xhci-mem.c revision be88fe4f4dda93e3264a887745123b1e6c4a6845
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27
28#include "xhci.h"
29
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39	struct xhci_segment *seg;
40	dma_addr_t	dma;
41
42	seg = kzalloc(sizeof *seg, flags);
43	if (!seg)
44		return NULL;
45	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48	if (!seg->trbs) {
49		kfree(seg);
50		return NULL;
51	}
52	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53			seg->trbs, (unsigned long long)dma);
54
55	memset(seg->trbs, 0, SEGMENT_SIZE);
56	seg->dma = dma;
57	seg->next = NULL;
58
59	return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64	if (!seg)
65		return;
66	if (seg->trbs) {
67		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68				seg->trbs, (unsigned long long)seg->dma);
69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70		seg->trbs = NULL;
71	}
72	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73	kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment.  The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84		struct xhci_segment *next, bool link_trbs)
85{
86	u32 val;
87
88	if (!prev || !next)
89		return;
90	prev->next = next;
91	if (link_trbs) {
92		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95		val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96		val &= ~TRB_TYPE_BITMASK;
97		val |= TRB_TYPE(TRB_LINK);
98		/* Always set the chain bit with 0.95 hardware */
99		if (xhci_link_trb_quirk(xhci))
100			val |= TRB_CHAIN;
101		prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102	}
103	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104			(unsigned long long)prev->dma,
105			(unsigned long long)next->dma);
106}
107
108/* XXX: Do we need the hcd structure in all these functions? */
109void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110{
111	struct xhci_segment *seg;
112	struct xhci_segment *first_seg;
113
114	if (!ring || !ring->first_seg)
115		return;
116	first_seg = ring->first_seg;
117	seg = first_seg->next;
118	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119	while (seg != first_seg) {
120		struct xhci_segment *next = seg->next;
121		xhci_segment_free(xhci, seg);
122		seg = next;
123	}
124	xhci_segment_free(xhci, first_seg);
125	ring->first_seg = NULL;
126	kfree(ring);
127}
128
129static void xhci_initialize_ring_info(struct xhci_ring *ring)
130{
131	/* The ring is empty, so the enqueue pointer == dequeue pointer */
132	ring->enqueue = ring->first_seg->trbs;
133	ring->enq_seg = ring->first_seg;
134	ring->dequeue = ring->enqueue;
135	ring->deq_seg = ring->first_seg;
136	/* The ring is initialized to 0. The producer must write 1 to the cycle
137	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139	 */
140	ring->cycle_state = 1;
141	/* Not necessary for new rings, but needed for re-initialized rings */
142	ring->enq_updates = 0;
143	ring->deq_updates = 0;
144}
145
146/**
147 * Create a new ring with zero or more segments.
148 *
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
152 */
153static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154		unsigned int num_segs, bool link_trbs, gfp_t flags)
155{
156	struct xhci_ring	*ring;
157	struct xhci_segment	*prev;
158
159	ring = kzalloc(sizeof *(ring), flags);
160	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161	if (!ring)
162		return NULL;
163
164	INIT_LIST_HEAD(&ring->td_list);
165	if (num_segs == 0)
166		return ring;
167
168	ring->first_seg = xhci_segment_alloc(xhci, flags);
169	if (!ring->first_seg)
170		goto fail;
171	num_segs--;
172
173	prev = ring->first_seg;
174	while (num_segs > 0) {
175		struct xhci_segment	*next;
176
177		next = xhci_segment_alloc(xhci, flags);
178		if (!next)
179			goto fail;
180		xhci_link_segments(xhci, prev, next, link_trbs);
181
182		prev = next;
183		num_segs--;
184	}
185	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187	if (link_trbs) {
188		/* See section 4.9.2.1 and 6.4.4.1 */
189		prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190		xhci_dbg(xhci, "Wrote link toggle flag to"
191				" segment %p (virtual), 0x%llx (DMA)\n",
192				prev, (unsigned long long)prev->dma);
193	}
194	xhci_initialize_ring_info(ring);
195	return ring;
196
197fail:
198	xhci_ring_free(xhci, ring);
199	return NULL;
200}
201
202void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203		struct xhci_virt_device *virt_dev,
204		unsigned int ep_index)
205{
206	int rings_cached;
207
208	rings_cached = virt_dev->num_rings_cached;
209	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210		virt_dev->num_rings_cached++;
211		rings_cached = virt_dev->num_rings_cached;
212		virt_dev->ring_cache[rings_cached] =
213			virt_dev->eps[ep_index].ring;
214		xhci_dbg(xhci, "Cached old ring, "
215				"%d ring%s cached\n",
216				rings_cached,
217				(rings_cached > 1) ? "s" : "");
218	} else {
219		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220		xhci_dbg(xhci, "Ring cache full (%d rings), "
221				"freeing ring\n",
222				virt_dev->num_rings_cached);
223	}
224	virt_dev->eps[ep_index].ring = NULL;
225}
226
227/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
229 */
230static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231		struct xhci_ring *ring)
232{
233	struct xhci_segment	*seg = ring->first_seg;
234	do {
235		memset(seg->trbs, 0,
236				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237		/* All endpoint rings have link TRBs */
238		xhci_link_segments(xhci, seg, seg->next, 1);
239		seg = seg->next;
240	} while (seg != ring->first_seg);
241	xhci_initialize_ring_info(ring);
242	/* td list should be empty since all URBs have been cancelled,
243	 * but just in case...
244	 */
245	INIT_LIST_HEAD(&ring->td_list);
246}
247
248#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251						    int type, gfp_t flags)
252{
253	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254	if (!ctx)
255		return NULL;
256
257	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258	ctx->type = type;
259	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260	if (type == XHCI_CTX_TYPE_INPUT)
261		ctx->size += CTX_SIZE(xhci->hcc_params);
262
263	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264	memset(ctx->bytes, 0, ctx->size);
265	return ctx;
266}
267
268static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269			     struct xhci_container_ctx *ctx)
270{
271	if (!ctx)
272		return;
273	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274	kfree(ctx);
275}
276
277struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278					      struct xhci_container_ctx *ctx)
279{
280	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281	return (struct xhci_input_control_ctx *)ctx->bytes;
282}
283
284struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285					struct xhci_container_ctx *ctx)
286{
287	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288		return (struct xhci_slot_ctx *)ctx->bytes;
289
290	return (struct xhci_slot_ctx *)
291		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
292}
293
294struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295				    struct xhci_container_ctx *ctx,
296				    unsigned int ep_index)
297{
298	/* increment ep index by offset of start of ep ctx array */
299	ep_index++;
300	if (ctx->type == XHCI_CTX_TYPE_INPUT)
301		ep_index++;
302
303	return (struct xhci_ep_ctx *)
304		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305}
306
307
308/***************** Streams structures manipulation *************************/
309
310void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311		unsigned int num_stream_ctxs,
312		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313{
314	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317		pci_free_consistent(pdev,
318				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319				stream_ctx, dma);
320	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321		return dma_pool_free(xhci->small_streams_pool,
322				stream_ctx, dma);
323	else
324		return dma_pool_free(xhci->medium_streams_pool,
325				stream_ctx, dma);
326}
327
328/*
329 * The stream context array for each endpoint with bulk streams enabled can
330 * vary in size, based on:
331 *  - how many streams the endpoint supports,
332 *  - the maximum primary stream array size the host controller supports,
333 *  - and how many streams the device driver asks for.
