intelfbhw.c revision 16109b3f4c1f2635afd32eb6d49348590de2cb25
1/*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright � 2002, 2003 David Dawes <dawes@xfree86.org>
7 *                   2004 Sylvain Meyer
8 *
9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12 * provides the code to program the hardware.  Most of it is derived from
13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22#include <linux/config.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/errno.h>
26#include <linux/string.h>
27#include <linux/mm.h>
28#include <linux/tty.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/fb.h>
32#include <linux/ioport.h>
33#include <linux/init.h>
34#include <linux/pci.h>
35#include <linux/vmalloc.h>
36#include <linux/pagemap.h>
37
38#include <asm/io.h>
39
40#include "intelfb.h"
41#include "intelfbhw.h"
42
43struct pll_min_max {
44	int min_m, max_m;
45	int min_m1, max_m1;
46	int min_m2, max_m2;
47	int min_n, max_n;
48	int min_p, max_p;
49	int min_p1, max_p1;
50	int min_vco_freq, max_vco_freq;
51	int p_transition_clock;
52	int p_inc_lo, p_inc_hi;
53};
54
55#define PLLS_I8xx 0
56#define PLLS_I9xx 1
57#define PLLS_MAX 2
58
59struct pll_min_max plls[PLLS_MAX] = {
60	{ 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 4, 22 }, //I8xx
61	{  75, 120, 10, 20, 5, 9, 4,  7, 5, 80, 1, 8, 930000, 2800000, 200000, 10, 5 }  //I9xx
62};
63
64int
65intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
66{
67	u32 tmp;
68	if (!pdev || !dinfo)
69		return 1;
70
71	switch (pdev->device) {
72	case PCI_DEVICE_ID_INTEL_830M:
73		dinfo->name = "Intel(R) 830M";
74		dinfo->chipset = INTEL_830M;
75		dinfo->mobile = 1;
76		dinfo->pll_index = PLLS_I8xx;
77		return 0;
78	case PCI_DEVICE_ID_INTEL_845G:
79		dinfo->name = "Intel(R) 845G";
80		dinfo->chipset = INTEL_845G;
81		dinfo->mobile = 0;
82		dinfo->pll_index = PLLS_I8xx;
83		return 0;
84	case PCI_DEVICE_ID_INTEL_85XGM:
85		tmp = 0;
86		dinfo->mobile = 1;
87		dinfo->pll_index = PLLS_I8xx;
88		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
89		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
90			INTEL_85X_VARIANT_MASK) {
91		case INTEL_VAR_855GME:
92			dinfo->name = "Intel(R) 855GME";
93			dinfo->chipset = INTEL_855GME;
94			return 0;
95		case INTEL_VAR_855GM:
96			dinfo->name = "Intel(R) 855GM";
97			dinfo->chipset = INTEL_855GM;
98			return 0;
99		case INTEL_VAR_852GME:
100			dinfo->name = "Intel(R) 852GME";
101			dinfo->chipset = INTEL_852GME;
102			return 0;
103		case INTEL_VAR_852GM:
104			dinfo->name = "Intel(R) 852GM";
105			dinfo->chipset = INTEL_852GM;
106			return 0;
107		default:
108			dinfo->name = "Intel(R) 852GM/855GM";
109			dinfo->chipset = INTEL_85XGM;
110			return 0;
111		}
112		break;
113	case PCI_DEVICE_ID_INTEL_865G:
114		dinfo->name = "Intel(R) 865G";
115		dinfo->chipset = INTEL_865G;
116		dinfo->mobile = 0;
117		dinfo->pll_index = PLLS_I8xx;
118		return 0;
119	case PCI_DEVICE_ID_INTEL_915G:
120		dinfo->name = "Intel(R) 915G";
121		dinfo->chipset = INTEL_915G;
122		dinfo->mobile = 0;
123		dinfo->pll_index = PLLS_I9xx;
124		return 0;
125	case PCI_DEVICE_ID_INTEL_915GM:
126		dinfo->name = "Intel(R) 915GM";
127		dinfo->chipset = INTEL_915GM;
128		dinfo->mobile = 1;
129		dinfo->pll_index = PLLS_I9xx;
130		return 0;
131	default:
132		return 1;
133	}
134}
135
136int
137intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
138		     int *stolen_size)
139{
140	struct pci_dev *bridge_dev;
141	u16 tmp;
142
143	if (!pdev || !aperture_size || !stolen_size)
144		return 1;
145
146	/* Find the bridge device.  It is always 0:0.0 */
147	if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
148		ERR_MSG("cannot find bridge device\n");
149		return 1;
150	}
151
152	/* Get the fb aperture size and "stolen" memory amount. */
153	tmp = 0;
154	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
155	switch (pdev->device) {
156	case PCI_DEVICE_ID_INTEL_830M:
157	case PCI_DEVICE_ID_INTEL_845G:
158		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
159			*aperture_size = MB(64);
160		else
161			*aperture_size = MB(128);
162		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
163		case INTEL_830_GMCH_GMS_STOLEN_512:
164			*stolen_size = KB(512) - KB(132);
165			return 0;
166		case INTEL_830_GMCH_GMS_STOLEN_1024:
167			*stolen_size = MB(1) - KB(132);
168			return 0;
169		case INTEL_830_GMCH_GMS_STOLEN_8192:
170			*stolen_size = MB(8) - KB(132);
171			return 0;
172		case INTEL_830_GMCH_GMS_LOCAL:
173			ERR_MSG("only local memory found\n");
174			return 1;
175		case INTEL_830_GMCH_GMS_DISABLED:
176			ERR_MSG("video memory is disabled\n");
177			return 1;
178		default:
179			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
180				tmp & INTEL_830_GMCH_GMS_MASK);
181			return 1;
182		}
183		break;
184	default:
185		*aperture_size = MB(128);
186		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
187		case INTEL_855_GMCH_GMS_STOLEN_1M:
188			*stolen_size = MB(1) - KB(132);
189			return 0;
190		case INTEL_855_GMCH_GMS_STOLEN_4M:
191			*stolen_size = MB(4) - KB(132);
192			return 0;
193		case INTEL_855_GMCH_GMS_STOLEN_8M:
194			*stolen_size = MB(8) - KB(132);
195			return 0;
196		case INTEL_855_GMCH_GMS_STOLEN_16M:
197			*stolen_size = MB(16) - KB(132);
198			return 0;
199		case INTEL_855_GMCH_GMS_STOLEN_32M:
200			*stolen_size = MB(32) - KB(132);
201			return 0;
202		case INTEL_915G_GMCH_GMS_STOLEN_48M:
203			*stolen_size = MB(48) - KB(132);
204			return 0;
205		case INTEL_915G_GMCH_GMS_STOLEN_64M:
206			*stolen_size = MB(64) - KB(132);
207			return 0;
208		case INTEL_855_GMCH_GMS_DISABLED:
209			ERR_MSG("video memory is disabled\n");
210			return 0;
211		default:
212			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
213				tmp & INTEL_855_GMCH_GMS_MASK);
214			return 1;
215		}
216	}
217}
218
219int
220intelfbhw_check_non_crt(struct intelfb_info *dinfo)
221{
222	int dvo = 0;
223
224	if (INREG(LVDS) & PORT_ENABLE)
225		dvo |= LVDS_PORT;
226	if (INREG(DVOA) & PORT_ENABLE)
227		dvo |= DVOA_PORT;
228	if (INREG(DVOB) & PORT_ENABLE)
229		dvo |= DVOB_PORT;
230	if (INREG(DVOC) & PORT_ENABLE)
231		dvo |= DVOC_PORT;
232
233	return dvo;
234}
235
236const char *
