usb.c revision 0ede76fcec5415ef82a423a95120286895822e2d
1/*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 *     (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/string.h>
27#include <linux/bitops.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>  /* for in_interrupt() */
30#include <linux/kmod.h>
31#include <linux/init.h>
32#include <linux/spinlock.h>
33#include <linux/errno.h>
34#include <linux/usb.h>
35#include <linux/usb/hcd.h>
36#include <linux/mutex.h>
37#include <linux/workqueue.h>
38#include <linux/debugfs.h>
39
40#include <asm/io.h>
41#include <linux/scatterlist.h>
42#include <linux/mm.h>
43#include <linux/dma-mapping.h>
44
45#include "usb.h"
46
47
48const char *usbcore_name = "usbcore";
49
50static int nousb;	/* Disable USB when built into kernel image */
51
52#ifdef	CONFIG_USB_SUSPEND
53static int usb_autosuspend_delay = 2;		/* Default delay value,
54						 * in seconds */
55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57
58#else
59#define usb_autosuspend_delay		0
60#endif
61
62
63/**
64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
65 * for the given interface.
66 * @config: the configuration to search (not necessarily the current config).
67 * @iface_num: interface number to search in
68 * @alt_num: alternate interface setting number to search for.
69 *
70 * Search the configuration's interface cache for the given alt setting.
71 */
72struct usb_host_interface *usb_find_alt_setting(
73		struct usb_host_config *config,
74		unsigned int iface_num,
75		unsigned int alt_num)
76{
77	struct usb_interface_cache *intf_cache = NULL;
78	int i;
79
80	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82				== iface_num) {
83			intf_cache = config->intf_cache[i];
84			break;
85		}
86	}
87	if (!intf_cache)
88		return NULL;
89	for (i = 0; i < intf_cache->num_altsetting; i++)
90		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91			return &intf_cache->altsetting[i];
92
93	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94			"config %u\n", alt_num, iface_num,
95			config->desc.bConfigurationValue);
96	return NULL;
97}
98EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99
100/**
101 * usb_ifnum_to_if - get the interface object with a given interface number
102 * @dev: the device whose current configuration is considered
103 * @ifnum: the desired interface
104 *
105 * This walks the device descriptor for the currently active configuration
106 * and returns a pointer to the interface with that particular interface
107 * number, or null.
108 *
109 * Note that configuration descriptors are not required to assign interface
110 * numbers sequentially, so that it would be incorrect to assume that
111 * the first interface in that descriptor corresponds to interface zero.
112 * This routine helps device drivers avoid such mistakes.
113 * However, you should make sure that you do the right thing with any
114 * alternate settings available for this interfaces.
115 *
116 * Don't call this function unless you are bound to one of the interfaces
117 * on this device or you have locked the device!
118 */
119struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120				      unsigned ifnum)
121{
122	struct usb_host_config *config = dev->actconfig;
123	int i;
124
125	if (!config)
126		return NULL;
127	for (i = 0; i < config->desc.bNumInterfaces; i++)
128		if (config->interface[i]->altsetting[0]
129				.desc.bInterfaceNumber == ifnum)
130			return config->interface[i];
131
132	return NULL;
133}
134EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135
136/**
137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138 * @intf: the interface containing the altsetting in question
139 * @altnum: the desired alternate setting number
140 *
141 * This searches the altsetting array of the specified interface for
142 * an entry with the correct bAlternateSetting value and returns a pointer
143 * to that entry, or null.
144 *
145 * Note that altsettings need not be stored sequentially by number, so
146 * it would be incorrect to assume that the first altsetting entry in
147 * the array corresponds to altsetting zero.  This routine helps device
148 * drivers avoid such mistakes.
149 *
150 * Don't call this function unless you are bound to the intf interface
151 * or you have locked the device!