334 *
335 * The stream context array must be a power of 2, and can be as small as
336 * 64 bytes or as large as 1MB.
337 */
338struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339		unsigned int num_stream_ctxs, dma_addr_t *dma,
340		gfp_t mem_flags)
341{
342	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345		return pci_alloc_consistent(pdev,
346				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347				dma);
348	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349		return dma_pool_alloc(xhci->small_streams_pool,
350				mem_flags, dma);
351	else
352		return dma_pool_alloc(xhci->medium_streams_pool,
353				mem_flags, dma);
354}
355
356struct xhci_ring *xhci_dma_to_transfer_ring(
357		struct xhci_virt_ep *ep,
358		u64 address)
359{
360	if (ep->ep_state & EP_HAS_STREAMS)
361		return radix_tree_lookup(&ep->stream_info->trb_address_map,
362				address >> SEGMENT_SHIFT);
363	return ep->ring;
364}
365
366/* Only use this when you know stream_info is valid */
367#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368static struct xhci_ring *dma_to_stream_ring(
369		struct xhci_stream_info *stream_info,
370		u64 address)
371{
372	return radix_tree_lookup(&stream_info->trb_address_map,
373			address >> SEGMENT_SHIFT);
374}
375#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
377struct xhci_ring *xhci_stream_id_to_ring(
378		struct xhci_virt_device *dev,
379		unsigned int ep_index,
380		unsigned int stream_id)
381{
382	struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384	if (stream_id == 0)
385		return ep->ring;
386	if (!ep->stream_info)
387		return NULL;
388
389	if (stream_id > ep->stream_info->num_streams)
390		return NULL;
391	return ep->stream_info->stream_rings[stream_id];
392}
393
394#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
395static int xhci_test_radix_tree(struct xhci_hcd *xhci,
396		unsigned int num_streams,
397		struct xhci_stream_info *stream_info)
398{
399	u32 cur_stream;
400	struct xhci_ring *cur_ring;
401	u64 addr;
402
403	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
404		struct xhci_ring *mapped_ring;
405		int trb_size = sizeof(union xhci_trb);
406
407		cur_ring = stream_info->stream_rings[cur_stream];
408		for (addr = cur_ring->first_seg->dma;
409				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
410				addr += trb_size) {
411			mapped_ring = dma_to_stream_ring(stream_info, addr);
412			if (cur_ring != mapped_ring) {
413				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
414						"didn't map to stream ID %u; "
415						"mapped to ring %p\n",
416						(unsigned long long) addr,
417						cur_stream,
418						mapped_ring);
419				return -EINVAL;
420			}
421		}
422		/* One TRB after the end of the ring segment shouldn't return a
423		 * pointer to the current ring (although it may be a part of a
424		 * different ring).
425		 */
426		mapped_ring = dma_to_stream_ring(stream_info, addr);
427		if (mapped_ring != cur_ring) {
428			/* One TRB before should also fail */
429			addr = cur_ring->first_seg->dma - trb_size;
430			mapped_ring = dma_to_stream_ring(stream_info, addr);
431		}
432		if (mapped_ring == cur_ring) {
433			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
434					"mapped to valid stream ID %u; "
435					"mapped ring = %p\n",
436					(unsigned long long) addr,
437					cur_stream,
438					mapped_ring);
439			return -EINVAL;
440		}
441	}
442	return 0;
443}
444#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
445
446/*
447 * Change an endpoint's internal structure so it supports stream IDs.  The
448 * number of requested streams includes stream 0, which cannot be used by device
449 * drivers.
450 *
451 * The number of stream contexts in the stream context array may be bigger than
452 * the number of streams the driver wants to use.  This is because the number of
453 * stream context array entries must be a power of two.
454 *
455 * We need a radix tree for mapping physical addresses of TRBs to which stream
456 * ID they belong to.  We need to do this because the host controller won't tell
457 * us which stream ring the TRB came from.  We could store the stream ID in an
458 * event data TRB, but that doesn't help us for the cancellation case, since the
459 * endpoint may stop before it reaches that event data TRB.
460 *
461 * The radix tree maps the upper portion of the TRB DMA address to a ring
462 * segment that has the same upper portion of DMA addresses.  For example, say I
463 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
464 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
465 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
466 * pass the radix tree a key to get the right stream ID:
467 *
468 * 	0x10c90fff >> 10 = 0x43243
469 * 	0x10c912c0 >> 10 = 0x43244
470 * 	0x10c91400 >> 10 = 0x43245
471 *
472 * Obviously, only those TRBs with DMA addresses that are within the segment
473 * will make the radix tree return the stream ID for that ring.
474 *
475 * Caveats for the radix tree:
476 *
477 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
479 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
481 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
482 * extended systems (where the DMA address can be bigger than 32-bits),
483 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
484 */
485struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
486		unsigned int num_stream_ctxs,
487		unsigned int num_streams, gfp_t mem_flags)
488{
489	struct xhci_stream_info *stream_info;
490	u32 cur_stream;
491	struct xhci_ring *cur_ring;
492	unsigned long key;
493	u64 addr;
494	int ret;
495
496	xhci_dbg(xhci, "Allocating %u streams and %u "
497			"stream context array entries.\n",
498			num_streams, num_stream_ctxs);
499	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
500		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
501		return NULL;
502	}
503	xhci->cmd_ring_reserved_trbs++;
504
505	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
506	if (!stream_info)
507		goto cleanup_trbs;
508
509	stream_info->num_streams = num_streams;
510	stream_info->num_stream_ctxs = num_stream_ctxs;
511
512	/* Initialize the array of virtual pointers to stream rings. */
513	stream_info->stream_rings = kzalloc(
514			sizeof(struct xhci_ring *)*num_streams,
515			mem_flags);
516	if (!stream_info->stream_rings)
517		goto cleanup_info;
518
519	/* Initialize the array of DMA addresses for stream rings for the HW. */
520	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
521			num_stream_ctxs, &stream_info->ctx_array_dma,
522			mem_flags);
523	if (!stream_info->stream_ctx_array)
524		goto cleanup_ctx;
525	memset(stream_info->stream_ctx_array, 0,
526			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
527
528	/* Allocate everything needed to free the stream rings later */
529	stream_info->free_streams_command =
530		xhci_alloc_command(xhci, true, true, mem_flags);
531	if (!stream_info->free_streams_command)
532		goto cleanup_ctx;
533
534	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
535
536	/* Allocate rings for all the streams that the driver will use,
537	 * and add their segment DMA addresses to the radix tree.
