xhci-mem.c revision d18240db797ed749b511b8dc910c5dcf08be46d6
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27
28#include "xhci.h"
29
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39	struct xhci_segment *seg;
40	dma_addr_t	dma;
41
42	seg = kzalloc(sizeof *seg, flags);
43	if (!seg)
44		return NULL;
45	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48	if (!seg->trbs) {
49		kfree(seg);
50		return NULL;
51	}
52	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53			seg->trbs, (unsigned long long)dma);
54
55	memset(seg->trbs, 0, SEGMENT_SIZE);
56	seg->dma = dma;
57	seg->next = NULL;
58
59	return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64	if (!seg)
65		return;
66	if (seg->trbs) {
67		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68				seg->trbs, (unsigned long long)seg->dma);
69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70		seg->trbs = NULL;
71	}
72	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73	kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment.  The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84		struct xhci_segment *next, bool link_trbs)
85{
86	u32 val;
87
88	if (!prev || !next)
89		return;
90	prev->next = next;
91	if (link_trbs) {
92		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95		val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96		val &= ~TRB_TYPE_BITMASK;
97		val |= TRB_TYPE(TRB_LINK);
98		/* Always set the chain bit with 0.95 hardware */
99		if (xhci_link_trb_quirk(xhci))
100			val |= TRB_CHAIN;
101		prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102	}
103	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104			(unsigned long long)prev->dma,
105			(unsigned long long)next->dma);
106}
107
108/* XXX: Do we need the hcd structure in all these functions? */
109void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110{
111	struct xhci_segment *seg;
112	struct xhci_segment *first_seg;
113
114	if (!ring || !ring->first_seg)
115		return;
116	first_seg = ring->first_seg;
117	seg = first_seg->next;
118	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119	while (seg != first_seg) {
120		struct xhci_segment *next = seg->next;
121		xhci_segment_free(xhci, seg);
122		seg = next;
123	}
124	xhci_segment_free(xhci, first_seg);
125	ring->first_seg = NULL;
126	kfree(ring);
127}
128
129static void xhci_initialize_ring_info(struct xhci_ring *ring)
130{
131	/* The ring is empty, so the enqueue pointer == dequeue pointer */
132	ring->enqueue = ring->first_seg->trbs;
133	ring->enq_seg = ring->first_seg;
134	ring->dequeue = ring->enqueue;
135	ring->deq_seg = ring->first_seg;
136	/* The ring is initialized to 0. The producer must write 1 to the cycle
137	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139	 */
140	ring->cycle_state = 1;
141	/* Not necessary for new rings, but needed for re-initialized rings */
142	ring->enq_updates = 0;
143	ring->deq_updates = 0;
144}
145
146/**
147 * Create a new ring with zero or more segments.
148 *
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
152 */
153static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154		unsigned int num_segs, bool link_trbs, gfp_t flags)
155{
156	struct xhci_ring	*ring;
157	struct xhci_segment	*prev;
158
159	ring = kzalloc(sizeof *(ring), flags);
160	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161	if (!ring)
162		return NULL;
163
164	INIT_LIST_HEAD(&ring->td_list);
165	if (num_segs == 0)
166		return ring;
167
168	ring->first_seg = xhci_segment_alloc(xhci, flags);
169	if (!ring->first_seg)
170		goto fail;
171	num_segs--;
172
173	prev = ring->first_seg;
174	while (num_segs > 0) {
175		struct xhci_segment	*next;
176
177		next = xhci_segment_alloc(xhci, flags);
178		if (!next)
179			goto fail;
180		xhci_link_segments(xhci, prev, next, link_trbs);
181
182		prev = next;
183		num_segs--;
184	}
185	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187	if (link_trbs) {
188		/* See section 4.9.2.1 and 6.4.4.1 */
189		prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190		xhci_dbg(xhci, "Wrote link toggle flag to"
191				" segment %p (virtual), 0x%llx (DMA)\n",
192				prev, (unsigned long long)prev->dma);
193	}
194	xhci_initialize_ring_info(ring);
195	return ring;
196
197fail:
198	xhci_ring_free(xhci, ring);
199	return NULL;
200}
201
202void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203		struct xhci_virt_device *virt_dev,
204		unsigned int ep_index)
205{
206	int rings_cached;
207
208	rings_cached = virt_dev->num_rings_cached;
209	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210		virt_dev->num_rings_cached++;
211		rings_cached = virt_dev->num_rings_cached;
212		virt_dev->ring_cache[rings_cached] =
213			virt_dev->eps[ep_index].ring;
214		xhci_dbg(xhci, "Cached old ring, "
215				"%d ring%s cached\n",
216				rings_cached,
217				(rings_cached > 1) ? "s" : "");
218	} else {
219		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220		xhci_dbg(xhci, "Ring cache full (%d rings), "
221				"freeing ring\n",
222				virt_dev->num_rings_cached);
223	}
224	virt_dev->eps[ep_index].ring = NULL;
225}
226
227/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
229 */
230static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231		struct xhci_ring *ring)
232{
233	struct xhci_segment	*seg = ring->first_seg;
234	do {
235		memset(seg->trbs, 0,
236				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237		/* All endpoint rings have link TRBs */
238		xhci_link_segments(xhci, seg, seg->next, 1);
239		seg = seg->next;
240	} while (seg != ring->first_seg);
241	xhci_initialize_ring_info(ring);
242	/* td list should be empty since all URBs have been cancelled,
243	 * but just in case...
244	 */
245	INIT_LIST_HEAD(&ring->td_list);
246}
247
248#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251						    int type, gfp_t flags)
252{
253	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254	if (!ctx)
255		return NULL;
256
257	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258	ctx->type = type;
259	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260	if (type == XHCI_CTX_TYPE_INPUT)
261		ctx->size += CTX_SIZE(xhci->hcc_params);
262
263	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264	memset(ctx->bytes, 0, ctx->size);
265	return ctx;
266}
267
268static void xhci_free_container_ctx(struct xhci_hcd *xhci,
269			     struct xhci_container_ctx *ctx)
270{
271	if (!ctx)
272		return;
273	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274	kfree(ctx);
275}
276
277struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278					      struct xhci_container_ctx *ctx)
279{
280	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281	return (struct xhci_input_control_ctx *)ctx->bytes;
282}
283
284struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285					struct xhci_container_ctx *ctx)
286{
287	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288		return (struct xhci_slot_ctx *)ctx->bytes;
289
290	return (struct xhci_slot_ctx *)
291		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
292}
293
294struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295				    struct xhci_container_ctx *ctx,
296				    unsigned int ep_index)
297{
298	/* increment ep index by offset of start of ep ctx array */
299	ep_index++;
300	if (ctx->type == XHCI_CTX_TYPE_INPUT)
301		ep_index++;
302
303	return (struct xhci_ep_ctx *)
304		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305}
306
307
308/***************** Streams structures manipulation *************************/
309
310void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311		unsigned int num_stream_ctxs,
312		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313{
314	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317		pci_free_consistent(pdev,
318				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319				stream_ctx, dma);
320	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321		return dma_pool_free(xhci->small_streams_pool,
322				stream_ctx, dma);
323	else
324		return dma_pool_free(xhci->medium_streams_pool,
325				stream_ctx, dma);
326}
327
328/*
329 * The stream context array for each endpoint with bulk streams enabled can
330 * vary in size, based on:
331 *  - how many streams the endpoint supports,
332 *  - the maximum primary stream array size the host controller supports,
333 *  - and how many streams the device driver asks for.