152 */
153struct usb_host_interface *usb_altnum_to_altsetting(
154					const struct usb_interface *intf,
155					unsigned int altnum)
156{
157	int i;
158
159	for (i = 0; i < intf->num_altsetting; i++) {
160		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161			return &intf->altsetting[i];
162	}
163	return NULL;
164}
165EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166
167struct find_interface_arg {
168	int minor;
169	struct device_driver *drv;
170};
171
172static int __find_interface(struct device *dev, void *data)
173{
174	struct find_interface_arg *arg = data;
175	struct usb_interface *intf;
176
177	if (!is_usb_interface(dev))
178		return 0;
179
180	if (dev->driver != arg->drv)
181		return 0;
182	intf = to_usb_interface(dev);
183	return intf->minor == arg->minor;
184}
185
186/**
187 * usb_find_interface - find usb_interface pointer for driver and device
188 * @drv: the driver whose current configuration is considered
189 * @minor: the minor number of the desired device
190 *
191 * This walks the bus device list and returns a pointer to the interface
192 * with the matching minor and driver.  Note, this only works for devices
193 * that share the USB major number.
194 */
195struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196{
197	struct find_interface_arg argb;
198	struct device *dev;
199
200	argb.minor = minor;
201	argb.drv = &drv->drvwrap.driver;
202
203	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204
205	/* Drop reference count from bus_find_device */
206	put_device(dev);
207
208	return dev ? to_usb_interface(dev) : NULL;
209}
210EXPORT_SYMBOL_GPL(usb_find_interface);
211
212/**
213 * usb_release_dev - free a usb device structure when all users of it are finished.
214 * @dev: device that's been disconnected
215 *
216 * Will be called only by the device core when all users of this usb device are
217 * done.
218 */
219static void usb_release_dev(struct device *dev)
220{
221	struct usb_device *udev;
222	struct usb_hcd *hcd;
223
224	udev = to_usb_device(dev);
225	hcd = bus_to_hcd(udev->bus);
226
227	usb_destroy_configuration(udev);
228	usb_put_hcd(hcd);
229	kfree(udev->product);
230	kfree(udev->manufacturer);
231	kfree(udev->serial);
232	kfree(udev);
233}
234
235#ifdef	CONFIG_HOTPLUG
236static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237{
238	struct usb_device *usb_dev;
239
240	usb_dev = to_usb_device(dev);
241
242	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243		return -ENOMEM;
244
245	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246		return -ENOMEM;
247
248	return 0;
249}
250
251#else
252
253static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254{
255	return -ENODEV;
256}
257#endif	/* CONFIG_HOTPLUG */
258
259#ifdef	CONFIG_PM
260
261/* USB device Power-Management thunks.
262 * There's no need to distinguish here between quiescing a USB device
263 * and powering it down; the generic_suspend() routine takes care of
264 * it by skipping the usb_port_suspend() call for a quiesce.  And for
265 * USB interfaces there's no difference at all.
266 */
267
268static int usb_dev_prepare(struct device *dev)
269{
270	return 0;		/* Implement eventually? */
271}
272
273static void usb_dev_complete(struct device *dev)
274{
275	/* Currently used only for rebinding interfaces */
276	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
277}
278
279static int usb_dev_suspend(struct device *dev)
280{
281	return usb_suspend(dev, PMSG_SUSPEND);
282}
283
284static int usb_dev_resume(struct device *dev)
285{
286	return usb_resume(dev, PMSG_RESUME);
287}
288
289static int usb_dev_freeze(struct device *dev)
290{
291	return usb_suspend(dev, PMSG_FREEZE);
292}
293
294static int usb_dev_thaw(struct device *dev)
295{
296	return usb_resume(dev, PMSG_THAW);
297}
298
299static int usb_dev_poweroff(struct device *dev)
300{
301	return usb_suspend(dev, PMSG_HIBERNATE);
302}
303
304static int usb_dev_restore(struct device *dev)
305{
306	return usb_resume(dev, PMSG_RESTORE);
307}
308
309static const struct dev_pm_ops usb_device_pm_ops = {
310	.prepare =	usb_dev_prepare,
311	.complete =	usb_dev_complete,
312	.suspend =	usb_dev_suspend,
313	.resume =	usb_dev_resume,
314	.freeze =	usb_dev_freeze,
315	.thaw =		usb_dev_thaw,
316	.poweroff =	usb_dev_poweroff,
317	.restore =	usb_dev_restore,
318};
319
320#else
321
322#define usb_device_pm_ops	(*(struct dev_pm_ops *) NULL)
323
324#endif	/* CONFIG_PM */
325
326
327static char *usb_devnode(struct device *dev, mode_t *mode)
328{
329	struct usb_device *usb_dev;
330
331	usb_dev = to_usb_device(dev);
332	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
333			 usb_dev->bus->busnum, usb_dev->devnum);
334}
335
336struct device_type usb_device_type = {
337	.name =		"usb_device",
338	.release =	usb_release_dev,
339	.uevent =	usb_dev_uevent,
340	.devnode = 	usb_devnode,
341	.pm =		&usb_device_pm_ops,
342};
343
344
345/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
346static unsigned usb_bus_is_wusb(struct usb_bus *bus)
347{
348	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
349	return hcd->wireless;
350}
351
352
353/**
354 * usb_alloc_dev - usb device constructor (usbcore-internal)
355 * @parent: hub to which device is connected; null to allocate a root hub
356 * @bus: bus used to access the device
357 * @port1: one-based index of port; ignored for root hubs
358 * Context: !in_interrupt()
359 *
360 * Only hub drivers (including virtual root hub drivers for host
361 * controllers) should ever call this.
