usb.c revision 3ea15966ed59f2bc20928c7b0496b4585f6de206
1/*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 *     (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/config.h>
25
26#ifdef CONFIG_USB_DEBUG
27	#define DEBUG
28#else
29	#undef DEBUG
30#endif
31
32#include <linux/module.h>
33#include <linux/string.h>
34#include <linux/bitops.h>
35#include <linux/slab.h>
36#include <linux/interrupt.h>  /* for in_interrupt() */
37#include <linux/kmod.h>
38#include <linux/init.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/smp_lock.h>
42#include <linux/rwsem.h>
43#include <linux/usb.h>
44
45#include <asm/io.h>
46#include <asm/scatterlist.h>
47#include <linux/mm.h>
48#include <linux/dma-mapping.h>
49
50#include "hcd.h"
51#include "usb.h"
52
53
54const char *usbcore_name = "usbcore";
55
56static int nousb;	/* Disable USB when built into kernel image */
57			/* Not honored on modular build */
58
59static DECLARE_RWSEM(usb_all_devices_rwsem);
60
61
62static int generic_probe (struct device *dev)
63{
64	return 0;
65}
66static int generic_remove (struct device *dev)
67{
68	return 0;
69}
70
71static struct device_driver usb_generic_driver = {
72	.owner = THIS_MODULE,
73	.name =	"usb",
74	.bus = &usb_bus_type,
75	.probe = generic_probe,
76	.remove = generic_remove,
77};
78
79static int usb_generic_driver_data;
80
81/* called from driver core with usb_bus_type.subsys writelock */
82static int usb_probe_interface(struct device *dev)
83{
84	struct usb_interface * intf = to_usb_interface(dev);
85	struct usb_driver * driver = to_usb_driver(dev->driver);
86	const struct usb_device_id *id;
87	int error = -ENODEV;
88
89	dev_dbg(dev, "%s\n", __FUNCTION__);
90
91	if (!driver->probe)
92		return error;
93	/* FIXME we'd much prefer to just resume it ... */
94	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
95		return -EHOSTUNREACH;
96
97	id = usb_match_id (intf, driver->id_table);
98	if (id) {
99		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
100		intf->condition = USB_INTERFACE_BINDING;
101		error = driver->probe (intf, id);
102		intf->condition = error ? USB_INTERFACE_UNBOUND :
103				USB_INTERFACE_BOUND;
104	}
105
106	return error;
107}
108
109/* called from driver core with usb_bus_type.subsys writelock */
110static int usb_unbind_interface(struct device *dev)
111{
112	struct usb_interface *intf = to_usb_interface(dev);
113	struct usb_driver *driver = to_usb_driver(intf->dev.driver);
114
115	intf->condition = USB_INTERFACE_UNBINDING;
116
117	/* release all urbs for this interface */
118	usb_disable_interface(interface_to_usbdev(intf), intf);
119
120	if (driver && driver->disconnect)
121		driver->disconnect(intf);
122
123	/* reset other interface state */
124	usb_set_interface(interface_to_usbdev(intf),
125			intf->altsetting[0].desc.bInterfaceNumber,
126			0);
127	usb_set_intfdata(intf, NULL);
128	intf->condition = USB_INTERFACE_UNBOUND;
129
130	return 0;
131}
132
133/**
134 * usb_register - register a USB driver
135 * @new_driver: USB operations for the driver
136 *
137 * Registers a USB driver with the USB core.  The list of unattached
138 * interfaces will be rescanned whenever a new driver is added, allowing
139 * the new driver to attach to any recognized devices.
140 * Returns a negative error code on failure and 0 on success.
141 *
142 * NOTE: if you want your driver to use the USB major number, you must call
143 * usb_register_dev() to enable that functionality.  This function no longer
144 * takes care of that.
145 */
146int usb_register(struct usb_driver *new_driver)
147{
148	int retval = 0;
149
150	if (nousb)
151		return -ENODEV;
152
153	new_driver->driver.name = (char *)new_driver->name;
154	new_driver->driver.bus = &usb_bus_type;
155	new_driver->driver.probe = usb_probe_interface;
156	new_driver->driver.remove = usb_unbind_interface;
157	new_driver->driver.owner = new_driver->owner;
158
159	usb_lock_all_devices();
160	retval = driver_register(&new_driver->driver);
161	usb_unlock_all_devices();
162
163	if (!retval) {
164		pr_info("%s: registered new driver %s\n",
165			usbcore_name, new_driver->name);
166		usbfs_update_special();
167	} else {
168		printk(KERN_ERR "%s: error %d registering driver %s\n",
169			usbcore_name, retval, new_driver->name);
170	}
171
172	return retval;
173}
174
175/**
176 * usb_deregister - unregister a USB driver
177 * @driver: USB operations of the driver to unregister
178 * Context: must be able to sleep
179 *
180 * Unlinks the specified driver from the internal USB driver list.
181 *
182 * NOTE: If you called usb_register_dev(), you still need to call
183 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
184 * this * call will no longer do it for you.
185 */
186void usb_deregister(struct usb_driver *driver)
187{
188	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
189
190	usb_lock_all_devices();
191	driver_unregister (&driver->driver);
192	usb_unlock_all_devices();
193
194	usbfs_update_special();
195}
196
197/**
198 * usb_ifnum_to_if - get the interface object with a given interface number
199 * @dev: the device whose current configuration is considered
200 * @ifnum: the desired interface
201 *
202 * This walks the device descriptor for the currently active configuration
203 * and returns a pointer to the interface with that particular interface
204 * number, or null.
205 *
206 * Note that configuration descriptors are not required to assign interface
207 * numbers sequentially, so that it would be incorrect to assume that
208 * the first interface in that descriptor corresponds to interface zero.
209 * This routine helps device drivers avoid such mistakes.
210 * However, you should make sure that you do the right thing with any
211 * alternate settings available for this interfaces.
212 *
213 * Don't call this function unless you are bound to one of the interfaces
214 * on this device or you have locked the device!
215 */
216struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
217{
218	struct usb_host_config *config = dev->actconfig;
219	int i;
220
221	if (!config)
222		return NULL;
223	for (i = 0; i < config->desc.bNumInterfaces; i++)
224		if (config->interface[i]->altsetting[0]
225				.desc.bInterfaceNumber == ifnum)
226			return config->interface[i];
227
228	return NULL;
229}
230
231/**
232 * usb_altnum_to_altsetting - get the altsetting structure with a given
233 *	alternate setting number.
