usb.c revision 4d59d8a11383ebf0e0260ee481a4e766959fd7d9
1/*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 *     (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/string.h>
27#include <linux/bitops.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>  /* for in_interrupt() */
30#include <linux/kmod.h>
31#include <linux/init.h>
32#include <linux/spinlock.h>
33#include <linux/errno.h>
34#include <linux/usb.h>
35#include <linux/mutex.h>
36#include <linux/workqueue.h>
37
38#include <asm/io.h>
39#include <asm/scatterlist.h>
40#include <linux/mm.h>
41#include <linux/dma-mapping.h>
42
43#include "hcd.h"
44#include "usb.h"
45
46
47const char *usbcore_name = "usbcore";
48
49static int nousb;	/* Disable USB when built into kernel image */
50
51/* Workqueue for autosuspend and for remote wakeup of root hubs */
52struct workqueue_struct *ksuspend_usb_wq;
53
54#ifdef	CONFIG_USB_SUSPEND
55static int usb_autosuspend_delay = 2;		/* Default delay value,
56						 * in seconds */
57module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
58MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
59
60#else
61#define usb_autosuspend_delay		0
62#endif
63
64
65/**
66 * usb_ifnum_to_if - get the interface object with a given interface number
67 * @dev: the device whose current configuration is considered
68 * @ifnum: the desired interface
69 *
70 * This walks the device descriptor for the currently active configuration
71 * and returns a pointer to the interface with that particular interface
72 * number, or null.
73 *
74 * Note that configuration descriptors are not required to assign interface
75 * numbers sequentially, so that it would be incorrect to assume that
76 * the first interface in that descriptor corresponds to interface zero.
77 * This routine helps device drivers avoid such mistakes.
78 * However, you should make sure that you do the right thing with any
79 * alternate settings available for this interfaces.
80 *
81 * Don't call this function unless you are bound to one of the interfaces
82 * on this device or you have locked the device!
83 */
84struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
85				      unsigned ifnum)
86{
87	struct usb_host_config *config = dev->actconfig;
88	int i;
89
90	if (!config)
91		return NULL;
92	for (i = 0; i < config->desc.bNumInterfaces; i++)
93		if (config->interface[i]->altsetting[0]
94				.desc.bInterfaceNumber == ifnum)
95			return config->interface[i];
96
97	return NULL;
98}
99
100/**
101 * usb_altnum_to_altsetting - get the altsetting structure with a given
102 *	alternate setting number.
103 * @intf: the interface containing the altsetting in question
104 * @altnum: the desired alternate setting number
105 *
106 * This searches the altsetting array of the specified interface for
107 * an entry with the correct bAlternateSetting value and returns a pointer
108 * to that entry, or null.
109 *
110 * Note that altsettings need not be stored sequentially by number, so
111 * it would be incorrect to assume that the first altsetting entry in
112 * the array corresponds to altsetting zero.  This routine helps device
113 * drivers avoid such mistakes.
114 *
115 * Don't call this function unless you are bound to the intf interface
116 * or you have locked the device!
117 */
118struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf,
119						    unsigned int altnum)
120{
121	int i;
122
123	for (i = 0; i < intf->num_altsetting; i++) {
124		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
125			return &intf->altsetting[i];
126	}
127	return NULL;
128}
129
130struct find_interface_arg {
131	int minor;
132	struct usb_interface *interface;
133};
134
135static int __find_interface(struct device * dev, void * data)
136{
137	struct find_interface_arg *arg = data;
138	struct usb_interface *intf;
139
140	/* can't look at usb devices, only interfaces */
141	if (is_usb_device(dev))
142		return 0;
143
144	intf = to_usb_interface(dev);
145	if (intf->minor != -1 && intf->minor == arg->minor) {
146		arg->interface = intf;
147		return 1;
148	}
149	return 0;
150}
151
152/**
153 * usb_find_interface - find usb_interface pointer for driver and device
154 * @drv: the driver whose current configuration is considered
155 * @minor: the minor number of the desired device
156 *
157 * This walks the driver device list and returns a pointer to the interface
158 * with the matching minor.  Note, this only works for devices that share the
159 * USB major number.
160 */
161struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
162{
163	struct find_interface_arg argb;
164	int retval;
165
166	argb.minor = minor;
167	argb.interface = NULL;
168	/* eat the error, it will be in argb.interface */
169	retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
170					__find_interface);
171	return argb.interface;
172}
173
174/**
175 * usb_release_dev - free a usb device structure when all users of it are finished.
