usb.c revision 140d8f687457c40a66af362838fac0d7893e7df5
1/*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 *     (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/module.h>
25#include <linux/string.h>
26#include <linux/bitops.h>
27#include <linux/slab.h>
28#include <linux/interrupt.h>  /* for in_interrupt() */
29#include <linux/kmod.h>
30#include <linux/init.h>
31#include <linux/spinlock.h>
32#include <linux/errno.h>
33#include <linux/smp_lock.h>
34#include <linux/usb.h>
35#include <linux/mutex.h>
36
37#include <asm/io.h>
38#include <asm/scatterlist.h>
39#include <linux/mm.h>
40#include <linux/dma-mapping.h>
41
42#include "hcd.h"
43#include "usb.h"
44
45
46const char *usbcore_name = "usbcore";
47
48static int nousb;	/* Disable USB when built into kernel image */
49
50
51/**
52 * usb_ifnum_to_if - get the interface object with a given interface number
53 * @dev: the device whose current configuration is considered
54 * @ifnum: the desired interface
55 *
56 * This walks the device descriptor for the currently active configuration
57 * and returns a pointer to the interface with that particular interface
58 * number, or null.
59 *
60 * Note that configuration descriptors are not required to assign interface
61 * numbers sequentially, so that it would be incorrect to assume that
62 * the first interface in that descriptor corresponds to interface zero.
63 * This routine helps device drivers avoid such mistakes.
64 * However, you should make sure that you do the right thing with any
65 * alternate settings available for this interfaces.
66 *
67 * Don't call this function unless you are bound to one of the interfaces
68 * on this device or you have locked the device!
69 */
70struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
71{
72	struct usb_host_config *config = dev->actconfig;
73	int i;
74
75	if (!config)
76		return NULL;
77	for (i = 0; i < config->desc.bNumInterfaces; i++)
78		if (config->interface[i]->altsetting[0]
79				.desc.bInterfaceNumber == ifnum)
80			return config->interface[i];
81
82	return NULL;
83}
84
85/**
86 * usb_altnum_to_altsetting - get the altsetting structure with a given
87 *	alternate setting number.
88 * @intf: the interface containing the altsetting in question
89 * @altnum: the desired alternate setting number
90 *
91 * This searches the altsetting array of the specified interface for
92 * an entry with the correct bAlternateSetting value and returns a pointer
93 * to that entry, or null.
94 *
95 * Note that altsettings need not be stored sequentially by number, so
96 * it would be incorrect to assume that the first altsetting entry in
97 * the array corresponds to altsetting zero.  This routine helps device
98 * drivers avoid such mistakes.
99 *
100 * Don't call this function unless you are bound to the intf interface
101 * or you have locked the device!
102 */
103struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
104		unsigned int altnum)
105{
106	int i;
107
108	for (i = 0; i < intf->num_altsetting; i++) {
109		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
110			return &intf->altsetting[i];
111	}
112	return NULL;
113}
114
115/**
116 * usb_driver_claim_interface - bind a driver to an interface
117 * @driver: the driver to be bound
118 * @iface: the interface to which it will be bound; must be in the
119 *	usb device's active configuration
120 * @priv: driver data associated with that interface
121 *
122 * This is used by usb device drivers that need to claim more than one
123 * interface on a device when probing (audio and acm are current examples).
124 * No device driver should directly modify internal usb_interface or
125 * usb_device structure members.
126 *
127 * Few drivers should need to use this routine, since the most natural
128 * way to bind to an interface is to return the private data from
129 * the driver's probe() method.
130 *
131 * Callers must own the device lock and the driver model's usb_bus_type.subsys
132 * writelock.  So driver probe() entries don't need extra locking,
133 * but other call contexts may need to explicitly claim those locks.
134 */
135int usb_driver_claim_interface(struct usb_driver *driver,
136				struct usb_interface *iface, void* priv)
137{
138	struct device *dev = &iface->dev;
139
140	if (dev->driver)
141		return -EBUSY;
142
143	dev->driver = &driver->driver;
144	usb_set_intfdata(iface, priv);
145	iface->condition = USB_INTERFACE_BOUND;
146	mark_active(iface);
147
148	/* if interface was already added, bind now; else let
149	 * the future device_add() bind it, bypassing probe()
150	 */
151	if (device_is_registered(dev))
152		device_bind_driver(dev);
153
154	return 0;
155}
156
157/**
158 * usb_driver_release_interface - unbind a driver from an interface
159 * @driver: the driver to be unbound
160 * @iface: the interface from which it will be unbound
161 *
162 * This can be used by drivers to release an interface without waiting
163 * for their disconnect() methods to be called.  In typical cases this
164 * also causes the driver disconnect() method to be called.
165 *
166 * This call is synchronous, and may not be used in an interrupt context.
167 * Callers must own the device lock and the driver model's usb_bus_type.subsys
168 * writelock.  So driver disconnect() entries don't need extra locking,
169 * but other call contexts may need to explicitly claim those locks.
