hcd.c revision 7dd19e69d131ea34f74397559b422511e54d2911
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/module.h>
26#include <linux/version.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/completion.h>
30#include <linux/utsname.h>
31#include <linux/mm.h>
32#include <asm/io.h>
33#include <linux/device.h>
34#include <linux/dma-mapping.h>
35#include <linux/mutex.h>
36#include <asm/irq.h>
37#include <asm/byteorder.h>
38#include <asm/unaligned.h>
39#include <linux/platform_device.h>
40#include <linux/workqueue.h>
41
42#include <linux/usb.h>
43
44#include "usb.h"
45#include "hcd.h"
46#include "hub.h"
47
48
49/*-------------------------------------------------------------------------*/
50
51/*
52 * USB Host Controller Driver framework
53 *
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
56 *
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences.  That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
61 *
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead.  The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
67 *
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
72 *
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75 *
76 * HISTORY:
77 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
78 *		associated cleanup.  "usb_hcd" still != "usb_bus".
79 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
80 */
81
82/*-------------------------------------------------------------------------*/
83
84/* Keep track of which host controller drivers are loaded */
85unsigned long usb_hcds_loaded;
86EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88/* host controllers we manage */
89LIST_HEAD (usb_bus_list);
90EXPORT_SYMBOL_GPL (usb_bus_list);
91
92/* used when allocating bus numbers */
93#define USB_MAXBUS		64
94struct usb_busmap {
95	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96};
97static struct usb_busmap busmap;
98
99/* used when updating list of hcds */
100DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
101EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103/* used for controlling access to virtual root hubs */
104static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106/* used when updating an endpoint's URB list */
107static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109/* used to protect against unlinking URBs after the device is gone */
110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112/* wait queue for synchronous unlinks */
113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115static inline int is_root_hub(struct usb_device *udev)
116{
117	return (udev->parent == NULL);
118}
119
120/*-------------------------------------------------------------------------*/
121
122/*
123 * Sharable chunks of root hub code.
124 */
125
126/*-------------------------------------------------------------------------*/
127
128#define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
129#define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
130
131/* usb 3.0 root hub device descriptor */
132static const u8 usb3_rh_dev_descriptor[18] = {
133	0x12,       /*  __u8  bLength; */
134	0x01,       /*  __u8  bDescriptorType; Device */
135	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138	0x00,	    /*  __u8  bDeviceSubClass; */
139	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146	0x03,       /*  __u8  iManufacturer; */
147	0x02,       /*  __u8  iProduct; */
148	0x01,       /*  __u8  iSerialNumber; */
149	0x01        /*  __u8  bNumConfigurations; */
150};
151
152/* usb 2.0 root hub device descriptor */
153static const u8 usb2_rh_dev_descriptor [18] = {
154	0x12,       /*  __u8  bLength; */
155	0x01,       /*  __u8  bDescriptorType; Device */
156	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
157
158	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159	0x00,	    /*  __u8  bDeviceSubClass; */
160	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
162
163	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
164	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167	0x03,       /*  __u8  iManufacturer; */
168	0x02,       /*  __u8  iProduct; */
169	0x01,       /*  __u8  iSerialNumber; */
170	0x01        /*  __u8  bNumConfigurations; */
171};
172
173/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
174
175/* usb 1.1 root hub device descriptor */
176static const u8 usb11_rh_dev_descriptor [18] = {
177	0x12,       /*  __u8  bLength; */
178	0x01,       /*  __u8  bDescriptorType; Device */
179	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
180
181	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
182	0x00,	    /*  __u8  bDeviceSubClass; */
183	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
184	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
185
186	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
187	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
188	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
189
190	0x03,       /*  __u8  iManufacturer; */
191	0x02,       /*  __u8  iProduct; */
192	0x01,       /*  __u8  iSerialNumber; */
193	0x01        /*  __u8  bNumConfigurations; */
194};
195
196
197/*-------------------------------------------------------------------------*/
198
199/* Configuration descriptors for our root hubs */
200
201static const u8 fs_rh_config_descriptor [] = {
202
203	/* one configuration */
204	0x09,       /*  __u8  bLength; */
205	0x02,       /*  __u8  bDescriptorType; Configuration */
206	0x19, 0x00, /*  __le16 wTotalLength; */
207	0x01,       /*  __u8  bNumInterfaces; (1) */
208	0x01,       /*  __u8  bConfigurationValue; */
209	0x00,       /*  __u8  iConfiguration; */
210	0xc0,       /*  __u8  bmAttributes;
211				 Bit 7: must be set,
212				     6: Self-powered,
213				     5: Remote wakeup,
214				     4..0: resvd */
215	0x00,       /*  __u8  MaxPower; */
216
217	/* USB 1.1:
218	 * USB 2.0, single TT organization (mandatory):
219	 *	one interface, protocol 0
220	 *
221	 * USB 2.0, multiple TT organization (optional):
222	 *	two interfaces, protocols 1 (like single TT)
223	 *	and 2 (multiple TT mode) ... config is
224	 *	sometimes settable
225	 *	NOT IMPLEMENTED
226	 */
227
228	/* one interface */
229	0x09,       /*  __u8  if_bLength; */
230	0x04,       /*  __u8  if_bDescriptorType; Interface */
231	0x00,       /*  __u8  if_bInterfaceNumber; */
232	0x00,       /*  __u8  if_bAlternateSetting; */
233	0x01,       /*  __u8  if_bNumEndpoints; */
234	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
235	0x00,       /*  __u8  if_bInterfaceSubClass; */
236	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
237	0x00,       /*  __u8  if_iInterface; */
238
239	/* one endpoint (status change endpoint) */
240	0x07,       /*  __u8  ep_bLength; */
241	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
242	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
243 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
244 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
246};
247
248static const u8 hs_rh_config_descriptor [] = {
249
250	/* one configuration */
251	0x09,       /*  __u8  bLength; */
252	0x02,       /*  __u8  bDescriptorType; Configuration */
253	0x19, 0x00, /*  __le16 wTotalLength; */
254	0x01,       /*  __u8  bNumInterfaces; (1) */
255	0x01,       /*  __u8  bConfigurationValue; */
256	0x00,       /*  __u8  iConfiguration; */
257	0xc0,       /*  __u8  bmAttributes;
258				 Bit 7: must be set,
259				     6: Self-powered,
260				     5: Remote wakeup,
261				     4..0: resvd */
262	0x00,       /*  __u8  MaxPower; */
263
264	/* USB 1.1:
265	 * USB 2.0, single TT organization (mandatory):
266	 *	one interface, protocol 0
267	 *
268	 * USB 2.0, multiple TT organization (optional):
269	 *	two interfaces, protocols 1 (like single TT)
270	 *	and 2 (multiple TT mode) ... config is
271	 *	sometimes settable
272	 *	NOT IMPLEMENTED
273	 */
274
275	/* one interface */
276	0x09,       /*  __u8  if_bLength; */
277	0x04,       /*  __u8  if_bDescriptorType; Interface */
278	0x00,       /*  __u8  if_bInterfaceNumber; */
279	0x00,       /*  __u8  if_bAlternateSetting; */
280	0x01,       /*  __u8  if_bNumEndpoints; */
281	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
282	0x00,       /*  __u8  if_bInterfaceSubClass; */
283	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
284	0x00,       /*  __u8  if_iInterface; */
285
286	/* one endpoint (status change endpoint) */
287	0x07,       /*  __u8  ep_bLength; */
288	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
289	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
290 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
291		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292		     * see hub.c:hub_configure() for details. */
293	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
294	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
295};
296
297static const u8 ss_rh_config_descriptor[] = {
298	/* one configuration */
299	0x09,       /*  __u8  bLength; */
300	0x02,       /*  __u8  bDescriptorType; Configuration */
301	0x19, 0x00, /*  __le16 wTotalLength; FIXME */
302	0x01,       /*  __u8  bNumInterfaces; (1) */
303	0x01,       /*  __u8  bConfigurationValue; */
304	0x00,       /*  __u8  iConfiguration; */
305	0xc0,       /*  __u8  bmAttributes;
306				 Bit 7: must be set,
307				     6: Self-powered,
308				     5: Remote wakeup,
309				     4..0: resvd */
310	0x00,       /*  __u8  MaxPower; */
311
312	/* one interface */
313	0x09,       /*  __u8  if_bLength; */
314	0x04,       /*  __u8  if_bDescriptorType; Interface */
315	0x00,       /*  __u8  if_bInterfaceNumber; */
316	0x00,       /*  __u8  if_bAlternateSetting; */
317	0x01,       /*  __u8  if_bNumEndpoints; */
318	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
319	0x00,       /*  __u8  if_bInterfaceSubClass; */
320	0x00,       /*  __u8  if_bInterfaceProtocol; */
321	0x00,       /*  __u8  if_iInterface; */
322
323	/* one endpoint (status change endpoint) */
324	0x07,       /*  __u8  ep_bLength; */
325	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
326	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
327	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
328		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329		     * see hub.c:hub_configure() for details. */
330	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
331	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
332	/*
333	 * All 3.0 hubs should have an endpoint companion descriptor,
334	 * but we're ignoring that for now.  FIXME?