234 * @intf: the interface containing the altsetting in question
235 * @altnum: the desired alternate setting number
236 *
237 * This searches the altsetting array of the specified interface for
238 * an entry with the correct bAlternateSetting value and returns a pointer
239 * to that entry, or null.
240 *
241 * Note that altsettings need not be stored sequentially by number, so
242 * it would be incorrect to assume that the first altsetting entry in
243 * the array corresponds to altsetting zero.  This routine helps device
244 * drivers avoid such mistakes.
245 *
246 * Don't call this function unless you are bound to the intf interface
247 * or you have locked the device!
248 */
249struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
250		unsigned int altnum)
251{
252	int i;
253
254	for (i = 0; i < intf->num_altsetting; i++) {
255		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
256			return &intf->altsetting[i];
257	}
258	return NULL;
259}
260
261/**
262 * usb_driver_claim_interface - bind a driver to an interface
263 * @driver: the driver to be bound
264 * @iface: the interface to which it will be bound; must be in the
265 *	usb device's active configuration
266 * @priv: driver data associated with that interface
267 *
268 * This is used by usb device drivers that need to claim more than one
269 * interface on a device when probing (audio and acm are current examples).
270 * No device driver should directly modify internal usb_interface or
271 * usb_device structure members.
272 *
273 * Few drivers should need to use this routine, since the most natural
274 * way to bind to an interface is to return the private data from
275 * the driver's probe() method.
276 *
277 * Callers must own the device lock and the driver model's usb_bus_type.subsys
278 * writelock.  So driver probe() entries don't need extra locking,
279 * but other call contexts may need to explicitly claim those locks.
280 */
281int usb_driver_claim_interface(struct usb_driver *driver,
282				struct usb_interface *iface, void* priv)
283{
284	struct device *dev = &iface->dev;
285
286	if (dev->driver)
287		return -EBUSY;
288
289	dev->driver = &driver->driver;
290	usb_set_intfdata(iface, priv);
291	iface->condition = USB_INTERFACE_BOUND;
292
293	/* if interface was already added, bind now; else let
294	 * the future device_add() bind it, bypassing probe()
295	 */
296	if (klist_node_attached(&dev->knode_bus))
297		device_bind_driver(dev);
298
299	return 0;
300}
301
302/**
303 * usb_driver_release_interface - unbind a driver from an interface
304 * @driver: the driver to be unbound
305 * @iface: the interface from which it will be unbound
306 *
307 * This can be used by drivers to release an interface without waiting
308 * for their disconnect() methods to be called.  In typical cases this
309 * also causes the driver disconnect() method to be called.
310 *
311 * This call is synchronous, and may not be used in an interrupt context.
312 * Callers must own the device lock and the driver model's usb_bus_type.subsys
313 * writelock.  So driver disconnect() entries don't need extra locking,
314 * but other call contexts may need to explicitly claim those locks.
315 */
316void usb_driver_release_interface(struct usb_driver *driver,
317					struct usb_interface *iface)
318{
319	struct device *dev = &iface->dev;
320
321	/* this should never happen, don't release something that's not ours */
322	if (!dev->driver || dev->driver != &driver->driver)
323		return;
324
325	/* don't release from within disconnect() */
326	if (iface->condition != USB_INTERFACE_BOUND)
327		return;
328
329	/* release only after device_add() */
330	if (klist_node_attached(&dev->knode_bus)) {
331		iface->condition = USB_INTERFACE_UNBINDING;
332		device_release_driver(dev);
333	}
334
335	dev->driver = NULL;
336	usb_set_intfdata(iface, NULL);
337	iface->condition = USB_INTERFACE_UNBOUND;
338}
339
340/**
341 * usb_match_id - find first usb_device_id matching device or interface
342 * @interface: the interface of interest
343 * @id: array of usb_device_id structures, terminated by zero entry
344 *
345 * usb_match_id searches an array of usb_device_id's and returns
346 * the first one matching the device or interface, or null.
347 * This is used when binding (or rebinding) a driver to an interface.
348 * Most USB device drivers will use this indirectly, through the usb core,
349 * but some layered driver frameworks use it directly.
350 * These device tables are exported with MODULE_DEVICE_TABLE, through
351 * modutils and "modules.usbmap", to support the driver loading
352 * functionality of USB hotplugging.
353 *
354 * What Matches:
355 *
356 * The "match_flags" element in a usb_device_id controls which
357 * members are used.  If the corresponding bit is set, the
358 * value in the device_id must match its corresponding member
359 * in the device or interface descriptor, or else the device_id
360 * does not match.
361 *
362 * "driver_info" is normally used only by device drivers,
363 * but you can create a wildcard "matches anything" usb_device_id
364 * as a driver's "modules.usbmap" entry if you provide an id with
365 * only a nonzero "driver_info" field.  If you do this, the USB device
366 * driver's probe() routine should use additional intelligence to
367 * decide whether to bind to the specified interface.
368 *
369 * What Makes Good usb_device_id Tables:
370 *
371 * The match algorithm is very simple, so that intelligence in
372 * driver selection must come from smart driver id records.
373 * Unless you have good reasons to use another selection policy,
374 * provide match elements only in related groups, and order match
375 * specifiers from specific to general.  Use the macros provided
376 * for that purpose if you can.
377 *
378 * The most specific match specifiers use device descriptor
379 * data.  These are commonly used with product-specific matches;
380 * the USB_DEVICE macro lets you provide vendor and product IDs,
381 * and you can also match against ranges of product revisions.
382 * These are widely used for devices with application or vendor
383 * specific bDeviceClass values.
384 *
385 * Matches based on device class/subclass/protocol specifications
386 * are slightly more general; use the USB_DEVICE_INFO macro, or
387 * its siblings.  These are used with single-function devices
388 * where bDeviceClass doesn't specify that each interface has
389 * its own class.
390 *
391 * Matches based on interface class/subclass/protocol are the
392 * most general; they let drivers bind to any interface on a
393 * multiple-function device.  Use the USB_INTERFACE_INFO
394 * macro, or its siblings, to match class-per-interface style
395 * devices (as recorded in bDeviceClass).
396 *
397 * Within those groups, remember that not all combinations are
398 * meaningful.  For example, don't give a product version range
399 * without vendor and product IDs; or specify a protocol without
400 * its associated class and subclass.