334 *
335 * The stream context array must be a power of 2, and can be as small as
336 * 64 bytes or as large as 1MB.
337 */
338struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339		unsigned int num_stream_ctxs, dma_addr_t *dma,
340		gfp_t mem_flags)
341{
342	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344	if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345		return pci_alloc_consistent(pdev,
346				sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347				dma);
348	else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349		return dma_pool_alloc(xhci->small_streams_pool,
350				mem_flags, dma);
351	else
352		return dma_pool_alloc(xhci->medium_streams_pool,
353				mem_flags, dma);
354}
355
356struct xhci_ring *xhci_dma_to_transfer_ring(
357		struct xhci_virt_ep *ep,
358		u64 address)
359{
360	if (ep->ep_state & EP_HAS_STREAMS)
361		return radix_tree_lookup(&ep->stream_info->trb_address_map,
362				address >> SEGMENT_SHIFT);
363	return ep->ring;
364}
365
366/* Only use this when you know stream_info is valid */
367#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
368static struct xhci_ring *dma_to_stream_ring(
369		struct xhci_stream_info *stream_info,
370		u64 address)
371{
372	return radix_tree_lookup(&stream_info->trb_address_map,
373			address >> SEGMENT_SHIFT);
374}
375#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
377struct xhci_ring *xhci_stream_id_to_ring(
378		struct xhci_virt_device *dev,
379		unsigned int ep_index,
380		unsigned int stream_id)
381{
382	struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384	if (stream_id == 0)
385		return ep->ring;
386	if (!ep->stream_info)
387		return NULL;
388
389	if (stream_id > ep->stream_info->num_streams)
390		return NULL;
391	return ep->stream_info->stream_rings[stream_id];
392}
393
394struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
395		unsigned int slot_id, unsigned int ep_index,
396		unsigned int stream_id)
397{
398	struct xhci_virt_ep *ep;
399
400	ep = &xhci->devs[slot_id]->eps[ep_index];
401	/* Common case: no streams */
402	if (!(ep->ep_state & EP_HAS_STREAMS))
403		return ep->ring;
404
405	if (stream_id == 0) {
406		xhci_warn(xhci,
407				"WARN: Slot ID %u, ep index %u has streams, "
408				"but URB has no stream ID.\n",
409				slot_id, ep_index);
410		return NULL;
411	}
412
413	if (stream_id < ep->stream_info->num_streams)
414		return ep->stream_info->stream_rings[stream_id];
415
416	xhci_warn(xhci,
417			"WARN: Slot ID %u, ep index %u has "
418			"stream IDs 1 to %u allocated, "
419			"but stream ID %u is requested.\n",
420			slot_id, ep_index,
421			ep->stream_info->num_streams - 1,
422			stream_id);
423	return NULL;
424}
425
426/* Get the right ring for the given URB.
427 * If the endpoint supports streams, boundary check the URB's stream ID.
428 * If the endpoint doesn't support streams, return the singular endpoint ring.
429 */
430struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
431		struct urb *urb)
432{
433	return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
434		xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
435}
436
437#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
438static int xhci_test_radix_tree(struct xhci_hcd *xhci,
439		unsigned int num_streams,
440		struct xhci_stream_info *stream_info)
441{
442	u32 cur_stream;
443	struct xhci_ring *cur_ring;
444	u64 addr;
445
446	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
447		struct xhci_ring *mapped_ring;
448		int trb_size = sizeof(union xhci_trb);
449
450		cur_ring = stream_info->stream_rings[cur_stream];
451		for (addr = cur_ring->first_seg->dma;
452				addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
453				addr += trb_size) {
454			mapped_ring = dma_to_stream_ring(stream_info, addr);
455			if (cur_ring != mapped_ring) {
456				xhci_warn(xhci, "WARN: DMA address 0x%08llx "
457						"didn't map to stream ID %u; "
458						"mapped to ring %p\n",
459						(unsigned long long) addr,
460						cur_stream,
461						mapped_ring);
462				return -EINVAL;
463			}
464		}
465		/* One TRB after the end of the ring segment shouldn't return a
466		 * pointer to the current ring (although it may be a part of a
467		 * different ring).
468		 */
469		mapped_ring = dma_to_stream_ring(stream_info, addr);
470		if (mapped_ring != cur_ring) {
471			/* One TRB before should also fail */
472			addr = cur_ring->first_seg->dma - trb_size;
473			mapped_ring = dma_to_stream_ring(stream_info, addr);
474		}
475		if (mapped_ring == cur_ring) {
476			xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
477					"mapped to valid stream ID %u; "
478					"mapped ring = %p\n",
479					(unsigned long long) addr,
480					cur_stream,
481					mapped_ring);
482			return -EINVAL;
483		}
484	}
485	return 0;
486}
487#endif	/* CONFIG_USB_XHCI_HCD_DEBUGGING */
488
489/*
490 * Change an endpoint's internal structure so it supports stream IDs.  The
491 * number of requested streams includes stream 0, which cannot be used by device
492 * drivers.
493 *
494 * The number of stream contexts in the stream context array may be bigger than
495 * the number of streams the driver wants to use.  This is because the number of
496 * stream context array entries must be a power of two.
497 *
498 * We need a radix tree for mapping physical addresses of TRBs to which stream
499 * ID they belong to.  We need to do this because the host controller won't tell
500 * us which stream ring the TRB came from.  We could store the stream ID in an
501 * event data TRB, but that doesn't help us for the cancellation case, since the
502 * endpoint may stop before it reaches that event data TRB.
503 *
504 * The radix tree maps the upper portion of the TRB DMA address to a ring
505 * segment that has the same upper portion of DMA addresses.  For example, say I
506 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
507 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
508 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
509 * pass the radix tree a key to get the right stream ID:
510 *
511 * 	0x10c90fff >> 10 = 0x43243
512 * 	0x10c912c0 >> 10 = 0x43244
513 * 	0x10c91400 >> 10 = 0x43245
514 *
515 * Obviously, only those TRBs with DMA addresses that are within the segment
516 * will make the radix tree return the stream ID for that ring.