335	 */
336};
337
338/*-------------------------------------------------------------------------*/
339
340/*
341 * helper routine for returning string descriptors in UTF-16LE
342 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
343 */
344static unsigned ascii2utf(char *s, u8 *utf, int utfmax)
345{
346	unsigned retval;
347
348	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
349		*utf++ = *s++;
350		*utf++ = 0;
351	}
352	if (utfmax > 0) {
353		*utf = *s;
354		++retval;
355	}
356	return retval;
357}
358
359/*
360 * rh_string - provides manufacturer, product and serial strings for root hub
361 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
362 * @hcd: the host controller for this root hub
363 * @data: return packet in UTF-16 LE
364 * @len: length of the return packet
365 *
366 * Produces either a manufacturer, product or serial number string for the
367 * virtual root hub device.
368 */
369static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len)
370{
371	char buf [100];
372
373	// language ids
374	if (id == 0) {
375		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
376		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
377		len = min_t(unsigned, len, 4);
378		memcpy (data, buf, len);
379		return len;
380
381	// serial number
382	} else if (id == 1) {
383		strlcpy (buf, hcd->self.bus_name, sizeof buf);
384
385	// product description
386	} else if (id == 2) {
387		strlcpy (buf, hcd->product_desc, sizeof buf);
388
389 	// id 3 == vendor description
390	} else if (id == 3) {
391		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
392			init_utsname()->release, hcd->driver->description);
393	}
394
395	switch (len) {		/* All cases fall through */
396	default:
397		len = 2 + ascii2utf (buf, data + 2, len - 2);
398	case 2:
399		data [1] = 3;	/* type == string */
400	case 1:
401		data [0] = 2 * (strlen (buf) + 1);
402	case 0:
403		;		/* Compiler wants a statement here */
404	}
405	return len;
406}
407
408
409/* Root hub control transfers execute synchronously */
410static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
411{
412	struct usb_ctrlrequest *cmd;
413 	u16		typeReq, wValue, wIndex, wLength;
414	u8		*ubuf = urb->transfer_buffer;
415	u8		tbuf [sizeof (struct usb_hub_descriptor)]
416		__attribute__((aligned(4)));
417	const u8	*bufp = tbuf;
418	unsigned	len = 0;
419	int		status;
420	u8		patch_wakeup = 0;
421	u8		patch_protocol = 0;
422
423	might_sleep();
424
425	spin_lock_irq(&hcd_root_hub_lock);
426	status = usb_hcd_link_urb_to_ep(hcd, urb);
427	spin_unlock_irq(&hcd_root_hub_lock);
428	if (status)
429		return status;
430	urb->hcpriv = hcd;	/* Indicate it's queued */
431
432	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
433	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
434	wValue   = le16_to_cpu (cmd->wValue);
435	wIndex   = le16_to_cpu (cmd->wIndex);
436	wLength  = le16_to_cpu (cmd->wLength);
437
438	if (wLength > urb->transfer_buffer_length)
439		goto error;
440
441	urb->actual_length = 0;
442	switch (typeReq) {
443
444	/* DEVICE REQUESTS */
445
446	/* The root hub's remote wakeup enable bit is implemented using
447	 * driver model wakeup flags.  If this system supports wakeup
448	 * through USB, userspace may change the default "allow wakeup"
449	 * policy through sysfs or these calls.
450	 *
451	 * Most root hubs support wakeup from downstream devices, for
452	 * runtime power management (disabling USB clocks and reducing
453	 * VBUS power usage).  However, not all of them do so; silicon,
454	 * board, and BIOS bugs here are not uncommon, so these can't
455	 * be treated quite like external hubs.
456	 *
457	 * Likewise, not all root hubs will pass wakeup events upstream,
458	 * to wake up the whole system.  So don't assume root hub and
459	 * controller capabilities are identical.
460	 */
461
462	case DeviceRequest | USB_REQ_GET_STATUS:
463		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
464					<< USB_DEVICE_REMOTE_WAKEUP)
465				| (1 << USB_DEVICE_SELF_POWERED);
466		tbuf [1] = 0;
467		len = 2;
468		break;
469	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
470		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
471			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
472		else
473			goto error;
474		break;
475	case DeviceOutRequest | USB_REQ_SET_FEATURE:
476		if (device_can_wakeup(&hcd->self.root_hub->dev)
477				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
478			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
479		else
480			goto error;
481		break;
482	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
483		tbuf [0] = 1;
484		len = 1;
485			/* FALLTHROUGH */
486	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
487		break;
488	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
489		switch (wValue & 0xff00) {
490		case USB_DT_DEVICE << 8:
491			switch (hcd->driver->flags & HCD_MASK) {
492			case HCD_USB3:
493				bufp = usb3_rh_dev_descriptor;
494				break;
495			case HCD_USB2:
496				bufp = usb2_rh_dev_descriptor;
497				break;
498			case HCD_USB11:
499				bufp = usb11_rh_dev_descriptor;
500				break;
501			default:
502				goto error;
503			}
504			len = 18;
505			if (hcd->has_tt)
506				patch_protocol = 1;
507			break;
508		case USB_DT_CONFIG << 8:
509			switch (hcd->driver->flags & HCD_MASK) {
510			case HCD_USB3:
511				bufp = ss_rh_config_descriptor;
512				len = sizeof ss_rh_config_descriptor;
513				break;
514			case HCD_USB2:
515				bufp = hs_rh_config_descriptor;
516				len = sizeof hs_rh_config_descriptor;
517				break;
518			case HCD_USB11:
519				bufp = fs_rh_config_descriptor;
520				len = sizeof fs_rh_config_descriptor;
521				break;
522			default:
523				goto error;
524			}
525			if (device_can_wakeup(&hcd->self.root_hub->dev))
526				patch_wakeup = 1;
527			break;
528		case USB_DT_STRING << 8:
529			if ((wValue & 0xff) < 4)
530				urb->actual_length = rh_string(wValue & 0xff,
531						hcd, ubuf, wLength);
532			else /* unsupported IDs --> "protocol stall" */
533				goto error;
534			break;
535		default:
536			goto error;
537		}
538		break;
539	case DeviceRequest | USB_REQ_GET_INTERFACE:
540		tbuf [0] = 0;
541		len = 1;
542			/* FALLTHROUGH */
543	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
544		break;
545	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
546		// wValue == urb->dev->devaddr
547		dev_dbg (hcd->self.controller, "root hub device address %d\n",
548			wValue);
549		break;
550
551	/* INTERFACE REQUESTS (no defined feature/status flags) */
552
553	/* ENDPOINT REQUESTS */
554
555	case EndpointRequest | USB_REQ_GET_STATUS:
556		// ENDPOINT_HALT flag
557		tbuf [0] = 0;
558		tbuf [1] = 0;
559		len = 2;
560			/* FALLTHROUGH */
561	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
562	case EndpointOutRequest | USB_REQ_SET_FEATURE:
563		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
564		break;
565
566	/* CLASS REQUESTS (and errors) */
567
568	default:
569		/* non-generic request */
570		switch (typeReq) {
571		case GetHubStatus:
572		case GetPortStatus:
573			len = 4;
574			break;
575		case GetHubDescriptor:
576			len = sizeof (struct usb_hub_descriptor);
577			break;
578		}
579		status = hcd->driver->hub_control (hcd,
580			typeReq, wValue, wIndex,
581			tbuf, wLength);
582		break;
583error:
584		/* "protocol stall" on error */
585		status = -EPIPE;
586	}
587
588	if (status) {
589		len = 0;
590		if (status != -EPIPE) {
591			dev_dbg (hcd->self.controller,
592				"CTRL: TypeReq=0x%x val=0x%x "
593				"idx=0x%x len=%d ==> %d\n",
594				typeReq, wValue, wIndex,
595				wLength, status);
596		}
597	}
598	if (len) {
599		if (urb->transfer_buffer_length < len)
600			len = urb->transfer_buffer_length;
601		urb->actual_length = len;
602		// always USB_DIR_IN, toward host
603		memcpy (ubuf, bufp, len);
604
605		/* report whether RH hardware supports remote wakeup */
606		if (patch_wakeup &&
607				len > offsetof (struct usb_config_descriptor,
608						bmAttributes))
609			((struct usb_config_descriptor *)ubuf)->bmAttributes
610				|= USB_CONFIG_ATT_WAKEUP;
611
612		/* report whether RH hardware has an integrated TT */
613		if (patch_protocol &&
614				len > offsetof(struct usb_device_descriptor,
615						bDeviceProtocol))
616			((struct usb_device_descriptor *) ubuf)->
617					bDeviceProtocol = 1;
618	}
619
620	/* any errors get returned through the urb completion */
621	spin_lock_irq(&hcd_root_hub_lock);
622	usb_hcd_unlink_urb_from_ep(hcd, urb);
623
624	/* This peculiar use of spinlocks echoes what real HC drivers do.
