vt_ioctl.c revision ac751efa6a0d70f2c9daef5c7e3a92270f5c2dff
1/*
2 *  linux/drivers/char/vt_ioctl.c
3 *
4 *  Copyright (C) 1992 obz under the linux copyright
5 *
6 *  Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
7 *  Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
8 *  Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
9 *  Some code moved for less code duplication - Andi Kleen - Mar 1997
10 *  Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
11 */
12
13#include <linux/types.h>
14#include <linux/errno.h>
15#include <linux/sched.h>
16#include <linux/tty.h>
17#include <linux/timer.h>
18#include <linux/kernel.h>
19#include <linux/compat.h>
20#include <linux/module.h>
21#include <linux/kd.h>
22#include <linux/vt.h>
23#include <linux/string.h>
24#include <linux/slab.h>
25#include <linux/major.h>
26#include <linux/fs.h>
27#include <linux/console.h>
28#include <linux/consolemap.h>
29#include <linux/signal.h>
30#include <linux/smp_lock.h>
31#include <linux/timex.h>
32
33#include <asm/io.h>
34#include <asm/uaccess.h>
35
36#include <linux/kbd_kern.h>
37#include <linux/vt_kern.h>
38#include <linux/kbd_diacr.h>
39#include <linux/selection.h>
40
41char vt_dont_switch;
42extern struct tty_driver *console_driver;
43
44#define VT_IS_IN_USE(i)	(console_driver->ttys[i] && console_driver->ttys[i]->count)
45#define VT_BUSY(i)	(VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
46
47/*
48 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
49 * experimentation and study of X386 SYSV handling.
50 *
51 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
52 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
53 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
54 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
55 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
56 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
57 * to the current console is done by the main ioctl code.
58 */
59
60#ifdef CONFIG_X86
61#include <linux/syscalls.h>
62#endif
63
64static void complete_change_console(struct vc_data *vc);
65
66/*
67 *	User space VT_EVENT handlers
68 */
69
70struct vt_event_wait {
71	struct list_head list;
72	struct vt_event event;
73	int done;
74};
75
76static LIST_HEAD(vt_events);
77static DEFINE_SPINLOCK(vt_event_lock);
78static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
79
80/**
81 *	vt_event_post
82 *	@event: the event that occurred
83 *	@old: old console
84 *	@new: new console
85 *
86 *	Post an VT event to interested VT handlers
87 */
88
89void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
90{
91	struct list_head *pos, *head;
92	unsigned long flags;
93	int wake = 0;
94
95	spin_lock_irqsave(&vt_event_lock, flags);
96	head = &vt_events;
97
98	list_for_each(pos, head) {
99		struct vt_event_wait *ve = list_entry(pos,
100						struct vt_event_wait, list);
101		if (!(ve->event.event & event))
102			continue;
103		ve->event.event = event;
104		/* kernel view is consoles 0..n-1, user space view is
105		   console 1..n with 0 meaning current, so we must bias */
106		ve->event.oldev = old + 1;
107		ve->event.newev = new + 1;
108		wake = 1;
109		ve->done = 1;
110	}
111	spin_unlock_irqrestore(&vt_event_lock, flags);
112	if (wake)
113		wake_up_interruptible(&vt_event_waitqueue);
114}
115
116/**
117 *	vt_event_wait		-	wait for an event
118 *	@vw: our event
119 *
120 *	Waits for an event to occur which completes our vt_event_wait
121 *	structure. On return the structure has wv->done set to 1 for success
122 *	or 0 if some event such as a signal ended the wait.
123 */
124
125static void vt_event_wait(struct vt_event_wait *vw)
126{
127	unsigned long flags;
128	/* Prepare the event */
129	INIT_LIST_HEAD(&vw->list);
130	vw->done = 0;
131	/* Queue our event */
132	spin_lock_irqsave(&vt_event_lock, flags);
133	list_add(&vw->list, &vt_events);
134	spin_unlock_irqrestore(&vt_event_lock, flags);
135	/* Wait for it to pass */
136	wait_event_interruptible_tty(vt_event_waitqueue, vw->done);
137	/* Dequeue it */
138	spin_lock_irqsave(&vt_event_lock, flags);
139	list_del(&vw->list);
140	spin_unlock_irqrestore(&vt_event_lock, flags);
141}
142
143/**
144 *	vt_event_wait_ioctl	-	event ioctl handler
145 *	@arg: argument to ioctl
146 *
147 *	Implement the VT_WAITEVENT ioctl using the VT event interface
148 */
149
150static int vt_event_wait_ioctl(struct vt_event __user *event)
151{
152	struct vt_event_wait vw;
153
154	if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
155		return -EFAULT;
156	/* Highest supported event for now */
157	if (vw.event.event & ~VT_MAX_EVENT)
158		return -EINVAL;
159
160	vt_event_wait(&vw);
161	/* If it occurred report it */
162	if (vw.done) {
163		if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
164			return -EFAULT;
165		return 0;
166	}
167	return -EINTR;
168}
169
170/**
171 *	vt_waitactive	-	active console wait
172 *	@event: event code
173 *	@n: new console
174 *
175 *	Helper for event waits. Used to implement the legacy
176 *	event waiting ioctls in terms of events
177 */
178
179int vt_waitactive(int n)
180{
181	struct vt_event_wait vw;
182	do {
183		if (n == fg_console + 1)
184			break;
185		vw.event.event = VT_EVENT_SWITCH;
186		vt_event_wait(&vw);
187		if (vw.done == 0)
188			return -EINTR;
189	} while (vw.event.newev != n);
190	return 0;
191}
192
193/*
194 * these are the valid i/o ports we're allowed to change. they map all the
195 * video ports
196 */
197#define GPFIRST 0x3b4
198#define GPLAST 0x3df
199#define GPNUM (GPLAST - GPFIRST + 1)
200
201#define i (tmp.kb_index)
202#define s (tmp.kb_table)
203#define v (tmp.kb_value)
204static inline int
205do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm, struct kbd_struct *kbd)
206{
207	struct kbentry tmp;
208	ushort *key_map, val, ov;
209
210	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
211		return -EFAULT;
212
213	if (!capable(CAP_SYS_TTY_CONFIG))
214		perm = 0;
215
216	switch (cmd) {
217	case KDGKBENT:
218		key_map = key_maps[s];
219		if (key_map) {
220		    val = U(key_map[i]);
221		    if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
222			val = K_HOLE;
223		} else
224		    val = (i ? K_HOLE : K_NOSUCHMAP);
225		return put_user(val, &user_kbe->kb_value);
226	case KDSKBENT:
227		if (!perm)
228			return -EPERM;
229		if (!i && v == K_NOSUCHMAP) {
230			/* deallocate map */
231			key_map = key_maps[s];
232			if (s && key_map) {
233			    key_maps[s] = NULL;
234			    if (key_map[0] == U(K_ALLOCATED)) {
235					kfree(key_map);
236					keymap_count--;
237			    }
238			}
239			break;
240		}
241
242		if (KTYP(v) < NR_TYPES) {
243		    if (KVAL(v) > max_vals[KTYP(v)])
244				return -EINVAL;
245		} else
246		    if (kbd->kbdmode != VC_UNICODE)
247				return -EINVAL;
248
249		/* ++Geert: non-PC keyboards may generate keycode zero */
250#if !defined(__mc68000__) && !defined(__powerpc__)
251		/* assignment to entry 0 only tests validity of args */
252		if (!i)
253			break;
254#endif
255
256		if (!(key_map = key_maps[s])) {
257			int j;
258
259			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
260			    !capable(CAP_SYS_RESOURCE))
261				return -EPERM;
262
263			key_map = kmalloc(sizeof(plain_map),
264						     GFP_KERNEL);
265			if (!key_map)
266				return -ENOMEM;
267			key_maps[s] = key_map;
268			key_map[0] = U(K_ALLOCATED);
269			for (j = 1; j < NR_KEYS; j++)
270				key_map[j] = U(K_HOLE);
271			keymap_count++;
272		}
273		ov = U(key_map[i]);
274		if (v == ov)
275			break;	/* nothing to do */
276		/*
277		 * Attention Key.