237intelfbhw_dvo_to_string(int dvo)
238{
239	if (dvo & DVOA_PORT)
240		return "DVO port A";
241	else if (dvo & DVOB_PORT)
242		return "DVO port B";
243	else if (dvo & DVOC_PORT)
244		return "DVO port C";
245	else if (dvo & LVDS_PORT)
246		return "LVDS port";
247	else
248		return NULL;
249}
250
251
252int
253intelfbhw_validate_mode(struct intelfb_info *dinfo,
254			struct fb_var_screeninfo *var)
255{
256	int bytes_per_pixel;
257	int tmp;
258
259#if VERBOSE > 0
260	DBG_MSG("intelfbhw_validate_mode\n");
261#endif
262
263	bytes_per_pixel = var->bits_per_pixel / 8;
264	if (bytes_per_pixel == 3)
265		bytes_per_pixel = 4;
266
267	/* Check if enough video memory. */
268	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
269	if (tmp > dinfo->fb.size) {
270		WRN_MSG("Not enough video ram for mode "
271			"(%d KByte vs %d KByte).\n",
272			BtoKB(tmp), BtoKB(dinfo->fb.size));
273		return 1;
274	}
275
276	/* Check if x/y limits are OK. */
277	if (var->xres - 1 > HACTIVE_MASK) {
278		WRN_MSG("X resolution too large (%d vs %d).\n",
279			var->xres, HACTIVE_MASK + 1);
280		return 1;
281	}
282	if (var->yres - 1 > VACTIVE_MASK) {
283		WRN_MSG("Y resolution too large (%d vs %d).\n",
284			var->yres, VACTIVE_MASK + 1);
285		return 1;
286	}
287
288	/* Check for interlaced/doublescan modes. */
289	if (var->vmode & FB_VMODE_INTERLACED) {
290		WRN_MSG("Mode is interlaced.\n");
291		return 1;
292	}
293	if (var->vmode & FB_VMODE_DOUBLE) {
294		WRN_MSG("Mode is double-scan.\n");
295		return 1;
296	}
297
298	/* Check if clock is OK. */
299	tmp = 1000000000 / var->pixclock;
300	if (tmp < MIN_CLOCK) {
301		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
302			(tmp + 500) / 1000, MIN_CLOCK / 1000);
303		return 1;
304	}
305	if (tmp > MAX_CLOCK) {
306		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
307			(tmp + 500) / 1000, MAX_CLOCK / 1000);
308		return 1;
309	}
310
311	return 0;
312}
313
314int
315intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
316{
317	struct intelfb_info *dinfo = GET_DINFO(info);
318	u32 offset, xoffset, yoffset;
319
320#if VERBOSE > 0
321	DBG_MSG("intelfbhw_pan_display\n");
322#endif
323
324	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
325	yoffset = var->yoffset;
326
327	if ((xoffset + var->xres > var->xres_virtual) ||
328	    (yoffset + var->yres > var->yres_virtual))
329		return -EINVAL;
330
331	offset = (yoffset * dinfo->pitch) +
332		 (xoffset * var->bits_per_pixel) / 8;
333
334	offset += dinfo->fb.offset << 12;
335
336	OUTREG(DSPABASE, offset);
337
338	return 0;
339}
340
341/* Blank the screen. */
342void
343intelfbhw_do_blank(int blank, struct fb_info *info)
344{
345	struct intelfb_info *dinfo = GET_DINFO(info);
346	u32 tmp;
347
348#if VERBOSE > 0
349	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
350#endif
351
352	/* Turn plane A on or off */
353	tmp = INREG(DSPACNTR);
354	if (blank)
355		tmp &= ~DISPPLANE_PLANE_ENABLE;
356	else
357		tmp |= DISPPLANE_PLANE_ENABLE;
358	OUTREG(DSPACNTR, tmp);
359	/* Flush */
360	tmp = INREG(DSPABASE);
361	OUTREG(DSPABASE, tmp);
362
363	/* Turn off/on the HW cursor */
364#if VERBOSE > 0
365	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
366#endif
367	if (dinfo->cursor_on) {
368		if (blank) {
369			intelfbhw_cursor_hide(dinfo);
370		} else {
371			intelfbhw_cursor_show(dinfo);
372		}
373		dinfo->cursor_on = 1;
374	}
375	dinfo->cursor_blanked = blank;
376
377	/* Set DPMS level */
378	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
379	switch (blank) {
380	case FB_BLANK_UNBLANK:
381	case FB_BLANK_NORMAL:
382		tmp |= ADPA_DPMS_D0;
383		break;
384	case FB_BLANK_VSYNC_SUSPEND:
385		tmp |= ADPA_DPMS_D1;
386		break;
387	case FB_BLANK_HSYNC_SUSPEND:
388		tmp |= ADPA_DPMS_D2;
389		break;
390	case FB_BLANK_POWERDOWN:
391		tmp |= ADPA_DPMS_D3;
392		break;
393	}
394	OUTREG(ADPA, tmp);
395
396	return;
397}
398
399
400void
401intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
402		    unsigned red, unsigned green, unsigned blue,
403		    unsigned transp)
404{
405#if VERBOSE > 0
406	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
407		regno, red, green, blue);
408#endif
409
410	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
411			  PALETTE_A : PALETTE_B;
412
413	OUTREG(palette_reg + (regno << 2),
414	       (red << PALETTE_8_RED_SHIFT) |
415	       (green << PALETTE_8_GREEN_SHIFT) |
416	       (blue << PALETTE_8_BLUE_SHIFT));
417}
418
419
420int
421intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
422			int flag)
423{
424	int i;
425
426#if VERBOSE > 0
427	DBG_MSG("intelfbhw_read_hw_state\n");
428#endif
429
430	if (!hw || !dinfo)
431		return -1;
432
433	/* Read in as much of the HW state as possible. */
434	hw->vga0_divisor = INREG(VGA0_DIVISOR);
435	hw->vga1_divisor = INREG(VGA1_DIVISOR);
436	hw->vga_pd = INREG(VGAPD);
437	hw->dpll_a = INREG(DPLL_A);
438	hw->dpll_b = INREG(DPLL_B);
439	hw->fpa0 = INREG(FPA0);
440	hw->fpa1 = INREG(FPA1);
441	hw->fpb0 = INREG(FPB0);
442	hw->fpb1 = INREG(FPB1);
443
444	if (flag == 1)
445		return flag;
446
447#if 0
448	/* This seems to be a problem with the 852GM/855GM */
449	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
450		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
451		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
452	}
453#endif
454
455	if (flag == 2)
456		return flag;
457
458	hw->htotal_a = INREG(HTOTAL_A);
459	hw->hblank_a = INREG(HBLANK_A);
460	hw->hsync_a = INREG(HSYNC_A);
461	hw->vtotal_a = INREG(VTOTAL_A);
462	hw->vblank_a = INREG(VBLANK_A);
463	hw->vsync_a = INREG(VSYNC_A);
464	hw->src_size_a = INREG(SRC_SIZE_A);
465	hw->bclrpat_a = INREG(BCLRPAT_A);
466	hw->htotal_b = INREG(HTOTAL_B);
467	hw->hblank_b = INREG(HBLANK_B);
468	hw->hsync_b = INREG(HSYNC_B);
469	hw->vtotal_b = INREG(VTOTAL_B);
470	hw->vblank_b = INREG(VBLANK_B);
471	hw->vsync_b = INREG(VSYNC_B);
472	hw->src_size_b = INREG(SRC_SIZE_B);
473	hw->bclrpat_b = INREG(BCLRPAT_B);
474
475	if (flag == 3)
476		return flag;
477
478	hw->adpa = INREG(ADPA);
479	hw->dvoa = INREG(DVOA);
480	hw->dvob = INREG(DVOB);
481	hw->dvoc = INREG(DVOC);
482	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
483	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