176 * @dev: device that's been disconnected
177 *
178 * Will be called only by the device core when all users of this usb device are
179 * done.
180 */
181static void usb_release_dev(struct device *dev)
182{
183	struct usb_device *udev;
184
185	udev = to_usb_device(dev);
186
187	usb_destroy_configuration(udev);
188	usb_put_hcd(bus_to_hcd(udev->bus));
189	kfree(udev->product);
190	kfree(udev->manufacturer);
191	kfree(udev->serial);
192	kfree(udev);
193}
194
195struct device_type usb_device_type = {
196	.name =		"usb_device",
197	.release =	usb_release_dev,
198};
199
200#ifdef	CONFIG_PM
201
202static int ksuspend_usb_init(void)
203{
204	/* This workqueue is supposed to be both freezable and
205	 * singlethreaded.  Its job doesn't justify running on more
206	 * than one CPU.
207	 */
208	ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
209	if (!ksuspend_usb_wq)
210		return -ENOMEM;
211	return 0;
212}
213
214static void ksuspend_usb_cleanup(void)
215{
216	destroy_workqueue(ksuspend_usb_wq);
217}
218
219#else
220
221#define ksuspend_usb_init()	0
222#define ksuspend_usb_cleanup()	do {} while (0)
223
224#endif	/* CONFIG_PM */
225
226
227/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
228static unsigned usb_bus_is_wusb(struct usb_bus *bus)
229{
230	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
231	return hcd->wireless;
232}
233
234
235/**
236 * usb_alloc_dev - usb device constructor (usbcore-internal)
237 * @parent: hub to which device is connected; null to allocate a root hub
238 * @bus: bus used to access the device
239 * @port1: one-based index of port; ignored for root hubs
240 * Context: !in_interrupt()
241 *
242 * Only hub drivers (including virtual root hub drivers for host
243 * controllers) should ever call this.
244 *
245 * This call may not be used in a non-sleeping context.
246 */
247struct usb_device *
248usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
249{
250	struct usb_device *dev;
251	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
252	unsigned root_hub = 0;
253
254	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
255	if (!dev)
256		return NULL;
257
258	if (!usb_get_hcd(bus_to_hcd(bus))) {
259		kfree(dev);
260		return NULL;
261	}
262
263	device_initialize(&dev->dev);
264	dev->dev.bus = &usb_bus_type;
265	dev->dev.type = &usb_device_type;
266	dev->dev.dma_mask = bus->controller->dma_mask;
267	set_dev_node(&dev->dev, dev_to_node(bus->controller));
268	dev->state = USB_STATE_ATTACHED;
269	atomic_set(&dev->urbnum, 0);
270
271	INIT_LIST_HEAD(&dev->ep0.urb_list);
272	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
273	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
274	/* ep0 maxpacket comes later, from device descriptor */
275	usb_enable_endpoint(dev, &dev->ep0);
276	dev->can_submit = 1;
277
278	/* Save readable and stable topology id, distinguishing devices
279	 * by location for diagnostics, tools, driver model, etc.  The
280	 * string is a path along hub ports, from the root.  Each device's
281	 * dev->devpath will be stable until USB is re-cabled, and hubs
282	 * are often labeled with these port numbers.  The bus_id isn't
283	 * as stable:  bus->busnum changes easily from modprobe order,
284	 * cardbus or pci hotplugging, and so on.
285	 */
286	if (unlikely(!parent)) {
287		dev->devpath[0] = '0';
288
289		dev->dev.parent = bus->controller;
290		sprintf(&dev->dev.bus_id[0], "usb%d", bus->busnum);
291		root_hub = 1;
292	} else {
293		/* match any labeling on the hubs; it's one-based */
294		if (parent->devpath[0] == '0')
295			snprintf(dev->devpath, sizeof dev->devpath,
296				"%d", port1);
297		else
298			snprintf(dev->devpath, sizeof dev->devpath,
299				"%s.%d", parent->devpath, port1);
300
301		dev->dev.parent = &parent->dev;
302		sprintf(&dev->dev.bus_id[0], "%d-%s",
303			bus->busnum, dev->devpath);
304
305		/* hub driver sets up TT records */
306	}
307
308	dev->portnum = port1;
309	dev->bus = bus;
310	dev->parent = parent;
311	INIT_LIST_HEAD(&dev->filelist);
312
313#ifdef	CONFIG_PM
314	mutex_init(&dev->pm_mutex);
315	INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
316	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
317#endif
318	if (root_hub)	/* Root hub always ok [and always wired] */
319		dev->authorized = 1;
320	else {
321		dev->authorized = usb_hcd->authorized_default;
322		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
323	}
324	return dev;
325}
326
327/**
328 * usb_get_dev - increments the reference count of the usb device structure
329 * @dev: the device being referenced
330 *
331 * Each live reference to a device should be refcounted.