625	 * Avoiding calls to local_irq_disable/enable makes the code
626	 * RT-friendly.
627	 */
628	spin_unlock(&hcd_root_hub_lock);
629	usb_hcd_giveback_urb(hcd, urb, status);
630	spin_lock(&hcd_root_hub_lock);
631
632	spin_unlock_irq(&hcd_root_hub_lock);
633	return 0;
634}
635
636/*-------------------------------------------------------------------------*/
637
638/*
639 * Root Hub interrupt transfers are polled using a timer if the
640 * driver requests it; otherwise the driver is responsible for
641 * calling usb_hcd_poll_rh_status() when an event occurs.
642 *
643 * Completions are called in_interrupt(), but they may or may not
644 * be in_irq().
645 */
646void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
647{
648	struct urb	*urb;
649	int		length;
650	unsigned long	flags;
651	char		buffer[4];	/* Any root hubs with > 31 ports? */
652
653	if (unlikely(!hcd->rh_registered))
654		return;
655	if (!hcd->uses_new_polling && !hcd->status_urb)
656		return;
657
658	length = hcd->driver->hub_status_data(hcd, buffer);
659	if (length > 0) {
660
661		/* try to complete the status urb */
662		spin_lock_irqsave(&hcd_root_hub_lock, flags);
663		urb = hcd->status_urb;
664		if (urb) {
665			hcd->poll_pending = 0;
666			hcd->status_urb = NULL;
667			urb->actual_length = length;
668			memcpy(urb->transfer_buffer, buffer, length);
669
670			usb_hcd_unlink_urb_from_ep(hcd, urb);
671			spin_unlock(&hcd_root_hub_lock);
672			usb_hcd_giveback_urb(hcd, urb, 0);
673			spin_lock(&hcd_root_hub_lock);
674		} else {
675			length = 0;
676			hcd->poll_pending = 1;
677		}
678		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
679	}
680
681	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
682	 * exceed that limit if HZ is 100. The math is more clunky than
683	 * maybe expected, this is to make sure that all timers for USB devices
684	 * fire at the same time to give the CPU a break inbetween */
685	if (hcd->uses_new_polling ? hcd->poll_rh :
686			(length == 0 && hcd->status_urb != NULL))
687		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
688}
689EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
690
691/* timer callback */
692static void rh_timer_func (unsigned long _hcd)
693{
694	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
695}
696
697/*-------------------------------------------------------------------------*/
698
699static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
700{
701	int		retval;
702	unsigned long	flags;
703	unsigned	len = 1 + (urb->dev->maxchild / 8);
704
705	spin_lock_irqsave (&hcd_root_hub_lock, flags);
706	if (hcd->status_urb || urb->transfer_buffer_length < len) {
707		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
708		retval = -EINVAL;
709		goto done;
710	}
711
712	retval = usb_hcd_link_urb_to_ep(hcd, urb);
713	if (retval)
714		goto done;
715
716	hcd->status_urb = urb;
717	urb->hcpriv = hcd;	/* indicate it's queued */
718	if (!hcd->uses_new_polling)
719		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
720
721	/* If a status change has already occurred, report it ASAP */
722	else if (hcd->poll_pending)
723		mod_timer(&hcd->rh_timer, jiffies);
724	retval = 0;
725 done:
726	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
727	return retval;
728}
729
730static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
731{
732	if (usb_endpoint_xfer_int(&urb->ep->desc))
733		return rh_queue_status (hcd, urb);
734	if (usb_endpoint_xfer_control(&urb->ep->desc))
735		return rh_call_control (hcd, urb);
736	return -EINVAL;
737}
738
739/*-------------------------------------------------------------------------*/
740
741/* Unlinks of root-hub control URBs are legal, but they don't do anything
742 * since these URBs always execute synchronously.
743 */
744static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
745{
746	unsigned long	flags;
747	int		rc;
748
749	spin_lock_irqsave(&hcd_root_hub_lock, flags);
750	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
751	if (rc)
752		goto done;
753
754	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
755		;	/* Do nothing */
756
757	} else {				/* Status URB */
758		if (!hcd->uses_new_polling)
759			del_timer (&hcd->rh_timer);
760		if (urb == hcd->status_urb) {
761			hcd->status_urb = NULL;
762			usb_hcd_unlink_urb_from_ep(hcd, urb);
763
764			spin_unlock(&hcd_root_hub_lock);
765			usb_hcd_giveback_urb(hcd, urb, status);
766			spin_lock(&hcd_root_hub_lock);
767		}
768	}
769 done:
770	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
771	return rc;
772}
773
774
775
776/*
777 * Show & store the current value of authorized_default
778 */
779static ssize_t usb_host_authorized_default_show(struct device *dev,
780						struct device_attribute *attr,
781						char *buf)
782{
783	struct usb_device *rh_usb_dev = to_usb_device(dev);
784	struct usb_bus *usb_bus = rh_usb_dev->bus;
785	struct usb_hcd *usb_hcd;
786
787	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
788		return -ENODEV;
789	usb_hcd = bus_to_hcd(usb_bus);
790	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
791}
792
793static ssize_t usb_host_authorized_default_store(struct device *dev,
794						 struct device_attribute *attr,
795						 const char *buf, size_t size)
796{
797	ssize_t result;
798	unsigned val;
799	struct usb_device *rh_usb_dev = to_usb_device(dev);
800	struct usb_bus *usb_bus = rh_usb_dev->bus;
801	struct usb_hcd *usb_hcd;
802
803	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
804		return -ENODEV;
805	usb_hcd = bus_to_hcd(usb_bus);
806	result = sscanf(buf, "%u\n", &val);
807	if (result == 1) {
808		usb_hcd->authorized_default = val? 1 : 0;
809		result = size;
810	}
811	else
812		result = -EINVAL;
813	return result;
814}
815
816static DEVICE_ATTR(authorized_default, 0644,
817	    usb_host_authorized_default_show,
818	    usb_host_authorized_default_store);
819
820
821/* Group all the USB bus attributes */
822static struct attribute *usb_bus_attrs[] = {
823		&dev_attr_authorized_default.attr,
824		NULL,
825};
826
827static struct attribute_group usb_bus_attr_group = {
828	.name = NULL,	/* we want them in the same directory */
829	.attrs = usb_bus_attrs,
830};
831
832
833
834/*-------------------------------------------------------------------------*/
835
836/**
837 * usb_bus_init - shared initialization code
838 * @bus: the bus structure being initialized
839 *
840 * This code is used to initialize a usb_bus structure, memory for which is
841 * separately managed.
842 */
843static void usb_bus_init (struct usb_bus *bus)
844{
845	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
846
847	bus->devnum_next = 1;
848
849	bus->root_hub = NULL;
850	bus->busnum = -1;
851	bus->bandwidth_allocated = 0;
852	bus->bandwidth_int_reqs  = 0;
853	bus->bandwidth_isoc_reqs = 0;
854
855	INIT_LIST_HEAD (&bus->bus_list);
856}
857
858/*-------------------------------------------------------------------------*/
859
860/**
861 * usb_register_bus - registers the USB host controller with the usb core
862 * @bus: pointer to the bus to register
863 * Context: !in_interrupt()
864 *
865 * Assigns a bus number, and links the controller into usbcore data
866 * structures so that it can be seen by scanning the bus list.
867 */
868static int usb_register_bus(struct usb_bus *bus)
869{
870	int result = -E2BIG;
871	int busnum;
872
873	mutex_lock(&usb_bus_list_lock);
874	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
875	if (busnum >= USB_MAXBUS) {
876		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
877		goto error_find_busnum;
878	}
879	set_bit (busnum, busmap.busmap);
880	bus->busnum = busnum;
881
882	/* Add it to the local list of buses */
883	list_add (&bus->bus_list, &usb_bus_list);
884	mutex_unlock(&usb_bus_list_lock);
885
886	usb_notify_add_bus(bus);
887
888	dev_info (bus->controller, "new USB bus registered, assigned bus "
889		  "number %d\n", bus->busnum);
890	return 0;
891
892error_find_busnum:
893	mutex_unlock(&usb_bus_list_lock);
894	return result;
895}
896
897/**
898 * usb_deregister_bus - deregisters the USB host controller
899 * @bus: pointer to the bus to deregister
900 * Context: !in_interrupt()
901 *
902 * Recycles the bus number, and unlinks the controller from usbcore data
903 * structures so that it won't be seen by scanning the bus list.