538	 * Stream 0 is reserved.
539	 */
540	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
541		stream_info->stream_rings[cur_stream] =
542			xhci_ring_alloc(xhci, 1, true, mem_flags);
543		cur_ring = stream_info->stream_rings[cur_stream];
544		if (!cur_ring)
545			goto cleanup_rings;
546		cur_ring->stream_id = cur_stream;
547		/* Set deq ptr, cycle bit, and stream context type */
548		addr = cur_ring->first_seg->dma |
549			SCT_FOR_CTX(SCT_PRI_TR) |
550			cur_ring->cycle_state;
551		stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
552		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
553				cur_stream, (unsigned long long) addr);
554
555		key = (unsigned long)
556			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
557		ret = radix_tree_insert(&stream_info->trb_address_map,
558				key, cur_ring);
559		if (ret) {
560			xhci_ring_free(xhci, cur_ring);
561			stream_info->stream_rings[cur_stream] = NULL;
562			goto cleanup_rings;
563		}
564	}
565	/* Leave the other unused stream ring pointers in the stream context
566	 * array initialized to zero.  This will cause the xHC to give us an
567	 * error if the device asks for a stream ID we don't have setup (if it
568	 * was any other way, the host controller would assume the ring is
569	 * "empty" and wait forever for data to be queued to that stream ID).
570	 */
571#if XHCI_DEBUG
572	/* Do a little test on the radix tree to make sure it returns the
573	 * correct values.
574	 */
575	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
576		goto cleanup_rings;
577#endif
578
579	return stream_info;
580
581cleanup_rings:
582	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
583		cur_ring = stream_info->stream_rings[cur_stream];
584		if (cur_ring) {
585			addr = cur_ring->first_seg->dma;
586			radix_tree_delete(&stream_info->trb_address_map,
587					addr >> SEGMENT_SHIFT);
588			xhci_ring_free(xhci, cur_ring);
589			stream_info->stream_rings[cur_stream] = NULL;
590		}
591	}
592	xhci_free_command(xhci, stream_info->free_streams_command);
593cleanup_ctx:
594	kfree(stream_info->stream_rings);
595cleanup_info:
596	kfree(stream_info);
597cleanup_trbs:
598	xhci->cmd_ring_reserved_trbs--;
599	return NULL;
600}
601/*
602 * Sets the MaxPStreams field and the Linear Stream Array field.
603 * Sets the dequeue pointer to the stream context array.
604 */
605void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
606		struct xhci_ep_ctx *ep_ctx,
607		struct xhci_stream_info *stream_info)
608{
609	u32 max_primary_streams;
610	/* MaxPStreams is the number of stream context array entries, not the
611	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
612	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
613	 */
614	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
615	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
616			1 << (max_primary_streams + 1));
617	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
618	ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
619	ep_ctx->ep_info |= EP_HAS_LSA;
620	ep_ctx->deq  = stream_info->ctx_array_dma;
621}
622
623/*
624 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
626 * not at the beginning of the ring).
627 */
628void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
629		struct xhci_ep_ctx *ep_ctx,
630		struct xhci_virt_ep *ep)
631{
632	dma_addr_t addr;
633	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
634	ep_ctx->ep_info &= ~EP_HAS_LSA;
635	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
636	ep_ctx->deq  = addr | ep->ring->cycle_state;
637}
638
639/* Frees all stream contexts associated with the endpoint,
640 *
641 * Caller should fix the endpoint context streams fields.
642 */
643void xhci_free_stream_info(struct xhci_hcd *xhci,
644		struct xhci_stream_info *stream_info)
645{
646	int cur_stream;
647	struct xhci_ring *cur_ring;
648	dma_addr_t addr;
649
650	if (!stream_info)
651		return;
652
653	for (cur_stream = 1; cur_stream < stream_info->num_streams;
654			cur_stream++) {
655		cur_ring = stream_info->stream_rings[cur_stream];
656		if (cur_ring) {
657			addr = cur_ring->first_seg->dma;
658			radix_tree_delete(&stream_info->trb_address_map,
659					addr >> SEGMENT_SHIFT);
660			xhci_ring_free(xhci, cur_ring);
661			stream_info->stream_rings[cur_stream] = NULL;
662		}
663	}
664	xhci_free_command(xhci, stream_info->free_streams_command);
665	xhci->cmd_ring_reserved_trbs--;
666	if (stream_info->stream_ctx_array)
667		xhci_free_stream_ctx(xhci,
668				stream_info->num_stream_ctxs,
669				stream_info->stream_ctx_array,
670				stream_info->ctx_array_dma);
671
672	if (stream_info)
673		kfree(stream_info->stream_rings);
674	kfree(stream_info);
675}
676
677
678/***************** Device context manipulation *************************/
679
680static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
681		struct xhci_virt_ep *ep)
682{
683	init_timer(&ep->stop_cmd_timer);
684	ep->stop_cmd_timer.data = (unsigned long) ep;
685	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
686	ep->xhci = xhci;
687}
688
689/* All the xhci_tds in the ring's TD list should be freed at this point */
690void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
691{
692	struct xhci_virt_device *dev;
693	int i;
694
695	/* Slot ID 0 is reserved */
696	if (slot_id == 0 || !xhci->devs[slot_id])
697		return;
698
699	dev = xhci->devs[slot_id];
700	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
701	if (!dev)
702		return;
703
704	for (i = 0; i < 31; ++i) {
705		if (dev->eps[i].ring)
706			xhci_ring_free(xhci, dev->eps[i].ring);
707		if (dev->eps[i].stream_info)
708			xhci_free_stream_info(xhci,
709					dev->eps[i].stream_info);
710	}
711
712	if (dev->ring_cache) {
713		for (i = 0; i < dev->num_rings_cached; i++)
714			xhci_ring_free(xhci, dev->ring_cache[i]);
715		kfree(dev->ring_cache);
716	}
717
718	if (dev->in_ctx)
719		xhci_free_container_ctx(xhci, dev->in_ctx);
720	if (dev->out_ctx)
721		xhci_free_container_ctx(xhci, dev->out_ctx);
722
723	kfree(xhci->devs[slot_id]);
724	xhci->devs[slot_id] = NULL;
725}
726
727int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
728		struct usb_device *udev, gfp_t flags)
729{
730	struct xhci_virt_device *dev;
731	int i;
732
733	/* Slot ID 0 is reserved */
734	if (slot_id == 0 || xhci->devs[slot_id]) {
735		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
736		return 0;
737	}
738
739	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
740	if (!xhci->devs[slot_id])
741		return 0;
742	dev = xhci->devs[slot_id];
743
744	/* Allocate the (output) device context that will be used in the HC. */
745	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
746	if (!dev->out_ctx)
747		goto fail;
748
749	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
750			(unsigned long long)dev->out_ctx->dma);
751
752	/* Allocate the (input) device context for address device command */
753	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
754	if (!dev->in_ctx)
755		goto fail;
756
757	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
758			(unsigned long long)dev->in_ctx->dma);
759
760	/* Initialize the cancellation list and watchdog timers for each ep */
761	for (i = 0; i < 31; i++) {
762		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
763		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
764	}
765
766	/* Allocate endpoint 0 ring */
767	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
768	if (!dev->eps[0].ring)
769		goto fail;
770
771	/* Allocate pointers to the ring cache */
772	dev->ring_cache = kzalloc(
773			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
774			flags);
775	if (!dev->ring_cache)
776		goto fail;
777	dev->num_rings_cached = 0;
778
779	init_completion(&dev->cmd_completion);
780	INIT_LIST_HEAD(&dev->cmd_list);
781	dev->udev = udev;
782
783	/* Point to output device context in dcbaa. */
784	xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
785	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
786			slot_id,
787			&xhci->dcbaa->dev_context_ptrs[slot_id],
788			(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
789
790	return 1;
791fail:
792	xhci_free_virt_device(xhci, slot_id);
793	return 0;
794}
795
796void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
797		struct usb_device *udev)
798{
799	struct xhci_virt_device *virt_dev;
800	struct xhci_ep_ctx	*ep0_ctx;
801	struct xhci_ring	*ep_ring;
802
803	virt_dev = xhci->devs[udev->slot_id];
804	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
805	ep_ring = virt_dev->eps[0].ring;
806	/*
807	 * FIXME we don't keep track of the dequeue pointer very well after a
808	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
809	 * host to our enqueue pointer.  This should only be called after a
810	 * configured device has reset, so all control transfers should have
811	 * been completed or cancelled before the reset.