332 *
333 * Drivers for USB interfaces should normally record such references in
334 * their probe() methods, when they bind to an interface, and release
335 * them by calling usb_put_dev(), in their disconnect() methods.
336 *
337 * A pointer to the device with the incremented reference counter is returned.
338 */
339struct usb_device *usb_get_dev(struct usb_device *dev)
340{
341	if (dev)
342		get_device(&dev->dev);
343	return dev;
344}
345
346/**
347 * usb_put_dev - release a use of the usb device structure
348 * @dev: device that's been disconnected
349 *
350 * Must be called when a user of a device is finished with it.  When the last
351 * user of the device calls this function, the memory of the device is freed.
352 */
353void usb_put_dev(struct usb_device *dev)
354{
355	if (dev)
356		put_device(&dev->dev);
357}
358
359/**
360 * usb_get_intf - increments the reference count of the usb interface structure
361 * @intf: the interface being referenced
362 *
363 * Each live reference to a interface must be refcounted.
364 *
365 * Drivers for USB interfaces should normally record such references in
366 * their probe() methods, when they bind to an interface, and release
367 * them by calling usb_put_intf(), in their disconnect() methods.
368 *
369 * A pointer to the interface with the incremented reference counter is
370 * returned.
371 */
372struct usb_interface *usb_get_intf(struct usb_interface *intf)
373{
374	if (intf)
375		get_device(&intf->dev);
376	return intf;
377}
378
379/**
380 * usb_put_intf - release a use of the usb interface structure
381 * @intf: interface that's been decremented
382 *
383 * Must be called when a user of an interface is finished with it.  When the
384 * last user of the interface calls this function, the memory of the interface
385 * is freed.
386 */
387void usb_put_intf(struct usb_interface *intf)
388{
389	if (intf)
390		put_device(&intf->dev);
391}
392
393
394/*			USB device locking
395 *
396 * USB devices and interfaces are locked using the semaphore in their
397 * embedded struct device.  The hub driver guarantees that whenever a
398 * device is connected or disconnected, drivers are called with the
399 * USB device locked as well as their particular interface.
400 *
401 * Complications arise when several devices are to be locked at the same
402 * time.  Only hub-aware drivers that are part of usbcore ever have to
403 * do this; nobody else needs to worry about it.  The rule for locking
404 * is simple:
405 *
406 *	When locking both a device and its parent, always lock the
407 *	the parent first.
408 */
409
410/**
411 * usb_lock_device_for_reset - cautiously acquire the lock for a
412 *	usb device structure
413 * @udev: device that's being locked
414 * @iface: interface bound to the driver making the request (optional)
415 *
416 * Attempts to acquire the device lock, but fails if the device is
417 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
418 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
419 * lock, the routine polls repeatedly.  This is to prevent deadlock with
420 * disconnect; in some drivers (such as usb-storage) the disconnect()
421 * or suspend() method will block waiting for a device reset to complete.
422 *
423 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
424 * that the device will or will not have to be unlocked.  (0 can be
425 * returned when an interface is given and is BINDING, because in that
426 * case the driver already owns the device lock.)