484	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
485	hw->lvds = INREG(LVDS);
486
487	if (flag == 4)
488		return flag;
489
490	hw->pipe_a_conf = INREG(PIPEACONF);
491	hw->pipe_b_conf = INREG(PIPEBCONF);
492	hw->disp_arb = INREG(DISPARB);
493
494	if (flag == 5)
495		return flag;
496
497	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
498	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
499	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
500	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
501
502	if (flag == 6)
503		return flag;
504
505	for (i = 0; i < 4; i++) {
506		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
507		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
508	}
509
510	if (flag == 7)
511		return flag;
512
513	hw->cursor_size = INREG(CURSOR_SIZE);
514
515	if (flag == 8)
516		return flag;
517
518	hw->disp_a_ctrl = INREG(DSPACNTR);
519	hw->disp_b_ctrl = INREG(DSPBCNTR);
520	hw->disp_a_base = INREG(DSPABASE);
521	hw->disp_b_base = INREG(DSPBBASE);
522	hw->disp_a_stride = INREG(DSPASTRIDE);
523	hw->disp_b_stride = INREG(DSPBSTRIDE);
524
525	if (flag == 9)
526		return flag;
527
528	hw->vgacntrl = INREG(VGACNTRL);
529
530	if (flag == 10)
531		return flag;
532
533	hw->add_id = INREG(ADD_ID);
534
535	if (flag == 11)
536		return flag;
537
538	for (i = 0; i < 7; i++) {
539		hw->swf0x[i] = INREG(SWF00 + (i << 2));
540		hw->swf1x[i] = INREG(SWF10 + (i << 2));
541		if (i < 3)
542			hw->swf3x[i] = INREG(SWF30 + (i << 2));
543	}
544
545	for (i = 0; i < 8; i++)
546		hw->fence[i] = INREG(FENCE + (i << 2));
547
548	hw->instpm = INREG(INSTPM);
549	hw->mem_mode = INREG(MEM_MODE);
550	hw->fw_blc_0 = INREG(FW_BLC_0);
551	hw->fw_blc_1 = INREG(FW_BLC_1);
552
553	return 0;
554}
555
556
557static int calc_vclock3(int index, int m, int n, int p)
558{
559	return PLL_REFCLK * m / n / p;
560}
561
562static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2)
563{
564	switch(index)
565	{
566	case PLLS_I9xx:
567		return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
568			 ((p1)) * (p2 ? 10 : 5)));
569	case PLLS_I8xx:
570	default:
571		return ((PLL_REFCLK * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
572			 ((p1+2) * (1 << (p2 + 1)))));
573	}
574}
575
576void
577intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
578{
579#if REGDUMP
580	int i, m1, m2, n, p1, p2;
581	int index = dinfo->pll_index;
582	DBG_MSG("intelfbhw_print_hw_state\n");
583
584	if (!hw || !dinfo)
585		return;
586	/* Read in as much of the HW state as possible. */
587	printk("hw state dump start\n");
588	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
589	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
590	printk("	VGAPD: 			0x%08x\n", hw->vga_pd);
591	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
592	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
593	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
594	if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
595		p1 = 0;
596	else
597		p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
598	p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
599	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
600	       m1, m2, n, p1, p2);
601	printk("	VGA0: clock is %d\n",
602	       calc_vclock(index, m1, m2, n, p1, p2));
603
604	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
605	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
606	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
607	if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
608		p1 = 0;
609	else
610		p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
611	p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
612	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
613	       m1, m2, n, p1, p2);
614	printk("	VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
615
616	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
617	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
618	printk("	FPA0:			0x%08x\n", hw->fpa0);
619	printk("	FPA1:			0x%08x\n", hw->fpa1);
620	printk("	FPB0:			0x%08x\n", hw->fpb0);
621	printk("	FPB1:			0x%08x\n", hw->fpb1);
622
623	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
624	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
625	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
626	if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
627		p1 = 0;
628	else
629		p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
630	p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
631	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
632	       m1, m2, n, p1, p2);
633	printk("	PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
634
635	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
636	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
637	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
638	if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
639		p1 = 0;
640	else
641		p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
642	p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
643	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
644	       m1, m2, n, p1, p2);
645	printk("	PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2));
646
647#if 0
648	printk("	PALETTE_A:\n");
649	for (i = 0; i < PALETTE_8_ENTRIES)
650		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
651	printk("	PALETTE_B:\n");
652	for (i = 0; i < PALETTE_8_ENTRIES)
653		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
654#endif
655
656	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
657	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
658	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
659	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
660	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
661	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
662	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
663	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
664	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
665	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
666	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