362 *
363 * This call may not be used in a non-sleeping context.
364 */
365struct usb_device *usb_alloc_dev(struct usb_device *parent,
366				 struct usb_bus *bus, unsigned port1)
367{
368	struct usb_device *dev;
369	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
370	unsigned root_hub = 0;
371
372	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
373	if (!dev)
374		return NULL;
375
376	if (!usb_get_hcd(bus_to_hcd(bus))) {
377		kfree(dev);
378		return NULL;
379	}
380	/* Root hubs aren't true devices, so don't allocate HCD resources */
381	if (usb_hcd->driver->alloc_dev && parent &&
382		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
383		usb_put_hcd(bus_to_hcd(bus));
384		kfree(dev);
385		return NULL;
386	}
387
388	device_initialize(&dev->dev);
389	dev->dev.bus = &usb_bus_type;
390	dev->dev.type = &usb_device_type;
391	dev->dev.groups = usb_device_groups;
392	dev->dev.dma_mask = bus->controller->dma_mask;
393	set_dev_node(&dev->dev, dev_to_node(bus->controller));
394	dev->state = USB_STATE_ATTACHED;
395	atomic_set(&dev->urbnum, 0);
396
397	INIT_LIST_HEAD(&dev->ep0.urb_list);
398	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
399	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
400	/* ep0 maxpacket comes later, from device descriptor */
401	usb_enable_endpoint(dev, &dev->ep0, false);
402	dev->can_submit = 1;
403
404	/* Save readable and stable topology id, distinguishing devices
405	 * by location for diagnostics, tools, driver model, etc.  The
406	 * string is a path along hub ports, from the root.  Each device's
407	 * dev->devpath will be stable until USB is re-cabled, and hubs
408	 * are often labeled with these port numbers.  The name isn't
409	 * as stable:  bus->busnum changes easily from modprobe order,
410	 * cardbus or pci hotplugging, and so on.
411	 */
412	if (unlikely(!parent)) {
413		dev->devpath[0] = '0';
414		dev->route = 0;
415
416		dev->dev.parent = bus->controller;
417		dev_set_name(&dev->dev, "usb%d", bus->busnum);
418		root_hub = 1;
419	} else {
420		/* match any labeling on the hubs; it's one-based */
421		if (parent->devpath[0] == '0') {
422			snprintf(dev->devpath, sizeof dev->devpath,
423				"%d", port1);
424			/* Root ports are not counted in route string */
425			dev->route = 0;
426		} else {
427			snprintf(dev->devpath, sizeof dev->devpath,
428				"%s.%d", parent->devpath, port1);
429			/* Route string assumes hubs have less than 16 ports */
430			if (port1 < 15)
431				dev->route = parent->route +
432					(port1 << ((parent->level - 1)*4));
433			else
434				dev->route = parent->route +
435					(15 << ((parent->level - 1)*4));
436		}
437
438		dev->dev.parent = &parent->dev;
439		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
440
441		/* hub driver sets up TT records */
442	}
443
444	dev->portnum = port1;
445	dev->bus = bus;
446	dev->parent = parent;
447	INIT_LIST_HEAD(&dev->filelist);
448
449#ifdef	CONFIG_PM
450	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
451	dev->connect_time = jiffies;
452	dev->active_duration = -jiffies;
453#endif
454	if (root_hub)	/* Root hub always ok [and always wired] */
455		dev->authorized = 1;
456	else {
457		dev->authorized = usb_hcd->authorized_default;
458		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
459	}
460	return dev;
461}
462
463/**
464 * usb_get_dev - increments the reference count of the usb device structure
465 * @dev: the device being referenced
466 *
467 * Each live reference to a device should be refcounted.
