usb.c revision e1620d591a75a10b15cf61dbf8243a0b7e6731a2
1/*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 *     (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24#include <linux/module.h>
25#include <linux/moduleparam.h>
26#include <linux/string.h>
27#include <linux/bitops.h>
28#include <linux/slab.h>
29#include <linux/interrupt.h>  /* for in_interrupt() */
30#include <linux/kmod.h>
31#include <linux/init.h>
32#include <linux/spinlock.h>
33#include <linux/errno.h>
34#include <linux/usb.h>
35#include <linux/usb/hcd.h>
36#include <linux/mutex.h>
37#include <linux/workqueue.h>
38#include <linux/debugfs.h>
39
40#include <asm/io.h>
41#include <linux/scatterlist.h>
42#include <linux/mm.h>
43#include <linux/dma-mapping.h>
44
45#include "usb.h"
46
47
48const char *usbcore_name = "usbcore";
49
50static int nousb;	/* Disable USB when built into kernel image */
51
52#ifdef	CONFIG_USB_SUSPEND
53static int usb_autosuspend_delay = 2;		/* Default delay value,
54						 * in seconds */
55module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57
58#else
59#define usb_autosuspend_delay		0
60#endif
61
62
63/**
64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
65 * for the given interface.
66 * @config: the configuration to search (not necessarily the current config).
67 * @iface_num: interface number to search in
68 * @alt_num: alternate interface setting number to search for.
69 *
70 * Search the configuration's interface cache for the given alt setting.
71 */
72struct usb_host_interface *usb_find_alt_setting(
73		struct usb_host_config *config,
74		unsigned int iface_num,
75		unsigned int alt_num)
76{
77	struct usb_interface_cache *intf_cache = NULL;
78	int i;
79
80	for (i = 0; i < config->desc.bNumInterfaces; i++) {
81		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82				== iface_num) {
83			intf_cache = config->intf_cache[i];
84			break;
85		}
86	}
87	if (!intf_cache)
88		return NULL;
89	for (i = 0; i < intf_cache->num_altsetting; i++)
90		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91			return &intf_cache->altsetting[i];
92
93	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94			"config %u\n", alt_num, iface_num,
95			config->desc.bConfigurationValue);
96	return NULL;
97}
98EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99
100/**
101 * usb_ifnum_to_if - get the interface object with a given interface number
102 * @dev: the device whose current configuration is considered
103 * @ifnum: the desired interface
104 *
105 * This walks the device descriptor for the currently active configuration
106 * and returns a pointer to the interface with that particular interface
107 * number, or null.
108 *
109 * Note that configuration descriptors are not required to assign interface
110 * numbers sequentially, so that it would be incorrect to assume that
111 * the first interface in that descriptor corresponds to interface zero.
112 * This routine helps device drivers avoid such mistakes.
113 * However, you should make sure that you do the right thing with any
114 * alternate settings available for this interfaces.
115 *
116 * Don't call this function unless you are bound to one of the interfaces
117 * on this device or you have locked the device!
118 */
119struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120				      unsigned ifnum)
121{
122	struct usb_host_config *config = dev->actconfig;
123	int i;
124
125	if (!config)
126		return NULL;
127	for (i = 0; i < config->desc.bNumInterfaces; i++)
128		if (config->interface[i]->altsetting[0]
129				.desc.bInterfaceNumber == ifnum)
130			return config->interface[i];
131
132	return NULL;
133}
134EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135
136/**
137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138 * @intf: the interface containing the altsetting in question
139 * @altnum: the desired alternate setting number
140 *
141 * This searches the altsetting array of the specified interface for
142 * an entry with the correct bAlternateSetting value and returns a pointer
143 * to that entry, or null.
144 *
145 * Note that altsettings need not be stored sequentially by number, so
146 * it would be incorrect to assume that the first altsetting entry in
147 * the array corresponds to altsetting zero.  This routine helps device
148 * drivers avoid such mistakes.
149 *
150 * Don't call this function unless you are bound to the intf interface
151 * or you have locked the device!