812	 */
813	ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
814	ep0_ctx->deq |= ep_ring->cycle_state;
815}
816
817/* Setup an xHCI virtual device for a Set Address command */
818int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
819{
820	struct xhci_virt_device *dev;
821	struct xhci_ep_ctx	*ep0_ctx;
822	struct usb_device	*top_dev;
823	struct xhci_slot_ctx    *slot_ctx;
824	struct xhci_input_control_ctx *ctrl_ctx;
825
826	dev = xhci->devs[udev->slot_id];
827	/* Slot ID 0 is reserved */
828	if (udev->slot_id == 0 || !dev) {
829		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
830				udev->slot_id);
831		return -EINVAL;
832	}
833	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
834	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
835	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
836
837	/* 2) New slot context and endpoint 0 context are valid*/
838	ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
839
840	/* 3) Only the control endpoint is valid - one endpoint context */
841	slot_ctx->dev_info |= LAST_CTX(1);
842
843	slot_ctx->dev_info |= (u32) udev->route;
844	switch (udev->speed) {
845	case USB_SPEED_SUPER:
846		slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
847		break;
848	case USB_SPEED_HIGH:
849		slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
850		break;
851	case USB_SPEED_FULL:
852		slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
853		break;
854	case USB_SPEED_LOW:
855		slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
856		break;
857	case USB_SPEED_WIRELESS:
858		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
859		return -EINVAL;
860		break;
861	default:
862		/* Speed was set earlier, this shouldn't happen. */
863		BUG();
864	}
865	/* Find the root hub port this device is under */
866	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
867			top_dev = top_dev->parent)
868		/* Found device below root hub */;
869	slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
870	dev->port = top_dev->portnum;
871	xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
872
873	/* Is this a LS/FS device under a HS hub? */
874	if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
875			udev->tt) {
876		slot_ctx->tt_info = udev->tt->hub->slot_id;
877		slot_ctx->tt_info |= udev->ttport << 8;
878		if (udev->tt->multi)
879			slot_ctx->dev_info |= DEV_MTT;
880	}
881	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
882	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
883
884	/* Step 4 - ring already allocated */
885	/* Step 5 */
886	ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
887	/*
888	 * XXX: Not sure about wireless USB devices.
889	 */
890	switch (udev->speed) {
891	case USB_SPEED_SUPER:
892		ep0_ctx->ep_info2 |= MAX_PACKET(512);
893		break;
894	case USB_SPEED_HIGH:
895	/* USB core guesses at a 64-byte max packet first for FS devices */
896	case USB_SPEED_FULL:
897		ep0_ctx->ep_info2 |= MAX_PACKET(64);
898		break;
899	case USB_SPEED_LOW:
900		ep0_ctx->ep_info2 |= MAX_PACKET(8);
901		break;
902	case USB_SPEED_WIRELESS:
903		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
904		return -EINVAL;
905		break;
906	default:
907		/* New speed? */
908		BUG();
909	}
910	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
911	ep0_ctx->ep_info2 |= MAX_BURST(0);
912	ep0_ctx->ep_info2 |= ERROR_COUNT(3);
913
914	ep0_ctx->deq =
915		dev->eps[0].ring->first_seg->dma;
916	ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
917
918	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
919
920	return 0;
921}
922
923/* Return the polling or NAK interval.
924 *
925 * The polling interval is expressed in "microframes".  If xHCI's Interval field
926 * is set to N, it will service the endpoint every 2^(Interval)*125us.
927 *
928 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
929 * is set to 0.
930 */
931static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
932		struct usb_host_endpoint *ep)
933{
934	unsigned int interval = 0;
935
936	switch (udev->speed) {
937	case USB_SPEED_HIGH:
938		/* Max NAK rate */
939		if (usb_endpoint_xfer_control(&ep->desc) ||
940				usb_endpoint_xfer_bulk(&ep->desc))
941			interval = ep->desc.bInterval;
942		/* Fall through - SS and HS isoc/int have same decoding */
943	case USB_SPEED_SUPER:
944		if (usb_endpoint_xfer_int(&ep->desc) ||
945				usb_endpoint_xfer_isoc(&ep->desc)) {
946			if (ep->desc.bInterval == 0)
947				interval = 0;
948			else
949				interval = ep->desc.bInterval - 1;
950			if (interval > 15)
951				interval = 15;
952			if (interval != ep->desc.bInterval + 1)
953				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
954						ep->desc.bEndpointAddress, 1 << interval);
955		}
956		break;
957	/* Convert bInterval (in 1-255 frames) to microframes and round down to
958	 * nearest power of 2.