401 */
402const struct usb_device_id *
403usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
404{
405	struct usb_host_interface *intf;
406	struct usb_device *dev;
407
408	/* proc_connectinfo in devio.c may call us with id == NULL. */
409	if (id == NULL)
410		return NULL;
411
412	intf = interface->cur_altsetting;
413	dev = interface_to_usbdev(interface);
414
415	/* It is important to check that id->driver_info is nonzero,
416	   since an entry that is all zeroes except for a nonzero
417	   id->driver_info is the way to create an entry that
418	   indicates that the driver want to examine every
419	   device and interface. */
420	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
421	       id->driver_info; id++) {
422
423		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
424		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
425			continue;
426
427		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
428		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
429			continue;
430
431		/* No need to test id->bcdDevice_lo != 0, since 0 is never
432		   greater than any unsigned number. */
433		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
434		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
435			continue;
436
437		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
438		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
439			continue;
440
441		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
442		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
443			continue;
444
445		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
446		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
447			continue;
448
449		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
450		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
451			continue;
452
453		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
454		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
455			continue;
456
457		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
458		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
459			continue;
460
461		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
462		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
463			continue;
464
465		return id;
466	}
467
468	return NULL;
469}
470
471
472static int __find_interface(struct device * dev, void * data)
473{
474	struct usb_interface ** ret = (struct usb_interface **)data;
475	struct usb_interface * intf = *ret;
476	int *minor = (int *)data;
477
478	/* can't look at usb devices, only interfaces */
479	if (dev->driver == &usb_generic_driver)
480		return 0;
481
482	intf = to_usb_interface(dev);
483	if (intf->minor != -1 && intf->minor == *minor) {
484		*ret = intf;
485		return 1;
486	}
487	return 0;
488}
489
490/**
491 * usb_find_interface - find usb_interface pointer for driver and device
492 * @drv: the driver whose current configuration is considered
493 * @minor: the minor number of the desired device
494 *
495 * This walks the driver device list and returns a pointer to the interface
496 * with the matching minor.  Note, this only works for devices that share the
497 * USB major number.
498 */
499struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
500{
501	struct usb_interface *intf = (struct usb_interface *)(long)minor;
502	int ret;
503
504	ret = driver_for_each_device(&drv->driver, NULL, &intf, __find_interface);
505
506	return ret ? intf : NULL;
507}
508
509static int usb_device_match (struct device *dev, struct device_driver *drv)
510{
511	struct usb_interface *intf;
512	struct usb_driver *usb_drv;
513	const struct usb_device_id *id;
514
515	/* check for generic driver, which we don't match any device with */
516	if (drv == &usb_generic_driver)
517		return 0;
518
519	intf = to_usb_interface(dev);
520	usb_drv = to_usb_driver(drv);
521
522	id = usb_match_id (intf, usb_drv->id_table);
523	if (id)
524		return 1;
525
526	return 0;
527}
528
529
530#ifdef	CONFIG_HOTPLUG
531
532/*
533 * USB hotplugging invokes what /proc/sys/kernel/hotplug says
534 * (normally /sbin/hotplug) when USB devices get added or removed.
535 *
536 * This invokes a user mode policy agent, typically helping to load driver
537 * or other modules, configure the device, and more.  Drivers can provide
538 * a MODULE_DEVICE_TABLE to help with module loading subtasks.
539 *
540 * We're called either from khubd (the typical case) or from root hub
541 * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
542 * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
543 * device (and this configuration!) are still present.
544 */
545static int usb_hotplug (struct device *dev, char **envp, int num_envp,
546			char *buffer, int buffer_size)
547{
548	struct usb_interface *intf;
549	struct usb_device *usb_dev;
550	int i = 0;
551	int length = 0;
552
553	if (!dev)
554		return -ENODEV;
555
556	/* driver is often null here; dev_dbg() would oops */
557	pr_debug ("usb %s: hotplug\n", dev->bus_id);
558
559	/* Must check driver_data here, as on remove driver is always NULL */
560	if ((dev->driver == &usb_generic_driver) ||
561	    (dev->driver_data == &usb_generic_driver_data))
562		return 0;
563
564	intf = to_usb_interface(dev);
565	usb_dev = interface_to_usbdev (intf);
566
567	if (usb_dev->devnum < 0) {
568		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
569		return -ENODEV;
570	}
571	if (!usb_dev->bus) {
572		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
573		return -ENODEV;
574	}
575
576#ifdef	CONFIG_USB_DEVICEFS
577	/* If this is available, userspace programs can directly read
578	 * all the device descriptors we don't tell them about.  Or
579	 * even act as usermode drivers.
580	 *
581	 * FIXME reduce hardwired intelligence here
582	 */
583	if (add_hotplug_env_var(envp, num_envp, &i,
584				buffer, buffer_size, &length,
585				"DEVICE=/proc/bus/usb/%03d/%03d",
586				usb_dev->bus->busnum, usb_dev->devnum))
587		return -ENOMEM;
588#endif
589
590	/* per-device configurations are common */
591	if (add_hotplug_env_var(envp, num_envp, &i,
592				buffer, buffer_size, &length,
593				"PRODUCT=%x/%x/%x",
594				le16_to_cpu(usb_dev->descriptor.idVendor),
595				le16_to_cpu(usb_dev->descriptor.idProduct),
596				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
597		return -ENOMEM;
598
599	/* class-based driver binding models */
600	if (add_hotplug_env_var(envp, num_envp, &i,
601				buffer, buffer_size, &length,
602				"TYPE=%d/%d/%d",
603				usb_dev->descriptor.bDeviceClass,
604				usb_dev->descriptor.bDeviceSubClass,
605				usb_dev->descriptor.bDeviceProtocol))
606		return -ENOMEM;
607
608	if (usb_dev->descriptor.bDeviceClass == 0) {
609		struct usb_host_interface *alt = intf->cur_altsetting;
610
611		/* 2.4 only exposed interface zero.  in 2.5, hotplug
612		 * agents are called for all interfaces, and can use
613		 * $DEVPATH/bInterfaceNumber if necessary.