152 */
153struct usb_host_interface *usb_altnum_to_altsetting(
154					const struct usb_interface *intf,
155					unsigned int altnum)
156{
157	int i;
158
159	for (i = 0; i < intf->num_altsetting; i++) {
160		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161			return &intf->altsetting[i];
162	}
163	return NULL;
164}
165EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166
167struct find_interface_arg {
168	int minor;
169	struct device_driver *drv;
170};
171
172static int __find_interface(struct device *dev, void *data)
173{
174	struct find_interface_arg *arg = data;
175	struct usb_interface *intf;
176
177	if (!is_usb_interface(dev))
178		return 0;
179
180	if (dev->driver != arg->drv)
181		return 0;
182	intf = to_usb_interface(dev);
183	return intf->minor == arg->minor;
184}
185
186/**
187 * usb_find_interface - find usb_interface pointer for driver and device
188 * @drv: the driver whose current configuration is considered
189 * @minor: the minor number of the desired device
190 *
191 * This walks the bus device list and returns a pointer to the interface
192 * with the matching minor and driver.  Note, this only works for devices
193 * that share the USB major number.
194 */
195struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196{
197	struct find_interface_arg argb;
198	struct device *dev;
199
200	argb.minor = minor;
201	argb.drv = &drv->drvwrap.driver;
202
203	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204
205	/* Drop reference count from bus_find_device */
206	put_device(dev);
207
208	return dev ? to_usb_interface(dev) : NULL;
209}
210EXPORT_SYMBOL_GPL(usb_find_interface);
211
212/**
213 * usb_release_dev - free a usb device structure when all users of it are finished.
214 * @dev: device that's been disconnected
215 *
216 * Will be called only by the device core when all users of this usb device are
217 * done.
218 */
219static void usb_release_dev(struct device *dev)
220{
221	struct usb_device *udev;
222	struct usb_hcd *hcd;
223
224	udev = to_usb_device(dev);
225	hcd = bus_to_hcd(udev->bus);
226
227	usb_destroy_configuration(udev);
228	usb_put_hcd(hcd);
229	kfree(udev->product);
230	kfree(udev->manufacturer);
231	kfree(udev->serial);
232	kfree(udev);
233}
234
235#ifdef	CONFIG_HOTPLUG
236static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237{
238	struct usb_device *usb_dev;
239
240	usb_dev = to_usb_device(dev);
241
242	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243		return -ENOMEM;
244
245	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246		return -ENOMEM;
247
248	return 0;
249}
250
251#else
252
253static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254{
255	return -ENODEV;
256}
257#endif	/* CONFIG_HOTPLUG */
258
259#ifdef	CONFIG_PM
260
261/* USB device Power-Management thunks.
262 * There's no need to distinguish here between quiescing a USB device
263 * and powering it down; the generic_suspend() routine takes care of
264 * it by skipping the usb_port_suspend() call for a quiesce.  And for
265 * USB interfaces there's no difference at all.