959	 */
960	case USB_SPEED_FULL:
961	case USB_SPEED_LOW:
962		if (usb_endpoint_xfer_int(&ep->desc) ||
963				usb_endpoint_xfer_isoc(&ep->desc)) {
964			interval = fls(8*ep->desc.bInterval) - 1;
965			if (interval > 10)
966				interval = 10;
967			if (interval < 3)
968				interval = 3;
969			if ((1 << interval) != 8*ep->desc.bInterval)
970				dev_warn(&udev->dev,
971						"ep %#x - rounding interval"
972						" to %d microframes, "
973						"ep desc says %d microframes\n",
974						ep->desc.bEndpointAddress,
975						1 << interval,
976						8*ep->desc.bInterval);
977		}
978		break;
979	default:
980		BUG();
981	}
982	return EP_INTERVAL(interval);
983}
984
985/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
986 * High speed endpoint descriptors can define "the number of additional
987 * transaction opportunities per microframe", but that goes in the Max Burst
988 * endpoint context field.
989 */
990static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
991		struct usb_host_endpoint *ep)
992{
993	if (udev->speed != USB_SPEED_SUPER ||
994			!usb_endpoint_xfer_isoc(&ep->desc))
995		return 0;
996	return ep->ss_ep_comp.bmAttributes;
997}
998
999static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1000		struct usb_host_endpoint *ep)
1001{
1002	int in;
1003	u32 type;
1004
1005	in = usb_endpoint_dir_in(&ep->desc);
1006	if (usb_endpoint_xfer_control(&ep->desc)) {
1007		type = EP_TYPE(CTRL_EP);
1008	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1009		if (in)
1010			type = EP_TYPE(BULK_IN_EP);
1011		else
1012			type = EP_TYPE(BULK_OUT_EP);
1013	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1014		if (in)
1015			type = EP_TYPE(ISOC_IN_EP);
1016		else
1017			type = EP_TYPE(ISOC_OUT_EP);
1018	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1019		if (in)
1020			type = EP_TYPE(INT_IN_EP);
1021		else
1022			type = EP_TYPE(INT_OUT_EP);
1023	} else {
1024		BUG();
1025	}
1026	return type;
1027}
1028
1029/* Return the maximum endpoint service interval time (ESIT) payload.
1030 * Basically, this is the maxpacket size, multiplied by the burst size
1031 * and mult size.
1032 */
1033static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1034		struct usb_device *udev,
1035		struct usb_host_endpoint *ep)
1036{
1037	int max_burst;
1038	int max_packet;
1039
1040	/* Only applies for interrupt or isochronous endpoints */
1041	if (usb_endpoint_xfer_control(&ep->desc) ||
1042			usb_endpoint_xfer_bulk(&ep->desc))
1043		return 0;
1044
1045	if (udev->speed == USB_SPEED_SUPER)
1046		return ep->ss_ep_comp.wBytesPerInterval;
1047
1048	max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1049	max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1050	/* A 0 in max burst means 1 transfer per ESIT */
1051	return max_packet * (max_burst + 1);
1052}
1053
1054/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1055 * Drivers will have to call usb_alloc_streams() to do that.
1056 */
1057int xhci_endpoint_init(struct xhci_hcd *xhci,
1058		struct xhci_virt_device *virt_dev,
1059		struct usb_device *udev,
1060		struct usb_host_endpoint *ep,
1061		gfp_t mem_flags)
1062{
1063	unsigned int ep_index;
1064	struct xhci_ep_ctx *ep_ctx;
1065	struct xhci_ring *ep_ring;
1066	unsigned int max_packet;
1067	unsigned int max_burst;
1068	u32 max_esit_payload;
1069
1070	ep_index = xhci_get_endpoint_index(&ep->desc);
1071	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1072
1073	/* Set up the endpoint ring */
1074	/*
1075	 * Isochronous endpoint ring needs bigger size because one isoc URB
1076	 * carries multiple packets and it will insert multiple tds to the
1077	 * ring.
1078	 * This should be replaced with dynamic ring resizing in the future.
1079	 */
1080	if (usb_endpoint_xfer_isoc(&ep->desc))
1081		virt_dev->eps[ep_index].new_ring =
1082			xhci_ring_alloc(xhci, 8, true, mem_flags);
1083	else
1084		virt_dev->eps[ep_index].new_ring =
1085			xhci_ring_alloc(xhci, 1, true, mem_flags);
1086	if (!virt_dev->eps[ep_index].new_ring) {
1087		/* Attempt to use the ring cache */
1088		if (virt_dev->num_rings_cached == 0)
1089			return -ENOMEM;
1090		virt_dev->eps[ep_index].new_ring =
1091			virt_dev->ring_cache[virt_dev->num_rings_cached];
1092		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1093		virt_dev->num_rings_cached--;
1094		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1095	}
1096	virt_dev->eps[ep_index].skip = false;
1097	ep_ring = virt_dev->eps[ep_index].new_ring;
1098	ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1099
1100	ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1101	ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1102
1103	/* FIXME dig Mult and streams info out of ep companion desc */
1104
1105	/* Allow 3 retries for everything but isoc;
1106	 * error count = 0 means infinite retries.
1107	 */
1108	if (!usb_endpoint_xfer_isoc(&ep->desc))
1109		ep_ctx->ep_info2 = ERROR_COUNT(3);
1110	else
1111		ep_ctx->ep_info2 = ERROR_COUNT(1);
1112
1113	ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1114
1115	/* Set the max packet size and max burst */
1116	switch (udev->speed) {
1117	case USB_SPEED_SUPER:
1118		max_packet = ep->desc.wMaxPacketSize;
1119		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1120		/* dig out max burst from ep companion desc */
1121		max_packet = ep->ss_ep_comp.bMaxBurst;
1122		if (!max_packet)
1123			xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1124		ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1125		break;
1126	case USB_SPEED_HIGH:
1127		/* bits 11:12 specify the number of additional transaction
1128		 * opportunities per microframe (USB 2.0, section 9.6.6)
1129		 */
1130		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1131				usb_endpoint_xfer_int(&ep->desc)) {
1132			max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1133			ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1134		}
1135		/* Fall through */
1136	case USB_SPEED_FULL:
1137	case USB_SPEED_LOW:
1138		max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1139		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1140		break;
1141	default:
1142		BUG();
1143	}
1144	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1145	ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1146
1147	/*
1148	 * XXX no idea how to calculate the average TRB buffer length for bulk
1149	 * endpoints, as the driver gives us no clue how big each scatter gather
1150	 * list entry (or buffer) is going to be.
1151	 *
1152	 * For isochronous and interrupt endpoints, we set it to the max
1153	 * available, until we have new API in the USB core to allow drivers to
1154	 * declare how much bandwidth they actually need.
1155	 *
1156	 * Normally, it would be calculated by taking the total of the buffer
1157	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1158	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1159	 * use Event Data TRBs, and we don't chain in a link TRB on short
1160	 * transfers, we're basically dividing by 1.