904 */
905static void usb_deregister_bus (struct usb_bus *bus)
906{
907	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
908
909	/*
910	 * NOTE: make sure that all the devices are removed by the
911	 * controller code, as well as having it call this when cleaning
912	 * itself up
913	 */
914	mutex_lock(&usb_bus_list_lock);
915	list_del (&bus->bus_list);
916	mutex_unlock(&usb_bus_list_lock);
917
918	usb_notify_remove_bus(bus);
919
920	clear_bit (bus->busnum, busmap.busmap);
921}
922
923/**
924 * register_root_hub - called by usb_add_hcd() to register a root hub
925 * @hcd: host controller for this root hub
926 *
927 * This function registers the root hub with the USB subsystem.  It sets up
928 * the device properly in the device tree and then calls usb_new_device()
929 * to register the usb device.  It also assigns the root hub's USB address
930 * (always 1).
931 */
932static int register_root_hub(struct usb_hcd *hcd)
933{
934	struct device *parent_dev = hcd->self.controller;
935	struct usb_device *usb_dev = hcd->self.root_hub;
936	const int devnum = 1;
937	int retval;
938
939	usb_dev->devnum = devnum;
940	usb_dev->bus->devnum_next = devnum + 1;
941	memset (&usb_dev->bus->devmap.devicemap, 0,
942			sizeof usb_dev->bus->devmap.devicemap);
943	set_bit (devnum, usb_dev->bus->devmap.devicemap);
944	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
945
946	mutex_lock(&usb_bus_list_lock);
947
948	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
949	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
950	if (retval != sizeof usb_dev->descriptor) {
951		mutex_unlock(&usb_bus_list_lock);
952		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
953				dev_name(&usb_dev->dev), retval);
954		return (retval < 0) ? retval : -EMSGSIZE;
955	}
956
957	retval = usb_new_device (usb_dev);
958	if (retval) {
959		dev_err (parent_dev, "can't register root hub for %s, %d\n",
960				dev_name(&usb_dev->dev), retval);
961	}
962	mutex_unlock(&usb_bus_list_lock);
963
964	if (retval == 0) {
965		spin_lock_irq (&hcd_root_hub_lock);
966		hcd->rh_registered = 1;
967		spin_unlock_irq (&hcd_root_hub_lock);
968
969		/* Did the HC die before the root hub was registered? */
970		if (hcd->state == HC_STATE_HALT)
971			usb_hc_died (hcd);	/* This time clean up */
972	}
973
974	return retval;
975}
976
977
978/*-------------------------------------------------------------------------*/
979
980/**
981 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
982 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
983 * @is_input: true iff the transaction sends data to the host
984 * @isoc: true for isochronous transactions, false for interrupt ones
985 * @bytecount: how many bytes in the transaction.
986 *
987 * Returns approximate bus time in nanoseconds for a periodic transaction.
988 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
989 * scheduled in software, this function is only used for such scheduling.
990 */
991long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
992{
993	unsigned long	tmp;
994
995	switch (speed) {
996	case USB_SPEED_LOW: 	/* INTR only */
997		if (is_input) {
998			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
999			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1000		} else {
1001			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1002			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1003		}
1004	case USB_SPEED_FULL:	/* ISOC or INTR */
1005		if (isoc) {
1006			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1007			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1008		} else {
1009			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1010			return (9107L + BW_HOST_DELAY + tmp);
1011		}
1012	case USB_SPEED_HIGH:	/* ISOC or INTR */
1013		// FIXME adjust for input vs output
1014		if (isoc)
1015			tmp = HS_NSECS_ISO (bytecount);
1016		else
1017			tmp = HS_NSECS (bytecount);
1018		return tmp;
1019	default:
1020		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1021		return -1;
1022	}
1023}
1024EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1025
1026
1027/*-------------------------------------------------------------------------*/
1028
1029/*
1030 * Generic HC operations.
1031 */
1032
1033/*-------------------------------------------------------------------------*/
1034
1035/**
1036 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1037 * @hcd: host controller to which @urb was submitted
1038 * @urb: URB being submitted
1039 *
1040 * Host controller drivers should call this routine in their enqueue()
1041 * method.  The HCD's private spinlock must be held and interrupts must
1042 * be disabled.  The actions carried out here are required for URB
1043 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1044 *
1045 * Returns 0 for no error, otherwise a negative error code (in which case
1046 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1047 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1048 * the private spinlock and returning.
1049 */
1050int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1051{
1052	int		rc = 0;
1053
1054	spin_lock(&hcd_urb_list_lock);
1055
1056	/* Check that the URB isn't being killed */
1057	if (unlikely(atomic_read(&urb->reject))) {
1058		rc = -EPERM;
1059		goto done;
1060	}
1061
1062	if (unlikely(!urb->ep->enabled)) {
1063		rc = -ENOENT;
1064		goto done;
1065	}
1066
1067	if (unlikely(!urb->dev->can_submit)) {
1068		rc = -EHOSTUNREACH;
1069		goto done;
1070	}
1071
1072	/*
1073	 * Check the host controller's state and add the URB to the
1074	 * endpoint's queue.
1075	 */
1076	switch (hcd->state) {
1077	case HC_STATE_RUNNING:
1078	case HC_STATE_RESUMING:
1079		urb->unlinked = 0;
1080		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1081		break;
1082	default:
1083		rc = -ESHUTDOWN;
1084		goto done;
1085	}
1086 done:
1087	spin_unlock(&hcd_urb_list_lock);
1088	return rc;
1089}
1090EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1091
1092/**
1093 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1094 * @hcd: host controller to which @urb was submitted
1095 * @urb: URB being checked for unlinkability
1096 * @status: error code to store in @urb if the unlink succeeds
1097 *
1098 * Host controller drivers should call this routine in their dequeue()
1099 * method.  The HCD's private spinlock must be held and interrupts must
1100 * be disabled.  The actions carried out here are required for making
1101 * sure than an unlink is valid.
1102 *
1103 * Returns 0 for no error, otherwise a negative error code (in which case
1104 * the dequeue() method must fail).  The possible error codes are:
1105 *
1106 *	-EIDRM: @urb was not submitted or has already completed.
1107 *		The completion function may not have been called yet.
1108 *
1109 *	-EBUSY: @urb has already been unlinked.
1110 */
1111int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1112		int status)
1113{
1114	struct list_head	*tmp;
1115
1116	/* insist the urb is still queued */
1117	list_for_each(tmp, &urb->ep->urb_list) {
1118		if (tmp == &urb->urb_list)
1119			break;
1120	}
1121	if (tmp != &urb->urb_list)
1122		return -EIDRM;
1123
1124	/* Any status except -EINPROGRESS means something already started to
1125	 * unlink this URB from the hardware.  So there's no more work to do.
1126	 */
1127	if (urb->unlinked)
1128		return -EBUSY;
1129	urb->unlinked = status;
1130
1131	/* IRQ setup can easily be broken so that USB controllers
1132	 * never get completion IRQs ... maybe even the ones we need to
1133	 * finish unlinking the initial failed usb_set_address()
1134	 * or device descriptor fetch.
1135	 */
1136	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1137			!is_root_hub(urb->dev)) {
1138		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1139			"Controller is probably using the wrong IRQ.\n");
1140		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1141	}
1142
1143	return 0;
1144}
1145EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1146
1147/**
1148 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1149 * @hcd: host controller to which @urb was submitted
1150 * @urb: URB being unlinked
1151 *
1152 * Host controller drivers should call this routine before calling
1153 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1154 * interrupts must be disabled.  The actions carried out here are required
1155 * for URB completion.
1156 */
1157void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1158{
1159	/* clear all state linking urb to this dev (and hcd) */
1160	spin_lock(&hcd_urb_list_lock);
1161	list_del_init(&urb->urb_list);
1162	spin_unlock(&hcd_urb_list_lock);
1163}
1164EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1165
1166/*
1167 * Some usb host controllers can only perform dma using a small SRAM area.
1168 * The usb core itself is however optimized for host controllers that can dma
1169 * using regular system memory - like pci devices doing bus mastering.
1170 *
1171 * To support host controllers with limited dma capabilites we provide dma
1172 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1173 * For this to work properly the host controller code must first use the
1174 * function dma_declare_coherent_memory() to point out which memory area
1175 * that should be used for dma allocations.
1176 *
1177 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1178 * dma using dma_alloc_coherent() which in turn allocates from the memory
1179 * area pointed out with dma_declare_coherent_memory().