266 */
267
268static int usb_dev_prepare(struct device *dev)
269{
270	return 0;		/* Implement eventually? */
271}
272
273static void usb_dev_complete(struct device *dev)
274{
275	/* Currently used only for rebinding interfaces */
276	usb_resume(dev, PMSG_ON);	/* FIXME: change to PMSG_COMPLETE */
277}
278
279static int usb_dev_suspend(struct device *dev)
280{
281	return usb_suspend(dev, PMSG_SUSPEND);
282}
283
284static int usb_dev_resume(struct device *dev)
285{
286	return usb_resume(dev, PMSG_RESUME);
287}
288
289static int usb_dev_freeze(struct device *dev)
290{
291	return usb_suspend(dev, PMSG_FREEZE);
292}
293
294static int usb_dev_thaw(struct device *dev)
295{
296	return usb_resume(dev, PMSG_THAW);
297}
298
299static int usb_dev_poweroff(struct device *dev)
300{
301	return usb_suspend(dev, PMSG_HIBERNATE);
302}
303
304static int usb_dev_restore(struct device *dev)
305{
306	return usb_resume(dev, PMSG_RESTORE);
307}
308
309static const struct dev_pm_ops usb_device_pm_ops = {
310	.prepare =	usb_dev_prepare,
311	.complete =	usb_dev_complete,
312	.suspend =	usb_dev_suspend,
313	.resume =	usb_dev_resume,
314	.freeze =	usb_dev_freeze,
315	.thaw =		usb_dev_thaw,
316	.poweroff =	usb_dev_poweroff,
317	.restore =	usb_dev_restore,
318#ifdef CONFIG_USB_SUSPEND
319	.runtime_suspend =	usb_runtime_suspend,
320	.runtime_resume =	usb_runtime_resume,
321	.runtime_idle =		usb_runtime_idle,
322#endif
323};
324
325#endif	/* CONFIG_PM */
326
327
328static char *usb_devnode(struct device *dev, mode_t *mode)
329{
330	struct usb_device *usb_dev;
331
332	usb_dev = to_usb_device(dev);
333	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
334			 usb_dev->bus->busnum, usb_dev->devnum);
335}
336
337struct device_type usb_device_type = {
338	.name =		"usb_device",
339	.release =	usb_release_dev,
340	.uevent =	usb_dev_uevent,
341	.devnode = 	usb_devnode,
342#ifdef CONFIG_PM
343	.pm =		&usb_device_pm_ops,
344#endif
345};
346
347
348/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
349static unsigned usb_bus_is_wusb(struct usb_bus *bus)
350{
351	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
352	return hcd->wireless;
353}
354
355
356/**
357 * usb_alloc_dev - usb device constructor (usbcore-internal)
358 * @parent: hub to which device is connected; null to allocate a root hub
359 * @bus: bus used to access the device
360 * @port1: one-based index of port; ignored for root hubs
361 * Context: !in_interrupt()
362 *
363 * Only hub drivers (including virtual root hub drivers for host
364 * controllers) should ever call this.
365 *
366 * This call may not be used in a non-sleeping context.
367 */
368struct usb_device *usb_alloc_dev(struct usb_device *parent,
369				 struct usb_bus *bus, unsigned port1)
370{
371	struct usb_device *dev;
372	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
373	unsigned root_hub = 0;
374
375	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
376	if (!dev)
377		return NULL;
378
379	if (!usb_get_hcd(bus_to_hcd(bus))) {
380		kfree(dev);
381		return NULL;
382	}
383	/* Root hubs aren't true devices, so don't allocate HCD resources */
384	if (usb_hcd->driver->alloc_dev && parent &&
385		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
386		usb_put_hcd(bus_to_hcd(bus));
387		kfree(dev);
388		return NULL;
389	}
390
391	device_initialize(&dev->dev);
392	dev->dev.bus = &usb_bus_type;
393	dev->dev.type = &usb_device_type;
394	dev->dev.groups = usb_device_groups;
395	dev->dev.dma_mask = bus->controller->dma_mask;
396	set_dev_node(&dev->dev, dev_to_node(bus->controller));
397	dev->state = USB_STATE_ATTACHED;
398	atomic_set(&dev->urbnum, 0);
399
400	INIT_LIST_HEAD(&dev->ep0.urb_list);
401	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
402	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
403	/* ep0 maxpacket comes later, from device descriptor */
404	usb_enable_endpoint(dev, &dev->ep0, false);
405	dev->can_submit = 1;
406
407	/* Save readable and stable topology id, distinguishing devices
408	 * by location for diagnostics, tools, driver model, etc.  The
409	 * string is a path along hub ports, from the root.  Each device's
410	 * dev->devpath will be stable until USB is re-cabled, and hubs
411	 * are often labeled with these port numbers.  The name isn't
412	 * as stable:  bus->busnum changes easily from modprobe order,
413	 * cardbus or pci hotplugging, and so on.