1161	 */
1162	ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1163
1164	/* FIXME Debug endpoint context */
1165	return 0;
1166}
1167
1168void xhci_endpoint_zero(struct xhci_hcd *xhci,
1169		struct xhci_virt_device *virt_dev,
1170		struct usb_host_endpoint *ep)
1171{
1172	unsigned int ep_index;
1173	struct xhci_ep_ctx *ep_ctx;
1174
1175	ep_index = xhci_get_endpoint_index(&ep->desc);
1176	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1177
1178	ep_ctx->ep_info = 0;
1179	ep_ctx->ep_info2 = 0;
1180	ep_ctx->deq = 0;
1181	ep_ctx->tx_info = 0;
1182	/* Don't free the endpoint ring until the set interface or configuration
1183	 * request succeeds.
1184	 */
1185}
1186
1187/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1188 * Useful when you want to change one particular aspect of the endpoint and then
1189 * issue a configure endpoint command.
1190 */
1191void xhci_endpoint_copy(struct xhci_hcd *xhci,
1192		struct xhci_container_ctx *in_ctx,
1193		struct xhci_container_ctx *out_ctx,
1194		unsigned int ep_index)
1195{
1196	struct xhci_ep_ctx *out_ep_ctx;
1197	struct xhci_ep_ctx *in_ep_ctx;
1198
1199	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1201
1202	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1203	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1204	in_ep_ctx->deq = out_ep_ctx->deq;
1205	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1206}
1207
1208/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1209 * Useful when you want to change one particular aspect of the endpoint and then
1210 * issue a configure endpoint command.  Only the context entries field matters,
1211 * but we'll copy the whole thing anyway.
1212 */
1213void xhci_slot_copy(struct xhci_hcd *xhci,
1214		struct xhci_container_ctx *in_ctx,
1215		struct xhci_container_ctx *out_ctx)
1216{
1217	struct xhci_slot_ctx *in_slot_ctx;
1218	struct xhci_slot_ctx *out_slot_ctx;
1219
1220	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1221	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1222
1223	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1224	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1225	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1226	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1227}
1228
1229/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1230static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1231{
1232	int i;
1233	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1234	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1235
1236	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1237
1238	if (!num_sp)
1239		return 0;
1240
1241	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1242	if (!xhci->scratchpad)
1243		goto fail_sp;
1244
1245	xhci->scratchpad->sp_array =
1246		pci_alloc_consistent(to_pci_dev(dev),
1247				     num_sp * sizeof(u64),
1248				     &xhci->scratchpad->sp_dma);
1249	if (!xhci->scratchpad->sp_array)
1250		goto fail_sp2;
1251
1252	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1253	if (!xhci->scratchpad->sp_buffers)
1254		goto fail_sp3;
1255
1256	xhci->scratchpad->sp_dma_buffers =
1257		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1258
1259	if (!xhci->scratchpad->sp_dma_buffers)
1260		goto fail_sp4;
1261
1262	xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1263	for (i = 0; i < num_sp; i++) {
1264		dma_addr_t dma;
1265		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1266						 xhci->page_size, &dma);
1267		if (!buf)
1268			goto fail_sp5;
1269
1270		xhci->scratchpad->sp_array[i] = dma;
1271		xhci->scratchpad->sp_buffers[i] = buf;
1272		xhci->scratchpad->sp_dma_buffers[i] = dma;
1273	}
1274
1275	return 0;
1276
1277 fail_sp5:
1278	for (i = i - 1; i >= 0; i--) {
1279		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1280				    xhci->scratchpad->sp_buffers[i],
1281				    xhci->scratchpad->sp_dma_buffers[i]);
1282	}
1283	kfree(xhci->scratchpad->sp_dma_buffers);
1284
1285 fail_sp4:
1286	kfree(xhci->scratchpad->sp_buffers);
1287
1288 fail_sp3:
1289	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1290			    xhci->scratchpad->sp_array,
1291			    xhci->scratchpad->sp_dma);
1292
1293 fail_sp2:
1294	kfree(xhci->scratchpad);
1295	xhci->scratchpad = NULL;
1296
1297 fail_sp:
1298	return -ENOMEM;
1299}
1300
1301static void scratchpad_free(struct xhci_hcd *xhci)
1302{
1303	int num_sp;
1304	int i;
1305	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1306
1307	if (!xhci->scratchpad)
1308		return;
1309
1310	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1311
1312	for (i = 0; i < num_sp; i++) {
1313		pci_free_consistent(pdev, xhci->page_size,
1314				    xhci->scratchpad->sp_buffers[i],
1315				    xhci->scratchpad->sp_dma_buffers[i]);
1316	}
1317	kfree(xhci->scratchpad->sp_dma_buffers);
1318	kfree(xhci->scratchpad->sp_buffers);
1319	pci_free_consistent(pdev, num_sp * sizeof(u64),
1320			    xhci->scratchpad->sp_array,
1321			    xhci->scratchpad->sp_dma);
1322	kfree(xhci->scratchpad);
1323	xhci->scratchpad = NULL;
1324}
1325
1326struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1327		bool allocate_in_ctx, bool allocate_completion,
1328		gfp_t mem_flags)
1329{
1330	struct xhci_command *command;
1331
1332	command = kzalloc(sizeof(*command), mem_flags);
1333	if (!command)
1334		return NULL;
1335
1336	if (allocate_in_ctx) {
1337		command->in_ctx =
1338			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1339					mem_flags);
1340		if (!command->in_ctx) {
1341			kfree(command);
1342			return NULL;
1343		}
1344	}
1345
1346	if (allocate_completion) {
1347		command->completion =
1348			kzalloc(sizeof(struct completion), mem_flags);
1349		if (!command->completion) {
1350			xhci_free_container_ctx(xhci, command->in_ctx);
1351			kfree(command);
1352			return NULL;
1353		}
1354		init_completion(command->completion);
1355	}
1356
1357	command->status = 0;
1358	INIT_LIST_HEAD(&command->cmd_list);
1359	return command;
1360}
1361
1362void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1363{
1364	int last;
1365
1366	if (!urb_priv)
1367		return;
1368
1369	last = urb_priv->length - 1;
1370	if (last >= 0) {
1371		int	i;
1372		for (i = 0; i <= last; i++)
1373			kfree(urb_priv->td[i]);
1374	}
1375	kfree(urb_priv);
1376}
1377
1378void xhci_free_command(struct xhci_hcd *xhci,
1379		struct xhci_command *command)
1380{
1381	xhci_free_container_ctx(xhci,
1382			command->in_ctx);
1383	kfree(command->completion);
1384	kfree(command);
1385}
1386
1387void xhci_mem_cleanup(struct xhci_hcd *xhci)
1388{
1389	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1390	int size;
1391	int i;
1392
1393	/* Free the Event Ring Segment Table and the actual Event Ring */
1394	if (xhci->ir_set) {
1395		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1396		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1397		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1398	}
1399	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1400	if (xhci->erst.entries)
1401		pci_free_consistent(pdev, size,
1402				xhci->erst.entries, xhci->erst.erst_dma_addr);
1403	xhci->erst.entries = NULL;
1404	xhci_dbg(xhci, "Freed ERST\n");
1405	if (xhci->event_ring)
1406		xhci_ring_free(xhci, xhci->event_ring);
1407	xhci->event_ring = NULL;
1408	xhci_dbg(xhci, "Freed event ring\n");
1409
1410	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1411	if (xhci->cmd_ring)
1412		xhci_ring_free(xhci, xhci->cmd_ring);
1413	xhci->cmd_ring = NULL;
1414	xhci_dbg(xhci, "Freed command ring\n");
1415
1416	for (i = 1; i < MAX_HC_SLOTS; ++i)