1180 *
1181 * So, to summarize...
1182 *
1183 * - We need "local" memory, canonical example being
1184 *   a small SRAM on a discrete controller being the
1185 *   only memory that the controller can read ...
1186 *   (a) "normal" kernel memory is no good, and
1187 *   (b) there's not enough to share
1188 *
1189 * - The only *portable* hook for such stuff in the
1190 *   DMA framework is dma_declare_coherent_memory()
1191 *
1192 * - So we use that, even though the primary requirement
1193 *   is that the memory be "local" (hence addressible
1194 *   by that device), not "coherent".
1195 *
1196 */
1197
1198static int hcd_alloc_coherent(struct usb_bus *bus,
1199			      gfp_t mem_flags, dma_addr_t *dma_handle,
1200			      void **vaddr_handle, size_t size,
1201			      enum dma_data_direction dir)
1202{
1203	unsigned char *vaddr;
1204
1205	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1206				 mem_flags, dma_handle);
1207	if (!vaddr)
1208		return -ENOMEM;
1209
1210	/*
1211	 * Store the virtual address of the buffer at the end
1212	 * of the allocated dma buffer. The size of the buffer
1213	 * may be uneven so use unaligned functions instead
1214	 * of just rounding up. It makes sense to optimize for
1215	 * memory footprint over access speed since the amount
1216	 * of memory available for dma may be limited.
1217	 */
1218	put_unaligned((unsigned long)*vaddr_handle,
1219		      (unsigned long *)(vaddr + size));
1220
1221	if (dir == DMA_TO_DEVICE)
1222		memcpy(vaddr, *vaddr_handle, size);
1223
1224	*vaddr_handle = vaddr;
1225	return 0;
1226}
1227
1228static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1229			      void **vaddr_handle, size_t size,
1230			      enum dma_data_direction dir)
1231{
1232	unsigned char *vaddr = *vaddr_handle;
1233
1234	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1235
1236	if (dir == DMA_FROM_DEVICE)
1237		memcpy(vaddr, *vaddr_handle, size);
1238
1239	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1240
1241	*vaddr_handle = vaddr;
1242	*dma_handle = 0;
1243}
1244
1245static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1246			   gfp_t mem_flags)
1247{
1248	enum dma_data_direction dir;
1249	int ret = 0;
1250
1251	/* Map the URB's buffers for DMA access.
1252	 * Lower level HCD code should use *_dma exclusively,
1253	 * unless it uses pio or talks to another transport,
1254	 * or uses the provided scatter gather list for bulk.
1255	 */
1256	if (is_root_hub(urb->dev))
1257		return 0;
1258
1259	if (usb_endpoint_xfer_control(&urb->ep->desc)
1260	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1261		if (hcd->self.uses_dma)
1262			urb->setup_dma = dma_map_single(
1263					hcd->self.controller,
1264					urb->setup_packet,
1265					sizeof(struct usb_ctrlrequest),
1266					DMA_TO_DEVICE);
1267		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1268			ret = hcd_alloc_coherent(
1269					urb->dev->bus, mem_flags,
1270					&urb->setup_dma,
1271					(void **)&urb->setup_packet,
1272					sizeof(struct usb_ctrlrequest),
1273					DMA_TO_DEVICE);
1274	}
1275
1276	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1277	if (ret == 0 && urb->transfer_buffer_length != 0
1278	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1279		if (hcd->self.uses_dma)
1280			urb->transfer_dma = dma_map_single (
1281					hcd->self.controller,
1282					urb->transfer_buffer,
1283					urb->transfer_buffer_length,
1284					dir);
1285		else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1286			ret = hcd_alloc_coherent(
1287					urb->dev->bus, mem_flags,
1288					&urb->transfer_dma,
1289					&urb->transfer_buffer,
1290					urb->transfer_buffer_length,
1291					dir);
1292
1293			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1294			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1295				hcd_free_coherent(urb->dev->bus,
1296					&urb->setup_dma,
1297					(void **)&urb->setup_packet,
1298					sizeof(struct usb_ctrlrequest),
1299					DMA_TO_DEVICE);
1300		}
1301	}
1302	return ret;
1303}
1304
1305static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306{
1307	enum dma_data_direction dir;
1308
1309	if (is_root_hub(urb->dev))
1310		return;
1311
1312	if (usb_endpoint_xfer_control(&urb->ep->desc)
1313	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1314		if (hcd->self.uses_dma)
1315			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1316					sizeof(struct usb_ctrlrequest),
1317					DMA_TO_DEVICE);
1318		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1319			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1320					(void **)&urb->setup_packet,
1321					sizeof(struct usb_ctrlrequest),
1322					DMA_TO_DEVICE);
1323	}
1324
1325	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1326	if (urb->transfer_buffer_length != 0
1327	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1328		if (hcd->self.uses_dma)
1329			dma_unmap_single(hcd->self.controller,
1330					urb->transfer_dma,
1331					urb->transfer_buffer_length,
1332					dir);
1333		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1334			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1335					&urb->transfer_buffer,
1336					urb->transfer_buffer_length,
1337					dir);
1338	}
1339}
1340
1341/*-------------------------------------------------------------------------*/
1342
1343/* may be called in any context with a valid urb->dev usecount
1344 * caller surrenders "ownership" of urb
1345 * expects usb_submit_urb() to have sanity checked and conditioned all
1346 * inputs in the urb
1347 */
1348int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1349{
1350	int			status;
1351	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1352
1353	/* increment urb's reference count as part of giving it to the HCD
1354	 * (which will control it).  HCD guarantees that it either returns
1355	 * an error or calls giveback(), but not both.
1356	 */
1357	usb_get_urb(urb);
1358	atomic_inc(&urb->use_count);
1359	atomic_inc(&urb->dev->urbnum);
1360	usbmon_urb_submit(&hcd->self, urb);
1361
1362	/* NOTE requirements on root-hub callers (usbfs and the hub
1363	 * driver, for now):  URBs' urb->transfer_buffer must be
1364	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1365	 * they could clobber root hub response data.  Also, control
1366	 * URBs must be submitted in process context with interrupts
1367	 * enabled.
1368	 */
1369	status = map_urb_for_dma(hcd, urb, mem_flags);
1370	if (unlikely(status)) {
1371		usbmon_urb_submit_error(&hcd->self, urb, status);
1372		goto error;
1373	}
1374
1375	if (is_root_hub(urb->dev))
1376		status = rh_urb_enqueue(hcd, urb);
1377	else
1378		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1379
1380	if (unlikely(status)) {
1381		usbmon_urb_submit_error(&hcd->self, urb, status);
1382		unmap_urb_for_dma(hcd, urb);
1383 error:
1384		urb->hcpriv = NULL;
1385		INIT_LIST_HEAD(&urb->urb_list);
1386		atomic_dec(&urb->use_count);
1387		atomic_dec(&urb->dev->urbnum);
1388		if (atomic_read(&urb->reject))
1389			wake_up(&usb_kill_urb_queue);
1390		usb_put_urb(urb);
1391	}
1392	return status;
1393}
1394
1395/*-------------------------------------------------------------------------*/
1396
1397/* this makes the hcd giveback() the urb more quickly, by kicking it
1398 * off hardware queues (which may take a while) and returning it as
1399 * soon as practical.  we've already set up the urb's return status,
1400 * but we can't know if the callback completed already.
1401 */
1402static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1403{
1404	int		value;
1405
1406	if (is_root_hub(urb->dev))
1407		value = usb_rh_urb_dequeue(hcd, urb, status);
1408	else {
1409
1410		/* The only reason an HCD might fail this call is if
1411		 * it has not yet fully queued the urb to begin with.
1412		 * Such failures should be harmless. */
1413		value = hcd->driver->urb_dequeue(hcd, urb, status);
1414	}
1415	return value;
1416}
1417
1418/*
1419 * called in any context
1420 *
1421 * caller guarantees urb won't be recycled till both unlink()
1422 * and the urb's completion function return
1423 */
1424int usb_hcd_unlink_urb (struct urb *urb, int status)
1425{
1426	struct usb_hcd		*hcd;
1427	int			retval = -EIDRM;
1428	unsigned long		flags;
1429
1430	/* Prevent the device and bus from going away while
1431	 * the unlink is carried out.  If they are already gone
1432	 * then urb->use_count must be 0, since disconnected
1433	 * devices can't have any active URBs.