414	 */
415	if (unlikely(!parent)) {
416		dev->devpath[0] = '0';
417		dev->route = 0;
418
419		dev->dev.parent = bus->controller;
420		dev_set_name(&dev->dev, "usb%d", bus->busnum);
421		root_hub = 1;
422	} else {
423		/* match any labeling on the hubs; it's one-based */
424		if (parent->devpath[0] == '0') {
425			snprintf(dev->devpath, sizeof dev->devpath,
426				"%d", port1);
427			/* Root ports are not counted in route string */
428			dev->route = 0;
429		} else {
430			snprintf(dev->devpath, sizeof dev->devpath,
431				"%s.%d", parent->devpath, port1);
432			/* Route string assumes hubs have less than 16 ports */
433			if (port1 < 15)
434				dev->route = parent->route +
435					(port1 << ((parent->level - 1)*4));
436			else
437				dev->route = parent->route +
438					(15 << ((parent->level - 1)*4));
439		}
440
441		dev->dev.parent = &parent->dev;
442		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
443
444		/* hub driver sets up TT records */
445	}
446
447	dev->portnum = port1;
448	dev->bus = bus;
449	dev->parent = parent;
450	INIT_LIST_HEAD(&dev->filelist);
451
452#ifdef	CONFIG_PM
453	pm_runtime_set_autosuspend_delay(&dev->dev,
454			usb_autosuspend_delay * 1000);
455	dev->connect_time = jiffies;
456	dev->active_duration = -jiffies;
457#endif
458	if (root_hub)	/* Root hub always ok [and always wired] */
459		dev->authorized = 1;
460	else {
461		dev->authorized = usb_hcd->authorized_default;
462		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
463	}
464	return dev;
465}
466
467/**
468 * usb_get_dev - increments the reference count of the usb device structure
469 * @dev: the device being referenced
470 *
471 * Each live reference to a device should be refcounted.
472 *
473 * Drivers for USB interfaces should normally record such references in
474 * their probe() methods, when they bind to an interface, and release
475 * them by calling usb_put_dev(), in their disconnect() methods.
476 *
477 * A pointer to the device with the incremented reference counter is returned.
478 */
479struct usb_device *usb_get_dev(struct usb_device *dev)
480{
481	if (dev)
482		get_device(&dev->dev);
483	return dev;
484}
485EXPORT_SYMBOL_GPL(usb_get_dev);
486
487/**
488 * usb_put_dev - release a use of the usb device structure
489 * @dev: device that's been disconnected
490 *
491 * Must be called when a user of a device is finished with it.  When the last
492 * user of the device calls this function, the memory of the device is freed.
493 */
494void usb_put_dev(struct usb_device *dev)
495{
496	if (dev)
497		put_device(&dev->dev);
498}
499EXPORT_SYMBOL_GPL(usb_put_dev);
500
501/**
502 * usb_get_intf - increments the reference count of the usb interface structure
503 * @intf: the interface being referenced
504 *
505 * Each live reference to a interface must be refcounted.
506 *
507 * Drivers for USB interfaces should normally record such references in
508 * their probe() methods, when they bind to an interface, and release
509 * them by calling usb_put_intf(), in their disconnect() methods.
510 *
511 * A pointer to the interface with the incremented reference counter is
512 * returned.
513 */
514struct usb_interface *usb_get_intf(struct usb_interface *intf)
515{
516	if (intf)
517		get_device(&intf->dev);
518	return intf;
519}
520EXPORT_SYMBOL_GPL(usb_get_intf);
521
522/**
523 * usb_put_intf - release a use of the usb interface structure
524 * @intf: interface that's been decremented
525 *
526 * Must be called when a user of an interface is finished with it.  When the
527 * last user of the interface calls this function, the memory of the interface
528 * is freed.
529 */
530void usb_put_intf(struct usb_interface *intf)
531{
532	if (intf)
533		put_device(&intf->dev);
534}
535EXPORT_SYMBOL_GPL(usb_put_intf);
536
537/*			USB device locking
538 *
539 * USB devices and interfaces are locked using the semaphore in their
540 * embedded struct device.  The hub driver guarantees that whenever a
541 * device is connected or disconnected, drivers are called with the
542 * USB device locked as well as their particular interface.
543 *
544 * Complications arise when several devices are to be locked at the same
545 * time.  Only hub-aware drivers that are part of usbcore ever have to
546 * do this; nobody else needs to worry about it.  The rule for locking
547 * is simple:
548 *
549 *	When locking both a device and its parent, always lock the
550 *	the parent first.