170 */
171void usb_driver_release_interface(struct usb_driver *driver,
172					struct usb_interface *iface)
173{
174	struct device *dev = &iface->dev;
175
176	/* this should never happen, don't release something that's not ours */
177	if (!dev->driver || dev->driver != &driver->driver)
178		return;
179
180	/* don't release from within disconnect() */
181	if (iface->condition != USB_INTERFACE_BOUND)
182		return;
183
184	/* don't release if the interface hasn't been added yet */
185	if (device_is_registered(dev)) {
186		iface->condition = USB_INTERFACE_UNBINDING;
187		device_release_driver(dev);
188	}
189
190	dev->driver = NULL;
191	usb_set_intfdata(iface, NULL);
192	iface->condition = USB_INTERFACE_UNBOUND;
193	mark_quiesced(iface);
194}
195
196struct find_interface_arg {
197	int minor;
198	struct usb_interface *interface;
199};
200
201static int __find_interface(struct device * dev, void * data)
202{
203	struct find_interface_arg *arg = data;
204	struct usb_interface *intf;
205
206	/* can't look at usb devices, only interfaces */
207	if (dev->driver == &usb_generic_driver)
208		return 0;
209
210	intf = to_usb_interface(dev);
211	if (intf->minor != -1 && intf->minor == arg->minor) {
212		arg->interface = intf;
213		return 1;
214	}
215	return 0;
216}
217
218/**
219 * usb_find_interface - find usb_interface pointer for driver and device
220 * @drv: the driver whose current configuration is considered
221 * @minor: the minor number of the desired device
222 *
223 * This walks the driver device list and returns a pointer to the interface
224 * with the matching minor.  Note, this only works for devices that share the
225 * USB major number.
226 */
227struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
228{
229	struct find_interface_arg argb;
230
231	argb.minor = minor;
232	argb.interface = NULL;
233	driver_for_each_device(&drv->driver, NULL, &argb, __find_interface);
234	return argb.interface;
235}
236
237#ifdef	CONFIG_HOTPLUG
238
239/*
240 * This sends an uevent to userspace, typically helping to load driver
241 * or other modules, configure the device, and more.  Drivers can provide
242 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
243 *
244 * We're called either from khubd (the typical case) or from root hub
245 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
246 * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
247 * device (and this configuration!) are still present.
248 */
249static int usb_uevent(struct device *dev, char **envp, int num_envp,
250		      char *buffer, int buffer_size)
251{
252	struct usb_interface *intf;
253	struct usb_device *usb_dev;
254	struct usb_host_interface *alt;
255	int i = 0;
256	int length = 0;
257
258	if (!dev)
259		return -ENODEV;
260
261	/* driver is often null here; dev_dbg() would oops */
262	pr_debug ("usb %s: uevent\n", dev->bus_id);
263
264	/* Must check driver_data here, as on remove driver is always NULL */
265	if ((dev->driver == &usb_generic_driver) ||
266	    (dev->driver_data == &usb_generic_driver_data))
267		return 0;
268
269	intf = to_usb_interface(dev);
270	usb_dev = interface_to_usbdev (intf);
271	alt = intf->cur_altsetting;
272
273	if (usb_dev->devnum < 0) {
274		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
275		return -ENODEV;
276	}
277	if (!usb_dev->bus) {
278		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
279		return -ENODEV;
280	}
281
282#ifdef	CONFIG_USB_DEVICEFS
283	/* If this is available, userspace programs can directly read
284	 * all the device descriptors we don't tell them about.  Or
285	 * even act as usermode drivers.