427 */
428int usb_lock_device_for_reset(struct usb_device *udev,
429			      const struct usb_interface *iface)
430{
431	unsigned long jiffies_expire = jiffies + HZ;
432
433	if (udev->state == USB_STATE_NOTATTACHED)
434		return -ENODEV;
435	if (udev->state == USB_STATE_SUSPENDED)
436		return -EHOSTUNREACH;
437	if (iface) {
438		switch (iface->condition) {
439		  case USB_INTERFACE_BINDING:
440			return 0;
441		  case USB_INTERFACE_BOUND:
442			break;
443		  default:
444			return -EINTR;
445		}
446	}
447
448	while (usb_trylock_device(udev) != 0) {
449
450		/* If we can't acquire the lock after waiting one second,
451		 * we're probably deadlocked */
452		if (time_after(jiffies, jiffies_expire))
453			return -EBUSY;
454
455		msleep(15);
456		if (udev->state == USB_STATE_NOTATTACHED)
457			return -ENODEV;
458		if (udev->state == USB_STATE_SUSPENDED)
459			return -EHOSTUNREACH;
460		if (iface && iface->condition != USB_INTERFACE_BOUND)
461			return -EINTR;
462	}
463	return 1;
464}
465
466
467static struct usb_device *match_device(struct usb_device *dev,
468				       u16 vendor_id, u16 product_id)
469{
470	struct usb_device *ret_dev = NULL;
471	int child;
472
473	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
474	    le16_to_cpu(dev->descriptor.idVendor),
475	    le16_to_cpu(dev->descriptor.idProduct));
476
477	/* see if this device matches */
478	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
479	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
480		dev_dbg(&dev->dev, "matched this device!\n");
481		ret_dev = usb_get_dev(dev);
482		goto exit;
483	}
484
485	/* look through all of the children of this device */
486	for (child = 0; child < dev->maxchild; ++child) {
487		if (dev->children[child]) {
488			usb_lock_device(dev->children[child]);
489			ret_dev = match_device(dev->children[child],
490					       vendor_id, product_id);
491			usb_unlock_device(dev->children[child]);
492			if (ret_dev)
493				goto exit;
494		}
495	}
496exit:
497	return ret_dev;
498}
499
500/**
501 * usb_find_device - find a specific usb device in the system
502 * @vendor_id: the vendor id of the device to find
503 * @product_id: the product id of the device to find
504 *
505 * Returns a pointer to a struct usb_device if such a specified usb
506 * device is present in the system currently.  The usage count of the
507 * device will be incremented if a device is found.  Make sure to call
508 * usb_put_dev() when the caller is finished with the device.
509 *
510 * If a device with the specified vendor and product id is not found,
511 * NULL is returned.
512 */
513struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
514{
515	struct list_head *buslist;
516	struct usb_bus *bus;
517	struct usb_device *dev = NULL;
518
519	mutex_lock(&usb_bus_list_lock);
520	for (buslist = usb_bus_list.next;
521	     buslist != &usb_bus_list;
522	     buslist = buslist->next) {
523		bus = container_of(buslist, struct usb_bus, bus_list);
524		if (!bus->root_hub)
525			continue;
526		usb_lock_device(bus->root_hub);
527		dev = match_device(bus->root_hub, vendor_id, product_id);
528		usb_unlock_device(bus->root_hub);
529		if (dev)
530			goto exit;
531	}
532exit:
533	mutex_unlock(&usb_bus_list_lock);
534	return dev;
535}
536
537/**
538 * usb_get_current_frame_number - return current bus frame number
539 * @dev: the device whose bus is being queried
540 *
541 * Returns the current frame number for the USB host controller
542 * used with the given USB device.  This can be used when scheduling
543 * isochronous requests.
544 *
545 * Note that different kinds of host controller have different
546 * "scheduling horizons".  While one type might support scheduling only
547 * 32 frames into the future, others could support scheduling up to
548 * 1024 frames into the future.
549 */
550int usb_get_current_frame_number(struct usb_device *dev)
551{
552	return usb_hcd_get_frame_number(dev);
553}
554
555/*-------------------------------------------------------------------*/
556/*
557 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
558 * extra field of the interface and endpoint descriptor structs.
559 */
560
561int __usb_get_extra_descriptor(char *buffer, unsigned size,
562	unsigned char type, void **ptr)
563{
564	struct usb_descriptor_header *header;
565
566	while (size >= sizeof(struct usb_descriptor_header)) {
567		header = (struct usb_descriptor_header *)buffer;
568
569		if (header->bLength < 2) {
570			printk(KERN_ERR
571				"%s: bogus descriptor, type %d length %d\n",
572				usbcore_name,
573				header->bDescriptorType,
574				header->bLength);
575			return -1;
576		}
577
578		if (header->bDescriptorType == type) {
579			*ptr = header;
580			return 0;
581		}
582
583		buffer += header->bLength;
584		size -= header->bLength;
585	}
586	return -1;
587}
588
589/**
590 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
591 * @dev: device the buffer will be used with
592 * @size: requested buffer size
593 * @mem_flags: affect whether allocation may block
594 * @dma: used to return DMA address of buffer
595 *
596 * Return value is either null (indicating no buffer could be allocated), or
597 * the cpu-space pointer to a buffer that may be used to perform DMA to the
598 * specified device.  Such cpu-space buffers are returned along with the DMA
599 * address (through the pointer provided).