468 *
469 * Drivers for USB interfaces should normally record such references in
470 * their probe() methods, when they bind to an interface, and release
471 * them by calling usb_put_dev(), in their disconnect() methods.
472 *
473 * A pointer to the device with the incremented reference counter is returned.
474 */
475struct usb_device *usb_get_dev(struct usb_device *dev)
476{
477	if (dev)
478		get_device(&dev->dev);
479	return dev;
480}
481EXPORT_SYMBOL_GPL(usb_get_dev);
482
483/**
484 * usb_put_dev - release a use of the usb device structure
485 * @dev: device that's been disconnected
486 *
487 * Must be called when a user of a device is finished with it.  When the last
488 * user of the device calls this function, the memory of the device is freed.
489 */
490void usb_put_dev(struct usb_device *dev)
491{
492	if (dev)
493		put_device(&dev->dev);
494}
495EXPORT_SYMBOL_GPL(usb_put_dev);
496
497/**
498 * usb_get_intf - increments the reference count of the usb interface structure
499 * @intf: the interface being referenced
500 *
501 * Each live reference to a interface must be refcounted.
502 *
503 * Drivers for USB interfaces should normally record such references in
504 * their probe() methods, when they bind to an interface, and release
505 * them by calling usb_put_intf(), in their disconnect() methods.
506 *
507 * A pointer to the interface with the incremented reference counter is
508 * returned.
509 */
510struct usb_interface *usb_get_intf(struct usb_interface *intf)
511{
512	if (intf)
513		get_device(&intf->dev);
514	return intf;
515}
516EXPORT_SYMBOL_GPL(usb_get_intf);
517
518/**
519 * usb_put_intf - release a use of the usb interface structure
520 * @intf: interface that's been decremented
521 *
522 * Must be called when a user of an interface is finished with it.  When the
523 * last user of the interface calls this function, the memory of the interface
524 * is freed.
525 */
526void usb_put_intf(struct usb_interface *intf)
527{
528	if (intf)
529		put_device(&intf->dev);
530}
531EXPORT_SYMBOL_GPL(usb_put_intf);
532
533/*			USB device locking
534 *
535 * USB devices and interfaces are locked using the semaphore in their
536 * embedded struct device.  The hub driver guarantees that whenever a
537 * device is connected or disconnected, drivers are called with the
538 * USB device locked as well as their particular interface.
539 *
540 * Complications arise when several devices are to be locked at the same
541 * time.  Only hub-aware drivers that are part of usbcore ever have to
542 * do this; nobody else needs to worry about it.  The rule for locking
543 * is simple:
544 *
545 *	When locking both a device and its parent, always lock the
546 *	the parent first.
547 */
548
549/**
550 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
551 * @udev: device that's being locked
552 * @iface: interface bound to the driver making the request (optional)
553 *
554 * Attempts to acquire the device lock, but fails if the device is
555 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
556 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
557 * lock, the routine polls repeatedly.  This is to prevent deadlock with
558 * disconnect; in some drivers (such as usb-storage) the disconnect()
559 * or suspend() method will block waiting for a device reset to complete.
560 *
561 * Returns a negative error code for failure, otherwise 0.