286	 *
287	 * FIXME reduce hardwired intelligence here
288	 */
289	if (add_uevent_var(envp, num_envp, &i,
290			   buffer, buffer_size, &length,
291			   "DEVICE=/proc/bus/usb/%03d/%03d",
292			   usb_dev->bus->busnum, usb_dev->devnum))
293		return -ENOMEM;
294#endif
295
296	/* per-device configurations are common */
297	if (add_uevent_var(envp, num_envp, &i,
298			   buffer, buffer_size, &length,
299			   "PRODUCT=%x/%x/%x",
300			   le16_to_cpu(usb_dev->descriptor.idVendor),
301			   le16_to_cpu(usb_dev->descriptor.idProduct),
302			   le16_to_cpu(usb_dev->descriptor.bcdDevice)))
303		return -ENOMEM;
304
305	/* class-based driver binding models */
306	if (add_uevent_var(envp, num_envp, &i,
307			   buffer, buffer_size, &length,
308			   "TYPE=%d/%d/%d",
309			   usb_dev->descriptor.bDeviceClass,
310			   usb_dev->descriptor.bDeviceSubClass,
311			   usb_dev->descriptor.bDeviceProtocol))
312		return -ENOMEM;
313
314	if (add_uevent_var(envp, num_envp, &i,
315			   buffer, buffer_size, &length,
316			   "INTERFACE=%d/%d/%d",
317			   alt->desc.bInterfaceClass,
318			   alt->desc.bInterfaceSubClass,
319			   alt->desc.bInterfaceProtocol))
320		return -ENOMEM;
321
322	if (add_uevent_var(envp, num_envp, &i,
323			   buffer, buffer_size, &length,
324			   "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
325			   le16_to_cpu(usb_dev->descriptor.idVendor),
326			   le16_to_cpu(usb_dev->descriptor.idProduct),
327			   le16_to_cpu(usb_dev->descriptor.bcdDevice),
328			   usb_dev->descriptor.bDeviceClass,
329			   usb_dev->descriptor.bDeviceSubClass,
330			   usb_dev->descriptor.bDeviceProtocol,
331			   alt->desc.bInterfaceClass,
332			   alt->desc.bInterfaceSubClass,
333			   alt->desc.bInterfaceProtocol))
334		return -ENOMEM;
335
336	envp[i] = NULL;
337
338	return 0;
339}
340
341#else
342
343static int usb_uevent(struct device *dev, char **envp,
344			int num_envp, char *buffer, int buffer_size)
345{
346	return -ENODEV;
347}
348
349#endif	/* CONFIG_HOTPLUG */
350
351/**
352 * usb_release_dev - free a usb device structure when all users of it are finished.
353 * @dev: device that's been disconnected
354 *
355 * Will be called only by the device core when all users of this usb device are
356 * done.
357 */
358static void usb_release_dev(struct device *dev)
359{
360	struct usb_device *udev;
361
362	udev = to_usb_device(dev);
363
364	usb_destroy_configuration(udev);
365	usb_bus_put(udev->bus);
366	kfree(udev->product);
367	kfree(udev->manufacturer);
368	kfree(udev->serial);
369	kfree(udev);
370}
371
372/**
373 * usb_alloc_dev - usb device constructor (usbcore-internal)
374 * @parent: hub to which device is connected; null to allocate a root hub
375 * @bus: bus used to access the device
376 * @port1: one-based index of port; ignored for root hubs
377 * Context: !in_interrupt ()
378 *
379 * Only hub drivers (including virtual root hub drivers for host
380 * controllers) should ever call this.
381 *
382 * This call may not be used in a non-sleeping context.
383 */
384struct usb_device *
385usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
386{
387	struct usb_device *dev;
388
389	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390	if (!dev)
391		return NULL;
392
393	bus = usb_bus_get(bus);
394	if (!bus) {
395		kfree(dev);
396		return NULL;
397	}
398
399	device_initialize(&dev->dev);
400	dev->dev.bus = &usb_bus_type;
401	dev->dev.dma_mask = bus->controller->dma_mask;
402	dev->dev.driver_data = &usb_generic_driver_data;
403	dev->dev.driver = &usb_generic_driver;
404	dev->dev.release = usb_release_dev;
405	dev->state = USB_STATE_ATTACHED;
406
407	INIT_LIST_HEAD(&dev->ep0.urb_list);
408	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
409	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
410	/* ep0 maxpacket comes later, from device descriptor */
411	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
412
413	/* Save readable and stable topology id, distinguishing devices
414	 * by location for diagnostics, tools, driver model, etc.  The
415	 * string is a path along hub ports, from the root.  Each device's
416	 * dev->devpath will be stable until USB is re-cabled, and hubs
417	 * are often labeled with these port numbers.  The bus_id isn't
418	 * as stable:  bus->busnum changes easily from modprobe order,
419	 * cardbus or pci hotplugging, and so on.
420	 */
421	if (unlikely (!parent)) {
422		dev->devpath [0] = '0';
423
424		dev->dev.parent = bus->controller;
425		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
426	} else {
427		/* match any labeling on the hubs; it's one-based */
428		if (parent->devpath [0] == '0')
429			snprintf (dev->devpath, sizeof dev->devpath,
430				"%d", port1);
431		else
432			snprintf (dev->devpath, sizeof dev->devpath,
433				"%s.%d", parent->devpath, port1);
434
435		dev->dev.parent = &parent->dev;
436		sprintf (&dev->dev.bus_id[0], "%d-%s",
437			bus->busnum, dev->devpath);
438
439		/* hub driver sets up TT records */
440	}
441
442	dev->portnum = port1;
443	dev->bus = bus;
444	dev->parent = parent;
445	INIT_LIST_HEAD(&dev->filelist);
446
447	return dev;
448}
449
450/**
451 * usb_get_dev - increments the reference count of the usb device structure
452 * @dev: the device being referenced
453 *
454 * Each live reference to a device should be refcounted.
455 *
456 * Drivers for USB interfaces should normally record such references in
457 * their probe() methods, when they bind to an interface, and release
458 * them by calling usb_put_dev(), in their disconnect() methods.
459 *
460 * A pointer to the device with the incremented reference counter is returned.