551 */
552
553/**
554 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
555 * @udev: device that's being locked
556 * @iface: interface bound to the driver making the request (optional)
557 *
558 * Attempts to acquire the device lock, but fails if the device is
559 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
560 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
561 * lock, the routine polls repeatedly.  This is to prevent deadlock with
562 * disconnect; in some drivers (such as usb-storage) the disconnect()
563 * or suspend() method will block waiting for a device reset to complete.
564 *
565 * Returns a negative error code for failure, otherwise 0.
566 */
567int usb_lock_device_for_reset(struct usb_device *udev,
568			      const struct usb_interface *iface)
569{
570	unsigned long jiffies_expire = jiffies + HZ;
571
572	if (udev->state == USB_STATE_NOTATTACHED)
573		return -ENODEV;
574	if (udev->state == USB_STATE_SUSPENDED)
575		return -EHOSTUNREACH;
576	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
577			iface->condition == USB_INTERFACE_UNBOUND))
578		return -EINTR;
579
580	while (!usb_trylock_device(udev)) {
581
582		/* If we can't acquire the lock after waiting one second,
583		 * we're probably deadlocked */
584		if (time_after(jiffies, jiffies_expire))
585			return -EBUSY;
586
587		msleep(15);
588		if (udev->state == USB_STATE_NOTATTACHED)
589			return -ENODEV;
590		if (udev->state == USB_STATE_SUSPENDED)
591			return -EHOSTUNREACH;
592		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
593				iface->condition == USB_INTERFACE_UNBOUND))
594			return -EINTR;
595	}
596	return 0;
597}
598EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
599
600/**
601 * usb_get_current_frame_number - return current bus frame number
602 * @dev: the device whose bus is being queried
603 *
604 * Returns the current frame number for the USB host controller
605 * used with the given USB device.  This can be used when scheduling
606 * isochronous requests.
607 *
608 * Note that different kinds of host controller have different
609 * "scheduling horizons".  While one type might support scheduling only
610 * 32 frames into the future, others could support scheduling up to
611 * 1024 frames into the future.
612 */
613int usb_get_current_frame_number(struct usb_device *dev)
614{
615	return usb_hcd_get_frame_number(dev);
616}
617EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
618
619/*-------------------------------------------------------------------*/
620/*
621 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
622 * extra field of the interface and endpoint descriptor structs.
623 */
624
625int __usb_get_extra_descriptor(char *buffer, unsigned size,
626			       unsigned char type, void **ptr)
627{
628	struct usb_descriptor_header *header;
629
630	while (size >= sizeof(struct usb_descriptor_header)) {
631		header = (struct usb_descriptor_header *)buffer;
632
633		if (header->bLength < 2) {
634			printk(KERN_ERR
635				"%s: bogus descriptor, type %d length %d\n",
636				usbcore_name,
637				header->bDescriptorType,
638				header->bLength);
639			return -1;
640		}
641
642		if (header->bDescriptorType == type) {
643			*ptr = header;
644			return 0;
645		}
646
647		buffer += header->bLength;
648		size -= header->bLength;
649	}
650	return -1;
651}
652EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
653
654/**
655 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
656 * @dev: device the buffer will be used with
657 * @size: requested buffer size
658 * @mem_flags: affect whether allocation may block
659 * @dma: used to return DMA address of buffer
660 *
661 * Return value is either null (indicating no buffer could be allocated), or
662 * the cpu-space pointer to a buffer that may be used to perform DMA to the
663 * specified device.  Such cpu-space buffers are returned along with the DMA
664 * address (through the pointer provided).
665 *
666 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
667 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
668 * hardware during URB completion/resubmit.  The implementation varies between
669 * platforms, depending on details of how DMA will work to this device.
670 * Using these buffers also eliminates cacheline sharing problems on
671 * architectures where CPU caches are not DMA-coherent.  On systems without
672 * bus-snooping caches, these buffers are uncached.
673 *
674 * When the buffer is no longer used, free it with usb_free_coherent().