614		 */
615		if (add_hotplug_env_var(envp, num_envp, &i,
616					buffer, buffer_size, &length,
617					"INTERFACE=%d/%d/%d",
618					alt->desc.bInterfaceClass,
619					alt->desc.bInterfaceSubClass,
620					alt->desc.bInterfaceProtocol))
621			return -ENOMEM;
622
623		if (add_hotplug_env_var(envp, num_envp, &i,
624					buffer, buffer_size, &length,
625					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
626					le16_to_cpu(usb_dev->descriptor.idVendor),
627					le16_to_cpu(usb_dev->descriptor.idProduct),
628					le16_to_cpu(usb_dev->descriptor.bcdDevice),
629					usb_dev->descriptor.bDeviceClass,
630					usb_dev->descriptor.bDeviceSubClass,
631					usb_dev->descriptor.bDeviceProtocol,
632					alt->desc.bInterfaceClass,
633					alt->desc.bInterfaceSubClass,
634					alt->desc.bInterfaceProtocol))
635			return -ENOMEM;
636 	} else {
637		if (add_hotplug_env_var(envp, num_envp, &i,
638					buffer, buffer_size, &length,
639					"MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
640					le16_to_cpu(usb_dev->descriptor.idVendor),
641					le16_to_cpu(usb_dev->descriptor.idProduct),
642					le16_to_cpu(usb_dev->descriptor.bcdDevice),
643					usb_dev->descriptor.bDeviceClass,
644					usb_dev->descriptor.bDeviceSubClass,
645					usb_dev->descriptor.bDeviceProtocol))
646			return -ENOMEM;
647	}
648
649	envp[i] = NULL;
650
651	return 0;
652}
653
654#else
655
656static int usb_hotplug (struct device *dev, char **envp,
657			int num_envp, char *buffer, int buffer_size)
658{
659	return -ENODEV;
660}
661
662#endif	/* CONFIG_HOTPLUG */
663
664/**
665 * usb_release_dev - free a usb device structure when all users of it are finished.
666 * @dev: device that's been disconnected
667 *
668 * Will be called only by the device core when all users of this usb device are
669 * done.
670 */
671static void usb_release_dev(struct device *dev)
672{
673	struct usb_device *udev;
674
675	udev = to_usb_device(dev);
676
677	usb_destroy_configuration(udev);
678	usb_bus_put(udev->bus);
679	kfree(udev->product);
680	kfree(udev->manufacturer);
681	kfree(udev->serial);
682	kfree(udev);
683}
684
685/**
686 * usb_alloc_dev - usb device constructor (usbcore-internal)
687 * @parent: hub to which device is connected; null to allocate a root hub
688 * @bus: bus used to access the device
689 * @port1: one-based index of port; ignored for root hubs
690 * Context: !in_interrupt ()
691 *
692 * Only hub drivers (including virtual root hub drivers for host
693 * controllers) should ever call this.
694 *
695 * This call may not be used in a non-sleeping context.
696 */
697struct usb_device *
698usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
699{
700	struct usb_device *dev;
701
702	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
703	if (!dev)
704		return NULL;
705
706	memset(dev, 0, sizeof(*dev));
707
708	bus = usb_bus_get(bus);
709	if (!bus) {
710		kfree(dev);
711		return NULL;
712	}
713
714	device_initialize(&dev->dev);
715	dev->dev.bus = &usb_bus_type;
716	dev->dev.dma_mask = bus->controller->dma_mask;
717	dev->dev.driver_data = &usb_generic_driver_data;
718	dev->dev.driver = &usb_generic_driver;
719	dev->dev.release = usb_release_dev;
720	dev->state = USB_STATE_ATTACHED;
721
722	INIT_LIST_HEAD(&dev->ep0.urb_list);
723	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
724	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
725	/* ep0 maxpacket comes later, from device descriptor */
726	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
727
728	/* Save readable and stable topology id, distinguishing devices
729	 * by location for diagnostics, tools, driver model, etc.  The
730	 * string is a path along hub ports, from the root.  Each device's
731	 * dev->devpath will be stable until USB is re-cabled, and hubs
732	 * are often labeled with these port numbers.  The bus_id isn't
733	 * as stable:  bus->busnum changes easily from modprobe order,
734	 * cardbus or pci hotplugging, and so on.
735	 */
736	if (unlikely (!parent)) {
737		dev->devpath [0] = '0';
738
739		dev->dev.parent = bus->controller;
740		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
741	} else {
742		/* match any labeling on the hubs; it's one-based */
743		if (parent->devpath [0] == '0')
744			snprintf (dev->devpath, sizeof dev->devpath,
745				"%d", port1);
746		else
747			snprintf (dev->devpath, sizeof dev->devpath,
748				"%s.%d", parent->devpath, port1);
749
750		dev->dev.parent = &parent->dev;
751		sprintf (&dev->dev.bus_id[0], "%d-%s",
752			bus->busnum, dev->devpath);
753
754		/* hub driver sets up TT records */
755	}
756
757	dev->bus = bus;
758	dev->parent = parent;
759	INIT_LIST_HEAD(&dev->filelist);
760
761	init_MUTEX(&dev->serialize);
762
763	return dev;
764}
765
766/**
767 * usb_get_dev - increments the reference count of the usb device structure
768 * @dev: the device being referenced
769 *
770 * Each live reference to a device should be refcounted.
771 *
772 * Drivers for USB interfaces should normally record such references in
773 * their probe() methods, when they bind to an interface, and release
774 * them by calling usb_put_dev(), in their disconnect() methods.
775 *
776 * A pointer to the device with the incremented reference counter is returned.
777 */
778struct usb_device *usb_get_dev(struct usb_device *dev)
779{
780	if (dev)
781		get_device(&dev->dev);
782	return dev;
783}
784
785/**
786 * usb_put_dev - release a use of the usb device structure
787 * @dev: device that's been disconnected
788 *
789 * Must be called when a user of a device is finished with it.  When the last
790 * user of the device calls this function, the memory of the device is freed.
791 */
792void usb_put_dev(struct usb_device *dev)
793{
794	if (dev)
795		put_device(&dev->dev);
796}
797
798/**
799 * usb_get_intf - increments the reference count of the usb interface structure
800 * @intf: the interface being referenced
801 *
802 * Each live reference to a interface must be refcounted.
803 *
804 * Drivers for USB interfaces should normally record such references in
805 * their probe() methods, when they bind to an interface, and release
806 * them by calling usb_put_intf(), in their disconnect() methods.
807 *
808 * A pointer to the interface with the incremented reference counter is
809 * returned.
810 */
811struct usb_interface *usb_get_intf(struct usb_interface *intf)
812{
813	if (intf)
814		get_device(&intf->dev);
815	return intf;
816}
817
818/**
819 * usb_put_intf - release a use of the usb interface structure
820 * @intf: interface that's been decremented
821 *
822 * Must be called when a user of an interface is finished with it.  When the
823 * last user of the interface calls this function, the memory of the interface
824 * is freed.