517 *
518 * Caveats for the radix tree:
519 *
520 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
521 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
522 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
523 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
524 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
525 * extended systems (where the DMA address can be bigger than 32-bits),
526 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
527 */
528struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
529		unsigned int num_stream_ctxs,
530		unsigned int num_streams, gfp_t mem_flags)
531{
532	struct xhci_stream_info *stream_info;
533	u32 cur_stream;
534	struct xhci_ring *cur_ring;
535	unsigned long key;
536	u64 addr;
537	int ret;
538
539	xhci_dbg(xhci, "Allocating %u streams and %u "
540			"stream context array entries.\n",
541			num_streams, num_stream_ctxs);
542	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
543		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
544		return NULL;
545	}
546	xhci->cmd_ring_reserved_trbs++;
547
548	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
549	if (!stream_info)
550		goto cleanup_trbs;
551
552	stream_info->num_streams = num_streams;
553	stream_info->num_stream_ctxs = num_stream_ctxs;
554
555	/* Initialize the array of virtual pointers to stream rings. */
556	stream_info->stream_rings = kzalloc(
557			sizeof(struct xhci_ring *)*num_streams,
558			mem_flags);
559	if (!stream_info->stream_rings)
560		goto cleanup_info;
561
562	/* Initialize the array of DMA addresses for stream rings for the HW. */
563	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
564			num_stream_ctxs, &stream_info->ctx_array_dma,
565			mem_flags);
566	if (!stream_info->stream_ctx_array)
567		goto cleanup_ctx;
568	memset(stream_info->stream_ctx_array, 0,
569			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
570
571	/* Allocate everything needed to free the stream rings later */
572	stream_info->free_streams_command =
573		xhci_alloc_command(xhci, true, true, mem_flags);
574	if (!stream_info->free_streams_command)
575		goto cleanup_ctx;
576
577	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
578
579	/* Allocate rings for all the streams that the driver will use,
580	 * and add their segment DMA addresses to the radix tree.
581	 * Stream 0 is reserved.
582	 */
583	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
584		stream_info->stream_rings[cur_stream] =
585			xhci_ring_alloc(xhci, 1, true, mem_flags);
586		cur_ring = stream_info->stream_rings[cur_stream];
587		if (!cur_ring)
588			goto cleanup_rings;
589		cur_ring->stream_id = cur_stream;
590		/* Set deq ptr, cycle bit, and stream context type */
591		addr = cur_ring->first_seg->dma |
592			SCT_FOR_CTX(SCT_PRI_TR) |
593			cur_ring->cycle_state;
594		stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
595		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
596				cur_stream, (unsigned long long) addr);
597
598		key = (unsigned long)
599			(cur_ring->first_seg->dma >> SEGMENT_SHIFT);
600		ret = radix_tree_insert(&stream_info->trb_address_map,
601				key, cur_ring);
602		if (ret) {
603			xhci_ring_free(xhci, cur_ring);
604			stream_info->stream_rings[cur_stream] = NULL;
605			goto cleanup_rings;
606		}
607	}
608	/* Leave the other unused stream ring pointers in the stream context
609	 * array initialized to zero.  This will cause the xHC to give us an
610	 * error if the device asks for a stream ID we don't have setup (if it
611	 * was any other way, the host controller would assume the ring is
612	 * "empty" and wait forever for data to be queued to that stream ID).
613	 */
614#if XHCI_DEBUG
615	/* Do a little test on the radix tree to make sure it returns the
616	 * correct values.
617	 */
618	if (xhci_test_radix_tree(xhci, num_streams, stream_info))
619		goto cleanup_rings;
620#endif
621
622	return stream_info;
623
624cleanup_rings:
625	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
626		cur_ring = stream_info->stream_rings[cur_stream];
627		if (cur_ring) {
628			addr = cur_ring->first_seg->dma;
629			radix_tree_delete(&stream_info->trb_address_map,
630					addr >> SEGMENT_SHIFT);
631			xhci_ring_free(xhci, cur_ring);
632			stream_info->stream_rings[cur_stream] = NULL;
633		}
634	}
635	xhci_free_command(xhci, stream_info->free_streams_command);
636cleanup_ctx:
637	kfree(stream_info->stream_rings);
638cleanup_info:
639	kfree(stream_info);
640cleanup_trbs:
641	xhci->cmd_ring_reserved_trbs--;
642	return NULL;
643}
644/*
645 * Sets the MaxPStreams field and the Linear Stream Array field.
646 * Sets the dequeue pointer to the stream context array.
647 */
648void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
649		struct xhci_ep_ctx *ep_ctx,
650		struct xhci_stream_info *stream_info)
651{
652	u32 max_primary_streams;
653	/* MaxPStreams is the number of stream context array entries, not the
654	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
655	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
656	 */
657	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
658	xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
659			1 << (max_primary_streams + 1));
660	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
661	ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
662	ep_ctx->ep_info |= EP_HAS_LSA;
663	ep_ctx->deq  = stream_info->ctx_array_dma;
664}
665
666/*
667 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
668 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
669 * not at the beginning of the ring).
670 */
671void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
672		struct xhci_ep_ctx *ep_ctx,
673		struct xhci_virt_ep *ep)
674{
675	dma_addr_t addr;
676	ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
677	ep_ctx->ep_info &= ~EP_HAS_LSA;
678	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
679	ep_ctx->deq  = addr | ep->ring->cycle_state;
680}
681
682/* Frees all stream contexts associated with the endpoint,
683 *
684 * Caller should fix the endpoint context streams fields.