600 *
601 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
602 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
603 * hardware during URB completion/resubmit.  The implementation varies between
604 * platforms, depending on details of how DMA will work to this device.
605 * Using these buffers also eliminates cacheline sharing problems on
606 * architectures where CPU caches are not DMA-coherent.  On systems without
607 * bus-snooping caches, these buffers are uncached.
608 *
609 * When the buffer is no longer used, free it with usb_buffer_free().
610 */
611void *usb_buffer_alloc(
612	struct usb_device *dev,
613	size_t size,
614	gfp_t mem_flags,
615	dma_addr_t *dma
616)
617{
618	if (!dev || !dev->bus)
619		return NULL;
620	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
621}
622
623/**
624 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
625 * @dev: device the buffer was used with
626 * @size: requested buffer size
627 * @addr: CPU address of buffer
628 * @dma: DMA address of buffer
629 *
630 * This reclaims an I/O buffer, letting it be reused.  The memory must have
631 * been allocated using usb_buffer_alloc(), and the parameters must match
632 * those provided in that allocation request.
633 */
634void usb_buffer_free(
635	struct usb_device *dev,
636	size_t size,
637	void *addr,
638	dma_addr_t dma
639)
640{
641	if (!dev || !dev->bus)
642		return;
643	if (!addr)
644		return;
645	hcd_buffer_free(dev->bus, size, addr, dma);
646}
647
648/**
649 * usb_buffer_map - create DMA mapping(s) for an urb
650 * @urb: urb whose transfer_buffer/setup_packet will be mapped
651 *
652 * Return value is either null (indicating no buffer could be mapped), or
653 * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
654 * added to urb->transfer_flags if the operation succeeds.  If the device
655 * is connected to this system through a non-DMA controller, this operation
656 * always succeeds.
657 *
658 * This call would normally be used for an urb which is reused, perhaps
659 * as the target of a large periodic transfer, with usb_buffer_dmasync()
660 * calls to synchronize memory and dma state.
661 *
662 * Reverse the effect of this call with usb_buffer_unmap().
663 */
664#if 0
665struct urb *usb_buffer_map(struct urb *urb)
666{
667	struct usb_bus		*bus;
668	struct device		*controller;
669
670	if (!urb
671			|| !urb->dev
672			|| !(bus = urb->dev->bus)
673			|| !(controller = bus->controller))
674		return NULL;
675
676	if (controller->dma_mask) {
677		urb->transfer_dma = dma_map_single(controller,
678			urb->transfer_buffer, urb->transfer_buffer_length,
679			usb_pipein(urb->pipe)
680				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
681		if (usb_pipecontrol(urb->pipe))
682			urb->setup_dma = dma_map_single(controller,
683					urb->setup_packet,
684					sizeof(struct usb_ctrlrequest),
685					DMA_TO_DEVICE);
686	// FIXME generic api broken like pci, can't report errors
687	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
688	} else
689		urb->transfer_dma = ~0;
690	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
691				| URB_NO_SETUP_DMA_MAP);
692	return urb;
693}
694#endif  /*  0  */
695
696/* XXX DISABLED, no users currently.  If you wish to re-enable this
697 * XXX please determine whether the sync is to transfer ownership of
698 * XXX the buffer from device to cpu or vice verse, and thusly use the
699 * XXX appropriate _for_{cpu,device}() method.  -DaveM
700 */
701#if 0
702
703/**
704 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
705 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
706 */
707void usb_buffer_dmasync(struct urb *urb)
708{
709	struct usb_bus		*bus;
710	struct device		*controller;
711
712	if (!urb
713			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
714			|| !urb->dev
715			|| !(bus = urb->dev->bus)
716			|| !(controller = bus->controller))
717		return;
718
719	if (controller->dma_mask) {
720		dma_sync_single(controller,
721			urb->transfer_dma, urb->transfer_buffer_length,
722			usb_pipein(urb->pipe)
723				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
724		if (usb_pipecontrol(urb->pipe))
725			dma_sync_single(controller,
726					urb->setup_dma,
727					sizeof(struct usb_ctrlrequest),
728					DMA_TO_DEVICE);
729	}
730}
731#endif
732
733/**
734 * usb_buffer_unmap - free DMA mapping(s) for an urb
735 * @urb: urb whose transfer_buffer will be unmapped
736 *
737 * Reverses the effect of usb_buffer_map().