825 */
826void usb_put_intf(struct usb_interface *intf)
827{
828	if (intf)
829		put_device(&intf->dev);
830}
831
832
833/*			USB device locking
834 *
835 * Although locking USB devices should be straightforward, it is
836 * complicated by the way the driver-model core works.  When a new USB
837 * driver is registered or unregistered, the core will automatically
838 * probe or disconnect all matching interfaces on all USB devices while
839 * holding the USB subsystem writelock.  There's no good way for us to
840 * tell which devices will be used or to lock them beforehand; our only
841 * option is to effectively lock all the USB devices.
842 *
843 * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
844 * When locking an individual device you must first acquire the rwsem's
845 * readlock.  When a driver is registered or unregistered the writelock
846 * must be held.  These actions are encapsulated in the subroutines
847 * below, so all a driver needs to do is call usb_lock_device() and
848 * usb_unlock_device().
849 *
850 * Complications arise when several devices are to be locked at the same
851 * time.  Only hub-aware drivers that are part of usbcore ever have to
852 * do this; nobody else needs to worry about it.  The problem is that
853 * usb_lock_device() must not be called to lock a second device since it
854 * would acquire the rwsem's readlock reentrantly, leading to deadlock if
855 * another thread was waiting for the writelock.  The solution is simple:
856 *
857 *	When locking more than one device, call usb_lock_device()
858 *	to lock the first one.  Lock the others by calling
859 *	down(&udev->serialize) directly.
860 *
861 *	When unlocking multiple devices, use up(&udev->serialize)
862 *	to unlock all but the last one.  Unlock the last one by
863 *	calling usb_unlock_device().
864 *
865 *	When locking both a device and its parent, always lock the
866 *	the parent first.
867 */
868
869/**
870 * usb_lock_device - acquire the lock for a usb device structure
871 * @udev: device that's being locked
872 *
873 * Use this routine when you don't hold any other device locks;
874 * to acquire nested inner locks call down(&udev->serialize) directly.
875 * This is necessary for proper interaction with usb_lock_all_devices().
876 */
877void usb_lock_device(struct usb_device *udev)
878{
879	down_read(&usb_all_devices_rwsem);
880	down(&udev->serialize);
881}
882
883/**
884 * usb_trylock_device - attempt to acquire the lock for a usb device structure
885 * @udev: device that's being locked
886 *
887 * Don't use this routine if you already hold a device lock;
888 * use down_trylock(&udev->serialize) instead.
889 * This is necessary for proper interaction with usb_lock_all_devices().
890 *
891 * Returns 1 if successful, 0 if contention.
892 */
893int usb_trylock_device(struct usb_device *udev)
894{
895	if (!down_read_trylock(&usb_all_devices_rwsem))
896		return 0;
897	if (down_trylock(&udev->serialize)) {
898		up_read(&usb_all_devices_rwsem);
899		return 0;
900	}
901	return 1;
902}
903
904/**
905 * usb_lock_device_for_reset - cautiously acquire the lock for a
906 *	usb device structure
907 * @udev: device that's being locked
908 * @iface: interface bound to the driver making the request (optional)
909 *
910 * Attempts to acquire the device lock, but fails if the device is
911 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
912 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
913 * lock, the routine polls repeatedly.  This is to prevent deadlock with
914 * disconnect; in some drivers (such as usb-storage) the disconnect()
915 * or suspend() method will block waiting for a device reset to complete.
916 *
917 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
918 * that the device will or will not have to be unlocked.  (0 can be
919 * returned when an interface is given and is BINDING, because in that
920 * case the driver already owns the device lock.)
921 */
922int usb_lock_device_for_reset(struct usb_device *udev,
923		struct usb_interface *iface)
924{
925	unsigned long jiffies_expire = jiffies + HZ;
926
927	if (udev->state == USB_STATE_NOTATTACHED)
928		return -ENODEV;
929	if (udev->state == USB_STATE_SUSPENDED)
930		return -EHOSTUNREACH;
931	if (iface) {
932		switch (iface->condition) {
933		  case USB_INTERFACE_BINDING:
934			return 0;
935		  case USB_INTERFACE_BOUND:
936			break;
937		  default:
938			return -EINTR;
939		}
940	}
941
942	while (!usb_trylock_device(udev)) {
943
944		/* If we can't acquire the lock after waiting one second,
945		 * we're probably deadlocked */
946		if (time_after(jiffies, jiffies_expire))
947			return -EBUSY;
948
949		msleep(15);
950		if (udev->state == USB_STATE_NOTATTACHED)
951			return -ENODEV;
952		if (udev->state == USB_STATE_SUSPENDED)
953			return -EHOSTUNREACH;
954		if (iface && iface->condition != USB_INTERFACE_BOUND)
955			return -EINTR;
956	}
957	return 1;
958}
959
960/**
961 * usb_unlock_device - release the lock for a usb device structure
962 * @udev: device that's being unlocked
963 *
964 * Use this routine when releasing the only device lock you hold;
965 * to release inner nested locks call up(&udev->serialize) directly.
966 * This is necessary for proper interaction with usb_lock_all_devices().
967 */
968void usb_unlock_device(struct usb_device *udev)
969{
970	up(&udev->serialize);
971	up_read(&usb_all_devices_rwsem);
972}
973
974/**
975 * usb_lock_all_devices - acquire the lock for all usb device structures
976 *
977 * This is necessary when registering a new driver or probing a bus,
978 * since the driver-model core may try to use any usb_device.
