signal as privileged - kill_pid() will
1643		 * tell us if the process has gone or something else
1644		 * is awry
1645		 */
1646		if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1647		/*
1648		 * The controlling process has died, so we revert back to
1649		 * normal operation. In this case, we'll also change back
1650		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1651		 * but it saves the agony when the X server dies and the screen
1652		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1653		 * this outside of VT_PROCESS but there is no single process
1654		 * to account for and tracking tty count may be undesirable.
1655		 */
1656			reset_vc(vc);
1657
1658			if (old_vc_mode != vc->vc_mode) {
1659				if (vc->vc_mode == KD_TEXT)
1660					do_unblank_screen(1);
1661				else
1662					do_blank_screen(1);
1663			}
1664		}
1665	}
1666
1667	/*
1668	 * Wake anyone waiting for their VT to activate
1669	 */
1670	vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1671	return;
1672}
1673
1674/*
1675 * Performs the front-end of a vt switch
1676 */
1677void change_console(struct vc_data *new_vc)
1678{
1679	struct vc_data *vc;
1680
1681	if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1682		return;
1683
1684	/*
1685	 * If this vt is in process mode, then we need to handshake with
1686	 * that process before switching. Essentially, we store where that
1687	 * vt wants to switch to and wait for it to tell us when it's done
1688	 * (via VT_RELDISP ioctl).
1689	 *
1690	 * We also check to see if the controlling process still exists.
1691	 * If it doesn't, we reset this vt to auto mode and continue.
1692	 * This is a cheap way to track process control. The worst thing
1693	 * that can happen is: we send a signal to a process, it dies, and
1694	 * the switch gets "lost" waiting for a response; hopefully, the
1695	 * user will try again, we'll detect the process is gone (unless
1696	 * the user waits just the right amount of time :-) and revert the
1697	 * vt to auto control.
1698	 */
1699	vc = vc_cons[fg_console].d;
1700	if (vc->vt_mode.mode == VT_PROCESS) {
1701		/*
1702		 * Send the signal as privileged - kill_pid() will
1703		 * tell us if the process has gone or something else
1704		 * is awry.
1705		 *
1706		 * We need to set vt_newvt *before* sending the signal or we
1707		 * have a race.
1708		 */
1709		vc->vt_newvt = new_vc->vc_num;
1710		if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1711			/*
1712			 * It worked. Mark the vt to switch to and
1713			 * return. The process needs to send us a
1714			 * VT_RELDISP ioctl to complete the switch.
1715			 */
1716			return;
1717		}
1718
1719		/*
1720		 * The controlling process has died, so we revert back to
1721		 * normal operation. In this case, we'll also change back
1722		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1723		 * but it saves the agony when the X server dies and the screen
1724		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1725		 * this outside of VT_PROCESS but there is no single process
1726		 * to account for and tracking tty count may be undesirable.
1727		 */
1728		reset_vc(vc);
1729
1730		/*
1731		 * Fall through to normal (VT_AUTO) handling of the switch...
1732		 */
1733	}
1734
1735	/*
1736	 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1737	 */
1738	if (vc->vc_mode == KD_GRAPHICS)
1739		return;
1740
1741	complete_change_console(new_vc);
1742}
1743
1744/* Perform a kernel triggered VT switch for suspend/resume */
1745
1746static int disable_vt_switch;
1747
1748int vt_move_to_console(unsigned int vt, int alloc)
1749{
1750	int prev;
1751
1752	console_lock();
1753	/* Graphics mode - up to X */
1754	if (disable_vt_switch) {
1755		console_unlock();
1756		return 0;
1757	}
1758	prev = fg_console;
1759
1760	if (alloc && vc_allocate(vt)) {
1761		/* we can't have a free VC for now. Too bad,
1762		 * we don't want to mess the screen for now. */
1763		console_unlock();
1764		return -ENOSPC;
1765	}
1766
1767	if (set_console(vt)) {
1768		/*
1769		 * We're unable to switch to the SUSPEND_CONSOLE.
1770		 * Let the calling function know so it can decide
1771		 * what to do.
1772		 */
1773		console_unlock();
1774		return -EIO;
1775	}
1776	console_unlock();
1777	tty_lock();
1778	if (vt_waitactive(vt + 1)) {
1779		pr_debug("Suspend: Can't switch VCs.");
1780		tty_unlock();
1781		return -EINTR;
1782	}
1783	tty_unlock();
1784	return prev;
1785}
1786
1787/*
1788 * Normally during a suspend, we allocate a new console and switch to it.
1789 * When we resume, we switch back to the original console.  This switch
1790 * can be slow, so on systems where the framebuffer can handle restoration
1791 * of video registers anyways, there's little point in doing the console
1792 * switch.  This function allows you to disable it by passing it '0'.
1793 */
1794void pm_set_vt_switch(int do_switch)
1795{
1796	console_lock();
1797	disable_vt_switch = !do_switch;
1798	console_unlock();
1799}
1800EXPORT_SYMBOL(pm_set_vt_switch);
1801