667	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
668	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
669	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
670	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
671	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
672
673	printk("	ADPA:			0x%08x\n", hw->adpa);
674	printk("	DVOA:			0x%08x\n", hw->dvoa);
675	printk("	DVOB:			0x%08x\n", hw->dvob);
676	printk("	DVOC:			0x%08x\n", hw->dvoc);
677	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
678	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
679	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
680	printk("	LVDS:			0x%08x\n", hw->lvds);
681
682	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
683	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
684	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
685
686	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
687	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
688	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
689	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
690
691	printk("	CURSOR_A_PALETTE:	");
692	for (i = 0; i < 4; i++) {
693		printk("0x%08x", hw->cursor_a_palette[i]);
694		if (i < 3)
695			printk(", ");
696	}
697	printk("\n");
698	printk("	CURSOR_B_PALETTE:	");
699	for (i = 0; i < 4; i++) {
700		printk("0x%08x", hw->cursor_b_palette[i]);
701		if (i < 3)
702			printk(", ");
703	}
704	printk("\n");
705
706	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
707
708	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
709	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
710	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
711	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
712	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
713	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
714
715	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
716	printk("	ADD_ID:			0x%08x\n", hw->add_id);
717
718	for (i = 0; i < 7; i++) {
719		printk("	SWF0%d			0x%08x\n", i,
720			hw->swf0x[i]);
721	}
722	for (i = 0; i < 7; i++) {
723		printk("	SWF1%d			0x%08x\n", i,
724			hw->swf1x[i]);
725	}
726	for (i = 0; i < 3; i++) {
727		printk("	SWF3%d			0x%08x\n", i,
728		       hw->swf3x[i]);
729	}
730	for (i = 0; i < 8; i++)
731		printk("	FENCE%d			0x%08x\n", i,
732		       hw->fence[i]);
733
734	printk("	INSTPM			0x%08x\n", hw->instpm);
735	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
736	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
737	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
738
739	printk("hw state dump end\n");
740#endif
741}
742
743
744
745/* Split the M parameter into M1 and M2. */
746static int
747splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
748{
749	int m1, m2;
750	int testm;
751	/* no point optimising too much - brute force m */
752	for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++)
753	{
754	  for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++)
755	  {
756	    testm  = ( 5 * ( m1 + 2 )) + (m2 + 2);
757	    if (testm == m)
758	    {
759		*retm1 = (unsigned int)m1;
760		*retm2 = (unsigned int)m2;
761		return 0;
762	    }
763	  }
764	}
765	return 1;
766}
767
768/* Split the P parameter into P1 and P2. */
769static int
770splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
771{
772	int p1, p2;
773
774	if (index == PLLS_I9xx)
775	{
776		p1 = (p / 10) + 1;
777		p2 = 0;
778
779		*retp1 = (unsigned int)p1;
780		*retp2 = (unsigned int)p2;
781		return 0;
782	}
783
784	if (index == PLLS_I8xx)
785	{
786		if (p % 4 == 0)
787			p2 = 1;
788		else
789			p2 = 0;
790		p1 = (p / (1 << (p2 + 1))) - 2;
791		if (p % 4 == 0 && p1 < plls[index].min_p1) {
792			p2 = 0;
793			p1 = (p / (1 << (p2 + 1))) - 2;
794		}
795		if (p1  < plls[index].min_p1 || p1 > plls[index].max_p1 || (p1 + 2) * (1 << (p2 + 1)) != p) {
796			return 1;
797		} else {
798			*retp1 = (unsigned int)p1;
799			*retp2 = (unsigned int)p2;
800			return 0;
801		}
802	}
803	return 1;
804}
805
806static int
807calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
808		u32 *retp2, u32 *retclock)
809{
810	u32 m1, m2, n, p1, p2, n1;
811	u32 f_vco, p, p_best = 0, m, f_out;
812	u32 err_max, err_target, err_best = 10000000;
813	u32 n_best = 0, m_best = 0, f_best, f_err;
814	u32 p_min, p_max, p_inc, div_min, div_max;
815
816	/* Accept 0.5% difference, but aim for 0.1% */
817	err_max = 5 * clock / 1000;
818	err_target = clock / 1000;
819
820	DBG_MSG("Clock is %d\n", clock);
821
822	div_max = plls[index].max_vco_freq / clock;
823	div_min = ROUND_UP_TO(plls[index].min_vco_freq, clock) / clock;
824
825	if (clock <= plls[index].p_transition_clock)
826		p_inc = plls[index].p_inc_lo;
827	else
828		p_inc = plls[index].p_inc_hi;
829	p_min = ROUND_UP_TO(div_min, p_inc);
830	p_max = ROUND_DOWN_TO(div_max, p_inc);
831	if (p_min < plls[index].min_p)
832		p_min = plls[index].min_p;
833	if (p_max > plls[index].max_p)
834		p_max = plls[index].max_p;
835
836	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
837
838	p = p_min;
839	do {
840		if (splitp(index, p, &p1, &p2)) {
841			WRN_MSG("cannot split p = %d\n", p);
842			p += p_inc;
843			continue;
844		}
845		n = plls[index].min_n;
846		f_vco = clock * p;
847
848		do {
849			m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;
850			if (m < plls[index].min_m)
851				m = plls[index].min_m;
852			if (m > plls[index].max_m)
853				m = plls[index].max_m;
854			f_out = calc_vclock3(index, m, n, p);
855			if (splitm(index, m, &m1, &m2)) {
856				WRN_MSG("cannot split m = %d\n", m);
857				n++;
858				continue;
859			}
860			if (clock > f_out)
861				f_err = clock - f_out;
862			else
863				f_err = f_out - clock;
864
865			if (f_err < err_best) {
866				m_best = m;
867				n_best = n;
868				p_best = p;
869				f_best = f_out;
870				err_best = f_err;
871			}
872			n++;
873		} while ((n <= plls[index].max_n) && (f_out >= clock));
874		p += p_inc;
875	} while ((p <= p_max));
876
877	if (!m_best) {
878		WRN_MSG("cannot find parameters for clock %d\n", clock);
879		return 1;
880	}
881	m = m_best;
882	n = n_best;
883	p = p_best;
884	splitm(index, m, &m1, &m2);
885	splitp(index, p, &p1, &p2);