675 */
676void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
677			 dma_addr_t *dma)
678{
679	if (!dev || !dev->bus)
680		return NULL;
681	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
682}
683EXPORT_SYMBOL_GPL(usb_alloc_coherent);
684
685/**
686 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
687 * @dev: device the buffer was used with
688 * @size: requested buffer size
689 * @addr: CPU address of buffer
690 * @dma: DMA address of buffer
691 *
692 * This reclaims an I/O buffer, letting it be reused.  The memory must have
693 * been allocated using usb_alloc_coherent(), and the parameters must match
694 * those provided in that allocation request.
695 */
696void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
697		       dma_addr_t dma)
698{
699	if (!dev || !dev->bus)
700		return;
701	if (!addr)
702		return;
703	hcd_buffer_free(dev->bus, size, addr, dma);
704}
705EXPORT_SYMBOL_GPL(usb_free_coherent);
706
707/**
708 * usb_buffer_map - create DMA mapping(s) for an urb
709 * @urb: urb whose transfer_buffer/setup_packet will be mapped
710 *
711 * Return value is either null (indicating no buffer could be mapped), or
712 * the parameter.  URB_NO_TRANSFER_DMA_MAP is
713 * added to urb->transfer_flags if the operation succeeds.  If the device
714 * is connected to this system through a non-DMA controller, this operation
715 * always succeeds.
716 *
717 * This call would normally be used for an urb which is reused, perhaps
718 * as the target of a large periodic transfer, with usb_buffer_dmasync()
719 * calls to synchronize memory and dma state.
720 *
721 * Reverse the effect of this call with usb_buffer_unmap().
722 */
723#if 0
724struct urb *usb_buffer_map(struct urb *urb)
725{
726	struct usb_bus		*bus;
727	struct device		*controller;
728
729	if (!urb
730			|| !urb->dev
731			|| !(bus = urb->dev->bus)
732			|| !(controller = bus->controller))
733		return NULL;
734
735	if (controller->dma_mask) {
736		urb->transfer_dma = dma_map_single(controller,
737			urb->transfer_buffer, urb->transfer_buffer_length,
738			usb_pipein(urb->pipe)
739				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
740	/* FIXME generic api broken like pci, can't report errors */
741	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
742	} else
743		urb->transfer_dma = ~0;
744	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
745	return urb;
746}
747EXPORT_SYMBOL_GPL(usb_buffer_map);
748#endif  /*  0  */
749
750/* XXX DISABLED, no users currently.  If you wish to re-enable this
751 * XXX please determine whether the sync is to transfer ownership of
752 * XXX the buffer from device to cpu or vice verse, and thusly use the
753 * XXX appropriate _for_{cpu,device}() method.  -DaveM
754 */
755#if 0
756
757/**
758 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
759 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
760 */
761void usb_buffer_dmasync(struct urb *urb)
762{
763	struct usb_bus		*bus;
764	struct device		*controller;
765
766	if (!urb
767			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
768			|| !urb->dev
769			|| !(bus = urb->dev->bus)
770			|| !(controller = bus->controller))
771		return;
772
773	if (controller->dma_mask) {
774		dma_sync_single_for_cpu(controller,
775			urb->transfer_dma, urb->transfer_buffer_length,
776			usb_pipein(urb->pipe)
777				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
778		if (usb_pipecontrol(urb->pipe))
779			dma_sync_single_for_cpu(controller,
780					urb->setup_dma,
781					sizeof(struct usb_ctrlrequest),
782					DMA_TO_DEVICE);
783	}
784}
785EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
786#endif
787
788/**
789 * usb_buffer_unmap - free DMA mapping(s) for an urb
790 * @urb: urb whose transfer_buffer will be unmapped
791 *
792 * Reverses the effect of usb_buffer_map().