562 */
563int usb_lock_device_for_reset(struct usb_device *udev,
564			      const struct usb_interface *iface)
565{
566	unsigned long jiffies_expire = jiffies + HZ;
567
568	if (udev->state == USB_STATE_NOTATTACHED)
569		return -ENODEV;
570	if (udev->state == USB_STATE_SUSPENDED)
571		return -EHOSTUNREACH;
572	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
573			iface->condition == USB_INTERFACE_UNBOUND))
574		return -EINTR;
575
576	while (usb_trylock_device(udev) != 0) {
577
578		/* If we can't acquire the lock after waiting one second,
579		 * we're probably deadlocked */
580		if (time_after(jiffies, jiffies_expire))
581			return -EBUSY;
582
583		msleep(15);
584		if (udev->state == USB_STATE_NOTATTACHED)
585			return -ENODEV;
586		if (udev->state == USB_STATE_SUSPENDED)
587			return -EHOSTUNREACH;
588		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
589				iface->condition == USB_INTERFACE_UNBOUND))
590			return -EINTR;
591	}
592	return 0;
593}
594EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
595
596static struct usb_device *match_device(struct usb_device *dev,
597				       u16 vendor_id, u16 product_id)
598{
599	struct usb_device *ret_dev = NULL;
600	int child;
601
602	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
603	    le16_to_cpu(dev->descriptor.idVendor),
604	    le16_to_cpu(dev->descriptor.idProduct));
605
606	/* see if this device matches */
607	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
608	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
609		dev_dbg(&dev->dev, "matched this device!\n");
610		ret_dev = usb_get_dev(dev);
611		goto exit;
612	}
613
614	/* look through all of the children of this device */
615	for (child = 0; child < dev->maxchild; ++child) {
616		if (dev->children[child]) {
617			usb_lock_device(dev->children[child]);
618			ret_dev = match_device(dev->children[child],
619					       vendor_id, product_id);
620			usb_unlock_device(dev->children[child]);
621			if (ret_dev)
622				goto exit;
623		}
624	}
625exit:
626	return ret_dev;
627}
628
629/**
630 * usb_find_device - find a specific usb device in the system
631 * @vendor_id: the vendor id of the device to find
632 * @product_id: the product id of the device to find
633 *
634 * Returns a pointer to a struct usb_device if such a specified usb
635 * device is present in the system currently.  The usage count of the
636 * device will be incremented if a device is found.  Make sure to call
637 * usb_put_dev() when the caller is finished with the device.
638 *
639 * If a device with the specified vendor and product id is not found,
640 * NULL is returned.
641 */
642struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
643{
644	struct list_head *buslist;
645	struct usb_bus *bus;
646	struct usb_device *dev = NULL;
647
648	mutex_lock(&usb_bus_list_lock);
649	for (buslist = usb_bus_list.next;
650	     buslist != &usb_bus_list;
651	     buslist = buslist->next) {
652		bus = container_of(buslist, struct usb_bus, bus_list);
653		if (!bus->root_hub)
654			continue;
655		usb_lock_device(bus->root_hub);
656		dev = match_device(bus->root_hub, vendor_id, product_id);
657		usb_unlock_device(bus->root_hub);
658		if (dev)
659			goto exit;
660	}
661exit:
662	mutex_unlock(&usb_bus_list_lock);
663	return dev;
664}
665
666/**
667 * usb_get_current_frame_number - return current bus frame number
668 * @dev: the device whose bus is being queried
669 *
670 * Returns the current frame number for the USB host controller
671 * used with the given USB device.  This can be used when scheduling
672 * isochronous requests.
673 *
674 * Note that different kinds of host controller have different
675 * "scheduling horizons".  While one type might support scheduling only
676 * 32 frames into the future, others could support scheduling up to
677 * 1024 frames into the future.
678 */
679int usb_get_current_frame_number(struct usb_device *dev)
680{
681	return usb_hcd_get_frame_number(dev);
682}
683EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
684
685/*-------------------------------------------------------------------*/
686/*
687 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
688 * extra field of the interface and endpoint descriptor structs.
689 */
690
691int __usb_get_extra_descriptor(char *buffer, unsigned size,
692			       unsigned char type, void **ptr)
693{
694	struct usb_descriptor_header *header;
695
696	while (size >= sizeof(struct usb_descriptor_header)) {
697		header = (struct usb_descriptor_header *)buffer;
698
699		if (header->bLength < 2) {
700			printk(KERN_ERR
701				"%s: bogus descriptor, type %d length %d\n",
702				usbcore_name,
703				header->bDescriptorType,
704				header->bLength);
705			return -1;
706		}
707
708		if (header->bDescriptorType == type) {
709			*ptr = header;
710			return 0;
711		}
712
713		buffer += header->bLength;
714		size -= header->bLength;
715	}
716	return -1;
717}
718EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
719
720/**
721 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
722 * @dev: device the buffer will be used with
723 * @size: requested buffer size
724 * @mem_flags: affect whether allocation may block
725 * @dma: used to return DMA address of buffer
726 *
727 * Return value is either null (indicating no buffer could be allocated), or
728 * the cpu-space pointer to a buffer that may be used to perform DMA to the
729 * specified device.  Such cpu-space buffers are returned along with the DMA
730 * address (through the pointer provided).