1434	 */
1435	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1436	if (atomic_read(&urb->use_count) > 0) {
1437		retval = 0;
1438		usb_get_dev(urb->dev);
1439	}
1440	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1441	if (retval == 0) {
1442		hcd = bus_to_hcd(urb->dev->bus);
1443		retval = unlink1(hcd, urb, status);
1444		usb_put_dev(urb->dev);
1445	}
1446
1447	if (retval == 0)
1448		retval = -EINPROGRESS;
1449	else if (retval != -EIDRM && retval != -EBUSY)
1450		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1451				urb, retval);
1452	return retval;
1453}
1454
1455/*-------------------------------------------------------------------------*/
1456
1457/**
1458 * usb_hcd_giveback_urb - return URB from HCD to device driver
1459 * @hcd: host controller returning the URB
1460 * @urb: urb being returned to the USB device driver.
1461 * @status: completion status code for the URB.
1462 * Context: in_interrupt()
1463 *
1464 * This hands the URB from HCD to its USB device driver, using its
1465 * completion function.  The HCD has freed all per-urb resources
1466 * (and is done using urb->hcpriv).  It also released all HCD locks;
1467 * the device driver won't cause problems if it frees, modifies,
1468 * or resubmits this URB.
1469 *
1470 * If @urb was unlinked, the value of @status will be overridden by
1471 * @urb->unlinked.  Erroneous short transfers are detected in case
1472 * the HCD hasn't checked for them.
1473 */
1474void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1475{
1476	urb->hcpriv = NULL;
1477	if (unlikely(urb->unlinked))
1478		status = urb->unlinked;
1479	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1480			urb->actual_length < urb->transfer_buffer_length &&
1481			!status))
1482		status = -EREMOTEIO;
1483
1484	unmap_urb_for_dma(hcd, urb);
1485	usbmon_urb_complete(&hcd->self, urb, status);
1486	usb_unanchor_urb(urb);
1487
1488	/* pass ownership to the completion handler */
1489	urb->status = status;
1490	urb->complete (urb);
1491	atomic_dec (&urb->use_count);
1492	if (unlikely(atomic_read(&urb->reject)))
1493		wake_up (&usb_kill_urb_queue);
1494	usb_put_urb (urb);
1495}
1496EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1497
1498/*-------------------------------------------------------------------------*/
1499
1500/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1501 * queue to drain completely.  The caller must first insure that no more
1502 * URBs can be submitted for this endpoint.
1503 */
1504void usb_hcd_flush_endpoint(struct usb_device *udev,
1505		struct usb_host_endpoint *ep)
1506{
1507	struct usb_hcd		*hcd;
1508	struct urb		*urb;
1509
1510	if (!ep)
1511		return;
1512	might_sleep();
1513	hcd = bus_to_hcd(udev->bus);
1514
1515	/* No more submits can occur */
1516	spin_lock_irq(&hcd_urb_list_lock);
1517rescan:
1518	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1519		int	is_in;
1520
1521		if (urb->unlinked)
1522			continue;
1523		usb_get_urb (urb);
1524		is_in = usb_urb_dir_in(urb);
1525		spin_unlock(&hcd_urb_list_lock);
1526
1527		/* kick hcd */
1528		unlink1(hcd, urb, -ESHUTDOWN);
1529		dev_dbg (hcd->self.controller,
1530			"shutdown urb %p ep%d%s%s\n",
1531			urb, usb_endpoint_num(&ep->desc),
1532			is_in ? "in" : "out",
1533			({	char *s;
1534
1535				 switch (usb_endpoint_type(&ep->desc)) {
1536				 case USB_ENDPOINT_XFER_CONTROL:
1537					s = ""; break;
1538				 case USB_ENDPOINT_XFER_BULK:
1539					s = "-bulk"; break;
1540				 case USB_ENDPOINT_XFER_INT:
1541					s = "-intr"; break;
1542				 default:
1543			 		s = "-iso"; break;
1544				};
1545				s;
1546			}));
1547		usb_put_urb (urb);
1548
1549		/* list contents may have changed */
1550		spin_lock(&hcd_urb_list_lock);
1551		goto rescan;
1552	}
1553	spin_unlock_irq(&hcd_urb_list_lock);
1554
1555	/* Wait until the endpoint queue is completely empty */
1556	while (!list_empty (&ep->urb_list)) {
1557		spin_lock_irq(&hcd_urb_list_lock);
1558
1559		/* The list may have changed while we acquired the spinlock */
1560		urb = NULL;
1561		if (!list_empty (&ep->urb_list)) {
1562			urb = list_entry (ep->urb_list.prev, struct urb,
1563					urb_list);
1564			usb_get_urb (urb);
1565		}
1566		spin_unlock_irq(&hcd_urb_list_lock);
1567
1568		if (urb) {
1569			usb_kill_urb (urb);
1570			usb_put_urb (urb);
1571		}
1572	}
1573}
1574
1575/* Check whether a new configuration or alt setting for an interface
1576 * will exceed the bandwidth for the bus (or the host controller resources).
1577 * Only pass in a non-NULL config or interface, not both!
1578 * Passing NULL for both new_config and new_intf means the device will be
1579 * de-configured by issuing a set configuration 0 command.
1580 */
1581int usb_hcd_check_bandwidth(struct usb_device *udev,
1582		struct usb_host_config *new_config,
1583		struct usb_interface *new_intf)
1584{
1585	int num_intfs, i, j;
1586	struct usb_interface_cache *intf_cache;
1587	struct usb_host_interface *alt = 0;
1588	int ret = 0;
1589	struct usb_hcd *hcd;
1590	struct usb_host_endpoint *ep;
1591
1592	hcd = bus_to_hcd(udev->bus);
1593	if (!hcd->driver->check_bandwidth)
1594		return 0;
1595
1596	/* Configuration is being removed - set configuration 0 */
1597	if (!new_config && !new_intf) {
1598		for (i = 1; i < 16; ++i) {
1599			ep = udev->ep_out[i];
1600			if (ep)
1601				hcd->driver->drop_endpoint(hcd, udev, ep);
1602			ep = udev->ep_in[i];
1603			if (ep)
1604				hcd->driver->drop_endpoint(hcd, udev, ep);
1605		}
1606		hcd->driver->check_bandwidth(hcd, udev);
1607		return 0;
1608	}
1609	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1610	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1611	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1612	 * ok to exclude it.
1613	 */
1614	if (new_config) {
1615		num_intfs = new_config->desc.bNumInterfaces;
1616		/* Remove endpoints (except endpoint 0, which is always on the
1617		 * schedule) from the old config from the schedule
1618		 */
1619		for (i = 1; i < 16; ++i) {
1620			ep = udev->ep_out[i];
1621			if (ep) {
1622				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1623				if (ret < 0)
1624					goto reset;
1625			}
1626			ep = udev->ep_in[i];
1627			if (ep) {
1628				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1629				if (ret < 0)
1630					goto reset;
1631			}
1632		}
1633		for (i = 0; i < num_intfs; ++i) {
1634
1635			/* Dig the endpoints for alt setting 0 out of the
1636			 * interface cache for this interface
1637			 */
1638			intf_cache = new_config->intf_cache[i];
1639			for (j = 0; j < intf_cache->num_altsetting; j++) {
1640				if (intf_cache->altsetting[j].desc.bAlternateSetting == 0)
1641					alt = &intf_cache->altsetting[j];
1642			}
1643			if (!alt) {
1644				printk(KERN_DEBUG "Did not find alt setting 0 for intf %d\n", i);
1645				continue;
1646			}
1647			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1648				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1649				if (ret < 0)
1650					goto reset;
1651			}
1652		}
1653	}
1654	ret = hcd->driver->check_bandwidth(hcd, udev);
1655reset:
1656	if (ret < 0)
1657		hcd->driver->reset_bandwidth(hcd, udev);
1658	return ret;
1659}
1660
1661/* Disables the endpoint: synchronizes with the hcd to make sure all
1662 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1663 * have been called previously.  Use for set_configuration, set_interface,
1664 * driver removal, physical disconnect.
1665 *
1666 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1667 * type, maxpacket size, toggle, halt status, and scheduling.
1668 */
1669void usb_hcd_disable_endpoint(struct usb_device *udev,
1670		struct usb_host_endpoint *ep)
1671{
1672	struct usb_hcd		*hcd;
1673
1674	might_sleep();
1675	hcd = bus_to_hcd(udev->bus);
1676	if (hcd->driver->endpoint_disable)
1677		hcd->driver->endpoint_disable(hcd, ep);
1678}
1679
1680/**
1681 * usb_hcd_reset_endpoint - reset host endpoint state
1682 * @udev: USB device.
1683 * @ep:   the endpoint to reset.
1684 *
1685 * Resets any host endpoint state such as the toggle bit, sequence
1686 * number and current window.