461 */
462struct usb_device *usb_get_dev(struct usb_device *dev)
463{
464	if (dev)
465		get_device(&dev->dev);
466	return dev;
467}
468
469/**
470 * usb_put_dev - release a use of the usb device structure
471 * @dev: device that's been disconnected
472 *
473 * Must be called when a user of a device is finished with it.  When the last
474 * user of the device calls this function, the memory of the device is freed.
475 */
476void usb_put_dev(struct usb_device *dev)
477{
478	if (dev)
479		put_device(&dev->dev);
480}
481
482/**
483 * usb_get_intf - increments the reference count of the usb interface structure
484 * @intf: the interface being referenced
485 *
486 * Each live reference to a interface must be refcounted.
487 *
488 * Drivers for USB interfaces should normally record such references in
489 * their probe() methods, when they bind to an interface, and release
490 * them by calling usb_put_intf(), in their disconnect() methods.
491 *
492 * A pointer to the interface with the incremented reference counter is
493 * returned.
494 */
495struct usb_interface *usb_get_intf(struct usb_interface *intf)
496{
497	if (intf)
498		get_device(&intf->dev);
499	return intf;
500}
501
502/**
503 * usb_put_intf - release a use of the usb interface structure
504 * @intf: interface that's been decremented
505 *
506 * Must be called when a user of an interface is finished with it.  When the
507 * last user of the interface calls this function, the memory of the interface
508 * is freed.
509 */
510void usb_put_intf(struct usb_interface *intf)
511{
512	if (intf)
513		put_device(&intf->dev);
514}
515
516
517/*			USB device locking
518 *
519 * USB devices and interfaces are locked using the semaphore in their
520 * embedded struct device.  The hub driver guarantees that whenever a
521 * device is connected or disconnected, drivers are called with the
522 * USB device locked as well as their particular interface.
523 *
524 * Complications arise when several devices are to be locked at the same
525 * time.  Only hub-aware drivers that are part of usbcore ever have to
526 * do this; nobody else needs to worry about it.  The rule for locking
527 * is simple:
528 *
529 *	When locking both a device and its parent, always lock the
530 *	the parent first.
531 */
532
533/**
534 * usb_lock_device_for_reset - cautiously acquire the lock for a
535 *	usb device structure
536 * @udev: device that's being locked
537 * @iface: interface bound to the driver making the request (optional)
538 *
539 * Attempts to acquire the device lock, but fails if the device is
540 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
541 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
542 * lock, the routine polls repeatedly.  This is to prevent deadlock with
543 * disconnect; in some drivers (such as usb-storage) the disconnect()
544 * or suspend() method will block waiting for a device reset to complete.
545 *
546 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
547 * that the device will or will not have to be unlocked.  (0 can be
548 * returned when an interface is given and is BINDING, because in that
549 * case the driver already owns the device lock.)
550 */
551int usb_lock_device_for_reset(struct usb_device *udev,
552		struct usb_interface *iface)
553{
554	unsigned long jiffies_expire = jiffies + HZ;
555
556	if (udev->state == USB_STATE_NOTATTACHED)
557		return -ENODEV;
558	if (udev->state == USB_STATE_SUSPENDED)
559		return -EHOSTUNREACH;
560	if (iface) {
561		switch (iface->condition) {
562		  case USB_INTERFACE_BINDING:
563			return 0;
564		  case USB_INTERFACE_BOUND:
565			break;
566		  default:
567			return -EINTR;
568		}
569	}
570
571	while (usb_trylock_device(udev) != 0) {
572
573		/* If we can't acquire the lock after waiting one second,
574		 * we're probably deadlocked */
575		if (time_after(jiffies, jiffies_expire))
576			return -EBUSY;
577
578		msleep(15);
579		if (udev->state == USB_STATE_NOTATTACHED)
580			return -ENODEV;
581		if (udev->state == USB_STATE_SUSPENDED)
582			return -EHOSTUNREACH;
583		if (iface && iface->condition != USB_INTERFACE_BOUND)
584			return -EINTR;
585	}
586	return 1;
587}
588
589
590static struct usb_device *match_device(struct usb_device *dev,
591				       u16 vendor_id, u16 product_id)
592{
593	struct usb_device *ret_dev = NULL;
594	int child;
595
596	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
597	    le16_to_cpu(dev->descriptor.idVendor),
598	    le16_to_cpu(dev->descriptor.idProduct));
599
600	/* see if this device matches */
601	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
602	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
603		dev_dbg (&dev->dev, "matched this device!\n");
604		ret_dev = usb_get_dev(dev);
605		goto exit;
606	}
607
608	/* look through all of the children of this device */
609	for (child = 0; child < dev->maxchild; ++child) {
610		if (dev->children[child]) {
611			usb_lock_device(dev->children[child]);
612			ret_dev = match_device(dev->children[child],
613					       vendor_id, product_id);
614			usb_unlock_device(dev->children[child]);
615			if (ret_dev)
616				goto exit;
617		}
618	}
619exit:
620	return ret_dev;
621}
622
623/**
624 * usb_find_device - find a specific usb device in the system
625 * @vendor_id: the vendor id of the device to find
626 * @product_id: the product id of the device to find
627 *
628 * Returns a pointer to a struct usb_device if such a specified usb
629 * device is present in the system currently.  The usage count of the
630 * device will be incremented if a device is found.  Make sure to call
631 * usb_put_dev() when the caller is finished with the device.