731 *
732 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
733 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
734 * hardware during URB completion/resubmit.  The implementation varies between
735 * platforms, depending on details of how DMA will work to this device.
736 * Using these buffers also eliminates cacheline sharing problems on
737 * architectures where CPU caches are not DMA-coherent.  On systems without
738 * bus-snooping caches, these buffers are uncached.
739 *
740 * When the buffer is no longer used, free it with usb_free_coherent().
741 */
742void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
743			 dma_addr_t *dma)
744{
745	if (!dev || !dev->bus)
746		return NULL;
747	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
748}
749EXPORT_SYMBOL_GPL(usb_alloc_coherent);
750
751/**
752 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
753 * @dev: device the buffer was used with
754 * @size: requested buffer size
755 * @addr: CPU address of buffer
756 * @dma: DMA address of buffer
757 *
758 * This reclaims an I/O buffer, letting it be reused.  The memory must have
759 * been allocated using usb_alloc_coherent(), and the parameters must match
760 * those provided in that allocation request.
761 */
762void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
763		       dma_addr_t dma)
764{
765	if (!dev || !dev->bus)
766		return;
767	if (!addr)
768		return;
769	hcd_buffer_free(dev->bus, size, addr, dma);
770}
771EXPORT_SYMBOL_GPL(usb_free_coherent);
772
773/**
774 * usb_buffer_map - create DMA mapping(s) for an urb
775 * @urb: urb whose transfer_buffer/setup_packet will be mapped
776 *
777 * Return value is either null (indicating no buffer could be mapped), or
778 * the parameter.  URB_NO_TRANSFER_DMA_MAP is
779 * added to urb->transfer_flags if the operation succeeds.  If the device
780 * is connected to this system through a non-DMA controller, this operation
781 * always succeeds.
782 *
783 * This call would normally be used for an urb which is reused, perhaps
784 * as the target of a large periodic transfer, with usb_buffer_dmasync()
785 * calls to synchronize memory and dma state.
786 *
787 * Reverse the effect of this call with usb_buffer_unmap().
788 */
789#if 0
790struct urb *usb_buffer_map(struct urb *urb)
791{
792	struct usb_bus		*bus;
793	struct device		*controller;
794
795	if (!urb
796			|| !urb->dev
797			|| !(bus = urb->dev->bus)
798			|| !(controller = bus->controller))
799		return NULL;
800
801	if (controller->dma_mask) {
802		urb->transfer_dma = dma_map_single(controller,
803			urb->transfer_buffer, urb->transfer_buffer_length,
804			usb_pipein(urb->pipe)
805				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
806	/* FIXME generic api broken like pci, can't report errors */
807	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
808	} else
809		urb->transfer_dma = ~0;
810	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
811	return urb;
812}
813EXPORT_SYMBOL_GPL(usb_buffer_map);
814#endif  /*  0  */
815
816/* XXX DISABLED, no users currently.  If you wish to re-enable this
817 * XXX please determine whether the sync is to transfer ownership of
818 * XXX the buffer from device to cpu or vice verse, and thusly use the
819 * XXX appropriate _for_{cpu,device}() method.  -DaveM
820 */
821#if 0
822
823/**
824 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
825 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
826 */
827void usb_buffer_dmasync(struct urb *urb)
828{
829	struct usb_bus		*bus;
830	struct device		*controller;
831
832	if (!urb
833			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
834			|| !urb->dev
835			|| !(bus = urb->dev->bus)
836			|| !(controller = bus->controller))
837		return;
838
839	if (controller->dma_mask) {
840		dma_sync_single_for_cpu(controller,
841			urb->transfer_dma, urb->transfer_buffer_length,
842			usb_pipein(urb->pipe)
843				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
844		if (usb_pipecontrol(urb->pipe))
845			dma_sync_single_for_cpu(controller,
846					urb->setup_dma,
847					sizeof(struct usb_ctrlrequest),
848					DMA_TO_DEVICE);
849	}
850}
851EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
852#endif
853
854/**
855 * usb_buffer_unmap - free DMA mapping(s) for an urb
856 * @urb: urb whose transfer_buffer will be unmapped
857 *
858 * Reverses the effect of usb_buffer_map().