278		 */
279		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN))
280			return -EPERM;
281		key_map[i] = U(v);
282		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
283			compute_shiftstate();
284		break;
285	}
286	return 0;
287}
288#undef i
289#undef s
290#undef v
291
292static inline int
293do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc, int perm)
294{
295	struct kbkeycode tmp;
296	int kc = 0;
297
298	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
299		return -EFAULT;
300	switch (cmd) {
301	case KDGETKEYCODE:
302		kc = getkeycode(tmp.scancode);
303		if (kc >= 0)
304			kc = put_user(kc, &user_kbkc->keycode);
305		break;
306	case KDSETKEYCODE:
307		if (!perm)
308			return -EPERM;
309		kc = setkeycode(tmp.scancode, tmp.keycode);
310		break;
311	}
312	return kc;
313}
314
315static inline int
316do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
317{
318	struct kbsentry *kbs;
319	char *p;
320	u_char *q;
321	u_char __user *up;
322	int sz;
323	int delta;
324	char *first_free, *fj, *fnw;
325	int i, j, k;
326	int ret;
327
328	if (!capable(CAP_SYS_TTY_CONFIG))
329		perm = 0;
330
331	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
332	if (!kbs) {
333		ret = -ENOMEM;
334		goto reterr;
335	}
336
337	/* we mostly copy too much here (512bytes), but who cares ;) */
338	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
339		ret = -EFAULT;
340		goto reterr;
341	}
342	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
343	i = kbs->kb_func;
344
345	switch (cmd) {
346	case KDGKBSENT:
347		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
348						  a struct member */
349		up = user_kdgkb->kb_string;
350		p = func_table[i];
351		if(p)
352			for ( ; *p && sz; p++, sz--)
353				if (put_user(*p, up++)) {
354					ret = -EFAULT;
355					goto reterr;
356				}
357		if (put_user('\0', up)) {
358			ret = -EFAULT;
359			goto reterr;
360		}
361		kfree(kbs);
362		return ((p && *p) ? -EOVERFLOW : 0);
363	case KDSKBSENT:
364		if (!perm) {
365			ret = -EPERM;
366			goto reterr;
367		}
368
369		q = func_table[i];
370		first_free = funcbufptr + (funcbufsize - funcbufleft);
371		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
372			;
373		if (j < MAX_NR_FUNC)
374			fj = func_table[j];
375		else
376			fj = first_free;
377
378		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
379		if (delta <= funcbufleft) { 	/* it fits in current buf */
380		    if (j < MAX_NR_FUNC) {
381			memmove(fj + delta, fj, first_free - fj);
382			for (k = j; k < MAX_NR_FUNC; k++)
383			    if (func_table[k])
384				func_table[k] += delta;
385		    }
386		    if (!q)
387		      func_table[i] = fj;
388		    funcbufleft -= delta;
389		} else {			/* allocate a larger buffer */
390		    sz = 256;
391		    while (sz < funcbufsize - funcbufleft + delta)
392		      sz <<= 1;
393		    fnw = kmalloc(sz, GFP_KERNEL);
394		    if(!fnw) {
395		      ret = -ENOMEM;
396		      goto reterr;
397		    }
398
399		    if (!q)
400		      func_table[i] = fj;
401		    if (fj > funcbufptr)
402			memmove(fnw, funcbufptr, fj - funcbufptr);
403		    for (k = 0; k < j; k++)
404		      if (func_table[k])
405			func_table[k] = fnw + (func_table[k] - funcbufptr);
406
407		    if (first_free > fj) {
408			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
409			for (k = j; k < MAX_NR_FUNC; k++)
410			  if (func_table[k])
411			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
412		    }
413		    if (funcbufptr != func_buf)
414		      kfree(funcbufptr);
415		    funcbufptr = fnw;
416		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
417		    funcbufsize = sz;
418		}
419		strcpy(func_table[i], kbs->kb_string);
420		break;
421	}
422	ret = 0;
423reterr:
424	kfree(kbs);
425	return ret;
426}
427
428static inline int
429do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
430{
431	struct consolefontdesc cfdarg;
432	int i;
433
434	if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
435		return -EFAULT;
436
437	switch (cmd) {
438	case PIO_FONTX:
439		if (!perm)
440			return -EPERM;
441		op->op = KD_FONT_OP_SET;
442		op->flags = KD_FONT_FLAG_OLD;
443		op->width = 8;
444		op->height = cfdarg.charheight;
445		op->charcount = cfdarg.charcount;
446		op->data = cfdarg.chardata;
447		return con_font_op(vc_cons[fg_console].d, op);
448	case GIO_FONTX: {
449		op->op = KD_FONT_OP_GET;
450		op->flags = KD_FONT_FLAG_OLD;
451		op->width = 8;
452		op->height = cfdarg.charheight;
453		op->charcount = cfdarg.charcount;
454		op->data = cfdarg.chardata;
455		i = con_font_op(vc_cons[fg_console].d, op);
456		if (i)
457			return i;
458		cfdarg.charheight = op->height;
459		cfdarg.charcount = op->charcount;
460		if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
461			return -EFAULT;
462		return 0;
463		}
464	}
465	return -EINVAL;
466}
467
468static inline int
469do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
470{
471	struct unimapdesc tmp;
472
473	if (copy_from_user(&tmp, user_ud, sizeof tmp))
474		return -EFAULT;
475	if (tmp.entries)
476		if (!access_ok(VERIFY_WRITE, tmp.entries,
477				tmp.entry_ct*sizeof(struct unipair)))
478			return -EFAULT;
479	switch (cmd) {
480	case PIO_UNIMAP:
481		if (!perm)
482			return -EPERM;
483		return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
484	case GIO_UNIMAP:
485		if (!perm && fg_console != vc->vc_num)
486			return -EPERM;
487		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
488	}
489	return 0;
490}
491
492
493
494/*
495 * We handle the console-specific ioctl's here.  We allow the
496 * capability to modify any console, not just the fg_console.