632 *
633 * If a device with the specified vendor and product id is not found,
634 * NULL is returned.
635 */
636struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
637{
638	struct list_head *buslist;
639	struct usb_bus *bus;
640	struct usb_device *dev = NULL;
641
642	mutex_lock(&usb_bus_list_lock);
643	for (buslist = usb_bus_list.next;
644	     buslist != &usb_bus_list;
645	     buslist = buslist->next) {
646		bus = container_of(buslist, struct usb_bus, bus_list);
647		if (!bus->root_hub)
648			continue;
649		usb_lock_device(bus->root_hub);
650		dev = match_device(bus->root_hub, vendor_id, product_id);
651		usb_unlock_device(bus->root_hub);
652		if (dev)
653			goto exit;
654	}
655exit:
656	mutex_unlock(&usb_bus_list_lock);
657	return dev;
658}
659
660/**
661 * usb_get_current_frame_number - return current bus frame number
662 * @dev: the device whose bus is being queried
663 *
664 * Returns the current frame number for the USB host controller
665 * used with the given USB device.  This can be used when scheduling
666 * isochronous requests.
667 *
668 * Note that different kinds of host controller have different
669 * "scheduling horizons".  While one type might support scheduling only
670 * 32 frames into the future, others could support scheduling up to
671 * 1024 frames into the future.
672 */
673int usb_get_current_frame_number(struct usb_device *dev)
674{
675	return dev->bus->op->get_frame_number (dev);
676}
677
678/*-------------------------------------------------------------------*/
679/*
680 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
681 * extra field of the interface and endpoint descriptor structs.
682 */
683
684int __usb_get_extra_descriptor(char *buffer, unsigned size,
685	unsigned char type, void **ptr)
686{
687	struct usb_descriptor_header *header;
688
689	while (size >= sizeof(struct usb_descriptor_header)) {
690		header = (struct usb_descriptor_header *)buffer;
691
692		if (header->bLength < 2) {
693			printk(KERN_ERR
694				"%s: bogus descriptor, type %d length %d\n",
695				usbcore_name,
696				header->bDescriptorType,
697				header->bLength);
698			return -1;
699		}
700
701		if (header->bDescriptorType == type) {
702			*ptr = header;
703			return 0;
704		}
705
706		buffer += header->bLength;
707		size -= header->bLength;
708	}
709	return -1;
710}
711
712/**
713 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
714 * @dev: device the buffer will be used with
715 * @size: requested buffer size
716 * @mem_flags: affect whether allocation may block
717 * @dma: used to return DMA address of buffer
718 *
719 * Return value is either null (indicating no buffer could be allocated), or
720 * the cpu-space pointer to a buffer that may be used to perform DMA to the
721 * specified device.  Such cpu-space buffers are returned along with the DMA
722 * address (through the pointer provided).
723 *
724 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
725 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
726 * mapping hardware for long idle periods.  The implementation varies between
727 * platforms, depending on details of how DMA will work to this device.
728 * Using these buffers also helps prevent cacheline sharing problems on
729 * architectures where CPU caches are not DMA-coherent.
730 *
731 * When the buffer is no longer used, free it with usb_buffer_free().
732 */
733void *usb_buffer_alloc (
734	struct usb_device *dev,
735	size_t size,
736	gfp_t mem_flags,
737	dma_addr_t *dma
738)
739{
740	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
741		return NULL;
742	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
743}
744
745/**
746 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
747 * @dev: device the buffer was used with
748 * @size: requested buffer size
749 * @addr: CPU address of buffer
750 * @dma: DMA address of buffer
751 *
752 * This reclaims an I/O buffer, letting it be reused.  The memory must have
753 * been allocated using usb_buffer_alloc(), and the parameters must match
754 * those provided in that allocation request.
755 */
756void usb_buffer_free (
757	struct usb_device *dev,
758	size_t size,
759	void *addr,
760	dma_addr_t dma
761)
762{
763	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
764		return;
765	if (!addr)
766		return;
767	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
768}
769
770/**
771 * usb_buffer_map - create DMA mapping(s) for an urb
772 * @urb: urb whose transfer_buffer/setup_packet will be mapped
773 *
774 * Return value is either null (indicating no buffer could be mapped), or
775 * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
776 * added to urb->transfer_flags if the operation succeeds.  If the device
777 * is connected to this system through a non-DMA controller, this operation
778 * always succeeds.