793 */
794#if 0
795void usb_buffer_unmap(struct urb *urb)
796{
797	struct usb_bus		*bus;
798	struct device		*controller;
799
800	if (!urb
801			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
802			|| !urb->dev
803			|| !(bus = urb->dev->bus)
804			|| !(controller = bus->controller))
805		return;
806
807	if (controller->dma_mask) {
808		dma_unmap_single(controller,
809			urb->transfer_dma, urb->transfer_buffer_length,
810			usb_pipein(urb->pipe)
811				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
812	}
813	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
814}
815EXPORT_SYMBOL_GPL(usb_buffer_unmap);
816#endif  /*  0  */
817
818#if 0
819/**
820 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
821 * @dev: device to which the scatterlist will be mapped
822 * @is_in: mapping transfer direction
823 * @sg: the scatterlist to map
824 * @nents: the number of entries in the scatterlist
825 *
826 * Return value is either < 0 (indicating no buffers could be mapped), or
827 * the number of DMA mapping array entries in the scatterlist.
828 *
829 * The caller is responsible for placing the resulting DMA addresses from
830 * the scatterlist into URB transfer buffer pointers, and for setting the
831 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
832 *
833 * Top I/O rates come from queuing URBs, instead of waiting for each one
834 * to complete before starting the next I/O.   This is particularly easy
835 * to do with scatterlists.  Just allocate and submit one URB for each DMA
836 * mapping entry returned, stopping on the first error or when all succeed.
837 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
838 *
839 * This call would normally be used when translating scatterlist requests,
840 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
841 * may be able to coalesce mappings for improved I/O efficiency.
842 *
843 * Reverse the effect of this call with usb_buffer_unmap_sg().
844 */
845int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
846		      struct scatterlist *sg, int nents)
847{
848	struct usb_bus		*bus;
849	struct device		*controller;
850
851	if (!dev
852			|| !(bus = dev->bus)
853			|| !(controller = bus->controller)
854			|| !controller->dma_mask)
855		return -EINVAL;
856
857	/* FIXME generic api broken like pci, can't report errors */
858	return dma_map_sg(controller, sg, nents,
859			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
860}
861EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
862#endif
863
864/* XXX DISABLED, no users currently.  If you wish to re-enable this
865 * XXX please determine whether the sync is to transfer ownership of
866 * XXX the buffer from device to cpu or vice verse, and thusly use the
867 * XXX appropriate _for_{cpu,device}() method.  -DaveM
868 */
869#if 0
870
871/**
872 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
873 * @dev: device to which the scatterlist will be mapped
874 * @is_in: mapping transfer direction
875 * @sg: the scatterlist to synchronize
876 * @n_hw_ents: the positive return value from usb_buffer_map_sg
877 *
878 * Use this when you are re-using a scatterlist's data buffers for
879 * another USB request.
880 */
881void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
882			   struct scatterlist *sg, int n_hw_ents)
883{
884	struct usb_bus		*bus;
885	struct device		*controller;
886
887	if (!dev
888			|| !(bus = dev->bus)
889			|| !(controller = bus->controller)
890			|| !controller->dma_mask)
891		return;
892
893	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
894			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
895}
896EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
897#endif
898
899#if 0
900/**
901 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
902 * @dev: device to which the scatterlist will be mapped
903 * @is_in: mapping transfer direction
904 * @sg: the scatterlist to unmap
905 * @n_hw_ents: the positive return value from usb_buffer_map_sg
906 *
907 * Reverses the effect of usb_buffer_map_sg().