886	n1 = n - 2;
887
888	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
889		"f: %d (%d), VCO: %d\n",
890		m, m1, m2, n, n1, p, p1, p2,
891		calc_vclock3(index, m, n, p),
892		calc_vclock(index, m1, m2, n1, p1, p2),
893		calc_vclock3(index, m, n, p) * p);
894	*retm1 = m1;
895	*retm2 = m2;
896	*retn = n1;
897	*retp1 = p1;
898	*retp2 = p2;
899	*retclock = calc_vclock(index, m1, m2, n1, p1, p2);
900
901	return 0;
902}
903
904static __inline__ int
905check_overflow(u32 value, u32 limit, const char *description)
906{
907	if (value > limit) {
908		WRN_MSG("%s value %d exceeds limit %d\n",
909			description, value, limit);
910		return 1;
911	}
912	return 0;
913}
914
915/* It is assumed that hw is filled in with the initial state information. */
916int
917intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
918		     struct fb_var_screeninfo *var)
919{
920	int pipe = PIPE_A;
921	u32 *dpll, *fp0, *fp1;
922	u32 m1, m2, n, p1, p2, clock_target, clock;
923	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
924	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
925	u32 vsync_pol, hsync_pol;
926	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
927
928	DBG_MSG("intelfbhw_mode_to_hw\n");
929
930	/* Disable VGA */
931	hw->vgacntrl |= VGA_DISABLE;
932
933	/* Check whether pipe A or pipe B is enabled. */
934	if (hw->pipe_a_conf & PIPECONF_ENABLE)
935		pipe = PIPE_A;
936	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
937		pipe = PIPE_B;
938
939	/* Set which pipe's registers will be set. */
940	if (pipe == PIPE_B) {
941		dpll = &hw->dpll_b;
942		fp0 = &hw->fpb0;
943		fp1 = &hw->fpb1;
944		hs = &hw->hsync_b;
945		hb = &hw->hblank_b;
946		ht = &hw->htotal_b;
947		vs = &hw->vsync_b;
948		vb = &hw->vblank_b;
949		vt = &hw->vtotal_b;
950		ss = &hw->src_size_b;
951		pipe_conf = &hw->pipe_b_conf;
952	} else {
953		dpll = &hw->dpll_a;
954		fp0 = &hw->fpa0;
955		fp1 = &hw->fpa1;
956		hs = &hw->hsync_a;
957		hb = &hw->hblank_a;
958		ht = &hw->htotal_a;
959		vs = &hw->vsync_a;
960		vb = &hw->vblank_a;
961		vt = &hw->vtotal_a;
962		ss = &hw->src_size_a;
963		pipe_conf = &hw->pipe_a_conf;
964	}
965
966	/* Use ADPA register for sync control. */
967	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
968
969	/* sync polarity */
970	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
971			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
972	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
973			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
974	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
975		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
976	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
977		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
978
979	/* Connect correct pipe to the analog port DAC */
980	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
981	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
982
983	/* Set DPMS state to D0 (on) */
984	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
985	hw->adpa |= ADPA_DPMS_D0;
986
987	hw->adpa |= ADPA_DAC_ENABLE;
988
989	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
990	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
991	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
992
993	/* Desired clock in kHz */
994	clock_target = 1000000000 / var->pixclock;
995
996	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {
997		WRN_MSG("calc_pll_params failed\n");
998		return 1;
999	}
1000
1001	/* Check for overflow. */
1002	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1003		return 1;
1004	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1005		return 1;
1006	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1007		return 1;
1008	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1009		return 1;
1010	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1011		return 1;
1012
1013	*dpll &= ~DPLL_P1_FORCE_DIV2;
1014	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1015		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1016	*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1017	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1018	       (m1 << FP_M1_DIVISOR_SHIFT) |
1019	       (m2 << FP_M2_DIVISOR_SHIFT);
1020	*fp1 = *fp0;
1021
1022	hw->dvob &= ~PORT_ENABLE;
1023	hw->dvoc &= ~PORT_ENABLE;
1024
1025	/* Use display plane A. */
1026	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1027	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1028	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1029	switch (intelfb_var_to_depth(var)) {
1030	case 8:
1031		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1032		break;
1033	case 15:
1034		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1035		break;
1036	case 16:
1037		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1038		break;
1039	case 24:
1040		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1041		break;
1042	}
1043	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1044	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1045
1046	/* Set CRTC registers. */
1047	hactive = var->xres;
1048	hsync_start = hactive + var->right_margin;
1049	hsync_end = hsync_start + var->hsync_len;
1050	htotal = hsync_end + var->left_margin;
1051	hblank_start = hactive;
1052	hblank_end = htotal;
1053
1054	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1055		hactive, hsync_start, hsync_end, htotal, hblank_start,
1056		hblank_end);
1057
1058	vactive = var->yres;
1059	vsync_start = vactive + var->lower_margin;
1060	vsync_end = vsync_start + var->vsync_len;
1061	vtotal = vsync_end + var->upper_margin;
1062	vblank_start = vactive;
1063	vblank_end = vtotal;
1064	vblank_end = vsync_end + 1;
1065
1066	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1067		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1068		vblank_end);
1069
1070	/* Adjust for register values, and check for overflow. */
1071	hactive--;
1072	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1073		return 1;
1074	hsync_start--;
1075	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1076		return 1;
1077	hsync_end--;
1078	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1079		return 1;