979 */
980void usb_lock_all_devices(void)
981{
982	down_write(&usb_all_devices_rwsem);
983}
984
985/**
986 * usb_unlock_all_devices - release the lock for all usb device structures
987 */
988void usb_unlock_all_devices(void)
989{
990	up_write(&usb_all_devices_rwsem);
991}
992
993
994static struct usb_device *match_device(struct usb_device *dev,
995				       u16 vendor_id, u16 product_id)
996{
997	struct usb_device *ret_dev = NULL;
998	int child;
999
1000	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
1001	    le16_to_cpu(dev->descriptor.idVendor),
1002	    le16_to_cpu(dev->descriptor.idProduct));
1003
1004	/* see if this device matches */
1005	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
1006	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
1007		dev_dbg (&dev->dev, "matched this device!\n");
1008		ret_dev = usb_get_dev(dev);
1009		goto exit;
1010	}
1011
1012	/* look through all of the children of this device */
1013	for (child = 0; child < dev->maxchild; ++child) {
1014		if (dev->children[child]) {
1015			down(&dev->children[child]->serialize);
1016			ret_dev = match_device(dev->children[child],
1017					       vendor_id, product_id);
1018			up(&dev->children[child]->serialize);
1019			if (ret_dev)
1020				goto exit;
1021		}
1022	}
1023exit:
1024	return ret_dev;
1025}
1026
1027/**
1028 * usb_find_device - find a specific usb device in the system
1029 * @vendor_id: the vendor id of the device to find
1030 * @product_id: the product id of the device to find
1031 *
1032 * Returns a pointer to a struct usb_device if such a specified usb
1033 * device is present in the system currently.  The usage count of the
1034 * device will be incremented if a device is found.  Make sure to call
1035 * usb_put_dev() when the caller is finished with the device.
1036 *
1037 * If a device with the specified vendor and product id is not found,
1038 * NULL is returned.
1039 */
1040struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1041{
1042	struct list_head *buslist;
1043	struct usb_bus *bus;
1044	struct usb_device *dev = NULL;
1045
1046	down(&usb_bus_list_lock);
1047	for (buslist = usb_bus_list.next;
1048	     buslist != &usb_bus_list;
1049	     buslist = buslist->next) {
1050		bus = container_of(buslist, struct usb_bus, bus_list);
1051		if (!bus->root_hub)
1052			continue;
1053		usb_lock_device(bus->root_hub);
1054		dev = match_device(bus->root_hub, vendor_id, product_id);
1055		usb_unlock_device(bus->root_hub);
1056		if (dev)
1057			goto exit;
1058	}
1059exit:
1060	up(&usb_bus_list_lock);
1061	return dev;
1062}
1063
1064/**
1065 * usb_get_current_frame_number - return current bus frame number
1066 * @dev: the device whose bus is being queried
1067 *
1068 * Returns the current frame number for the USB host controller
1069 * used with the given USB device.  This can be used when scheduling
1070 * isochronous requests.
1071 *
1072 * Note that different kinds of host controller have different
1073 * "scheduling horizons".  While one type might support scheduling only
1074 * 32 frames into the future, others could support scheduling up to
1075 * 1024 frames into the future.
1076 */
1077int usb_get_current_frame_number(struct usb_device *dev)
1078{
1079	return dev->bus->op->get_frame_number (dev);
1080}
1081
1082/*-------------------------------------------------------------------*/
1083/*
1084 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1085 * extra field of the interface and endpoint descriptor structs.
1086 */
1087
1088int __usb_get_extra_descriptor(char *buffer, unsigned size,
1089	unsigned char type, void **ptr)
1090{
1091	struct usb_descriptor_header *header;
1092
1093	while (size >= sizeof(struct usb_descriptor_header)) {
1094		header = (struct usb_descriptor_header *)buffer;
1095
1096		if (header->bLength < 2) {
1097			printk(KERN_ERR
1098				"%s: bogus descriptor, type %d length %d\n",
1099				usbcore_name,
1100				header->bDescriptorType,
1101				header->bLength);
1102			return -1;
1103		}
1104
1105		if (header->bDescriptorType == type) {
1106			*ptr = header;
1107			return 0;
1108		}
1109
1110		buffer += header->bLength;
1111		size -= header->bLength;
1112	}
1113	return -1;
1114}
1115
1116/**
1117 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1118 * @dev: device the buffer will be used with
1119 * @size: requested buffer size
1120 * @mem_flags: affect whether allocation may block
1121 * @dma: used to return DMA address of buffer
1122 *
1123 * Return value is either null (indicating no buffer could be allocated), or
1124 * the cpu-space pointer to a buffer that may be used to perform DMA to the
1125 * specified device.  Such cpu-space buffers are returned along with the DMA
1126 * address (through the pointer provided).
1127 *
1128 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1129 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1130 * mapping hardware for long idle periods.  The implementation varies between
1131 * platforms, depending on details of how DMA will work to this device.
1132 * Using these buffers also helps prevent cacheline sharing problems on
1133 * architectures where CPU caches are not DMA-coherent.
1134 *
1135 * When the buffer is no longer used, free it with usb_buffer_free().
1136 */
1137void *usb_buffer_alloc (
1138	struct usb_device *dev,
1139	size_t size,
1140	unsigned mem_flags,
1141	dma_addr_t *dma
1142)
1143{
1144	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1145		return NULL;
1146	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1147}
1148
1149/**
1150 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1151 * @dev: device the buffer was used with
1152 * @size: requested buffer size
1153 * @addr: CPU address of buffer
1154 * @dma: DMA address of buffer
1155 *
1156 * This reclaims an I/O buffer, letting it be reused.  The memory must have
1157 * been allocated using usb_buffer_alloc(), and the parameters must match
1158 * those provided in that allocation request.
1159 */
1160void usb_buffer_free (
1161	struct usb_device *dev,
1162	size_t size,
1163	void *addr,
1164	dma_addr_t dma
1165)
1166{
1167	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1168	    	return;
1169	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1170}
1171
1172/**
1173 * usb_buffer_map - create DMA mapping(s) for an urb
1174 * @urb: urb whose transfer_buffer/setup_packet will be mapped
1175 *
1176 * Return value is either null (indicating no buffer could be mapped), or
1177 * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1178 * added to urb->transfer_flags if the operation succeeds.  If the device
1179 * is connected to this system through a non-DMA controller, this operation
1180 * always succeeds.
1181 *
1182 * This call would normally be used for an urb which is reused, perhaps
1183 * as the target of a large periodic transfer, with usb_buffer_dmasync()
1184 * calls to synchronize memory and dma state.
1185 *
1186 * Reverse the effect of this call with usb_buffer_unmap().