497 */
498int vt_ioctl(struct tty_struct *tty, struct file * file,
499	     unsigned int cmd, unsigned long arg)
500{
501	struct vc_data *vc = tty->driver_data;
502	struct console_font_op op;	/* used in multiple places here */
503	struct kbd_struct * kbd;
504	unsigned int console;
505	unsigned char ucval;
506	unsigned int uival;
507	void __user *up = (void __user *)arg;
508	int i, perm;
509	int ret = 0;
510
511	console = vc->vc_num;
512
513	tty_lock();
514
515	if (!vc_cons_allocated(console)) { 	/* impossible? */
516		ret = -ENOIOCTLCMD;
517		goto out;
518	}
519
520
521	/*
522	 * To have permissions to do most of the vt ioctls, we either have
523	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
524	 */
525	perm = 0;
526	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
527		perm = 1;
528
529	kbd = kbd_table + console;
530	switch (cmd) {
531	case TIOCLINUX:
532		ret = tioclinux(tty, arg);
533		break;
534	case KIOCSOUND:
535		if (!perm)
536			goto eperm;
537		/*
538		 * The use of PIT_TICK_RATE is historic, it used to be
539		 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
540		 * and 2.6.36, which was a minor but unfortunate ABI
541		 * change.
542		 */
543		if (arg)
544			arg = PIT_TICK_RATE / arg;
545		kd_mksound(arg, 0);
546		break;
547
548	case KDMKTONE:
549		if (!perm)
550			goto eperm;
551	{
552		unsigned int ticks, count;
553
554		/*
555		 * Generate the tone for the appropriate number of ticks.
556		 * If the time is zero, turn off sound ourselves.
557		 */
558		ticks = HZ * ((arg >> 16) & 0xffff) / 1000;
559		count = ticks ? (arg & 0xffff) : 0;
560		if (count)
561			count = PIT_TICK_RATE / count;
562		kd_mksound(count, ticks);
563		break;
564	}
565
566	case KDGKBTYPE:
567		/*
568		 * this is naive.
569		 */
570		ucval = KB_101;
571		goto setchar;
572
573		/*
574		 * These cannot be implemented on any machine that implements
575		 * ioperm() in user level (such as Alpha PCs) or not at all.
576		 *
577		 * XXX: you should never use these, just call ioperm directly..
578		 */
579#ifdef CONFIG_X86
580	case KDADDIO:
581	case KDDELIO:
582		/*
583		 * KDADDIO and KDDELIO may be able to add ports beyond what
584		 * we reject here, but to be safe...
585		 */
586		if (arg < GPFIRST || arg > GPLAST) {
587			ret = -EINVAL;
588			break;
589		}
590		ret = sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
591		break;
592
593	case KDENABIO:
594	case KDDISABIO:
595		ret = sys_ioperm(GPFIRST, GPNUM,
596				  (cmd == KDENABIO)) ? -ENXIO : 0;
597		break;
598#endif
599
600	/* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
601
602	case KDKBDREP:
603	{
604		struct kbd_repeat kbrep;
605
606		if (!capable(CAP_SYS_TTY_CONFIG))
607			goto eperm;
608
609		if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) {
610			ret =  -EFAULT;
611			break;
612		}
613		ret = kbd_rate(&kbrep);
614		if (ret)
615			break;
616		if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
617			ret = -EFAULT;
618		break;
619	}
620
621	case KDSETMODE:
622		/*
623		 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
624		 * doesn't do a whole lot. i'm not sure if it should do any
625		 * restoration of modes or what...
626		 *
627		 * XXX It should at least call into the driver, fbdev's definitely
628		 * need to restore their engine state. --BenH
629		 */
630		if (!perm)
631			goto eperm;
632		switch (arg) {
633		case KD_GRAPHICS:
634			break;
635		case KD_TEXT0:
636		case KD_TEXT1:
637			arg = KD_TEXT;
638		case KD_TEXT:
639			break;
640		default:
641			ret = -EINVAL;
642			goto out;
643		}
644		if (vc->vc_mode == (unsigned char) arg)
645			break;
646		vc->vc_mode = (unsigned char) arg;
647		if (console != fg_console)
648			break;
649		/*
650		 * explicitly blank/unblank the screen if switching modes
651		 */
652		console_lock();
653		if (arg == KD_TEXT)
654			do_unblank_screen(1);
655		else
656			do_blank_screen(1);
657		console_unlock();
658		break;
659
660	case KDGETMODE:
661		uival = vc->vc_mode;
662		goto setint;
663
664	case KDMAPDISP:
665	case KDUNMAPDISP:
666		/*
667		 * these work like a combination of mmap and KDENABIO.
668		 * this could be easily finished.