1080	htotal--;
1081	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1082		return 1;
1083	hblank_start--;
1084	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1085		return 1;
1086	hblank_end--;
1087	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1088		return 1;
1089
1090	vactive--;
1091	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1092		return 1;
1093	vsync_start--;
1094	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1095		return 1;
1096	vsync_end--;
1097	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1098		return 1;
1099	vtotal--;
1100	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1101		return 1;
1102	vblank_start--;
1103	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1104		return 1;
1105	vblank_end--;
1106	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1107		return 1;
1108
1109	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1110	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1111	      (hblank_end << HSYNCEND_SHIFT);
1112	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1113
1114	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1115	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1116	      (vblank_end << VSYNCEND_SHIFT);
1117	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1118	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1119	      (vactive << SRC_SIZE_VERT_SHIFT);
1120
1121	hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
1122	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1123
1124	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1125			  var->xoffset * var->bits_per_pixel / 8;
1126
1127	hw->disp_a_base += dinfo->fb.offset << 12;
1128
1129	/* Check stride alignment. */
1130	if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
1131		WRN_MSG("display stride %d has bad alignment %d\n",
1132			hw->disp_a_stride, STRIDE_ALIGNMENT);
1133		return 1;
1134	}
1135
1136	/* Set the palette to 8-bit mode. */
1137	*pipe_conf &= ~PIPECONF_GAMMA;
1138	return 0;
1139}
1140
1141/* Program a (non-VGA) video mode. */
1142int
1143intelfbhw_program_mode(struct intelfb_info *dinfo,
1144		     const struct intelfb_hwstate *hw, int blank)
1145{
1146	int pipe = PIPE_A;
1147	u32 tmp;
1148	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1149	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1150	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1151	u32 hsync_reg, htotal_reg, hblank_reg;
1152	u32 vsync_reg, vtotal_reg, vblank_reg;
1153	u32 src_size_reg;
1154
1155	/* Assume single pipe, display plane A, analog CRT. */
1156
1157#if VERBOSE > 0
1158	DBG_MSG("intelfbhw_program_mode\n");
1159#endif
1160
1161	/* Disable VGA */
1162	tmp = INREG(VGACNTRL);
1163	tmp |= VGA_DISABLE;
1164	OUTREG(VGACNTRL, tmp);
1165
1166	/* Check whether pipe A or pipe B is enabled. */
1167	if (hw->pipe_a_conf & PIPECONF_ENABLE)
1168		pipe = PIPE_A;
1169	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1170		pipe = PIPE_B;
1171
1172	dinfo->pipe = pipe;
1173
1174	if (pipe == PIPE_B) {
1175		dpll = &hw->dpll_b;
1176		fp0 = &hw->fpb0;
1177		fp1 = &hw->fpb1;
1178		pipe_conf = &hw->pipe_b_conf;
1179		hs = &hw->hsync_b;
1180		hb = &hw->hblank_b;
1181		ht = &hw->htotal_b;
1182		vs = &hw->vsync_b;
1183		vb = &hw->vblank_b;
1184		vt = &hw->vtotal_b;
1185		ss = &hw->src_size_b;
1186		dpll_reg = DPLL_B;
1187		fp0_reg = FPB0;
1188		fp1_reg = FPB1;
1189		pipe_conf_reg = PIPEBCONF;
1190		hsync_reg = HSYNC_B;
1191		htotal_reg = HTOTAL_B;
1192		hblank_reg = HBLANK_B;
1193		vsync_reg = VSYNC_B;
1194		vtotal_reg = VTOTAL_B;
1195		vblank_reg = VBLANK_B;
1196		src_size_reg = SRC_SIZE_B;
1197	} else {
1198		dpll = &hw->dpll_a;
1199		fp0 = &hw->fpa0;
1200		fp1 = &hw->fpa1;
1201		pipe_conf = &hw->pipe_a_conf;
1202		hs = &hw->hsync_a;
1203		hb = &hw->hblank_a;
1204		ht = &hw->htotal_a;
1205		vs = &hw->vsync_a;
1206		vb = &hw->vblank_a;
1207		vt = &hw->vtotal_a;
1208		ss = &hw->src_size_a;
1209		dpll_reg = DPLL_A;
1210		fp0_reg = FPA0;
1211		fp1_reg = FPA1;
1212		pipe_conf_reg = PIPEACONF;
1213		hsync_reg = HSYNC_A;
1214		htotal_reg = HTOTAL_A;
1215		hblank_reg = HBLANK_A;
1216		vsync_reg = VSYNC_A;
1217		vtotal_reg = VTOTAL_A;
1218		vblank_reg = VBLANK_A;
1219		src_size_reg = SRC_SIZE_A;
1220	}
1221
1222	/* Disable planes A and B. */
1223	tmp = INREG(DSPACNTR);
1224	tmp &= ~DISPPLANE_PLANE_ENABLE;
1225	OUTREG(DSPACNTR, tmp);
1226	tmp = INREG(DSPBCNTR);
1227	tmp &= ~DISPPLANE_PLANE_ENABLE;
1228	OUTREG(DSPBCNTR, tmp);
1229
1230	/* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */
1231	mdelay(20);
1232
1233	/* Disable Sync */
1234	tmp = INREG(ADPA);
1235	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1236	tmp |= ADPA_DPMS_D3;
1237	OUTREG(ADPA, tmp);
1238
1239	/* turn off pipe */
1240	tmp = INREG(pipe_conf_reg);
1241	tmp &= ~PIPECONF_ENABLE;
1242	OUTREG(pipe_conf_reg, tmp);
1243
1244	/* turn off PLL */
1245	tmp = INREG(dpll_reg);
1246	dpll_reg &= ~DPLL_VCO_ENABLE;
1247	OUTREG(dpll_reg, tmp);
1248
1249	/* Set PLL parameters */
1250	OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
1251	OUTREG(fp0_reg, *fp0);
1252	OUTREG(fp1_reg, *fp1);
1253
1254	/* Set pipe parameters */
1255	OUTREG(hsync_reg, *hs);
1256	OUTREG(hblank_reg, *hb);
1257	OUTREG(htotal_reg, *ht);
1258	OUTREG(vsync_reg, *vs);
1259	OUTREG(vblank_reg, *vb);
1260	OUTREG(vtotal_reg, *vt);
1261	OUTREG(src_size_reg, *ss);
1262
1263	/* Set DVOs B/C */
1264	OUTREG(DVOB, hw->dvob);
1265	OUTREG(DVOC, hw->dvoc);
1266
1267	/* Set ADPA */
1268	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1269
1270	/* Enable PLL */
1271	tmp = INREG(dpll_reg);
1272	tmp |= DPLL_VCO_ENABLE;
1273	OUTREG(dpll_reg, tmp);
1274
1275	/* Enable pipe */
1276	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1277
1278	/* Enable sync */
1279	tmp = INREG(ADPA);
1280	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1281	tmp |= ADPA_DPMS_D0;
1282	OUTREG(ADPA, tmp);
1283
1284	/* setup display plane */
1285	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1286		/*
1287		 *      i830M errata: the display plane must be enabled
1288		 *      to allow writes to the other bits in the plane
1289		 *      control register.