859 */
860#if 0
861void usb_buffer_unmap(struct urb *urb)
862{
863	struct usb_bus		*bus;
864	struct device		*controller;
865
866	if (!urb
867			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
868			|| !urb->dev
869			|| !(bus = urb->dev->bus)
870			|| !(controller = bus->controller))
871		return;
872
873	if (controller->dma_mask) {
874		dma_unmap_single(controller,
875			urb->transfer_dma, urb->transfer_buffer_length,
876			usb_pipein(urb->pipe)
877				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
878	}
879	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
880}
881EXPORT_SYMBOL_GPL(usb_buffer_unmap);
882#endif  /*  0  */
883
884/**
885 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
886 * @dev: device to which the scatterlist will be mapped
887 * @is_in: mapping transfer direction
888 * @sg: the scatterlist to map
889 * @nents: the number of entries in the scatterlist
890 *
891 * Return value is either < 0 (indicating no buffers could be mapped), or
892 * the number of DMA mapping array entries in the scatterlist.
893 *
894 * The caller is responsible for placing the resulting DMA addresses from
895 * the scatterlist into URB transfer buffer pointers, and for setting the
896 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
897 *
898 * Top I/O rates come from queuing URBs, instead of waiting for each one
899 * to complete before starting the next I/O.   This is particularly easy
900 * to do with scatterlists.  Just allocate and submit one URB for each DMA
901 * mapping entry returned, stopping on the first error or when all succeed.
902 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
903 *
904 * This call would normally be used when translating scatterlist requests,
905 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
906 * may be able to coalesce mappings for improved I/O efficiency.
907 *
908 * Reverse the effect of this call with usb_buffer_unmap_sg().
909 */
910int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
911		      struct scatterlist *sg, int nents)
912{
913	struct usb_bus		*bus;
914	struct device		*controller;
915
916	if (!dev
917			|| !(bus = dev->bus)
918			|| !(controller = bus->controller)
919			|| !controller->dma_mask)
920		return -EINVAL;
921
922	/* FIXME generic api broken like pci, can't report errors */
923	return dma_map_sg(controller, sg, nents,
924			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
925}
926EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
927
928/* XXX DISABLED, no users currently.  If you wish to re-enable this
929 * XXX please determine whether the sync is to transfer ownership of
930 * XXX the buffer from device to cpu or vice verse, and thusly use the
931 * XXX appropriate _for_{cpu,device}() method.  -DaveM
932 */
933#if 0
934
935/**
936 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
937 * @dev: device to which the scatterlist will be mapped
938 * @is_in: mapping transfer direction
939 * @sg: the scatterlist to synchronize
940 * @n_hw_ents: the positive return value from usb_buffer_map_sg
941 *
942 * Use this when you are re-using a scatterlist's data buffers for
943 * another USB request.
944 */
945void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
946			   struct scatterlist *sg, int n_hw_ents)
947{
948	struct usb_bus		*bus;
949	struct device		*controller;
950
951	if (!dev
952			|| !(bus = dev->bus)
953			|| !(controller = bus->controller)
954			|| !controller->dma_mask)
955		return;
956
957	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
958			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
959}
960EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
961#endif
962
963/**
964 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
965 * @dev: device to which the scatterlist will be mapped
966 * @is_in: mapping transfer direction
967 * @sg: the scatterlist to unmap
968 * @n_hw_ents: the positive return value from usb_buffer_map_sg
969 *
970 * Reverses the effect of usb_buffer_map_sg().