1417		xhci_free_virt_device(xhci, i);
1418
1419	if (xhci->segment_pool)
1420		dma_pool_destroy(xhci->segment_pool);
1421	xhci->segment_pool = NULL;
1422	xhci_dbg(xhci, "Freed segment pool\n");
1423
1424	if (xhci->device_pool)
1425		dma_pool_destroy(xhci->device_pool);
1426	xhci->device_pool = NULL;
1427	xhci_dbg(xhci, "Freed device context pool\n");
1428
1429	if (xhci->small_streams_pool)
1430		dma_pool_destroy(xhci->small_streams_pool);
1431	xhci->small_streams_pool = NULL;
1432	xhci_dbg(xhci, "Freed small stream array pool\n");
1433
1434	if (xhci->medium_streams_pool)
1435		dma_pool_destroy(xhci->medium_streams_pool);
1436	xhci->medium_streams_pool = NULL;
1437	xhci_dbg(xhci, "Freed medium stream array pool\n");
1438
1439	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1440	if (xhci->dcbaa)
1441		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1442				xhci->dcbaa, xhci->dcbaa->dma);
1443	xhci->dcbaa = NULL;
1444
1445	scratchpad_free(xhci);
1446	xhci->page_size = 0;
1447	xhci->page_shift = 0;
1448}
1449
1450static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1451		struct xhci_segment *input_seg,
1452		union xhci_trb *start_trb,
1453		union xhci_trb *end_trb,
1454		dma_addr_t input_dma,
1455		struct xhci_segment *result_seg,
1456		char *test_name, int test_number)
1457{
1458	unsigned long long start_dma;
1459	unsigned long long end_dma;
1460	struct xhci_segment *seg;
1461
1462	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1463	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1464
1465	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1466	if (seg != result_seg) {
1467		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1468				test_name, test_number);
1469		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1470				"input DMA 0x%llx\n",
1471				input_seg,
1472				(unsigned long long) input_dma);
1473		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1474				"ending TRB %p (0x%llx DMA)\n",
1475				start_trb, start_dma,
1476				end_trb, end_dma);
1477		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1478				result_seg, seg);
1479		return -1;
1480	}
1481	return 0;
1482}
1483
1484/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1485static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1486{
1487	struct {
1488		dma_addr_t		input_dma;
1489		struct xhci_segment	*result_seg;
1490	} simple_test_vector [] = {
1491		/* A zeroed DMA field should fail */
1492		{ 0, NULL },
1493		/* One TRB before the ring start should fail */
1494		{ xhci->event_ring->first_seg->dma - 16, NULL },
1495		/* One byte before the ring start should fail */
1496		{ xhci->event_ring->first_seg->dma - 1, NULL },
1497		/* Starting TRB should succeed */
1498		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1499		/* Ending TRB should succeed */
1500		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1501			xhci->event_ring->first_seg },
1502		/* One byte after the ring end should fail */
1503		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1504		/* One TRB after the ring end should fail */
1505		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1506		/* An address of all ones should fail */
1507		{ (dma_addr_t) (~0), NULL },
1508	};
1509	struct {
1510		struct xhci_segment	*input_seg;
1511		union xhci_trb		*start_trb;
1512		union xhci_trb		*end_trb;
1513		dma_addr_t		input_dma;
1514		struct xhci_segment	*result_seg;
1515	} complex_test_vector [] = {
1516		/* Test feeding a valid DMA address from a different ring */
1517		{	.input_seg = xhci->event_ring->first_seg,
1518			.start_trb = xhci->event_ring->first_seg->trbs,
1519			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1520			.input_dma = xhci->cmd_ring->first_seg->dma,
1521			.result_seg = NULL,
1522		},
1523		/* Test feeding a valid end TRB from a different ring */
1524		{	.input_seg = xhci->event_ring->first_seg,
1525			.start_trb = xhci->event_ring->first_seg->trbs,
1526			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1527			.input_dma = xhci->cmd_ring->first_seg->dma,
1528			.result_seg = NULL,
1529		},
1530		/* Test feeding a valid start and end TRB from a different ring */
1531		{	.input_seg = xhci->event_ring->first_seg,
1532			.start_trb = xhci->cmd_ring->first_seg->trbs,
1533			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1534			.input_dma = xhci->cmd_ring->first_seg->dma,
1535			.result_seg = NULL,
1536		},
1537		/* TRB in this ring, but after this TD */
1538		{	.input_seg = xhci->event_ring->first_seg,
1539			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1540			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1541			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1542			.result_seg = NULL,
1543		},
1544		/* TRB in this ring, but before this TD */
1545		{	.input_seg = xhci->event_ring->first_seg,
1546			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1547			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1548			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1549			.result_seg = NULL,
1550		},
1551		/* TRB in this ring, but after this wrapped TD */
1552		{	.input_seg = xhci->event_ring->first_seg,
1553			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1554			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1555			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1556			.result_seg = NULL,
1557		},
1558		/* TRB in this ring, but before this wrapped TD */
1559		{	.input_seg = xhci->event_ring->first_seg,
1560			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1561			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1562			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1563			.result_seg = NULL,
1564		},
1565		/* TRB not in this ring, and we have a wrapped TD */
1566		{	.input_seg = xhci->event_ring->first_seg,
1567			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1568			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1569			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1570			.result_seg = NULL,
1571		},
1572	};
1573
1574	unsigned int num_tests;
1575	int i, ret;
1576
1577	num_tests = ARRAY_SIZE(simple_test_vector);
1578	for (i = 0; i < num_tests; i++) {
1579		ret = xhci_test_trb_in_td(xhci,
1580				xhci->event_ring->first_seg,
1581				xhci->event_ring->first_seg->trbs,
1582				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1583				simple_test_vector[i].input_dma,
1584				simple_test_vector[i].result_seg,
1585				"Simple", i);
1586		if (ret < 0)
1587			return ret;
1588	}
1589
1590	num_tests = ARRAY_SIZE(complex_test_vector);
1591	for (i = 0; i < num_tests; i++) {
1592		ret = xhci_test_trb_in_td(xhci,
1593				complex_test_vector[i].input_seg,
1594				complex_test_vector[i].start_trb,
1595				complex_test_vector[i].end_trb,
1596				complex_test_vector[i].input_dma,
1597				complex_test_vector[i].result_seg,
1598				"Complex", i);
1599		if (ret < 0)
1600			return ret;
1601	}
1602	xhci_dbg(xhci, "TRB math tests passed.\n");
1603	return 0;
1604}
1605
1606static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1607{
1608	u64 temp;
1609	dma_addr_t deq;
1610
1611	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1612			xhci->event_ring->dequeue);
1613	if (deq == 0 && !in_interrupt())
1614		xhci_warn(xhci, "WARN something wrong with SW event ring "
1615				"dequeue ptr.\n");
1616	/* Update HC event ring dequeue pointer */
1617	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1618	temp &= ERST_PTR_MASK;
1619	/* Don't clear the EHB bit (which is RW1C) because
1620	 * there might be more events to service.