1687 */
1688void usb_hcd_reset_endpoint(struct usb_device *udev,
1689			    struct usb_host_endpoint *ep)
1690{
1691	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1692
1693	if (hcd->driver->endpoint_reset)
1694		hcd->driver->endpoint_reset(hcd, ep);
1695	else {
1696		int epnum = usb_endpoint_num(&ep->desc);
1697		int is_out = usb_endpoint_dir_out(&ep->desc);
1698		int is_control = usb_endpoint_xfer_control(&ep->desc);
1699
1700		usb_settoggle(udev, epnum, is_out, 0);
1701		if (is_control)
1702			usb_settoggle(udev, epnum, !is_out, 0);
1703	}
1704}
1705
1706/* Protect against drivers that try to unlink URBs after the device
1707 * is gone, by waiting until all unlinks for @udev are finished.
1708 * Since we don't currently track URBs by device, simply wait until
1709 * nothing is running in the locked region of usb_hcd_unlink_urb().
1710 */
1711void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1712{
1713	spin_lock_irq(&hcd_urb_unlink_lock);
1714	spin_unlock_irq(&hcd_urb_unlink_lock);
1715}
1716
1717/*-------------------------------------------------------------------------*/
1718
1719/* called in any context */
1720int usb_hcd_get_frame_number (struct usb_device *udev)
1721{
1722	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1723
1724	if (!HC_IS_RUNNING (hcd->state))
1725		return -ESHUTDOWN;
1726	return hcd->driver->get_frame_number (hcd);
1727}
1728
1729/*-------------------------------------------------------------------------*/
1730
1731#ifdef	CONFIG_PM
1732
1733int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1734{
1735	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1736	int		status;
1737	int		old_state = hcd->state;
1738
1739	dev_dbg(&rhdev->dev, "bus %s%s\n",
1740			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1741	if (!hcd->driver->bus_suspend) {
1742		status = -ENOENT;
1743	} else {
1744		hcd->state = HC_STATE_QUIESCING;
1745		status = hcd->driver->bus_suspend(hcd);
1746	}
1747	if (status == 0) {
1748		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1749		hcd->state = HC_STATE_SUSPENDED;
1750	} else {
1751		hcd->state = old_state;
1752		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1753				"suspend", status);
1754	}
1755	return status;
1756}
1757
1758int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1759{
1760	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1761	int		status;
1762	int		old_state = hcd->state;
1763
1764	dev_dbg(&rhdev->dev, "usb %s%s\n",
1765			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1766	if (!hcd->driver->bus_resume)
1767		return -ENOENT;
1768	if (hcd->state == HC_STATE_RUNNING)
1769		return 0;
1770
1771	hcd->state = HC_STATE_RESUMING;
1772	status = hcd->driver->bus_resume(hcd);
1773	if (status == 0) {
1774		/* TRSMRCY = 10 msec */
1775		msleep(10);
1776		usb_set_device_state(rhdev, rhdev->actconfig
1777				? USB_STATE_CONFIGURED
1778				: USB_STATE_ADDRESS);
1779		hcd->state = HC_STATE_RUNNING;
1780	} else {
1781		hcd->state = old_state;
1782		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1783				"resume", status);
1784		if (status != -ESHUTDOWN)
1785			usb_hc_died(hcd);
1786	}
1787	return status;
1788}
1789
1790/* Workqueue routine for root-hub remote wakeup */
1791static void hcd_resume_work(struct work_struct *work)
1792{
1793	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1794	struct usb_device *udev = hcd->self.root_hub;
1795
1796	usb_lock_device(udev);
1797	usb_mark_last_busy(udev);
1798	usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1799	usb_unlock_device(udev);
1800}
1801
1802/**
1803 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1804 * @hcd: host controller for this root hub
1805 *
1806 * The USB host controller calls this function when its root hub is
1807 * suspended (with the remote wakeup feature enabled) and a remote
1808 * wakeup request is received.  The routine submits a workqueue request
1809 * to resume the root hub (that is, manage its downstream ports again).
1810 */
1811void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1812{
1813	unsigned long flags;
1814
1815	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1816	if (hcd->rh_registered)
1817		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1818	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1819}
1820EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1821
1822#endif
1823
1824/*-------------------------------------------------------------------------*/
1825
1826#ifdef	CONFIG_USB_OTG
1827
1828/**
1829 * usb_bus_start_enum - start immediate enumeration (for OTG)
1830 * @bus: the bus (must use hcd framework)
1831 * @port_num: 1-based number of port; usually bus->otg_port
1832 * Context: in_interrupt()
1833 *
1834 * Starts enumeration, with an immediate reset followed later by
1835 * khubd identifying and possibly configuring the device.
1836 * This is needed by OTG controller drivers, where it helps meet
1837 * HNP protocol timing requirements for starting a port reset.
1838 */
1839int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1840{
1841	struct usb_hcd		*hcd;
1842	int			status = -EOPNOTSUPP;
1843
1844	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1845	 * boards with root hubs hooked up to internal devices (instead of
1846	 * just the OTG port) may need more attention to resetting...
1847	 */
1848	hcd = container_of (bus, struct usb_hcd, self);
1849	if (port_num && hcd->driver->start_port_reset)
1850		status = hcd->driver->start_port_reset(hcd, port_num);
1851
1852	/* run khubd shortly after (first) root port reset finishes;
1853	 * it may issue others, until at least 50 msecs have passed.
1854	 */
1855	if (status == 0)
1856		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1857	return status;
1858}
1859EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1860
1861#endif
1862
1863/*-------------------------------------------------------------------------*/
1864
1865/**
1866 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1867 * @irq: the IRQ being raised
1868 * @__hcd: pointer to the HCD whose IRQ is being signaled
1869 *
1870 * If the controller isn't HALTed, calls the driver's irq handler.
1871 * Checks whether the controller is now dead.
1872 */
1873irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1874{
1875	struct usb_hcd		*hcd = __hcd;
1876	unsigned long		flags;
1877	irqreturn_t		rc;
1878
1879	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1880	 * when the first handler doesn't use it.  So let's just
1881	 * assume it's never used.
1882	 */
1883	local_irq_save(flags);
1884
1885	if (unlikely(hcd->state == HC_STATE_HALT ||
1886		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1887		rc = IRQ_NONE;
1888	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1889		rc = IRQ_NONE;
1890	} else {
1891		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1892
1893		if (unlikely(hcd->state == HC_STATE_HALT))
1894			usb_hc_died(hcd);
1895		rc = IRQ_HANDLED;
1896	}
1897
1898	local_irq_restore(flags);
1899	return rc;
1900}
1901
1902/*-------------------------------------------------------------------------*/
1903
1904/**
1905 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1906 * @hcd: pointer to the HCD representing the controller
1907 *
1908 * This is called by bus glue to report a USB host controller that died
1909 * while operations may still have been pending.  It's called automatically
1910 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1911 */
1912void usb_hc_died (struct usb_hcd *hcd)
1913{
1914	unsigned long flags;
1915
1916	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1917
1918	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1919	if (hcd->rh_registered) {
1920		hcd->poll_rh = 0;
1921
1922		/* make khubd clean up old urbs and devices */
1923		usb_set_device_state (hcd->self.root_hub,
1924				USB_STATE_NOTATTACHED);
1925		usb_kick_khubd (hcd->self.root_hub);
1926	}
1927	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1928}
1929EXPORT_SYMBOL_GPL (usb_hc_died);
1930
1931/*-------------------------------------------------------------------------*/
1932
1933/**
1934 * usb_create_hcd - create and initialize an HCD structure
1935 * @driver: HC driver that will use this hcd
1936 * @dev: device for this HC, stored in hcd->self.controller
1937 * @bus_name: value to store in hcd->self.bus_name
1938 * Context: !in_interrupt()
1939 *
1940 * Allocate a struct usb_hcd, with extra space at the end for the
1941 * HC driver's private data.  Initialize the generic members of the
1942 * hcd structure.
1943 *
1944 * If memory is unavailable, returns NULL.