971 */
972void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
973			 struct scatterlist *sg, int n_hw_ents)
974{
975	struct usb_bus		*bus;
976	struct device		*controller;
977
978	if (!dev
979			|| !(bus = dev->bus)
980			|| !(controller = bus->controller)
981			|| !controller->dma_mask)
982		return;
983
984	dma_unmap_sg(controller, sg, n_hw_ents,
985			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
986}
987EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
988
989/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
990#ifdef MODULE
991module_param(nousb, bool, 0444);
992#else
993core_param(nousb, nousb, bool, 0444);
994#endif
995
996/*
997 * for external read access to <nousb>
998 */
999int usb_disabled(void)
1000{
1001	return nousb;
1002}
1003EXPORT_SYMBOL_GPL(usb_disabled);
1004
1005/*
1006 * Notifications of device and interface registration
1007 */
1008static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1009		void *data)
1010{
1011	struct device *dev = data;
1012
1013	switch (action) {
1014	case BUS_NOTIFY_ADD_DEVICE:
1015		if (dev->type == &usb_device_type)
1016			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1017		else if (dev->type == &usb_if_device_type)
1018			(void) usb_create_sysfs_intf_files(
1019					to_usb_interface(dev));
1020		break;
1021
1022	case BUS_NOTIFY_DEL_DEVICE:
1023		if (dev->type == &usb_device_type)
1024			usb_remove_sysfs_dev_files(to_usb_device(dev));
1025		else if (dev->type == &usb_if_device_type)
1026			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1027		break;
1028	}
1029	return 0;
1030}
1031
1032static struct notifier_block usb_bus_nb = {
1033	.notifier_call = usb_bus_notify,
1034};
1035
1036struct dentry *usb_debug_root;
1037EXPORT_SYMBOL_GPL(usb_debug_root);
1038
1039static struct dentry *usb_debug_devices;
1040
1041static int usb_debugfs_init(void)
1042{
1043	usb_debug_root = debugfs_create_dir("usb", NULL);
1044	if (!usb_debug_root)
1045		return -ENOENT;
1046
1047	usb_debug_devices = debugfs_create_file("devices", 0444,
1048						usb_debug_root, NULL,
1049						&usbfs_devices_fops);
1050	if (!usb_debug_devices) {
1051		debugfs_remove(usb_debug_root);
1052		usb_debug_root = NULL;
1053		return -ENOENT;
1054	}
1055
1056	return 0;
1057}
1058
1059static void usb_debugfs_cleanup(void)
1060{
1061	debugfs_remove(usb_debug_devices);
1062	debugfs_remove(usb_debug_root);
1063}
1064
1065/*
1066 * Init
1067 */
1068static int __init usb_init(void)
1069{
1070	int retval;
1071	if (nousb) {
1072		pr_info("%s: USB support disabled\n", usbcore_name);
1073		return 0;
1074	}
1075
1076	retval = usb_debugfs_init();
1077	if (retval)
1078		goto out;
1079
1080	retval = bus_register(&usb_bus_type);
1081	if (retval)
1082		goto bus_register_failed;
1083	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1084	if (retval)
1085		goto bus_notifier_failed;
1086	retval = usb_major_init();
1087	if (retval)
1088		goto major_init_failed;
1089	retval = usb_register(&usbfs_driver);
1090	if (retval)
1091		goto driver_register_failed;
1092	retval = usb_devio_init();
1093	if (retval)
1094		goto usb_devio_init_failed;
1095	retval = usbfs_init();
1096	if (retval)
1097		goto fs_init_failed;
1098	retval = usb_hub_init();
1099	if (retval)
1100		goto hub_init_failed;
1101	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1102	if (!retval)
1103		goto out;
1104
1105	usb_hub_cleanup();
1106hub_init_failed:
1107	usbfs_cleanup();
1108fs_init_failed:
1109	usb_devio_cleanup();
1110usb_devio_init_failed:
1111	usb_deregister(&usbfs_driver);
1112driver_register_failed:
1113	usb_major_cleanup();
1114major_init_failed:
1115	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1116bus_notifier_failed:
1117	bus_unregister(&usb_bus_type);
1118bus_register_failed:
1119	usb_debugfs_cleanup();
1120out:
1121	return retval;
1122}
1123
1124/*
1125 * Cleanup
1126 */
1127static void __exit usb_exit(void)
1128{
1129	/* This will matter if shutdown/reboot does exitcalls. */
1130	if (nousb)
1131		return;
1132
1133	usb_deregister_device_driver(&usb_generic_driver);
1134	usb_major_cleanup();
1135	usbfs_cleanup();
1136	usb_deregister(&usbfs_driver);
1137	usb_devio_cleanup();
1138	usb_hub_cleanup();
1139	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1140	bus_unregister(&usb_bus_type);
1141	usb_debugfs_cleanup();
1142}
1143
1144subsys_initcall(usb_init);
1145module_exit(usb_exit);
1146MODULE_LICENSE("GPL");
1147