669		 */
670		ret = -EINVAL;
671		break;
672
673	case KDSKBMODE:
674		if (!perm)
675			goto eperm;
676		switch(arg) {
677		  case K_RAW:
678			kbd->kbdmode = VC_RAW;
679			break;
680		  case K_MEDIUMRAW:
681			kbd->kbdmode = VC_MEDIUMRAW;
682			break;
683		  case K_XLATE:
684			kbd->kbdmode = VC_XLATE;
685			compute_shiftstate();
686			break;
687		  case K_UNICODE:
688			kbd->kbdmode = VC_UNICODE;
689			compute_shiftstate();
690			break;
691		  default:
692			ret = -EINVAL;
693			goto out;
694		}
695		tty_ldisc_flush(tty);
696		break;
697
698	case KDGKBMODE:
699		uival = ((kbd->kbdmode == VC_RAW) ? K_RAW :
700				 (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW :
701				 (kbd->kbdmode == VC_UNICODE) ? K_UNICODE :
702				 K_XLATE);
703		goto setint;
704
705	/* this could be folded into KDSKBMODE, but for compatibility
706	   reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
707	case KDSKBMETA:
708		switch(arg) {
709		  case K_METABIT:
710			clr_vc_kbd_mode(kbd, VC_META);
711			break;
712		  case K_ESCPREFIX:
713			set_vc_kbd_mode(kbd, VC_META);
714			break;
715		  default:
716			ret = -EINVAL;
717		}
718		break;
719
720	case KDGKBMETA:
721		uival = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT);
722	setint:
723		ret = put_user(uival, (int __user *)arg);
724		break;
725
726	case KDGETKEYCODE:
727	case KDSETKEYCODE:
728		if(!capable(CAP_SYS_TTY_CONFIG))
729			perm = 0;
730		ret = do_kbkeycode_ioctl(cmd, up, perm);
731		break;
732
733	case KDGKBENT:
734	case KDSKBENT:
735		ret = do_kdsk_ioctl(cmd, up, perm, kbd);
736		break;
737
738	case KDGKBSENT:
739	case KDSKBSENT:
740		ret = do_kdgkb_ioctl(cmd, up, perm);
741		break;
742
743	case KDGKBDIACR:
744	{
745		struct kbdiacrs __user *a = up;
746		struct kbdiacr diacr;
747		int i;
748
749		if (put_user(accent_table_size, &a->kb_cnt)) {
750			ret = -EFAULT;
751			break;
752		}
753		for (i = 0; i < accent_table_size; i++) {
754			diacr.diacr = conv_uni_to_8bit(accent_table[i].diacr);
755			diacr.base = conv_uni_to_8bit(accent_table[i].base);
756			diacr.result = conv_uni_to_8bit(accent_table[i].result);
757			if (copy_to_user(a->kbdiacr + i, &diacr, sizeof(struct kbdiacr))) {
758				ret = -EFAULT;
759				break;
760			}
761		}
762		break;
763	}
764	case KDGKBDIACRUC:
765	{
766		struct kbdiacrsuc __user *a = up;
767
768		if (put_user(accent_table_size, &a->kb_cnt))
769			ret = -EFAULT;
770		else if (copy_to_user(a->kbdiacruc, accent_table,
771				accent_table_size*sizeof(struct kbdiacruc)))
772			ret = -EFAULT;
773		break;
774	}
775
776	case KDSKBDIACR:
777	{
778		struct kbdiacrs __user *a = up;
779		struct kbdiacr diacr;
780		unsigned int ct;
781		int i;
782
783		if (!perm)
784			goto eperm;
785		if (get_user(ct,&a->kb_cnt)) {
786			ret = -EFAULT;
787			break;
788		}
789		if (ct >= MAX_DIACR) {
790			ret = -EINVAL;
791			break;
792		}
793		accent_table_size = ct;
794		for (i = 0; i < ct; i++) {
795			if (copy_from_user(&diacr, a->kbdiacr + i, sizeof(struct kbdiacr))) {
796				ret = -EFAULT;
797				break;
798			}
799			accent_table[i].diacr = conv_8bit_to_uni(diacr.diacr);
800			accent_table[i].base = conv_8bit_to_uni(diacr.base);
801			accent_table[i].result = conv_8bit_to_uni(diacr.result);
802		}
803		break;
804	}
805
806	case KDSKBDIACRUC:
807	{
808		struct kbdiacrsuc __user *a = up;
809		unsigned int ct;
810
811		if (!perm)
812			goto eperm;
813		if (get_user(ct,&a->kb_cnt)) {
814			ret = -EFAULT;
815			break;
816		}
817		if (ct >= MAX_DIACR) {
818			ret = -EINVAL;
819			break;
820		}
821		accent_table_size = ct;
822		if (copy_from_user(accent_table, a->kbdiacruc, ct*sizeof(struct kbdiacruc)))
823			ret = -EFAULT;
824		break;
825	}
826
827	/* the ioctls below read/set the flags usually shown in the leds */
828	/* don't use them - they will go away without warning */
829	case KDGKBLED:
830		ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
831		goto setchar;
832
833	case KDSKBLED:
834		if (!perm)
835			goto eperm;
836		if (arg & ~0x77) {
837			ret = -EINVAL;
838			break;
839		}
840		kbd->ledflagstate = (arg & 7);
841		kbd->default_ledflagstate = ((arg >> 4) & 7);
842		set_leds();
843		break;
844
845	/* the ioctls below only set the lights, not the functions */
846	/* for those, see KDGKBLED and KDSKBLED above */
847	case KDGETLED:
848		ucval = getledstate();
849	setchar:
850		ret = put_user(ucval, (char __user *)arg);
851		break;
852
853	case KDSETLED:
854		if (!perm)
855			goto eperm;
856		setledstate(kbd, arg);
857		break;
858
859	/*
860	 * A process can indicate its willingness to accept signals
861	 * generated by pressing an appropriate key combination.
862	 * Thus, one can have a daemon that e.g. spawns a new console
863	 * upon a keypress and then changes to it.
864	 * See also the kbrequest field of inittab(5).
865	 */
866	case KDSIGACCEPT:
867	{
868		if (!perm || !capable(CAP_KILL))
869			goto eperm;
870		if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
871			ret = -EINVAL;
872		else {
873			spin_lock_irq(&vt_spawn_con.lock);
874			put_pid(vt_spawn_con.pid);
875			vt_spawn_con.pid = get_pid(task_pid(current));
876			vt_spawn_con.sig = arg;
877			spin_unlock_irq(&vt_spawn_con.lock);
878		}
879		break;
880	}
881
882	case VT_SETMODE:
883	{
884		struct vt_mode tmp;
885
886		if (!perm)
887			goto eperm;
888		if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) {
889			ret = -EFAULT;
890			goto out;
891		}
892		if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) {
893			ret = -EINVAL;
894			goto out;
895		}
896		console_lock();
897		vc->vt_mode = tmp;
898		/* the frsig is ignored, so we set it to 0 */
899		vc->vt_mode.frsig = 0;
900		put_pid(vc->vt_pid);
901		vc->vt_pid = get_pid(task_pid(current));
902		/* no switch is required -- saw@shade.msu.ru */
903		vc->vt_newvt = -1;
904		console_unlock();
905		break;
906	}
907
908	case VT_GETMODE:
909	{
910		struct vt_mode tmp;
911		int rc;
912
913		console_lock();
914		memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
915		console_unlock();
916
917		rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
918		if (rc)
919			ret = -EFAULT;
920		break;
921	}
922
923	/*
924	 * Returns global vt state. Note that VT 0 is always open, since
925	 * it's an alias for the current VT, and people can't use it here.
926	 * We cannot return state for more than 16 VTs, since v_state is short.
927	 */
928	case VT_GETSTATE:
929	{
930		struct vt_stat __user *vtstat = up;
931		unsigned short state, mask;
932
933		if (put_user(fg_console + 1, &vtstat->v_active))
934			ret = -EFAULT;
935		else {
936			state = 1;	/* /dev/tty0 is always open */
937			for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
938							++i, mask <<= 1)
939				if (VT_IS_IN_USE(i))
940					state |= mask;
941			ret = put_user(state, &vtstat->v_state);
942		}
943		break;
944	}
945
946	/*
947	 * Returns the first available (non-opened) console.