1290		 */
1291		tmp = INREG(DSPACNTR);
1292		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1293			tmp |= DISPPLANE_PLANE_ENABLE;
1294			OUTREG(DSPACNTR, tmp);
1295			OUTREG(DSPACNTR,
1296			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1297			mdelay(1);
1298              }
1299	}
1300
1301	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1302	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1303	OUTREG(DSPABASE, hw->disp_a_base);
1304
1305	/* Enable plane */
1306	if (!blank) {
1307		tmp = INREG(DSPACNTR);
1308		tmp |= DISPPLANE_PLANE_ENABLE;
1309		OUTREG(DSPACNTR, tmp);
1310		OUTREG(DSPABASE, hw->disp_a_base);
1311	}
1312
1313	return 0;
1314}
1315
1316/* forward declarations */
1317static void refresh_ring(struct intelfb_info *dinfo);
1318static void reset_state(struct intelfb_info *dinfo);
1319static void do_flush(struct intelfb_info *dinfo);
1320
1321static int
1322wait_ring(struct intelfb_info *dinfo, int n)
1323{
1324	int i = 0;
1325	unsigned long end;
1326	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1327
1328#if VERBOSE > 0
1329	DBG_MSG("wait_ring: %d\n", n);
1330#endif
1331
1332	end = jiffies + (HZ * 3);
1333	while (dinfo->ring_space < n) {
1334		dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
1335						   RING_HEAD_MASK);
1336		if (dinfo->ring_tail + RING_MIN_FREE <
1337		    (u32 __iomem) dinfo->ring_head)
1338			dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1339				- (dinfo->ring_tail + RING_MIN_FREE);
1340		else
1341			dinfo->ring_space = (dinfo->ring.size +
1342					     (u32 __iomem) dinfo->ring_head)
1343				- (dinfo->ring_tail + RING_MIN_FREE);
1344		if ((u32 __iomem) dinfo->ring_head != last_head) {
1345			end = jiffies + (HZ * 3);
1346			last_head = (u32 __iomem) dinfo->ring_head;
1347		}
1348		i++;
1349		if (time_before(end, jiffies)) {
1350			if (!i) {
1351				/* Try again */
1352				reset_state(dinfo);
1353				refresh_ring(dinfo);
1354				do_flush(dinfo);
1355				end = jiffies + (HZ * 3);
1356				i = 1;
1357			} else {
1358				WRN_MSG("ring buffer : space: %d wanted %d\n",
1359					dinfo->ring_space, n);
1360				WRN_MSG("lockup - turning off hardware "
1361					"acceleration\n");
1362				dinfo->ring_lockup = 1;
1363				break;
1364			}
1365		}
1366		udelay(1);
1367	}
1368	return i;
1369}
1370
1371static void
1372do_flush(struct intelfb_info *dinfo) {
1373	START_RING(2);
1374	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1375	OUT_RING(MI_NOOP);
1376	ADVANCE_RING();
1377}
1378
1379void
1380intelfbhw_do_sync(struct intelfb_info *dinfo)
1381{
1382#if VERBOSE > 0
1383	DBG_MSG("intelfbhw_do_sync\n");
1384#endif
1385
1386	if (!dinfo->accel)
1387		return;
1388
1389	/*
1390	 * Send a flush, then wait until the ring is empty.  This is what
1391	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1392	 * than the recommended method (both have problems).
1393	 */
1394	do_flush(dinfo);
1395	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1396	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1397}
1398
1399static void
1400refresh_ring(struct intelfb_info *dinfo)
1401{
1402#if VERBOSE > 0
1403	DBG_MSG("refresh_ring\n");
1404#endif
1405
1406	dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
1407					   RING_HEAD_MASK);
1408	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1409	if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
1410		dinfo->ring_space = (u32 __iomem) dinfo->ring_head
1411			- (dinfo->ring_tail + RING_MIN_FREE);
1412	else
1413		dinfo->ring_space = (dinfo->ring.size +
1414				     (u32 __iomem) dinfo->ring_head)
1415			- (dinfo->ring_tail + RING_MIN_FREE);
1416}
1417
1418static void
1419reset_state(struct intelfb_info *dinfo)
1420{
1421	int i;
1422	u32 tmp;
1423
1424#if VERBOSE > 0
1425	DBG_MSG("reset_state\n");
1426#endif
1427
1428	for (i = 0; i < FENCE_NUM; i++)
1429		OUTREG(FENCE + (i << 2), 0);
1430
1431	/* Flush the ring buffer if it's enabled. */
1432	tmp = INREG(PRI_RING_LENGTH);
1433	if (tmp & RING_ENABLE) {
1434#if VERBOSE > 0
1435		DBG_MSG("reset_state: ring was enabled\n");
1436#endif
1437		refresh_ring(dinfo);
1438		intelfbhw_do_sync(dinfo);
1439		DO_RING_IDLE();
1440	}
1441
1442	OUTREG(PRI_RING_LENGTH, 0);
1443	OUTREG(PRI_RING_HEAD, 0);
1444	OUTREG(PRI_RING_TAIL, 0);
1445	OUTREG(PRI_RING_START, 0);
1446}
1447
1448/* Stop the 2D engine, and turn off the ring buffer. */
1449void
1450intelfbhw_2d_stop(struct intelfb_info *dinfo)
1451{
1452#if VERBOSE > 0
1453	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1454		dinfo->ring_active);
1455#endif
1456
1457	if (!dinfo->accel)
1458		return;
1459
1460	dinfo->ring_active = 0;
1461	reset_state(dinfo);
1462}
1463
1464/*
1465 * Enable the ring buffer, and initialise the 2D engine.