908 */
909void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
910			 struct scatterlist *sg, int n_hw_ents)
911{
912	struct usb_bus		*bus;
913	struct device		*controller;
914
915	if (!dev
916			|| !(bus = dev->bus)
917			|| !(controller = bus->controller)
918			|| !controller->dma_mask)
919		return;
920
921	dma_unmap_sg(controller, sg, n_hw_ents,
922			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
923}
924EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
925#endif
926
927/* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
928#ifdef MODULE
929module_param(nousb, bool, 0444);
930#else
931core_param(nousb, nousb, bool, 0444);
932#endif
933
934/*
935 * for external read access to <nousb>
936 */
937int usb_disabled(void)
938{
939	return nousb;
940}
941EXPORT_SYMBOL_GPL(usb_disabled);
942
943/*
944 * Notifications of device and interface registration
945 */
946static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
947		void *data)
948{
949	struct device *dev = data;
950
951	switch (action) {
952	case BUS_NOTIFY_ADD_DEVICE:
953		if (dev->type == &usb_device_type)
954			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
955		else if (dev->type == &usb_if_device_type)
956			(void) usb_create_sysfs_intf_files(
957					to_usb_interface(dev));
958		break;
959
960	case BUS_NOTIFY_DEL_DEVICE:
961		if (dev->type == &usb_device_type)
962			usb_remove_sysfs_dev_files(to_usb_device(dev));
963		else if (dev->type == &usb_if_device_type)
964			usb_remove_sysfs_intf_files(to_usb_interface(dev));
965		break;
966	}
967	return 0;
968}
969
970static struct notifier_block usb_bus_nb = {
971	.notifier_call = usb_bus_notify,
972};
973
974struct dentry *usb_debug_root;
975EXPORT_SYMBOL_GPL(usb_debug_root);
976
977static struct dentry *usb_debug_devices;
978
979static int usb_debugfs_init(void)
980{
981	usb_debug_root = debugfs_create_dir("usb", NULL);
982	if (!usb_debug_root)
983		return -ENOENT;
984
985	usb_debug_devices = debugfs_create_file("devices", 0444,
986						usb_debug_root, NULL,
987						&usbfs_devices_fops);
988	if (!usb_debug_devices) {
989		debugfs_remove(usb_debug_root);
990		usb_debug_root = NULL;
991		return -ENOENT;
992	}
993
994	return 0;
995}
996
997static void usb_debugfs_cleanup(void)
998{
999	debugfs_remove(usb_debug_devices);
1000	debugfs_remove(usb_debug_root);
1001}
1002
1003/*
1004 * Init
1005 */
1006static int __init usb_init(void)
1007{
1008	int retval;
1009	if (nousb) {
1010		pr_info("%s: USB support disabled\n", usbcore_name);
1011		return 0;
1012	}
1013
1014	retval = usb_debugfs_init();
1015	if (retval)
1016		goto out;
1017
1018	retval = bus_register(&usb_bus_type);
1019	if (retval)
1020		goto bus_register_failed;
1021	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1022	if (retval)
1023		goto bus_notifier_failed;
1024	retval = usb_major_init();
1025	if (retval)
1026		goto major_init_failed;
1027	retval = usb_register(&usbfs_driver);
1028	if (retval)
1029		goto driver_register_failed;
1030	retval = usb_devio_init();
1031	if (retval)
1032		goto usb_devio_init_failed;
1033	retval = usbfs_init();
1034	if (retval)
1035		goto fs_init_failed;
1036	retval = usb_hub_init();
1037	if (retval)
1038		goto hub_init_failed;
1039	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1040	if (!retval)
1041		goto out;
1042
1043	usb_hub_cleanup();
1044hub_init_failed:
1045	usbfs_cleanup();
1046fs_init_failed:
1047	usb_devio_cleanup();
1048usb_devio_init_failed:
1049	usb_deregister(&usbfs_driver);
1050driver_register_failed:
1051	usb_major_cleanup();
1052major_init_failed:
1053	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1054bus_notifier_failed:
1055	bus_unregister(&usb_bus_type);
1056bus_register_failed:
1057	usb_debugfs_cleanup();
1058out:
1059	return retval;
1060}
1061
1062/*
1063 * Cleanup
1064 */
1065static void __exit usb_exit(void)
1066{
1067	/* This will matter if shutdown/reboot does exitcalls. */
1068	if (nousb)
1069		return;
1070
1071	usb_deregister_device_driver(&usb_generic_driver);
1072	usb_major_cleanup();
1073	usbfs_cleanup();
1074	usb_deregister(&usbfs_driver);
1075	usb_devio_cleanup();
1076	usb_hub_cleanup();
1077	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1078	bus_unregister(&usb_bus_type);
1079	usb_debugfs_cleanup();
1080}
1081
1082subsys_initcall(usb_init);
1083module_exit(usb_exit);
1084MODULE_LICENSE("GPL");
1085