948	 */
949	case VT_OPENQRY:
950		for (i = 0; i < MAX_NR_CONSOLES; ++i)
951			if (! VT_IS_IN_USE(i))
952				break;
953		uival = i < MAX_NR_CONSOLES ? (i+1) : -1;
954		goto setint;
955
956	/*
957	 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
958	 * with num >= 1 (switches to vt 0, our console, are not allowed, just
959	 * to preserve sanity).
960	 */
961	case VT_ACTIVATE:
962		if (!perm)
963			goto eperm;
964		if (arg == 0 || arg > MAX_NR_CONSOLES)
965			ret =  -ENXIO;
966		else {
967			arg--;
968			console_lock();
969			ret = vc_allocate(arg);
970			console_unlock();
971			if (ret)
972				break;
973			set_console(arg);
974		}
975		break;
976
977	case VT_SETACTIVATE:
978	{
979		struct vt_setactivate vsa;
980
981		if (!perm)
982			goto eperm;
983
984		if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg,
985					sizeof(struct vt_setactivate))) {
986			ret = -EFAULT;
987			goto out;
988		}
989		if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
990			ret = -ENXIO;
991		else {
992			vsa.console--;
993			console_lock();
994			ret = vc_allocate(vsa.console);
995			if (ret == 0) {
996				struct vc_data *nvc;
997				/* This is safe providing we don't drop the
998				   console sem between vc_allocate and
999				   finishing referencing nvc */
1000				nvc = vc_cons[vsa.console].d;
1001				nvc->vt_mode = vsa.mode;
1002				nvc->vt_mode.frsig = 0;
1003				put_pid(nvc->vt_pid);
1004				nvc->vt_pid = get_pid(task_pid(current));
1005			}
1006			console_unlock();
1007			if (ret)
1008				break;
1009			/* Commence switch and lock */
1010			set_console(arg);
1011		}
1012	}
1013
1014	/*
1015	 * wait until the specified VT has been activated
1016	 */
1017	case VT_WAITACTIVE:
1018		if (!perm)
1019			goto eperm;
1020		if (arg == 0 || arg > MAX_NR_CONSOLES)
1021			ret = -ENXIO;
1022		else
1023			ret = vt_waitactive(arg);
1024		break;
1025
1026	/*
1027	 * If a vt is under process control, the kernel will not switch to it
1028	 * immediately, but postpone the operation until the process calls this
1029	 * ioctl, allowing the switch to complete.
1030	 *
1031	 * According to the X sources this is the behavior:
1032	 *	0:	pending switch-from not OK
1033	 *	1:	pending switch-from OK
1034	 *	2:	completed switch-to OK
1035	 */
1036	case VT_RELDISP:
1037		if (!perm)
1038			goto eperm;
1039
1040		if (vc->vt_mode.mode != VT_PROCESS) {
1041			ret = -EINVAL;
1042			break;
1043		}
1044		/*
1045		 * Switching-from response
1046		 */
1047		console_lock();
1048		if (vc->vt_newvt >= 0) {
1049			if (arg == 0)
1050				/*
1051				 * Switch disallowed, so forget we were trying
1052				 * to do it.
1053				 */
1054				vc->vt_newvt = -1;
1055
1056			else {
1057				/*
1058				 * The current vt has been released, so
1059				 * complete the switch.
1060				 */
1061				int newvt;
1062				newvt = vc->vt_newvt;
1063				vc->vt_newvt = -1;
1064				ret = vc_allocate(newvt);
1065				if (ret) {
1066					console_unlock();
1067					break;
1068				}
1069				/*
1070				 * When we actually do the console switch,
1071				 * make sure we are atomic with respect to
1072				 * other console switches..
1073				 */
1074				complete_change_console(vc_cons[newvt].d);
1075			}
1076		} else {
1077			/*
1078			 * Switched-to response
1079			 */
1080			/*
1081			 * If it's just an ACK, ignore it
1082			 */
1083			if (arg != VT_ACKACQ)
1084				ret = -EINVAL;
1085		}
1086		console_unlock();
1087		break;
1088
1089	 /*
1090	  * Disallocate memory associated to VT (but leave VT1)
1091	  */
1092	 case VT_DISALLOCATE:
1093		if (arg > MAX_NR_CONSOLES) {
1094			ret = -ENXIO;
1095			break;
1096		}
1097		if (arg == 0) {
1098		    /* deallocate all unused consoles, but leave 0 */
1099			console_lock();
1100			for (i=1; i<MAX_NR_CONSOLES; i++)
1101				if (! VT_BUSY(i))
1102					vc_deallocate(i);
1103			console_unlock();
1104		} else {
1105			/* deallocate a single console, if possible */
1106			arg--;
1107			if (VT_BUSY(arg))
1108				ret = -EBUSY;
1109			else if (arg) {			      /* leave 0 */
1110				console_lock();
1111				vc_deallocate(arg);
1112				console_unlock();
1113			}
1114		}
1115		break;
1116
1117	case VT_RESIZE:
1118	{
1119		struct vt_sizes __user *vtsizes = up;
1120		struct vc_data *vc;
1121
1122		ushort ll,cc;
1123		if (!perm)
1124			goto eperm;
1125		if (get_user(ll, &vtsizes->v_rows) ||
1126		    get_user(cc, &vtsizes->v_cols))
1127			ret = -EFAULT;
1128		else {
1129			console_lock();
1130			for (i = 0; i < MAX_NR_CONSOLES; i++) {
1131				vc = vc_cons[i].d;
1132
1133				if (vc) {
1134					vc->vc_resize_user = 1;
1135					vc_resize(vc_cons[i].d, cc, ll);
1136				}
1137			}
1138			console_unlock();
1139		}
1140		break;
1141	}
1142
1143	case VT_RESIZEX:
1144	{
1145		struct vt_consize __user *vtconsize = up;
1146		ushort ll,cc,vlin,clin,vcol,ccol;
1147		if (!perm)
1148			goto eperm;
1149		if (!access_ok(VERIFY_READ, vtconsize,
1150				sizeof(struct vt_consize))) {
1151			ret = -EFAULT;
1152			break;
1153		}
1154		/* FIXME: Should check the copies properly */
1155		__get_user(ll, &vtconsize->v_rows);