685 */
686void xhci_free_stream_info(struct xhci_hcd *xhci,
687		struct xhci_stream_info *stream_info)
688{
689	int cur_stream;
690	struct xhci_ring *cur_ring;
691	dma_addr_t addr;
692
693	if (!stream_info)
694		return;
695
696	for (cur_stream = 1; cur_stream < stream_info->num_streams;
697			cur_stream++) {
698		cur_ring = stream_info->stream_rings[cur_stream];
699		if (cur_ring) {
700			addr = cur_ring->first_seg->dma;
701			radix_tree_delete(&stream_info->trb_address_map,
702					addr >> SEGMENT_SHIFT);
703			xhci_ring_free(xhci, cur_ring);
704			stream_info->stream_rings[cur_stream] = NULL;
705		}
706	}
707	xhci_free_command(xhci, stream_info->free_streams_command);
708	xhci->cmd_ring_reserved_trbs--;
709	if (stream_info->stream_ctx_array)
710		xhci_free_stream_ctx(xhci,
711				stream_info->num_stream_ctxs,
712				stream_info->stream_ctx_array,
713				stream_info->ctx_array_dma);
714
715	if (stream_info)
716		kfree(stream_info->stream_rings);
717	kfree(stream_info);
718}
719
720
721/***************** Device context manipulation *************************/
722
723static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
724		struct xhci_virt_ep *ep)
725{
726	init_timer(&ep->stop_cmd_timer);
727	ep->stop_cmd_timer.data = (unsigned long) ep;
728	ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
729	ep->xhci = xhci;
730}
731
732/* All the xhci_tds in the ring's TD list should be freed at this point */
733void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
734{
735	struct xhci_virt_device *dev;
736	int i;
737
738	/* Slot ID 0 is reserved */
739	if (slot_id == 0 || !xhci->devs[slot_id])
740		return;
741
742	dev = xhci->devs[slot_id];
743	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
744	if (!dev)
745		return;
746
747	for (i = 0; i < 31; ++i) {
748		if (dev->eps[i].ring)
749			xhci_ring_free(xhci, dev->eps[i].ring);
750		if (dev->eps[i].stream_info)
751			xhci_free_stream_info(xhci,
752					dev->eps[i].stream_info);
753	}
754
755	if (dev->ring_cache) {
756		for (i = 0; i < dev->num_rings_cached; i++)
757			xhci_ring_free(xhci, dev->ring_cache[i]);
758		kfree(dev->ring_cache);
759	}
760
761	if (dev->in_ctx)
762		xhci_free_container_ctx(xhci, dev->in_ctx);
763	if (dev->out_ctx)
764		xhci_free_container_ctx(xhci, dev->out_ctx);
765
766	kfree(xhci->devs[slot_id]);
767	xhci->devs[slot_id] = NULL;
768}
769
770int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
771		struct usb_device *udev, gfp_t flags)
772{
773	struct xhci_virt_device *dev;
774	int i;
775
776	/* Slot ID 0 is reserved */
777	if (slot_id == 0 || xhci->devs[slot_id]) {
778		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
779		return 0;
780	}
781
782	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
783	if (!xhci->devs[slot_id])
784		return 0;
785	dev = xhci->devs[slot_id];
786
787	/* Allocate the (output) device context that will be used in the HC. */
788	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
789	if (!dev->out_ctx)
790		goto fail;
791
792	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
793			(unsigned long long)dev->out_ctx->dma);
794
795	/* Allocate the (input) device context for address device command */
796	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
797	if (!dev->in_ctx)
798		goto fail;
799
800	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
801			(unsigned long long)dev->in_ctx->dma);
802
803	/* Initialize the cancellation list and watchdog timers for each ep */
804	for (i = 0; i < 31; i++) {
805		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
806		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
807	}
808
809	/* Allocate endpoint 0 ring */
810	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
811	if (!dev->eps[0].ring)
812		goto fail;
813
814	/* Allocate pointers to the ring cache */
815	dev->ring_cache = kzalloc(
816			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
817			flags);
818	if (!dev->ring_cache)
819		goto fail;
820	dev->num_rings_cached = 0;
821
822	init_completion(&dev->cmd_completion);
823	INIT_LIST_HEAD(&dev->cmd_list);
824
825	/* Point to output device context in dcbaa. */
826	xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
827	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
828			slot_id,
829			&xhci->dcbaa->dev_context_ptrs[slot_id],
830			(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
831
832	return 1;
833fail:
834	xhci_free_virt_device(xhci, slot_id);
835	return 0;
836}
837
838void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
839		struct usb_device *udev)
840{
841	struct xhci_virt_device *virt_dev;
842	struct xhci_ep_ctx	*ep0_ctx;
843	struct xhci_ring	*ep_ring;
844
845	virt_dev = xhci->devs[udev->slot_id];
846	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
847	ep_ring = virt_dev->eps[0].ring;
848	/*
849	 * FIXME we don't keep track of the dequeue pointer very well after a
850	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
851	 * host to our enqueue pointer.  This should only be called after a
852	 * configured device has reset, so all control transfers should have
853	 * been completed or cancelled before the reset.
854	 */
855	ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
856	ep0_ctx->deq |= ep_ring->cycle_state;
857}
858
859/* Setup an xHCI virtual device for a Set Address command */
860int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
861{
862	struct xhci_virt_device *dev;
863	struct xhci_ep_ctx	*ep0_ctx;
864	struct usb_device	*top_dev;
865	struct xhci_slot_ctx    *slot_ctx;
866	struct xhci_input_control_ctx *ctrl_ctx;
867
868	dev = xhci->devs[udev->slot_id];
869	/* Slot ID 0 is reserved */
870	if (udev->slot_id == 0 || !dev) {
871		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
872				udev->slot_id);
873		return -EINVAL;
874	}
875	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
876	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
877	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
878
879	/* 2) New slot context and endpoint 0 context are valid*/
880	ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
881
882	/* 3) Only the control endpoint is valid - one endpoint context */
883	slot_ctx->dev_info |= LAST_CTX(1);
884
885	slot_ctx->dev_info |= (u32) udev->route;
886	switch (udev->speed) {
887	case USB_SPEED_SUPER:
888		slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
889		break;
890	case USB_SPEED_HIGH:
891		slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
892		break;
893	case USB_SPEED_FULL:
894		slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
895		break;
896	case USB_SPEED_LOW:
897		slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
898		break;
899	case USB_SPEED_WIRELESS:
900		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
901		return -EINVAL;
902		break;
903	default:
904		/* Speed was set earlier, this shouldn't happen. */
905		BUG();
906	}
907	/* Find the root hub port this device is under */
908	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
909			top_dev = top_dev->parent)
910		/* Found device below root hub */;
911	slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
912	xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
913
914	/* Is this a LS/FS device under a HS hub? */
915	if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
916			udev->tt) {
917		slot_ctx->tt_info = udev->tt->hub->slot_id;
918		slot_ctx->tt_info |= udev->ttport << 8;
919		if (udev->tt->multi)
920			slot_ctx->dev_info |= DEV_MTT;
921	}
922	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
923	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
924
925	/* Step 4 - ring already allocated */
926	/* Step 5 */
927	ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
928	/*
929	 * XXX: Not sure about wireless USB devices.
930	 */
931	switch (udev->speed) {
932	case USB_SPEED_SUPER:
933		ep0_ctx->ep_info2 |= MAX_PACKET(512);
934		break;
935	case USB_SPEED_HIGH:
936	/* USB core guesses at a 64-byte max packet first for FS devices */
937	case USB_SPEED_FULL:
938		ep0_ctx->ep_info2 |= MAX_PACKET(64);
939		break;
940	case USB_SPEED_LOW:
941		ep0_ctx->ep_info2 |= MAX_PACKET(8);
942		break;
943	case USB_SPEED_WIRELESS:
944		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
945		return -EINVAL;
946		break;
947	default:
948		/* New speed? */
949		BUG();
950	}
951	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
952	ep0_ctx->ep_info2 |= MAX_BURST(0);
953	ep0_ctx->ep_info2 |= ERROR_COUNT(3);
954
955	ep0_ctx->deq =
956		dev->eps[0].ring->first_seg->dma;
957	ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
958
959	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
960
961	return 0;
962}
963
964/* Return the polling or NAK interval.
965 *
966 * The polling interval is expressed in "microframes".  If xHCI's Interval field
967 * is set to N, it will service the endpoint every 2^(Interval)*125us.