738 */
739#if 0
740void usb_buffer_unmap(struct urb *urb)
741{
742	struct usb_bus		*bus;
743	struct device		*controller;
744
745	if (!urb
746			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
747			|| !urb->dev
748			|| !(bus = urb->dev->bus)
749			|| !(controller = bus->controller))
750		return;
751
752	if (controller->dma_mask) {
753		dma_unmap_single(controller,
754			urb->transfer_dma, urb->transfer_buffer_length,
755			usb_pipein(urb->pipe)
756				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
757		if (usb_pipecontrol(urb->pipe))
758			dma_unmap_single(controller,
759					urb->setup_dma,
760					sizeof(struct usb_ctrlrequest),
761					DMA_TO_DEVICE);
762	}
763	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
764				| URB_NO_SETUP_DMA_MAP);
765}
766#endif  /*  0  */
767
768/**
769 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
770 * @dev: device to which the scatterlist will be mapped
771 * @is_in: mapping transfer direction
772 * @sg: the scatterlist to map
773 * @nents: the number of entries in the scatterlist
774 *
775 * Return value is either < 0 (indicating no buffers could be mapped), or
776 * the number of DMA mapping array entries in the scatterlist.
777 *
778 * The caller is responsible for placing the resulting DMA addresses from
779 * the scatterlist into URB transfer buffer pointers, and for setting the
780 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
781 *
782 * Top I/O rates come from queuing URBs, instead of waiting for each one
783 * to complete before starting the next I/O.   This is particularly easy
784 * to do with scatterlists.  Just allocate and submit one URB for each DMA
785 * mapping entry returned, stopping on the first error or when all succeed.
786 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
787 *
788 * This call would normally be used when translating scatterlist requests,
789 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
790 * may be able to coalesce mappings for improved I/O efficiency.
791 *
792 * Reverse the effect of this call with usb_buffer_unmap_sg().
793 */
794int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
795		      struct scatterlist *sg, int nents)
796{
797	struct usb_bus		*bus;
798	struct device		*controller;
799
800	if (!dev
801			|| !(bus = dev->bus)
802			|| !(controller = bus->controller)
803			|| !controller->dma_mask)
804		return -1;
805
806	// FIXME generic api broken like pci, can't report errors
807	return dma_map_sg(controller, sg, nents,
808			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
809}
810
811/* XXX DISABLED, no users currently.  If you wish to re-enable this
812 * XXX please determine whether the sync is to transfer ownership of
813 * XXX the buffer from device to cpu or vice verse, and thusly use the
814 * XXX appropriate _for_{cpu,device}() method.  -DaveM
815 */
816#if 0
817
818/**
819 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
820 * @dev: device to which the scatterlist will be mapped
821 * @is_in: mapping transfer direction
822 * @sg: the scatterlist to synchronize
823 * @n_hw_ents: the positive return value from usb_buffer_map_sg
824 *
825 * Use this when you are re-using a scatterlist's data buffers for
826 * another USB request.
827 */
828void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
829			   struct scatterlist *sg, int n_hw_ents)
830{
831	struct usb_bus		*bus;
832	struct device		*controller;
833
834	if (!dev
835			|| !(bus = dev->bus)
836			|| !(controller = bus->controller)
837			|| !controller->dma_mask)
838		return;
839
840	dma_sync_sg(controller, sg, n_hw_ents,
841			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
842}
843#endif
844
845/**
846 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
847 * @dev: device to which the scatterlist will be mapped
848 * @is_in: mapping transfer direction
849 * @sg: the scatterlist to unmap
850 * @n_hw_ents: the positive return value from usb_buffer_map_sg
851 *
852 * Reverses the effect of usb_buffer_map_sg().