1156		__get_user(cc, &vtconsize->v_cols);
1157		__get_user(vlin, &vtconsize->v_vlin);
1158		__get_user(clin, &vtconsize->v_clin);
1159		__get_user(vcol, &vtconsize->v_vcol);
1160		__get_user(ccol, &vtconsize->v_ccol);
1161		vlin = vlin ? vlin : vc->vc_scan_lines;
1162		if (clin) {
1163			if (ll) {
1164				if (ll != vlin/clin) {
1165					/* Parameters don't add up */
1166					ret = -EINVAL;
1167					break;
1168				}
1169			} else
1170				ll = vlin/clin;
1171		}
1172		if (vcol && ccol) {
1173			if (cc) {
1174				if (cc != vcol/ccol) {
1175					ret = -EINVAL;
1176					break;
1177				}
1178			} else
1179				cc = vcol/ccol;
1180		}
1181
1182		if (clin > 32) {
1183			ret =  -EINVAL;
1184			break;
1185		}
1186
1187		for (i = 0; i < MAX_NR_CONSOLES; i++) {
1188			if (!vc_cons[i].d)
1189				continue;
1190			console_lock();
1191			if (vlin)
1192				vc_cons[i].d->vc_scan_lines = vlin;
1193			if (clin)
1194				vc_cons[i].d->vc_font.height = clin;
1195			vc_cons[i].d->vc_resize_user = 1;
1196			vc_resize(vc_cons[i].d, cc, ll);
1197			console_unlock();
1198		}
1199		break;
1200	}
1201
1202	case PIO_FONT: {
1203		if (!perm)
1204			goto eperm;
1205		op.op = KD_FONT_OP_SET;
1206		op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC;	/* Compatibility */
1207		op.width = 8;
1208		op.height = 0;
1209		op.charcount = 256;
1210		op.data = up;
1211		ret = con_font_op(vc_cons[fg_console].d, &op);
1212		break;
1213	}
1214
1215	case GIO_FONT: {
1216		op.op = KD_FONT_OP_GET;
1217		op.flags = KD_FONT_FLAG_OLD;
1218		op.width = 8;
1219		op.height = 32;
1220		op.charcount = 256;
1221		op.data = up;
1222		ret = con_font_op(vc_cons[fg_console].d, &op);
1223		break;
1224	}
1225
1226	case PIO_CMAP:
1227                if (!perm)
1228			ret = -EPERM;
1229		else
1230	                ret = con_set_cmap(up);
1231		break;
1232
1233	case GIO_CMAP:
1234                ret = con_get_cmap(up);
1235		break;
1236
1237	case PIO_FONTX:
1238	case GIO_FONTX:
1239		ret = do_fontx_ioctl(cmd, up, perm, &op);
1240		break;
1241
1242	case PIO_FONTRESET:
1243	{
1244		if (!perm)
1245			goto eperm;
1246
1247#ifdef BROKEN_GRAPHICS_PROGRAMS
1248		/* With BROKEN_GRAPHICS_PROGRAMS defined, the default
1249		   font is not saved. */
1250		ret = -ENOSYS;
1251		break;
1252#else
1253		{
1254		op.op = KD_FONT_OP_SET_DEFAULT;
1255		op.data = NULL;
1256		ret = con_font_op(vc_cons[fg_console].d, &op);
1257		if (ret)
1258			break;
1259		con_set_default_unimap(vc_cons[fg_console].d);
1260		break;
1261		}
1262#endif
1263	}
1264
1265	case KDFONTOP: {
1266		if (copy_from_user(&op, up, sizeof(op))) {
1267			ret = -EFAULT;
1268			break;
1269		}
1270		if (!perm && op.op != KD_FONT_OP_GET)
1271			goto eperm;
1272		ret = con_font_op(vc, &op);
1273		if (ret)
1274			break;
1275		if (copy_to_user(up, &op, sizeof(op)))
1276			ret = -EFAULT;
1277		break;
1278	}
1279
1280	case PIO_SCRNMAP:
1281		if (!perm)
1282			ret = -EPERM;
1283		else
1284			ret = con_set_trans_old(up);
1285		break;
1286
1287	case GIO_SCRNMAP:
1288		ret = con_get_trans_old(up);
1289		break;
1290
1291	case PIO_UNISCRNMAP:
1292		if (!perm)
1293			ret = -EPERM;
1294		else
1295			ret = con_set_trans_new(up);
1296		break;
1297
1298	case GIO_UNISCRNMAP:
1299		ret = con_get_trans_new(up);
1300		break;
1301
1302	case PIO_UNIMAPCLR:
1303	      { struct unimapinit ui;
1304		if (!perm)
1305			goto eperm;
1306		ret = copy_from_user(&ui, up, sizeof(struct unimapinit));
1307		if (ret)
1308			ret = -EFAULT;
1309		else
1310			con_clear_unimap(vc, &ui);
1311		break;
1312	      }
1313
1314	case PIO_UNIMAP:
1315	case GIO_UNIMAP:
1316		ret = do_unimap_ioctl(cmd, up, perm, vc);
1317		break;
1318
1319	case VT_LOCKSWITCH:
1320		if (!capable(CAP_SYS_TTY_CONFIG))
1321			goto eperm;
1322		vt_dont_switch = 1;
1323		break;
1324	case VT_UNLOCKSWITCH:
1325		if (!capable(CAP_SYS_TTY_CONFIG))
1326			goto eperm;
1327		vt_dont_switch = 0;
1328		break;
1329	case VT_GETHIFONTMASK:
1330		ret = put_user(vc->vc_hi_font_mask,
1331					(unsigned short __user *)arg);
1332		break;
1333	case VT_WAITEVENT:
1334		ret = vt_event_wait_ioctl((struct vt_event __user *)arg);
1335		break;
1336	default:
1337		ret = -ENOIOCTLCMD;
1338	}
1339out:
1340	tty_unlock();
1341	return ret;
1342eperm:
1343	ret = -EPERM;
1344	goto out;
1345}
1346
1347void reset_vc(struct vc_data *vc)
1348{
1349	vc->vc_mode = KD_TEXT;
1350	kbd_table[vc->vc_num].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1351	vc->vt_mode.mode = VT_AUTO;
1352	vc->vt_mode.waitv = 0;
1353	vc->vt_mode.relsig = 0;
1354	vc->vt_mode.acqsig = 0;
1355	vc->vt_mode.frsig = 0;
1356	put_pid(vc->vt_pid);
1357	vc->vt_pid = NULL;
1358	vc->vt_newvt = -1;
1359	if (!in_interrupt())    /* Via keyboard.c:SAK() - akpm */
1360		reset_palette(vc);
1361}
1362
1363void vc_SAK(struct work_struct *work)
1364{
1365	struct vc *vc_con =
1366		container_of(work, struct vc, SAK_work);
1367	struct vc_data *vc;
1368	struct tty_struct *tty;
1369
1370	console_lock();
1371	vc = vc_con->d;
1372	if (vc) {
1373		tty = vc->port.tty;
1374		/*
1375		 * SAK should also work in all raw modes and reset
1376		 * them properly.