779 *
780 * This call would normally be used for an urb which is reused, perhaps
781 * as the target of a large periodic transfer, with usb_buffer_dmasync()
782 * calls to synchronize memory and dma state.
783 *
784 * Reverse the effect of this call with usb_buffer_unmap().
785 */
786#if 0
787struct urb *usb_buffer_map (struct urb *urb)
788{
789	struct usb_bus		*bus;
790	struct device		*controller;
791
792	if (!urb
793			|| !urb->dev
794			|| !(bus = urb->dev->bus)
795			|| !(controller = bus->controller))
796		return NULL;
797
798	if (controller->dma_mask) {
799		urb->transfer_dma = dma_map_single (controller,
800			urb->transfer_buffer, urb->transfer_buffer_length,
801			usb_pipein (urb->pipe)
802				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
803		if (usb_pipecontrol (urb->pipe))
804			urb->setup_dma = dma_map_single (controller,
805					urb->setup_packet,
806					sizeof (struct usb_ctrlrequest),
807					DMA_TO_DEVICE);
808	// FIXME generic api broken like pci, can't report errors
809	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
810	} else
811		urb->transfer_dma = ~0;
812	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
813				| URB_NO_SETUP_DMA_MAP);
814	return urb;
815}
816#endif  /*  0  */
817
818/* XXX DISABLED, no users currently.  If you wish to re-enable this
819 * XXX please determine whether the sync is to transfer ownership of
820 * XXX the buffer from device to cpu or vice verse, and thusly use the
821 * XXX appropriate _for_{cpu,device}() method.  -DaveM
822 */
823#if 0
824
825/**
826 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
827 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
828 */
829void usb_buffer_dmasync (struct urb *urb)
830{
831	struct usb_bus		*bus;
832	struct device		*controller;
833
834	if (!urb
835			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
836			|| !urb->dev
837			|| !(bus = urb->dev->bus)
838			|| !(controller = bus->controller))
839		return;
840
841	if (controller->dma_mask) {
842		dma_sync_single (controller,
843			urb->transfer_dma, urb->transfer_buffer_length,
844			usb_pipein (urb->pipe)
845				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
846		if (usb_pipecontrol (urb->pipe))
847			dma_sync_single (controller,
848					urb->setup_dma,
849					sizeof (struct usb_ctrlrequest),
850					DMA_TO_DEVICE);
851	}
852}
853#endif
854
855/**
856 * usb_buffer_unmap - free DMA mapping(s) for an urb
857 * @urb: urb whose transfer_buffer will be unmapped
858 *
859 * Reverses the effect of usb_buffer_map().
860 */
861#if 0
862void usb_buffer_unmap (struct urb *urb)
863{
864	struct usb_bus		*bus;
865	struct device		*controller;
866
867	if (!urb
868			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
869			|| !urb->dev
870			|| !(bus = urb->dev->bus)
871			|| !(controller = bus->controller))
872		return;
873
874	if (controller->dma_mask) {
875		dma_unmap_single (controller,
876			urb->transfer_dma, urb->transfer_buffer_length,
877			usb_pipein (urb->pipe)
878				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
879		if (usb_pipecontrol (urb->pipe))
880			dma_unmap_single (controller,
881					urb->setup_dma,
882					sizeof (struct usb_ctrlrequest),
883					DMA_TO_DEVICE);
884	}
885	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
886				| URB_NO_SETUP_DMA_MAP);
887}
888#endif  /*  0  */
889
890/**
891 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
892 * @dev: device to which the scatterlist will be mapped
893 * @pipe: endpoint defining the mapping direction
894 * @sg: the scatterlist to map
895 * @nents: the number of entries in the scatterlist
896 *
897 * Return value is either < 0 (indicating no buffers could be mapped), or
898 * the number of DMA mapping array entries in the scatterlist.
899 *
900 * The caller is responsible for placing the resulting DMA addresses from
901 * the scatterlist into URB transfer buffer pointers, and for setting the
902 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
903 *
904 * Top I/O rates come from queuing URBs, instead of waiting for each one
905 * to complete before starting the next I/O.   This is particularly easy
906 * to do with scatterlists.  Just allocate and submit one URB for each DMA
907 * mapping entry returned, stopping on the first error or when all succeed.
908 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
909 *
910 * This call would normally be used when translating scatterlist requests,
911 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
912 * may be able to coalesce mappings for improved I/O efficiency.
913 *
914 * Reverse the effect of this call with usb_buffer_unmap_sg().