1945 */
1946struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1947		struct device *dev, const char *bus_name)
1948{
1949	struct usb_hcd *hcd;
1950
1951	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1952	if (!hcd) {
1953		dev_dbg (dev, "hcd alloc failed\n");
1954		return NULL;
1955	}
1956	dev_set_drvdata(dev, hcd);
1957	kref_init(&hcd->kref);
1958
1959	usb_bus_init(&hcd->self);
1960	hcd->self.controller = dev;
1961	hcd->self.bus_name = bus_name;
1962	hcd->self.uses_dma = (dev->dma_mask != NULL);
1963
1964	init_timer(&hcd->rh_timer);
1965	hcd->rh_timer.function = rh_timer_func;
1966	hcd->rh_timer.data = (unsigned long) hcd;
1967#ifdef CONFIG_PM
1968	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1969#endif
1970
1971	hcd->driver = driver;
1972	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1973			"USB Host Controller";
1974	return hcd;
1975}
1976EXPORT_SYMBOL_GPL(usb_create_hcd);
1977
1978static void hcd_release (struct kref *kref)
1979{
1980	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1981
1982	kfree(hcd);
1983}
1984
1985struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1986{
1987	if (hcd)
1988		kref_get (&hcd->kref);
1989	return hcd;
1990}
1991EXPORT_SYMBOL_GPL(usb_get_hcd);
1992
1993void usb_put_hcd (struct usb_hcd *hcd)
1994{
1995	if (hcd)
1996		kref_put (&hcd->kref, hcd_release);
1997}
1998EXPORT_SYMBOL_GPL(usb_put_hcd);
1999
2000/**
2001 * usb_add_hcd - finish generic HCD structure initialization and register
2002 * @hcd: the usb_hcd structure to initialize
2003 * @irqnum: Interrupt line to allocate
2004 * @irqflags: Interrupt type flags
2005 *
2006 * Finish the remaining parts of generic HCD initialization: allocate the
2007 * buffers of consistent memory, register the bus, request the IRQ line,
2008 * and call the driver's reset() and start() routines.
2009 */
2010int usb_add_hcd(struct usb_hcd *hcd,
2011		unsigned int irqnum, unsigned long irqflags)
2012{
2013	int retval;
2014	struct usb_device *rhdev;
2015
2016	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2017
2018	hcd->authorized_default = hcd->wireless? 0 : 1;
2019	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2020
2021	/* HC is in reset state, but accessible.  Now do the one-time init,
2022	 * bottom up so that hcds can customize the root hubs before khubd
2023	 * starts talking to them.  (Note, bus id is assigned early too.)
2024	 */
2025	if ((retval = hcd_buffer_create(hcd)) != 0) {
2026		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2027		return retval;
2028	}
2029
2030	if ((retval = usb_register_bus(&hcd->self)) < 0)
2031		goto err_register_bus;
2032
2033	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2034		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2035		retval = -ENOMEM;
2036		goto err_allocate_root_hub;
2037	}
2038
2039	switch (hcd->driver->flags & HCD_MASK) {
2040	case HCD_USB11:
2041		rhdev->speed = USB_SPEED_FULL;
2042		break;
2043	case HCD_USB2:
2044		rhdev->speed = USB_SPEED_HIGH;
2045		break;
2046	case HCD_USB3:
2047		rhdev->speed = USB_SPEED_SUPER;
2048		break;
2049	default:
2050		goto err_allocate_root_hub;
2051	}
2052	hcd->self.root_hub = rhdev;
2053
2054	/* wakeup flag init defaults to "everything works" for root hubs,
2055	 * but drivers can override it in reset() if needed, along with
2056	 * recording the overall controller's system wakeup capability.
2057	 */
2058	device_init_wakeup(&rhdev->dev, 1);
2059
2060	/* "reset" is misnamed; its role is now one-time init. the controller
2061	 * should already have been reset (and boot firmware kicked off etc).
2062	 */
2063	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2064		dev_err(hcd->self.controller, "can't setup\n");
2065		goto err_hcd_driver_setup;
2066	}
2067
2068	/* NOTE: root hub and controller capabilities may not be the same */
2069	if (device_can_wakeup(hcd->self.controller)
2070			&& device_can_wakeup(&hcd->self.root_hub->dev))
2071		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2072
2073	/* enable irqs just before we start the controller */
2074	if (hcd->driver->irq) {
2075
2076		/* IRQF_DISABLED doesn't work as advertised when used together
2077		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2078		 * interrupts we can remove it here.
2079		 */
2080		if (irqflags & IRQF_SHARED)
2081			irqflags &= ~IRQF_DISABLED;
2082
2083		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2084				hcd->driver->description, hcd->self.busnum);
2085		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2086				hcd->irq_descr, hcd)) != 0) {
2087			dev_err(hcd->self.controller,
2088					"request interrupt %d failed\n", irqnum);
2089			goto err_request_irq;
2090		}
2091		hcd->irq = irqnum;
2092		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2093				(hcd->driver->flags & HCD_MEMORY) ?
2094					"io mem" : "io base",
2095					(unsigned long long)hcd->rsrc_start);
2096	} else {
2097		hcd->irq = -1;
2098		if (hcd->rsrc_start)
2099			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2100					(hcd->driver->flags & HCD_MEMORY) ?
2101					"io mem" : "io base",
2102					(unsigned long long)hcd->rsrc_start);
2103	}
2104
2105	if ((retval = hcd->driver->start(hcd)) < 0) {
2106		dev_err(hcd->self.controller, "startup error %d\n", retval);
2107		goto err_hcd_driver_start;
2108	}
2109
2110	/* starting here, usbcore will pay attention to this root hub */
2111	rhdev->bus_mA = min(500u, hcd->power_budget);
2112	if ((retval = register_root_hub(hcd)) != 0)
2113		goto err_register_root_hub;
2114
2115	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2116	if (retval < 0) {
2117		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2118		       retval);
2119		goto error_create_attr_group;
2120	}
2121	if (hcd->uses_new_polling && hcd->poll_rh)
2122		usb_hcd_poll_rh_status(hcd);
2123	return retval;
2124
2125error_create_attr_group:
2126	mutex_lock(&usb_bus_list_lock);
2127	usb_disconnect(&hcd->self.root_hub);
2128	mutex_unlock(&usb_bus_list_lock);
2129err_register_root_hub:
2130	hcd->driver->stop(hcd);
2131err_hcd_driver_start:
2132	if (hcd->irq >= 0)
2133		free_irq(irqnum, hcd);
2134err_request_irq:
2135err_hcd_driver_setup:
2136	hcd->self.root_hub = NULL;
2137	usb_put_dev(rhdev);
2138err_allocate_root_hub:
2139	usb_deregister_bus(&hcd->self);
2140err_register_bus:
2141	hcd_buffer_destroy(hcd);
2142	return retval;
2143}
2144EXPORT_SYMBOL_GPL(usb_add_hcd);
2145
2146/**
2147 * usb_remove_hcd - shutdown processing for generic HCDs
2148 * @hcd: the usb_hcd structure to remove
2149 * Context: !in_interrupt()
2150 *
2151 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2152 * invoking the HCD's stop() method.
2153 */
2154void usb_remove_hcd(struct usb_hcd *hcd)
2155{
2156	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2157
2158	if (HC_IS_RUNNING (hcd->state))
2159		hcd->state = HC_STATE_QUIESCING;
2160
2161	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2162	spin_lock_irq (&hcd_root_hub_lock);
2163	hcd->rh_registered = 0;
2164	spin_unlock_irq (&hcd_root_hub_lock);
2165
2166#ifdef CONFIG_PM
2167	cancel_work_sync(&hcd->wakeup_work);
2168#endif
2169
2170	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2171	mutex_lock(&usb_bus_list_lock);
2172	usb_disconnect(&hcd->self.root_hub);
2173	mutex_unlock(&usb_bus_list_lock);
2174
2175	hcd->driver->stop(hcd);
2176	hcd->state = HC_STATE_HALT;
2177
2178	hcd->poll_rh = 0;
2179	del_timer_sync(&hcd->rh_timer);
2180
2181	if (hcd->irq >= 0)
2182		free_irq(hcd->irq, hcd);
2183	usb_deregister_bus(&hcd->self);
2184	hcd_buffer_destroy(hcd);
2185}
2186EXPORT_SYMBOL_GPL(usb_remove_hcd);
2187
2188void
2189usb_hcd_platform_shutdown(struct platform_device* dev)
2190{
2191	struct usb_hcd *hcd = platform_get_drvdata(dev);
2192
2193	if (hcd->driver->shutdown)
2194		hcd->driver->shutdown(hcd);
2195}
2196EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2197
2198/*-------------------------------------------------------------------------*/
2199
2200#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2201
2202struct usb_mon_operations *mon_ops;
2203
2204/*
2205 * The registration is unlocked.
2206 * We do it this way because we do not want to lock in hot paths.
2207 *
2208 * Notice that the code is minimally error-proof. Because usbmon needs
2209 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2210 */
2211
2212int usb_mon_register (struct usb_mon_operations *ops)
2213{
2214
2215	if (mon_ops)
2216		return -EBUSY;
2217
2218	mon_ops = ops;
2219	mb();
2220	return 0;
2221}
2222EXPORT_SYMBOL_GPL (usb_mon_register);
2223
2224void usb_mon_deregister (void)
2225{
2226
2227	if (mon_ops == NULL) {
2228		printk(KERN_ERR "USB: monitor was not registered\n");
2229		return;
2230	}
2231	mon_ops = NULL;
2232	mb();
2233}
2234EXPORT_SYMBOL_GPL (usb_mon_deregister);
2235
2236#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2237