968 *
969 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
970 * is set to 0.
971 */
972static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
973		struct usb_host_endpoint *ep)
974{
975	unsigned int interval = 0;
976
977	switch (udev->speed) {
978	case USB_SPEED_HIGH:
979		/* Max NAK rate */
980		if (usb_endpoint_xfer_control(&ep->desc) ||
981				usb_endpoint_xfer_bulk(&ep->desc))
982			interval = ep->desc.bInterval;
983		/* Fall through - SS and HS isoc/int have same decoding */
984	case USB_SPEED_SUPER:
985		if (usb_endpoint_xfer_int(&ep->desc) ||
986				usb_endpoint_xfer_isoc(&ep->desc)) {
987			if (ep->desc.bInterval == 0)
988				interval = 0;
989			else
990				interval = ep->desc.bInterval - 1;
991			if (interval > 15)
992				interval = 15;
993			if (interval != ep->desc.bInterval + 1)
994				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
995						ep->desc.bEndpointAddress, 1 << interval);
996		}
997		break;
998	/* Convert bInterval (in 1-255 frames) to microframes and round down to
999	 * nearest power of 2.
1000	 */
1001	case USB_SPEED_FULL:
1002	case USB_SPEED_LOW:
1003		if (usb_endpoint_xfer_int(&ep->desc) ||
1004				usb_endpoint_xfer_isoc(&ep->desc)) {
1005			interval = fls(8*ep->desc.bInterval) - 1;
1006			if (interval > 10)
1007				interval = 10;
1008			if (interval < 3)
1009				interval = 3;
1010			if ((1 << interval) != 8*ep->desc.bInterval)
1011				dev_warn(&udev->dev,
1012						"ep %#x - rounding interval"
1013						" to %d microframes, "
1014						"ep desc says %d microframes\n",
1015						ep->desc.bEndpointAddress,
1016						1 << interval,
1017						8*ep->desc.bInterval);
1018		}
1019		break;
1020	default:
1021		BUG();
1022	}
1023	return EP_INTERVAL(interval);
1024}
1025
1026/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1027 * High speed endpoint descriptors can define "the number of additional
1028 * transaction opportunities per microframe", but that goes in the Max Burst
1029 * endpoint context field.
1030 */
1031static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
1032		struct usb_host_endpoint *ep)
1033{
1034	if (udev->speed != USB_SPEED_SUPER ||
1035			!usb_endpoint_xfer_isoc(&ep->desc))
1036		return 0;
1037	return ep->ss_ep_comp.bmAttributes;
1038}
1039
1040static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1041		struct usb_host_endpoint *ep)
1042{
1043	int in;
1044	u32 type;
1045
1046	in = usb_endpoint_dir_in(&ep->desc);
1047	if (usb_endpoint_xfer_control(&ep->desc)) {
1048		type = EP_TYPE(CTRL_EP);
1049	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1050		if (in)
1051			type = EP_TYPE(BULK_IN_EP);
1052		else
1053			type = EP_TYPE(BULK_OUT_EP);
1054	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1055		if (in)
1056			type = EP_TYPE(ISOC_IN_EP);
1057		else
1058			type = EP_TYPE(ISOC_OUT_EP);
1059	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1060		if (in)
1061			type = EP_TYPE(INT_IN_EP);
1062		else
1063			type = EP_TYPE(INT_OUT_EP);
1064	} else {
1065		BUG();
1066	}
1067	return type;
1068}
1069
1070/* Return the maximum endpoint service interval time (ESIT) payload.
1071 * Basically, this is the maxpacket size, multiplied by the burst size
1072 * and mult size.
1073 */
1074static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1075		struct usb_device *udev,
1076		struct usb_host_endpoint *ep)
1077{
1078	int max_burst;
1079	int max_packet;
1080
1081	/* Only applies for interrupt or isochronous endpoints */
1082	if (usb_endpoint_xfer_control(&ep->desc) ||
1083			usb_endpoint_xfer_bulk(&ep->desc))
1084		return 0;
1085
1086	if (udev->speed == USB_SPEED_SUPER)
1087		return ep->ss_ep_comp.wBytesPerInterval;
1088
1089	max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1090	max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1091	/* A 0 in max burst means 1 transfer per ESIT */
1092	return max_packet * (max_burst + 1);
1093}
1094
1095/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1096 * Drivers will have to call usb_alloc_streams() to do that.
1097 */
1098int xhci_endpoint_init(struct xhci_hcd *xhci,
1099		struct xhci_virt_device *virt_dev,
1100		struct usb_device *udev,
1101		struct usb_host_endpoint *ep,
1102		gfp_t mem_flags)
1103{
1104	unsigned int ep_index;
1105	struct xhci_ep_ctx *ep_ctx;
1106	struct xhci_ring *ep_ring;
1107	unsigned int max_packet;
1108	unsigned int max_burst;
1109	u32 max_esit_payload;
1110
1111	ep_index = xhci_get_endpoint_index(&ep->desc);
1112	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1113
1114	/* Set up the endpoint ring */
1115	virt_dev->eps[ep_index].new_ring =
1116		xhci_ring_alloc(xhci, 1, true, mem_flags);
1117	if (!virt_dev->eps[ep_index].new_ring) {
1118		/* Attempt to use the ring cache */
1119		if (virt_dev->num_rings_cached == 0)
1120			return -ENOMEM;
1121		virt_dev->eps[ep_index].new_ring =
1122			virt_dev->ring_cache[virt_dev->num_rings_cached];
1123		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1124		virt_dev->num_rings_cached--;
1125		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1126	}
1127	virt_dev->eps[ep_index].skip = false;
1128	ep_ring = virt_dev->eps[ep_index].new_ring;
1129	ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1130
1131	ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1132	ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1133
1134	/* FIXME dig Mult and streams info out of ep companion desc */
1135
1136	/* Allow 3 retries for everything but isoc;
1137	 * error count = 0 means infinite retries.
1138	 */
1139	if (!usb_endpoint_xfer_isoc(&ep->desc))
1140		ep_ctx->ep_info2 = ERROR_COUNT(3);
1141	else
1142		ep_ctx->ep_info2 = ERROR_COUNT(1);
1143
1144	ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1145
1146	/* Set the max packet size and max burst */
1147	switch (udev->speed) {
1148	case USB_SPEED_SUPER:
1149		max_packet = ep->desc.wMaxPacketSize;
1150		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1151		/* dig out max burst from ep companion desc */
1152		max_packet = ep->ss_ep_comp.bMaxBurst;
1153		if (!max_packet)
1154			xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1155		ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1156		break;
1157	case USB_SPEED_HIGH:
1158		/* bits 11:12 specify the number of additional transaction
1159		 * opportunities per microframe (USB 2.0, section 9.6.6)
1160		 */
1161		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1162				usb_endpoint_xfer_int(&ep->desc)) {
1163			max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1164			ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1165		}
1166		/* Fall through */
1167	case USB_SPEED_FULL:
1168	case USB_SPEED_LOW:
1169		max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1170		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1171		break;
1172	default:
1173		BUG();
1174	}
1175	max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1176	ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1177
1178	/*
1179	 * XXX no idea how to calculate the average TRB buffer length for bulk
1180	 * endpoints, as the driver gives us no clue how big each scatter gather
1181	 * list entry (or buffer) is going to be.