915 */
916int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
917		struct scatterlist *sg, int nents)
918{
919	struct usb_bus		*bus;
920	struct device		*controller;
921
922	if (!dev
923			|| usb_pipecontrol (pipe)
924			|| !(bus = dev->bus)
925			|| !(controller = bus->controller)
926			|| !controller->dma_mask)
927		return -1;
928
929	// FIXME generic api broken like pci, can't report errors
930	return dma_map_sg (controller, sg, nents,
931			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
932}
933
934/* XXX DISABLED, no users currently.  If you wish to re-enable this
935 * XXX please determine whether the sync is to transfer ownership of
936 * XXX the buffer from device to cpu or vice verse, and thusly use the
937 * XXX appropriate _for_{cpu,device}() method.  -DaveM
938 */
939#if 0
940
941/**
942 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
943 * @dev: device to which the scatterlist will be mapped
944 * @pipe: endpoint defining the mapping direction
945 * @sg: the scatterlist to synchronize
946 * @n_hw_ents: the positive return value from usb_buffer_map_sg
947 *
948 * Use this when you are re-using a scatterlist's data buffers for
949 * another USB request.
950 */
951void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
952		struct scatterlist *sg, int n_hw_ents)
953{
954	struct usb_bus		*bus;
955	struct device		*controller;
956
957	if (!dev
958			|| !(bus = dev->bus)
959			|| !(controller = bus->controller)
960			|| !controller->dma_mask)
961		return;
962
963	dma_sync_sg (controller, sg, n_hw_ents,
964			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
965}
966#endif
967
968/**
969 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
970 * @dev: device to which the scatterlist will be mapped
971 * @pipe: endpoint defining the mapping direction
972 * @sg: the scatterlist to unmap
973 * @n_hw_ents: the positive return value from usb_buffer_map_sg
974 *
975 * Reverses the effect of usb_buffer_map_sg().
976 */
977void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
978		struct scatterlist *sg, int n_hw_ents)
979{
980	struct usb_bus		*bus;
981	struct device		*controller;
982
983	if (!dev
984			|| !(bus = dev->bus)
985			|| !(controller = bus->controller)
986			|| !controller->dma_mask)
987		return;
988
989	dma_unmap_sg (controller, sg, n_hw_ents,
990			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
991}
992
993static int verify_suspended(struct device *dev, void *unused)
994{
995	if (dev->driver == NULL)
996		return 0;
997	return (dev->power.power_state.event == PM_EVENT_ON) ? -EBUSY : 0;
998}
999
1000static int usb_generic_suspend(struct device *dev, pm_message_t message)
1001{
1002	struct usb_interface	*intf;
1003	struct usb_driver	*driver;
1004	int			status;
1005
1006	/* USB devices enter SUSPEND state through their hubs, but can be
1007	 * marked for FREEZE as soon as their children are already idled.
1008	 * But those semantics are useless, so we equate the two (sigh).
1009	 */
1010	if (dev->driver == &usb_generic_driver) {
1011		if (dev->power.power_state.event == message.event)
1012			return 0;
1013		/* we need to rule out bogus requests through sysfs */
1014		status = device_for_each_child(dev, NULL, verify_suspended);
1015		if (status)
1016			return status;
1017 		return usb_port_suspend(to_usb_device(dev));
1018	}
1019
1020	if ((dev->driver == NULL) ||
1021	    (dev->driver_data == &usb_generic_driver_data))
1022		return 0;
1023
1024	intf = to_usb_interface(dev);
1025	driver = to_usb_driver(dev->driver);
1026
1027	/* with no hardware, USB interfaces only use FREEZE and ON states */
1028	if (!is_active(intf))
1029		return 0;
1030
1031	if (driver->suspend && driver->resume) {
1032		status = driver->suspend(intf, message);
1033		if (status)
1034			dev_err(dev, "%s error %d\n", "suspend", status);
1035		else
1036			mark_quiesced(intf);
1037	} else {
1038		// FIXME else if there's no suspend method, disconnect...