853 */
854void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
855			 struct scatterlist *sg, int n_hw_ents)
856{
857	struct usb_bus		*bus;
858	struct device		*controller;
859
860	if (!dev
861			|| !(bus = dev->bus)
862			|| !(controller = bus->controller)
863			|| !controller->dma_mask)
864		return;
865
866	dma_unmap_sg(controller, sg, n_hw_ents,
867			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
868}
869
870/* format to disable USB on kernel command line is: nousb */
871__module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
872
873/*
874 * for external read access to <nousb>
875 */
876int usb_disabled(void)
877{
878	return nousb;
879}
880
881/*
882 * Init
883 */
884static int __init usb_init(void)
885{
886	int retval;
887	if (nousb) {
888		pr_info("%s: USB support disabled\n", usbcore_name);
889		return 0;
890	}
891
892	retval = ksuspend_usb_init();
893	if (retval)
894		goto out;
895	retval = bus_register(&usb_bus_type);
896	if (retval)
897		goto bus_register_failed;
898	retval = usb_host_init();
899	if (retval)
900		goto host_init_failed;
901	retval = usb_major_init();
902	if (retval)
903		goto major_init_failed;
904	retval = usb_register(&usbfs_driver);
905	if (retval)
906		goto driver_register_failed;
907	retval = usb_devio_init();
908	if (retval)
909		goto usb_devio_init_failed;
910	retval = usbfs_init();
911	if (retval)
912		goto fs_init_failed;
913	retval = usb_hub_init();
914	if (retval)
915		goto hub_init_failed;
916	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
917	if (!retval)
918		goto out;
919
920	usb_hub_cleanup();
921hub_init_failed:
922	usbfs_cleanup();
923fs_init_failed:
924	usb_devio_cleanup();
925usb_devio_init_failed:
926	usb_deregister(&usbfs_driver);
927driver_register_failed:
928	usb_major_cleanup();
929major_init_failed:
930	usb_host_cleanup();
931host_init_failed:
932	bus_unregister(&usb_bus_type);
933bus_register_failed:
934	ksuspend_usb_cleanup();
935out:
936	return retval;
937}
938
939/*
940 * Cleanup
941 */
942static void __exit usb_exit(void)
943{
944	/* This will matter if shutdown/reboot does exitcalls. */
945	if (nousb)
946		return;
947
948	usb_deregister_device_driver(&usb_generic_driver);
949	usb_major_cleanup();
950	usbfs_cleanup();
951	usb_deregister(&usbfs_driver);
952	usb_devio_cleanup();
953	usb_hub_cleanup();
954	usb_host_cleanup();
955	bus_unregister(&usb_bus_type);
956	ksuspend_usb_cleanup();
957}
958
959subsys_initcall(usb_init);
960module_exit(usb_exit);
961
962/*
963 * USB may be built into the kernel or be built as modules.
964 * These symbols are exported for device (or host controller)
965 * driver modules to use.
966 */
967
968EXPORT_SYMBOL(usb_disabled);
969
970EXPORT_SYMBOL_GPL(usb_get_intf);
971EXPORT_SYMBOL_GPL(usb_put_intf);
972
973EXPORT_SYMBOL(usb_put_dev);
974EXPORT_SYMBOL(usb_get_dev);
975EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
976
977EXPORT_SYMBOL(usb_lock_device_for_reset);
978
979EXPORT_SYMBOL(usb_find_interface);
980EXPORT_SYMBOL(usb_ifnum_to_if);
981EXPORT_SYMBOL(usb_altnum_to_altsetting);
982
983EXPORT_SYMBOL(__usb_get_extra_descriptor);
984
985EXPORT_SYMBOL(usb_find_device);
986EXPORT_SYMBOL(usb_get_current_frame_number);
987
988EXPORT_SYMBOL(usb_buffer_alloc);
989EXPORT_SYMBOL(usb_buffer_free);
990
991#if 0
992EXPORT_SYMBOL(usb_buffer_map);
993EXPORT_SYMBOL(usb_buffer_dmasync);
994EXPORT_SYMBOL(usb_buffer_unmap);
995#endif
996
997EXPORT_SYMBOL(usb_buffer_map_sg);
998#if 0
999EXPORT_SYMBOL(usb_buffer_dmasync_sg);
1000#endif
1001EXPORT_SYMBOL(usb_buffer_unmap_sg);
1002
1003MODULE_LICENSE("GPL");
1004