1187 */
1188#if 0
1189struct urb *usb_buffer_map (struct urb *urb)
1190{
1191	struct usb_bus		*bus;
1192	struct device		*controller;
1193
1194	if (!urb
1195			|| !urb->dev
1196			|| !(bus = urb->dev->bus)
1197			|| !(controller = bus->controller))
1198		return NULL;
1199
1200	if (controller->dma_mask) {
1201		urb->transfer_dma = dma_map_single (controller,
1202			urb->transfer_buffer, urb->transfer_buffer_length,
1203			usb_pipein (urb->pipe)
1204				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1205		if (usb_pipecontrol (urb->pipe))
1206			urb->setup_dma = dma_map_single (controller,
1207					urb->setup_packet,
1208					sizeof (struct usb_ctrlrequest),
1209					DMA_TO_DEVICE);
1210	// FIXME generic api broken like pci, can't report errors
1211	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1212	} else
1213		urb->transfer_dma = ~0;
1214	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1215				| URB_NO_SETUP_DMA_MAP);
1216	return urb;
1217}
1218#endif  /*  0  */
1219
1220/* XXX DISABLED, no users currently.  If you wish to re-enable this
1221 * XXX please determine whether the sync is to transfer ownership of
1222 * XXX the buffer from device to cpu or vice verse, and thusly use the
1223 * XXX appropriate _for_{cpu,device}() method.  -DaveM
1224 */
1225#if 0
1226
1227/**
1228 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1229 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1230 */
1231void usb_buffer_dmasync (struct urb *urb)
1232{
1233	struct usb_bus		*bus;
1234	struct device		*controller;
1235
1236	if (!urb
1237			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1238			|| !urb->dev
1239			|| !(bus = urb->dev->bus)
1240			|| !(controller = bus->controller))
1241		return;
1242
1243	if (controller->dma_mask) {
1244		dma_sync_single (controller,
1245			urb->transfer_dma, urb->transfer_buffer_length,
1246			usb_pipein (urb->pipe)
1247				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1248		if (usb_pipecontrol (urb->pipe))
1249			dma_sync_single (controller,
1250					urb->setup_dma,
1251					sizeof (struct usb_ctrlrequest),
1252					DMA_TO_DEVICE);
1253	}
1254}
1255#endif
1256
1257/**
1258 * usb_buffer_unmap - free DMA mapping(s) for an urb
1259 * @urb: urb whose transfer_buffer will be unmapped
1260 *
1261 * Reverses the effect of usb_buffer_map().
1262 */
1263#if 0
1264void usb_buffer_unmap (struct urb *urb)
1265{
1266	struct usb_bus		*bus;
1267	struct device		*controller;
1268
1269	if (!urb
1270			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1271			|| !urb->dev
1272			|| !(bus = urb->dev->bus)
1273			|| !(controller = bus->controller))
1274		return;
1275
1276	if (controller->dma_mask) {
1277		dma_unmap_single (controller,
1278			urb->transfer_dma, urb->transfer_buffer_length,
1279			usb_pipein (urb->pipe)
1280				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1281		if (usb_pipecontrol (urb->pipe))
1282			dma_unmap_single (controller,
1283					urb->setup_dma,
1284					sizeof (struct usb_ctrlrequest),
1285					DMA_TO_DEVICE);
1286	}
1287	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1288				| URB_NO_SETUP_DMA_MAP);
1289}
1290#endif  /*  0  */
1291
1292/**
1293 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1294 * @dev: device to which the scatterlist will be mapped
1295 * @pipe: endpoint defining the mapping direction
1296 * @sg: the scatterlist to map
1297 * @nents: the number of entries in the scatterlist
1298 *
1299 * Return value is either < 0 (indicating no buffers could be mapped), or
1300 * the number of DMA mapping array entries in the scatterlist.
1301 *
1302 * The caller is responsible for placing the resulting DMA addresses from
1303 * the scatterlist into URB transfer buffer pointers, and for setting the
1304 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1305 *
1306 * Top I/O rates come from queuing URBs, instead of waiting for each one
1307 * to complete before starting the next I/O.   This is particularly easy
1308 * to do with scatterlists.  Just allocate and submit one URB for each DMA
1309 * mapping entry returned, stopping on the first error or when all succeed.
1310 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1311 *
1312 * This call would normally be used when translating scatterlist requests,
1313 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1314 * may be able to coalesce mappings for improved I/O efficiency.
1315 *
1316 * Reverse the effect of this call with usb_buffer_unmap_sg().
1317 */
1318int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1319		struct scatterlist *sg, int nents)
1320{
1321	struct usb_bus		*bus;
1322	struct device		*controller;
1323
1324	if (!dev
1325			|| usb_pipecontrol (pipe)
1326			|| !(bus = dev->bus)
1327			|| !(controller = bus->controller)
1328			|| !controller->dma_mask)
1329		return -1;
1330
1331	// FIXME generic api broken like pci, can't report errors
1332	return dma_map_sg (controller, sg, nents,
1333			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1334}
1335
1336/* XXX DISABLED, no users currently.  If you wish to re-enable this
1337 * XXX please determine whether the sync is to transfer ownership of
1338 * XXX the buffer from device to cpu or vice verse, and thusly use the
1339 * XXX appropriate _for_{cpu,device}() method.  -DaveM
1340 */
1341#if 0
1342
1343/**
1344 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1345 * @dev: device to which the scatterlist will be mapped
1346 * @pipe: endpoint defining the mapping direction
1347 * @sg: the scatterlist to synchronize
1348 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1349 *
1350 * Use this when you are re-using a scatterlist's data buffers for
1351 * another USB request.
1352 */
1353void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1354		struct scatterlist *sg, int n_hw_ents)
1355{
1356	struct usb_bus		*bus;
1357	struct device		*controller;
1358
1359	if (!dev
1360			|| !(bus = dev->bus)
1361			|| !(controller = bus->controller)
1362			|| !controller->dma_mask)
1363		return;
1364
1365	dma_sync_sg (controller, sg, n_hw_ents,
1366			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1367}
1368#endif
1369
1370/**
1371 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1372 * @dev: device to which the scatterlist will be mapped
1373 * @pipe: endpoint defining the mapping direction
1374 * @sg: the scatterlist to unmap
1375 * @n_hw_ents: the positive return value from usb_buffer_map_sg
1376 *
1377 * Reverses the effect of usb_buffer_map_sg().