1182	 *
1183	 * For isochronous and interrupt endpoints, we set it to the max
1184	 * available, until we have new API in the USB core to allow drivers to
1185	 * declare how much bandwidth they actually need.
1186	 *
1187	 * Normally, it would be calculated by taking the total of the buffer
1188	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1189	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1190	 * use Event Data TRBs, and we don't chain in a link TRB on short
1191	 * transfers, we're basically dividing by 1.
1192	 */
1193	ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1194
1195	/* FIXME Debug endpoint context */
1196	return 0;
1197}
1198
1199void xhci_endpoint_zero(struct xhci_hcd *xhci,
1200		struct xhci_virt_device *virt_dev,
1201		struct usb_host_endpoint *ep)
1202{
1203	unsigned int ep_index;
1204	struct xhci_ep_ctx *ep_ctx;
1205
1206	ep_index = xhci_get_endpoint_index(&ep->desc);
1207	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1208
1209	ep_ctx->ep_info = 0;
1210	ep_ctx->ep_info2 = 0;
1211	ep_ctx->deq = 0;
1212	ep_ctx->tx_info = 0;
1213	/* Don't free the endpoint ring until the set interface or configuration
1214	 * request succeeds.
1215	 */
1216}
1217
1218/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1219 * Useful when you want to change one particular aspect of the endpoint and then
1220 * issue a configure endpoint command.
1221 */
1222void xhci_endpoint_copy(struct xhci_hcd *xhci,
1223		struct xhci_container_ctx *in_ctx,
1224		struct xhci_container_ctx *out_ctx,
1225		unsigned int ep_index)
1226{
1227	struct xhci_ep_ctx *out_ep_ctx;
1228	struct xhci_ep_ctx *in_ep_ctx;
1229
1230	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1231	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1232
1233	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1234	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1235	in_ep_ctx->deq = out_ep_ctx->deq;
1236	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1237}
1238
1239/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1240 * Useful when you want to change one particular aspect of the endpoint and then
1241 * issue a configure endpoint command.  Only the context entries field matters,
1242 * but we'll copy the whole thing anyway.
1243 */
1244void xhci_slot_copy(struct xhci_hcd *xhci,
1245		struct xhci_container_ctx *in_ctx,
1246		struct xhci_container_ctx *out_ctx)
1247{
1248	struct xhci_slot_ctx *in_slot_ctx;
1249	struct xhci_slot_ctx *out_slot_ctx;
1250
1251	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1252	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1253
1254	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1255	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1256	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1257	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1258}
1259
1260/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1261static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1262{
1263	int i;
1264	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1265	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1266
1267	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1268
1269	if (!num_sp)
1270		return 0;
1271
1272	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1273	if (!xhci->scratchpad)
1274		goto fail_sp;
1275
1276	xhci->scratchpad->sp_array =
1277		pci_alloc_consistent(to_pci_dev(dev),
1278				     num_sp * sizeof(u64),
1279				     &xhci->scratchpad->sp_dma);
1280	if (!xhci->scratchpad->sp_array)
1281		goto fail_sp2;
1282
1283	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1284	if (!xhci->scratchpad->sp_buffers)
1285		goto fail_sp3;
1286
1287	xhci->scratchpad->sp_dma_buffers =
1288		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1289
1290	if (!xhci->scratchpad->sp_dma_buffers)
1291		goto fail_sp4;
1292
1293	xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1294	for (i = 0; i < num_sp; i++) {
1295		dma_addr_t dma;
1296		void *buf = pci_alloc_consistent(to_pci_dev(dev),
1297						 xhci->page_size, &dma);
1298		if (!buf)
1299			goto fail_sp5;
1300
1301		xhci->scratchpad->sp_array[i] = dma;
1302		xhci->scratchpad->sp_buffers[i] = buf;
1303		xhci->scratchpad->sp_dma_buffers[i] = dma;
1304	}
1305
1306	return 0;
1307
1308 fail_sp5:
1309	for (i = i - 1; i >= 0; i--) {
1310		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1311				    xhci->scratchpad->sp_buffers[i],
1312				    xhci->scratchpad->sp_dma_buffers[i]);
1313	}
1314	kfree(xhci->scratchpad->sp_dma_buffers);
1315
1316 fail_sp4:
1317	kfree(xhci->scratchpad->sp_buffers);
1318
1319 fail_sp3:
1320	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1321			    xhci->scratchpad->sp_array,
1322			    xhci->scratchpad->sp_dma);
1323
1324 fail_sp2:
1325	kfree(xhci->scratchpad);
1326	xhci->scratchpad = NULL;
1327
1328 fail_sp:
1329	return -ENOMEM;
1330}
1331
1332static void scratchpad_free(struct xhci_hcd *xhci)
1333{
1334	int num_sp;
1335	int i;
1336	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1337
1338	if (!xhci->scratchpad)
1339		return;
1340
1341	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1342
1343	for (i = 0; i < num_sp; i++) {
1344		pci_free_consistent(pdev, xhci->page_size,
1345				    xhci->scratchpad->sp_buffers[i],
1346				    xhci->scratchpad->sp_dma_buffers[i]);
1347	}
1348	kfree(xhci->scratchpad->sp_dma_buffers);
1349	kfree(xhci->scratchpad->sp_buffers);
1350	pci_free_consistent(pdev, num_sp * sizeof(u64),
1351			    xhci->scratchpad->sp_array,
1352			    xhci->scratchpad->sp_dma);
1353	kfree(xhci->scratchpad);
1354	xhci->scratchpad = NULL;
1355}
1356
1357struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1358		bool allocate_in_ctx, bool allocate_completion,
1359		gfp_t mem_flags)
1360{
1361	struct xhci_command *command;
1362
1363	command = kzalloc(sizeof(*command), mem_flags);
1364	if (!command)
1365		return NULL;
1366
1367	if (allocate_in_ctx) {
1368		command->in_ctx =
1369			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1370					mem_flags);
1371		if (!command->in_ctx) {
1372			kfree(command);
1373			return NULL;
1374		}
1375	}
1376
1377	if (allocate_completion) {
1378		command->completion =
1379			kzalloc(sizeof(struct completion), mem_flags);
1380		if (!command->completion) {
1381			xhci_free_container_ctx(xhci, command->in_ctx);
1382			kfree(command);
1383			return NULL;
1384		}
1385		init_completion(command->completion);
1386	}
1387
1388	command->status = 0;
1389	INIT_LIST_HEAD(&command->cmd_list);
1390	return command;
1391}
1392
1393void xhci_free_command(struct xhci_hcd *xhci,
1394		struct xhci_command *command)
1395{
1396	xhci_free_container_ctx(xhci,
1397			command->in_ctx);
1398	kfree(command->completion);
1399	kfree(command);
1400}
1401
1402void xhci_mem_cleanup(struct xhci_hcd *xhci)
1403{
1404	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1405	int size;
1406	int i;
1407
1408	/* Free the Event Ring Segment Table and the actual Event Ring */
1409	if (xhci->ir_set) {
1410		xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1411		xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1412		xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1413	}
1414	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1415	if (xhci->erst.entries)
1416		pci_free_consistent(pdev, size,
1417				xhci->erst.entries, xhci->erst.erst_dma_addr);
1418	xhci->erst.entries = NULL;
1419	xhci_dbg(xhci, "Freed ERST\n");
1420	if (xhci->event_ring)
1421		xhci_ring_free(xhci, xhci->event_ring);
1422	xhci->event_ring = NULL;
1423	xhci_dbg(xhci, "Freed event ring\n");
1424
1425	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1426	if (xhci->cmd_ring)
1427		xhci_ring_free(xhci, xhci->cmd_ring);
1428	xhci->cmd_ring = NULL;
1429	xhci_dbg(xhci, "Freed command ring\n");
1430
1431	for (i = 1; i < MAX_HC_SLOTS; ++i)
1432		xhci_free_virt_device(xhci, i);
1433
1434	if (xhci->segment_pool)