1039		dev_warn(dev, "no suspend for driver %s?\n", driver->name);
1040		mark_quiesced(intf);
1041		status = 0;
1042	}
1043	return status;
1044}
1045
1046static int usb_generic_resume(struct device *dev)
1047{
1048	struct usb_interface	*intf;
1049	struct usb_driver	*driver;
1050	struct usb_device	*udev;
1051	int			status;
1052
1053	if (dev->power.power_state.event == PM_EVENT_ON)
1054		return 0;
1055
1056	/* mark things as "on" immediately, no matter what errors crop up */
1057	dev->power.power_state.event = PM_EVENT_ON;
1058
1059	/* devices resume through their hubs */
1060	if (dev->driver == &usb_generic_driver) {
1061		udev = to_usb_device(dev);
1062		if (udev->state == USB_STATE_NOTATTACHED)
1063			return 0;
1064		return usb_port_resume(udev);
1065	}
1066
1067	if ((dev->driver == NULL) ||
1068	    (dev->driver_data == &usb_generic_driver_data)) {
1069		dev->power.power_state.event = PM_EVENT_FREEZE;
1070		return 0;
1071	}
1072
1073	intf = to_usb_interface(dev);
1074	driver = to_usb_driver(dev->driver);
1075
1076	udev = interface_to_usbdev(intf);
1077	if (udev->state == USB_STATE_NOTATTACHED)
1078		return 0;
1079
1080	/* if driver was suspended, it has a resume method;
1081	 * however, sysfs can wrongly mark things as suspended
1082	 * (on the "no suspend method" FIXME path above)
1083	 */
1084	if (driver->resume) {
1085		status = driver->resume(intf);
1086		if (status) {
1087			dev_err(dev, "%s error %d\n", "resume", status);
1088			mark_quiesced(intf);
1089		}
1090	} else
1091		dev_warn(dev, "no resume for driver %s?\n", driver->name);
1092	return 0;
1093}
1094
1095struct bus_type usb_bus_type = {
1096	.name =		"usb",
1097	.match =	usb_device_match,
1098	.uevent =	usb_uevent,
1099	.suspend =	usb_generic_suspend,
1100	.resume =	usb_generic_resume,
1101};
1102
1103/* format to disable USB on kernel command line is: nousb */
1104__module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
1105
1106/*
1107 * for external read access to <nousb>
1108 */
1109int usb_disabled(void)
1110{
1111	return nousb;
1112}
1113
1114/*
1115 * Init
1116 */
1117static int __init usb_init(void)
1118{
1119	int retval;
1120	if (nousb) {
1121		pr_info ("%s: USB support disabled\n", usbcore_name);
1122		return 0;
1123	}
1124
1125	retval = bus_register(&usb_bus_type);
1126	if (retval)
1127		goto out;
1128	retval = usb_host_init();
1129	if (retval)
1130		goto host_init_failed;
1131	retval = usb_major_init();
1132	if (retval)
1133		goto major_init_failed;
1134	retval = usb_register(&usbfs_driver);
1135	if (retval)
1136		goto driver_register_failed;
1137	retval = usbdev_init();
1138	if (retval)
1139		goto usbdevice_init_failed;
1140	retval = usbfs_init();
1141	if (retval)
1142		goto fs_init_failed;
1143	retval = usb_hub_init();
1144	if (retval)
1145		goto hub_init_failed;
1146	retval = driver_register(&usb_generic_driver);
1147	if (!retval)
1148		goto out;
1149
1150	usb_hub_cleanup();
1151hub_init_failed:
1152	usbfs_cleanup();
1153fs_init_failed:
1154	usbdev_cleanup();
1155usbdevice_init_failed:
1156	usb_deregister(&usbfs_driver);
1157driver_register_failed:
1158	usb_major_cleanup();
1159major_init_failed:
1160	usb_host_cleanup();
1161host_init_failed:
1162	bus_unregister(&usb_bus_type);
1163out:
1164	return retval;
1165}
1166
1167/*
1168 * Cleanup
1169 */
1170static void __exit usb_exit(void)
1171{
1172	/* This will matter if shutdown/reboot does exitcalls. */
1173	if (nousb)
1174		return;
1175
1176	driver_unregister(&usb_generic_driver);
1177	usb_major_cleanup();
1178	usbfs_cleanup();
1179	usb_deregister(&usbfs_driver);
1180	usbdev_cleanup();
1181	usb_hub_cleanup();
1182	usb_host_cleanup();
1183	bus_unregister(&usb_bus_type);
1184}
1185
1186subsys_initcall(usb_init);
1187module_exit(usb_exit);
1188
1189/*
1190 * USB may be built into the kernel or be built as modules.
1191 * These symbols are exported for device (or host controller)
1192 * driver modules to use.
1193 */
1194
1195EXPORT_SYMBOL(usb_disabled);
1196
1197EXPORT_SYMBOL_GPL(usb_get_intf);
1198EXPORT_SYMBOL_GPL(usb_put_intf);
1199
1200EXPORT_SYMBOL(usb_put_dev);
1201EXPORT_SYMBOL(usb_get_dev);
1202EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1203
1204EXPORT_SYMBOL(usb_lock_device_for_reset);
1205
1206EXPORT_SYMBOL(usb_driver_claim_interface);
1207EXPORT_SYMBOL(usb_driver_release_interface);
1208EXPORT_SYMBOL(usb_find_interface);
1209EXPORT_SYMBOL(usb_ifnum_to_if);
1210EXPORT_SYMBOL(usb_altnum_to_altsetting);
1211
1212EXPORT_SYMBOL(__usb_get_extra_descriptor);
1213
1214EXPORT_SYMBOL(usb_find_device);
1215EXPORT_SYMBOL(usb_get_current_frame_number);
1216
1217EXPORT_SYMBOL (usb_buffer_alloc);
1218EXPORT_SYMBOL (usb_buffer_free);
1219
1220#if 0
1221EXPORT_SYMBOL (usb_buffer_map);
1222EXPORT_SYMBOL (usb_buffer_dmasync);
1223EXPORT_SYMBOL (usb_buffer_unmap);
1224#endif
1225
1226EXPORT_SYMBOL (usb_buffer_map_sg);
1227#if 0
1228EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1229#endif
1230EXPORT_SYMBOL (usb_buffer_unmap_sg);
1231
1232MODULE_LICENSE("GPL");
1233