1377		 */
1378		if (tty)
1379			__do_SAK(tty);
1380		reset_vc(vc);
1381	}
1382	console_unlock();
1383}
1384
1385#ifdef CONFIG_COMPAT
1386
1387struct compat_consolefontdesc {
1388	unsigned short charcount;       /* characters in font (256 or 512) */
1389	unsigned short charheight;      /* scan lines per character (1-32) */
1390	compat_caddr_t chardata;	/* font data in expanded form */
1391};
1392
1393static inline int
1394compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd,
1395			 int perm, struct console_font_op *op)
1396{
1397	struct compat_consolefontdesc cfdarg;
1398	int i;
1399
1400	if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc)))
1401		return -EFAULT;
1402
1403	switch (cmd) {
1404	case PIO_FONTX:
1405		if (!perm)
1406			return -EPERM;
1407		op->op = KD_FONT_OP_SET;
1408		op->flags = KD_FONT_FLAG_OLD;
1409		op->width = 8;
1410		op->height = cfdarg.charheight;
1411		op->charcount = cfdarg.charcount;
1412		op->data = compat_ptr(cfdarg.chardata);
1413		return con_font_op(vc_cons[fg_console].d, op);
1414	case GIO_FONTX:
1415		op->op = KD_FONT_OP_GET;
1416		op->flags = KD_FONT_FLAG_OLD;
1417		op->width = 8;
1418		op->height = cfdarg.charheight;
1419		op->charcount = cfdarg.charcount;
1420		op->data = compat_ptr(cfdarg.chardata);
1421		i = con_font_op(vc_cons[fg_console].d, op);
1422		if (i)
1423			return i;
1424		cfdarg.charheight = op->height;
1425		cfdarg.charcount = op->charcount;
1426		if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc)))
1427			return -EFAULT;
1428		return 0;
1429	}
1430	return -EINVAL;
1431}
1432
1433struct compat_console_font_op {
1434	compat_uint_t op;        /* operation code KD_FONT_OP_* */
1435	compat_uint_t flags;     /* KD_FONT_FLAG_* */
1436	compat_uint_t width, height;     /* font size */
1437	compat_uint_t charcount;
1438	compat_caddr_t data;    /* font data with height fixed to 32 */
1439};
1440
1441static inline int
1442compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1443			 int perm, struct console_font_op *op, struct vc_data *vc)
1444{
1445	int i;
1446
1447	if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1448		return -EFAULT;
1449	if (!perm && op->op != KD_FONT_OP_GET)
1450		return -EPERM;
1451	op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1452	op->flags |= KD_FONT_FLAG_OLD;
1453	i = con_font_op(vc, op);
1454	if (i)
1455		return i;
1456	((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1457	if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1458		return -EFAULT;
1459	return 0;
1460}
1461
1462struct compat_unimapdesc {
1463	unsigned short entry_ct;
1464	compat_caddr_t entries;
1465};
1466
1467static inline int
1468compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1469			 int perm, struct vc_data *vc)
1470{
1471	struct compat_unimapdesc tmp;
1472	struct unipair __user *tmp_entries;
1473
1474	if (copy_from_user(&tmp, user_ud, sizeof tmp))
1475		return -EFAULT;
1476	tmp_entries = compat_ptr(tmp.entries);
1477	if (tmp_entries)
1478		if (!access_ok(VERIFY_WRITE, tmp_entries,
1479				tmp.entry_ct*sizeof(struct unipair)))
1480			return -EFAULT;
1481	switch (cmd) {
1482	case PIO_UNIMAP:
1483		if (!perm)
1484			return -EPERM;
1485		return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1486	case GIO_UNIMAP:
1487		if (!perm && fg_console != vc->vc_num)
1488			return -EPERM;
1489		return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1490	}
1491	return 0;
1492}
1493
1494long vt_compat_ioctl(struct tty_struct *tty, struct file * file,
1495	     unsigned int cmd, unsigned long arg)
1496{
1497	struct vc_data *vc = tty->driver_data;
1498	struct console_font_op op;	/* used in multiple places here */
1499	struct kbd_struct *kbd;
1500	unsigned int console;
1501	void __user *up = (void __user *)arg;
1502	int perm;
1503	int ret = 0;
1504
1505	console = vc->vc_num;
1506
1507	tty_lock();
1508
1509	if (!vc_cons_allocated(console)) { 	/* impossible? */
1510		ret = -ENOIOCTLCMD;
1511		goto out;
1512	}
1513
1514	/*
1515	 * To have permissions to do most of the vt ioctls, we either have
1516	 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1517	 */
1518	perm = 0;
1519	if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1520		perm = 1;
1521
1522	kbd = kbd_table + console;
1523	switch (cmd) {
1524	/*
1525	 * these need special handlers for incompatible data structures
1526	 */
1527	case PIO_FONTX:
1528	case GIO_FONTX:
1529		ret = compat_fontx_ioctl(cmd, up, perm, &op);
1530		break;
1531
1532	case KDFONTOP:
1533		ret = compat_kdfontop_ioctl(up, perm, &op, vc);
1534		break;
1535
1536	case PIO_UNIMAP:
1537	case GIO_UNIMAP:
1538		ret = compat_unimap_ioctl(cmd, up, perm, vc);
1539		break;
1540
1541	/*
1542	 * all these treat 'arg' as an integer
1543	 */
1544	case KIOCSOUND:
1545	case KDMKTONE:
1546#ifdef CONFIG_X86
1547	case KDADDIO:
1548	case KDDELIO:
1549#endif
1550	case KDSETMODE:
1551	case KDMAPDISP:
1552	case KDUNMAPDISP:
1553	case KDSKBMODE:
1554	case KDSKBMETA:
1555	case KDSKBLED:
1556	case KDSETLED:
1557	case KDSIGACCEPT:
1558	case VT_ACTIVATE:
1559	case VT_WAITACTIVE:
1560	case VT_RELDISP:
1561	case VT_DISALLOCATE:
1562	case VT_RESIZE:
1563	case VT_RESIZEX:
1564		goto fallback;
1565
1566	/*
1567	 * the rest has a compatible data structure behind arg,
1568	 * but we have to convert it to a proper 64 bit pointer.
1569	 */
1570	default:
1571		arg = (unsigned long)compat_ptr(arg);
1572		goto fallback;
1573	}
1574out:
1575	tty_unlock();
1576	return ret;
1577
1578fallback:
1579	tty_unlock();
1580	return vt_ioctl(tty, file, cmd, arg);
1581}
1582
1583
1584#endif /* CONFIG_COMPAT */
1585
1586
1587/*
1588 * Performs the back end of a vt switch. Called under the console
1589 * semaphore.