1435		dma_pool_destroy(xhci->segment_pool);
1436	xhci->segment_pool = NULL;
1437	xhci_dbg(xhci, "Freed segment pool\n");
1438
1439	if (xhci->device_pool)
1440		dma_pool_destroy(xhci->device_pool);
1441	xhci->device_pool = NULL;
1442	xhci_dbg(xhci, "Freed device context pool\n");
1443
1444	if (xhci->small_streams_pool)
1445		dma_pool_destroy(xhci->small_streams_pool);
1446	xhci->small_streams_pool = NULL;
1447	xhci_dbg(xhci, "Freed small stream array pool\n");
1448
1449	if (xhci->medium_streams_pool)
1450		dma_pool_destroy(xhci->medium_streams_pool);
1451	xhci->medium_streams_pool = NULL;
1452	xhci_dbg(xhci, "Freed medium stream array pool\n");
1453
1454	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1455	if (xhci->dcbaa)
1456		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1457				xhci->dcbaa, xhci->dcbaa->dma);
1458	xhci->dcbaa = NULL;
1459
1460	scratchpad_free(xhci);
1461	xhci->page_size = 0;
1462	xhci->page_shift = 0;
1463}
1464
1465static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1466		struct xhci_segment *input_seg,
1467		union xhci_trb *start_trb,
1468		union xhci_trb *end_trb,
1469		dma_addr_t input_dma,
1470		struct xhci_segment *result_seg,
1471		char *test_name, int test_number)
1472{
1473	unsigned long long start_dma;
1474	unsigned long long end_dma;
1475	struct xhci_segment *seg;
1476
1477	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1478	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1479
1480	seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1481	if (seg != result_seg) {
1482		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1483				test_name, test_number);
1484		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1485				"input DMA 0x%llx\n",
1486				input_seg,
1487				(unsigned long long) input_dma);
1488		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1489				"ending TRB %p (0x%llx DMA)\n",
1490				start_trb, start_dma,
1491				end_trb, end_dma);
1492		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1493				result_seg, seg);
1494		return -1;
1495	}
1496	return 0;
1497}
1498
1499/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1500static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1501{
1502	struct {
1503		dma_addr_t		input_dma;
1504		struct xhci_segment	*result_seg;
1505	} simple_test_vector [] = {
1506		/* A zeroed DMA field should fail */
1507		{ 0, NULL },
1508		/* One TRB before the ring start should fail */
1509		{ xhci->event_ring->first_seg->dma - 16, NULL },
1510		/* One byte before the ring start should fail */
1511		{ xhci->event_ring->first_seg->dma - 1, NULL },
1512		/* Starting TRB should succeed */
1513		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1514		/* Ending TRB should succeed */
1515		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1516			xhci->event_ring->first_seg },
1517		/* One byte after the ring end should fail */
1518		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1519		/* One TRB after the ring end should fail */
1520		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1521		/* An address of all ones should fail */
1522		{ (dma_addr_t) (~0), NULL },
1523	};
1524	struct {
1525		struct xhci_segment	*input_seg;
1526		union xhci_trb		*start_trb;
1527		union xhci_trb		*end_trb;
1528		dma_addr_t		input_dma;
1529		struct xhci_segment	*result_seg;
1530	} complex_test_vector [] = {
1531		/* Test feeding a valid DMA address from a different ring */
1532		{	.input_seg = xhci->event_ring->first_seg,
1533			.start_trb = xhci->event_ring->first_seg->trbs,
1534			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1535			.input_dma = xhci->cmd_ring->first_seg->dma,
1536			.result_seg = NULL,
1537		},
1538		/* Test feeding a valid end TRB from a different ring */
1539		{	.input_seg = xhci->event_ring->first_seg,
1540			.start_trb = xhci->event_ring->first_seg->trbs,
1541			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1542			.input_dma = xhci->cmd_ring->first_seg->dma,
1543			.result_seg = NULL,
1544		},
1545		/* Test feeding a valid start and end TRB from a different ring */
1546		{	.input_seg = xhci->event_ring->first_seg,
1547			.start_trb = xhci->cmd_ring->first_seg->trbs,
1548			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1549			.input_dma = xhci->cmd_ring->first_seg->dma,
1550			.result_seg = NULL,
1551		},
1552		/* TRB in this ring, but after this TD */
1553		{	.input_seg = xhci->event_ring->first_seg,
1554			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1555			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1556			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1557			.result_seg = NULL,
1558		},
1559		/* TRB in this ring, but before this TD */
1560		{	.input_seg = xhci->event_ring->first_seg,
1561			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1562			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1563			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1564			.result_seg = NULL,
1565		},
1566		/* TRB in this ring, but after this wrapped TD */
1567		{	.input_seg = xhci->event_ring->first_seg,
1568			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1569			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1570			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1571			.result_seg = NULL,
1572		},
1573		/* TRB in this ring, but before this wrapped TD */
1574		{	.input_seg = xhci->event_ring->first_seg,
1575			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1576			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1577			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1578			.result_seg = NULL,
1579		},
1580		/* TRB not in this ring, and we have a wrapped TD */
1581		{	.input_seg = xhci->event_ring->first_seg,
1582			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1583			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1584			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1585			.result_seg = NULL,
1586		},
1587	};
1588
1589	unsigned int num_tests;
1590	int i, ret;
1591
1592	num_tests = ARRAY_SIZE(simple_test_vector);
1593	for (i = 0; i < num_tests; i++) {
1594		ret = xhci_test_trb_in_td(xhci,
1595				xhci->event_ring->first_seg,
1596				xhci->event_ring->first_seg->trbs,
1597				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1598				simple_test_vector[i].input_dma,
1599				simple_test_vector[i].result_seg,
1600				"Simple", i);
1601		if (ret < 0)
1602			return ret;
1603	}
1604
1605	num_tests = ARRAY_SIZE(complex_test_vector);
1606	for (i = 0; i < num_tests; i++) {
1607		ret = xhci_test_trb_in_td(xhci,
1608				complex_test_vector[i].input_seg,
1609				complex_test_vector[i].start_trb,
1610				complex_test_vector[i].end_trb,
1611				complex_test_vector[i].input_dma,
1612				complex_test_vector[i].result_seg,
1613				"Complex", i);
1614		if (ret < 0)
1615			return ret;
1616	}
1617	xhci_dbg(xhci, "TRB math tests passed.\n");
1618	return 0;
1619}
1620
1621
1622int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1623{
1624	dma_addr_t	dma;
1625	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1626	unsigned int	val, val2;
1627	u64		val_64;
1628	struct xhci_segment	*seg;
1629	u32 page_size;
1630	int i;
1631
1632	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1633	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1634	for (i = 0; i < 16; i++) {
1635		if ((0x1 & page_size) != 0)
1636			break;
1637		page_size = page_size >> 1;
1638	}
1639	if (i < 16)
1640		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1641	else
1642		xhci_warn(xhci, "WARN: no supported page size\n");
1643	/* Use 4K pages, since that's common and the minimum the HC supports */
1644	xhci->page_shift = 12;
1645	xhci->page_size = 1 << xhci->page_shift;
1646	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1647
1648	/*
1649	 * Program the Number of Device Slots Enabled field in the CONFIG
1650	 * register with the max value of slots the HC can handle.