1621	 */
1622	temp &= ~ERST_EHB;
1623	xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1624			"preserving EHB bit\n");
1625	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1626			&xhci->ir_set->erst_dequeue);
1627}
1628
1629
1630int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1631{
1632	dma_addr_t	dma;
1633	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1634	unsigned int	val, val2;
1635	u64		val_64;
1636	struct xhci_segment	*seg;
1637	u32 page_size;
1638	int i;
1639
1640	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1641	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1642	for (i = 0; i < 16; i++) {
1643		if ((0x1 & page_size) != 0)
1644			break;
1645		page_size = page_size >> 1;
1646	}
1647	if (i < 16)
1648		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1649	else
1650		xhci_warn(xhci, "WARN: no supported page size\n");
1651	/* Use 4K pages, since that's common and the minimum the HC supports */
1652	xhci->page_shift = 12;
1653	xhci->page_size = 1 << xhci->page_shift;
1654	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1655
1656	/*
1657	 * Program the Number of Device Slots Enabled field in the CONFIG
1658	 * register with the max value of slots the HC can handle.
1659	 */
1660	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1661	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1662			(unsigned int) val);
1663	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1664	val |= (val2 & ~HCS_SLOTS_MASK);
1665	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1666			(unsigned int) val);
1667	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1668
1669	/*
1670	 * Section 5.4.8 - doorbell array must be
1671	 * "physically contiguous and 64-byte (cache line) aligned".
1672	 */
1673	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1674			sizeof(*xhci->dcbaa), &dma);
1675	if (!xhci->dcbaa)
1676		goto fail;
1677	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1678	xhci->dcbaa->dma = dma;
1679	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1680			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1681	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1682
1683	/*
1684	 * Initialize the ring segment pool.  The ring must be a contiguous
1685	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1686	 * however, the command ring segment needs 64-byte aligned segments,
1687	 * so we pick the greater alignment need.
1688	 */
1689	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1690			SEGMENT_SIZE, 64, xhci->page_size);
1691
1692	/* See Table 46 and Note on Figure 55 */
1693	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1694			2112, 64, xhci->page_size);
1695	if (!xhci->segment_pool || !xhci->device_pool)
1696		goto fail;
1697
1698	/* Linear stream context arrays don't have any boundary restrictions,
1699	 * and only need to be 16-byte aligned.
1700	 */
1701	xhci->small_streams_pool =
1702		dma_pool_create("xHCI 256 byte stream ctx arrays",
1703			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1704	xhci->medium_streams_pool =
1705		dma_pool_create("xHCI 1KB stream ctx arrays",
1706			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1707	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1708	 * will be allocated with pci_alloc_consistent()
1709	 */
1710
1711	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1712		goto fail;
1713
1714	/* Set up the command ring to have one segments for now. */
1715	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1716	if (!xhci->cmd_ring)
1717		goto fail;
1718	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1719	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1720			(unsigned long long)xhci->cmd_ring->first_seg->dma);
1721
1722	/* Set the address in the Command Ring Control register */
1723	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1724	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1725		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1726		xhci->cmd_ring->cycle_state;
1727	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1728	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1729	xhci_dbg_cmd_ptrs(xhci);
1730
1731	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1732	val &= DBOFF_MASK;
1733	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1734			" from cap regs base addr\n", val);
1735	xhci->dba = (void *) xhci->cap_regs + val;
1736	xhci_dbg_regs(xhci);
1737	xhci_print_run_regs(xhci);
1738	/* Set ir_set to interrupt register set 0 */
1739	xhci->ir_set = (void *) xhci->run_regs->ir_set;
1740
1741	/*
1742	 * Event ring setup: Allocate a normal ring, but also setup
1743	 * the event ring segment table (ERST).  Section 4.9.3.
1744	 */
1745	xhci_dbg(xhci, "// Allocating event ring\n");
1746	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1747	if (!xhci->event_ring)
1748		goto fail;
1749	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1750		goto fail;
1751
1752	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1753			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1754	if (!xhci->erst.entries)
1755		goto fail;
1756	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1757			(unsigned long long)dma);
1758
1759	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1760	xhci->erst.num_entries = ERST_NUM_SEGS;
1761	xhci->erst.erst_dma_addr = dma;
1762	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1763			xhci->erst.num_entries,
1764			xhci->erst.entries,
1765			(unsigned long long)xhci->erst.erst_dma_addr);
1766
1767	/* set ring base address and size for each segment table entry */
1768	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1769		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1770		entry->seg_addr = seg->dma;
1771		entry->seg_size = TRBS_PER_SEGMENT;
1772		entry->rsvd = 0;
1773		seg = seg->next;
1774	}
1775
1776	/* set ERST count with the number of entries in the segment table */
1777	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1778	val &= ERST_SIZE_MASK;
1779	val |= ERST_NUM_SEGS;
1780	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1781			val);
1782	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1783
1784	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1785	/* set the segment table base address */
1786	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1787			(unsigned long long)xhci->erst.erst_dma_addr);
1788	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1789	val_64 &= ERST_PTR_MASK;
1790	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1791	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1792
1793	/* Set the event ring dequeue address */
1794	xhci_set_hc_event_deq(xhci);
1795	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1796	xhci_print_ir_set(xhci, xhci->ir_set, 0);
1797
1798	/*
1799	 * XXX: Might need to set the Interrupter Moderation Register to
1800	 * something other than the default (~1ms minimum between interrupts).
1801	 * See section 5.5.1.2.
1802	 */
1803	init_completion(&xhci->addr_dev);
1804	for (i = 0; i < MAX_HC_SLOTS; ++i)
1805		xhci->devs[i] = NULL;
1806
1807	if (scratchpad_alloc(xhci, flags))
1808		goto fail;
1809
1810	return 0;
1811
1812fail:
1813	xhci_warn(xhci, "Couldn't initialize memory\n");
1814	xhci_mem_cleanup(xhci);
1815	return -ENOMEM;
1816}
1817