1590 */
1591static void complete_change_console(struct vc_data *vc)
1592{
1593	unsigned char old_vc_mode;
1594	int old = fg_console;
1595
1596	last_console = fg_console;
1597
1598	/*
1599	 * If we're switching, we could be going from KD_GRAPHICS to
1600	 * KD_TEXT mode or vice versa, which means we need to blank or
1601	 * unblank the screen later.
1602	 */
1603	old_vc_mode = vc_cons[fg_console].d->vc_mode;
1604	switch_screen(vc);
1605
1606	/*
1607	 * This can't appear below a successful kill_pid().  If it did,
1608	 * then the *blank_screen operation could occur while X, having
1609	 * received acqsig, is waking up on another processor.  This
1610	 * condition can lead to overlapping accesses to the VGA range
1611	 * and the framebuffer (causing system lockups).
1612	 *
1613	 * To account for this we duplicate this code below only if the
1614	 * controlling process is gone and we've called reset_vc.
1615	 */
1616	if (old_vc_mode != vc->vc_mode) {
1617		if (vc->vc_mode == KD_TEXT)
1618			do_unblank_screen(1);
1619		else
1620			do_blank_screen(1);
1621	}
1622
1623	/*
1624	 * If this new console is under process control, send it a signal
1625	 * telling it that it has acquired. Also check if it has died and
1626	 * clean up (similar to logic employed in change_console())
1627	 */
1628	if (vc->vt_mode.mode == VT_PROCESS) {
1629		/*
1630		 * Send the signal as privileged - kill_pid() will
1631		 * tell us if the process has gone or something else
1632		 * is awry
1633		 */
1634		if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1635		/*
1636		 * The controlling process has died, so we revert back to
1637		 * normal operation. In this case, we'll also change back
1638		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1639		 * but it saves the agony when the X server dies and the screen
1640		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1641		 * this outside of VT_PROCESS but there is no single process
1642		 * to account for and tracking tty count may be undesirable.
1643		 */
1644			reset_vc(vc);
1645
1646			if (old_vc_mode != vc->vc_mode) {
1647				if (vc->vc_mode == KD_TEXT)
1648					do_unblank_screen(1);
1649				else
1650					do_blank_screen(1);
1651			}
1652		}
1653	}
1654
1655	/*
1656	 * Wake anyone waiting for their VT to activate
1657	 */
1658	vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1659	return;
1660}
1661
1662/*
1663 * Performs the front-end of a vt switch
1664 */
1665void change_console(struct vc_data *new_vc)
1666{
1667	struct vc_data *vc;
1668
1669	if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1670		return;
1671
1672	/*
1673	 * If this vt is in process mode, then we need to handshake with
1674	 * that process before switching. Essentially, we store where that
1675	 * vt wants to switch to and wait for it to tell us when it's done
1676	 * (via VT_RELDISP ioctl).
1677	 *
1678	 * We also check to see if the controlling process still exists.
1679	 * If it doesn't, we reset this vt to auto mode and continue.
1680	 * This is a cheap way to track process control. The worst thing
1681	 * that can happen is: we send a signal to a process, it dies, and
1682	 * the switch gets "lost" waiting for a response; hopefully, the
1683	 * user will try again, we'll detect the process is gone (unless
1684	 * the user waits just the right amount of time :-) and revert the
1685	 * vt to auto control.
1686	 */
1687	vc = vc_cons[fg_console].d;
1688	if (vc->vt_mode.mode == VT_PROCESS) {
1689		/*
1690		 * Send the signal as privileged - kill_pid() will
1691		 * tell us if the process has gone or something else
1692		 * is awry.
1693		 *
1694		 * We need to set vt_newvt *before* sending the signal or we
1695		 * have a race.
1696		 */
1697		vc->vt_newvt = new_vc->vc_num;
1698		if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1699			/*
1700			 * It worked. Mark the vt to switch to and
1701			 * return. The process needs to send us a
1702			 * VT_RELDISP ioctl to complete the switch.
1703			 */
1704			return;
1705		}
1706
1707		/*
1708		 * The controlling process has died, so we revert back to
1709		 * normal operation. In this case, we'll also change back
1710		 * to KD_TEXT mode. I'm not sure if this is strictly correct
1711		 * but it saves the agony when the X server dies and the screen
1712		 * remains blanked due to KD_GRAPHICS! It would be nice to do
1713		 * this outside of VT_PROCESS but there is no single process
1714		 * to account for and tracking tty count may be undesirable.
1715		 */
1716		reset_vc(vc);
1717
1718		/*
1719		 * Fall through to normal (VT_AUTO) handling of the switch...
1720		 */
1721	}
1722
1723	/*
1724	 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1725	 */
1726	if (vc->vc_mode == KD_GRAPHICS)
1727		return;
1728
1729	complete_change_console(new_vc);
1730}
1731
1732/* Perform a kernel triggered VT switch for suspend/resume */
1733
1734static int disable_vt_switch;
1735
1736int vt_move_to_console(unsigned int vt, int alloc)
1737{
1738	int prev;
1739
1740	console_lock();
1741	/* Graphics mode - up to X */
1742	if (disable_vt_switch) {
1743		console_unlock();
1744		return 0;
1745	}
1746	prev = fg_console;
1747
1748	if (alloc && vc_allocate(vt)) {
1749		/* we can't have a free VC for now. Too bad,
1750		 * we don't want to mess the screen for now. */
1751		console_unlock();
1752		return -ENOSPC;
1753	}
1754
1755	if (set_console(vt)) {
1756		/*
1757		 * We're unable to switch to the SUSPEND_CONSOLE.
1758		 * Let the calling function know so it can decide
1759		 * what to do.
1760		 */
1761		console_unlock();
1762		return -EIO;
1763	}
1764	console_unlock();
1765	tty_lock();
1766	if (vt_waitactive(vt + 1)) {
1767		pr_debug("Suspend: Can't switch VCs.");
1768		tty_unlock();
1769		return -EINTR;
1770	}
1771	tty_unlock();
1772	return prev;
1773}
1774
1775/*
1776 * Normally during a suspend, we allocate a new console and switch to it.
1777 * When we resume, we switch back to the original console.  This switch
1778 * can be slow, so on systems where the framebuffer can handle restoration
1779 * of video registers anyways, there's little point in doing the console
1780 * switch.  This function allows you to disable it by passing it '0'.
1781 */
1782void pm_set_vt_switch(int do_switch)
1783{
1784	console_lock();
1785	disable_vt_switch = !do_switch;
1786	console_unlock();
1787}
1788EXPORT_SYMBOL(pm_set_vt_switch);
1789