1378 */
1379void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1380		struct scatterlist *sg, int n_hw_ents)
1381{
1382	struct usb_bus		*bus;
1383	struct device		*controller;
1384
1385	if (!dev
1386			|| !(bus = dev->bus)
1387			|| !(controller = bus->controller)
1388			|| !controller->dma_mask)
1389		return;
1390
1391	dma_unmap_sg (controller, sg, n_hw_ents,
1392			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1393}
1394
1395static int usb_generic_suspend(struct device *dev, pm_message_t message)
1396{
1397	struct usb_interface *intf;
1398	struct usb_driver *driver;
1399
1400	if (dev->driver == &usb_generic_driver)
1401		return usb_suspend_device (to_usb_device(dev), message);
1402
1403	if ((dev->driver == NULL) ||
1404	    (dev->driver_data == &usb_generic_driver_data))
1405		return 0;
1406
1407	intf = to_usb_interface(dev);
1408	driver = to_usb_driver(dev->driver);
1409
1410	/* there's only one USB suspend state */
1411	if (intf->dev.power.power_state.event)
1412		return 0;
1413
1414	if (driver->suspend)
1415		return driver->suspend(intf, message);
1416	return 0;
1417}
1418
1419static int usb_generic_resume(struct device *dev)
1420{
1421	struct usb_interface *intf;
1422	struct usb_driver *driver;
1423
1424	/* devices resume through their hub */
1425	if (dev->driver == &usb_generic_driver)
1426		return usb_resume_device (to_usb_device(dev));
1427
1428	if ((dev->driver == NULL) ||
1429	    (dev->driver_data == &usb_generic_driver_data))
1430		return 0;
1431
1432	intf = to_usb_interface(dev);
1433	driver = to_usb_driver(dev->driver);
1434
1435	if (driver->resume)
1436		return driver->resume(intf);
1437	return 0;
1438}
1439
1440struct bus_type usb_bus_type = {
1441	.name =		"usb",
1442	.match =	usb_device_match,
1443	.hotplug =	usb_hotplug,
1444	.suspend =	usb_generic_suspend,
1445	.resume =	usb_generic_resume,
1446};
1447
1448#ifndef MODULE
1449
1450static int __init usb_setup_disable(char *str)
1451{
1452	nousb = 1;
1453	return 1;
1454}
1455
1456/* format to disable USB on kernel command line is: nousb */
1457__setup("nousb", usb_setup_disable);
1458
1459#endif
1460
1461/*
1462 * for external read access to <nousb>
1463 */
1464int usb_disabled(void)
1465{
1466	return nousb;
1467}
1468
1469/*
1470 * Init
1471 */
1472static int __init usb_init(void)
1473{
1474	int retval;
1475	if (nousb) {
1476		pr_info ("%s: USB support disabled\n", usbcore_name);
1477		return 0;
1478	}
1479
1480	retval = bus_register(&usb_bus_type);
1481	if (retval)
1482		goto out;
1483	retval = usb_host_init();
1484	if (retval)
1485		goto host_init_failed;
1486	retval = usb_major_init();
1487	if (retval)
1488		goto major_init_failed;
1489	retval = usb_register(&usbfs_driver);
1490	if (retval)
1491		goto driver_register_failed;
1492	retval = usbdev_init();
1493	if (retval)
1494		goto usbdevice_init_failed;
1495	retval = usbfs_init();
1496	if (retval)
1497		goto fs_init_failed;
1498	retval = usb_hub_init();
1499	if (retval)
1500		goto hub_init_failed;
1501	retval = driver_register(&usb_generic_driver);
1502	if (!retval)
1503		goto out;
1504
1505	usb_hub_cleanup();
1506hub_init_failed:
1507	usbfs_cleanup();
1508fs_init_failed:
1509	usbdev_cleanup();
1510usbdevice_init_failed:
1511	usb_deregister(&usbfs_driver);
1512driver_register_failed:
1513	usb_major_cleanup();
1514major_init_failed:
1515	usb_host_cleanup();
1516host_init_failed:
1517	bus_unregister(&usb_bus_type);
1518out:
1519	return retval;
1520}
1521
1522/*
1523 * Cleanup
1524 */
1525static void __exit usb_exit(void)
1526{
1527	/* This will matter if shutdown/reboot does exitcalls. */
1528	if (nousb)
1529		return;
1530
1531	driver_unregister(&usb_generic_driver);
1532	usb_major_cleanup();
1533	usbfs_cleanup();
1534	usb_deregister(&usbfs_driver);
1535	usbdev_cleanup();
1536	usb_hub_cleanup();
1537	usb_host_cleanup();
1538	bus_unregister(&usb_bus_type);
1539}
1540
1541subsys_initcall(usb_init);
1542module_exit(usb_exit);
1543
1544/*
1545 * USB may be built into the kernel or be built as modules.
1546 * These symbols are exported for device (or host controller)
1547 * driver modules to use.
1548 */
1549
1550EXPORT_SYMBOL(usb_register);
1551EXPORT_SYMBOL(usb_deregister);
1552EXPORT_SYMBOL(usb_disabled);
1553
1554EXPORT_SYMBOL_GPL(usb_get_intf);
1555EXPORT_SYMBOL_GPL(usb_put_intf);
1556
1557EXPORT_SYMBOL(usb_alloc_dev);
1558EXPORT_SYMBOL(usb_put_dev);
1559EXPORT_SYMBOL(usb_get_dev);
1560EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1561
1562EXPORT_SYMBOL(usb_lock_device);
1563EXPORT_SYMBOL(usb_trylock_device);
1564EXPORT_SYMBOL(usb_lock_device_for_reset);
1565EXPORT_SYMBOL(usb_unlock_device);
1566
1567EXPORT_SYMBOL(usb_driver_claim_interface);
1568EXPORT_SYMBOL(usb_driver_release_interface);
1569EXPORT_SYMBOL(usb_match_id);
1570EXPORT_SYMBOL(usb_find_interface);
1571EXPORT_SYMBOL(usb_ifnum_to_if);
1572EXPORT_SYMBOL(usb_altnum_to_altsetting);
1573
1574EXPORT_SYMBOL(usb_reset_device);
1575EXPORT_SYMBOL(usb_disconnect);
1576
1577EXPORT_SYMBOL(__usb_get_extra_descriptor);
1578
1579EXPORT_SYMBOL(usb_find_device);
1580EXPORT_SYMBOL(usb_get_current_frame_number);
1581
1582EXPORT_SYMBOL (usb_buffer_alloc);
1583EXPORT_SYMBOL (usb_buffer_free);
1584
1585#if 0
1586EXPORT_SYMBOL (usb_buffer_map);
1587EXPORT_SYMBOL (usb_buffer_dmasync);
1588EXPORT_SYMBOL (usb_buffer_unmap);
1589#endif
1590
1591EXPORT_SYMBOL (usb_buffer_map_sg);
1592#if 0
1593EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1594#endif
1595EXPORT_SYMBOL (usb_buffer_unmap_sg);
1596
1597MODULE_LICENSE("GPL");
1598