1651	 */
1652	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1653	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1654			(unsigned int) val);
1655	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1656	val |= (val2 & ~HCS_SLOTS_MASK);
1657	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1658			(unsigned int) val);
1659	xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1660
1661	/*
1662	 * Section 5.4.8 - doorbell array must be
1663	 * "physically contiguous and 64-byte (cache line) aligned".
1664	 */
1665	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1666			sizeof(*xhci->dcbaa), &dma);
1667	if (!xhci->dcbaa)
1668		goto fail;
1669	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1670	xhci->dcbaa->dma = dma;
1671	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1672			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1673	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1674
1675	/*
1676	 * Initialize the ring segment pool.  The ring must be a contiguous
1677	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1678	 * however, the command ring segment needs 64-byte aligned segments,
1679	 * so we pick the greater alignment need.
1680	 */
1681	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1682			SEGMENT_SIZE, 64, xhci->page_size);
1683
1684	/* See Table 46 and Note on Figure 55 */
1685	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1686			2112, 64, xhci->page_size);
1687	if (!xhci->segment_pool || !xhci->device_pool)
1688		goto fail;
1689
1690	/* Linear stream context arrays don't have any boundary restrictions,
1691	 * and only need to be 16-byte aligned.
1692	 */
1693	xhci->small_streams_pool =
1694		dma_pool_create("xHCI 256 byte stream ctx arrays",
1695			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1696	xhci->medium_streams_pool =
1697		dma_pool_create("xHCI 1KB stream ctx arrays",
1698			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1699	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1700	 * will be allocated with pci_alloc_consistent()
1701	 */
1702
1703	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1704		goto fail;
1705
1706	/* Set up the command ring to have one segments for now. */
1707	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1708	if (!xhci->cmd_ring)
1709		goto fail;
1710	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1711	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1712			(unsigned long long)xhci->cmd_ring->first_seg->dma);
1713
1714	/* Set the address in the Command Ring Control register */
1715	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1716	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1717		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1718		xhci->cmd_ring->cycle_state;
1719	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1720	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1721	xhci_dbg_cmd_ptrs(xhci);
1722
1723	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1724	val &= DBOFF_MASK;
1725	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1726			" from cap regs base addr\n", val);
1727	xhci->dba = (void *) xhci->cap_regs + val;
1728	xhci_dbg_regs(xhci);
1729	xhci_print_run_regs(xhci);
1730	/* Set ir_set to interrupt register set 0 */
1731	xhci->ir_set = (void *) xhci->run_regs->ir_set;
1732
1733	/*
1734	 * Event ring setup: Allocate a normal ring, but also setup
1735	 * the event ring segment table (ERST).  Section 4.9.3.
1736	 */
1737	xhci_dbg(xhci, "// Allocating event ring\n");
1738	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1739	if (!xhci->event_ring)
1740		goto fail;
1741	if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1742		goto fail;
1743
1744	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1745			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1746	if (!xhci->erst.entries)
1747		goto fail;
1748	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1749			(unsigned long long)dma);
1750
1751	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1752	xhci->erst.num_entries = ERST_NUM_SEGS;
1753	xhci->erst.erst_dma_addr = dma;
1754	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1755			xhci->erst.num_entries,
1756			xhci->erst.entries,
1757			(unsigned long long)xhci->erst.erst_dma_addr);
1758
1759	/* set ring base address and size for each segment table entry */
1760	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1761		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1762		entry->seg_addr = seg->dma;
1763		entry->seg_size = TRBS_PER_SEGMENT;
1764		entry->rsvd = 0;
1765		seg = seg->next;
1766	}
1767
1768	/* set ERST count with the number of entries in the segment table */
1769	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1770	val &= ERST_SIZE_MASK;
1771	val |= ERST_NUM_SEGS;
1772	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1773			val);
1774	xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1775
1776	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1777	/* set the segment table base address */
1778	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1779			(unsigned long long)xhci->erst.erst_dma_addr);
1780	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1781	val_64 &= ERST_PTR_MASK;
1782	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1783	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1784
1785	/* Set the event ring dequeue address */
1786	xhci_set_hc_event_deq(xhci);
1787	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1788	xhci_print_ir_set(xhci, xhci->ir_set, 0);
1789
1790	/*
1791	 * XXX: Might need to set the Interrupter Moderation Register to
1792	 * something other than the default (~1ms minimum between interrupts).
1793	 * See section 5.5.1.2.
1794	 */
1795	init_completion(&xhci->addr_dev);
1796	for (i = 0; i < MAX_HC_SLOTS; ++i)
1797		xhci->devs[i] = NULL;
1798
1799	if (scratchpad_alloc(xhci, flags))
1800		goto fail;
1801
1802	return 0;
1803
1804fail:
1805	xhci_warn(xhci, "Couldn't initialize memory\n");
1806	xhci_mem_cleanup(xhci);
1807	return -ENOMEM;
1808}
1809