1466 * It is assumed that the graphics engine has been stopped by previously
1467 * calling intelfb_2d_stop().
1468 */
1469void
1470intelfbhw_2d_start(struct intelfb_info *dinfo)
1471{
1472#if VERBOSE > 0
1473	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1474		dinfo->accel, dinfo->ring_active);
1475#endif
1476
1477	if (!dinfo->accel)
1478		return;
1479
1480	/* Initialise the primary ring buffer. */
1481	OUTREG(PRI_RING_LENGTH, 0);
1482	OUTREG(PRI_RING_TAIL, 0);
1483	OUTREG(PRI_RING_HEAD, 0);
1484
1485	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1486	OUTREG(PRI_RING_LENGTH,
1487		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1488		RING_NO_REPORT | RING_ENABLE);
1489	refresh_ring(dinfo);
1490	dinfo->ring_active = 1;
1491}
1492
1493/* 2D fillrect (solid fill or invert) */
1494void
1495intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1496		      u32 color, u32 pitch, u32 bpp, u32 rop)
1497{
1498	u32 br00, br09, br13, br14, br16;
1499
1500#if VERBOSE > 0
1501	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1502		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1503#endif
1504
1505	br00 = COLOR_BLT_CMD;
1506	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1507	br13 = (rop << ROP_SHIFT) | pitch;
1508	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1509	br16 = color;
1510
1511	switch (bpp) {
1512	case 8:
1513		br13 |= COLOR_DEPTH_8;
1514		break;
1515	case 16:
1516		br13 |= COLOR_DEPTH_16;
1517		break;
1518	case 32:
1519		br13 |= COLOR_DEPTH_32;
1520		br00 |= WRITE_ALPHA | WRITE_RGB;
1521		break;
1522	}
1523
1524	START_RING(6);
1525	OUT_RING(br00);
1526	OUT_RING(br13);
1527	OUT_RING(br14);
1528	OUT_RING(br09);
1529	OUT_RING(br16);
1530	OUT_RING(MI_NOOP);
1531	ADVANCE_RING();
1532
1533#if VERBOSE > 0
1534	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1535		dinfo->ring_tail, dinfo->ring_space);
1536#endif
1537}
1538
1539void
1540intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1541		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1542{
1543	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1544
1545#if VERBOSE > 0
1546	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1547		curx, cury, dstx, dsty, w, h, pitch, bpp);
1548#endif
1549
1550	br00 = XY_SRC_COPY_BLT_CMD;
1551	br09 = dinfo->fb_start;
1552	br11 = (pitch << PITCH_SHIFT);
1553	br12 = dinfo->fb_start;
1554	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1555	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1556	br23 = ((dstx + w) << WIDTH_SHIFT) |
1557	       ((dsty + h) << HEIGHT_SHIFT);
1558	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1559
1560	switch (bpp) {
1561	case 8:
1562		br13 |= COLOR_DEPTH_8;
1563		break;
1564	case 16:
1565		br13 |= COLOR_DEPTH_16;
1566		break;
1567	case 32:
1568		br13 |= COLOR_DEPTH_32;
1569		br00 |= WRITE_ALPHA | WRITE_RGB;
1570		break;
1571	}
1572
1573	START_RING(8);
1574	OUT_RING(br00);
1575	OUT_RING(br13);
1576	OUT_RING(br22);
1577	OUT_RING(br23);
1578	OUT_RING(br09);
1579	OUT_RING(br26);
1580	OUT_RING(br11);
1581	OUT_RING(br12);
1582	ADVANCE_RING();
1583}
1584
1585int
1586intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1587		       u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1588{
1589	int nbytes, ndwords, pad, tmp;
1590	u32 br00, br09, br13, br18, br19, br22, br23;
1591	int dat, ix, iy, iw;
1592	int i, j;
1593
1594#if VERBOSE > 0
1595	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1596#endif
1597
1598	/* size in bytes of a padded scanline */
1599	nbytes = ROUND_UP_TO(w, 16) / 8;
1600
1601	/* Total bytes of padded scanline data to write out. */
1602	nbytes = nbytes * h;
1603
1604	/*
1605	 * Check if the glyph data exceeds the immediate mode limit.
1606	 * It would take a large font (1K pixels) to hit this limit.
1607	 */
1608	if (nbytes > MAX_MONO_IMM_SIZE)
1609		return 0;
1610
1611	/* Src data is packaged a dword (32-bit) at a time. */
1612	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1613
1614	/*
1615	 * Ring has to be padded to a quad word. But because the command starts
1616	   with 7 bytes, pad only if there is an even number of ndwords
1617	 */
1618	pad = !(ndwords % 2);
1619
1620	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1621	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1622	br09 = dinfo->fb_start;
1623	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1624	br18 = bg;
1625	br19 = fg;
1626	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1627	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1628
1629	switch (bpp) {
1630	case 8:
1631		br13 |= COLOR_DEPTH_8;
1632		break;
1633	case 16:
1634		br13 |= COLOR_DEPTH_16;
1635		break;
1636	case 32:
1637		br13 |= COLOR_DEPTH_32;
1638		br00 |= WRITE_ALPHA | WRITE_RGB;
1639		break;
1640	}
1641
1642	START_RING(8 + ndwords);
1643	OUT_RING(br00);
1644	OUT_RING(br13);
1645	OUT_RING(br22);
1646	OUT_RING(br23);
1647	OUT_RING(br09);
1648	OUT_RING(br18);
1649	OUT_RING(br19);
1650	ix = iy = 0;
1651	iw = ROUND_UP_TO(w, 8) / 8;
1652	while (ndwords--) {
1653		dat = 0;
1654		for (j = 0; j < 2; ++j) {
1655			for (i = 0; i < 2; ++i) {
1656				if (ix != iw || i == 0)
1657					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1658			}
1659			if (ix == iw && iy != (h-1)) {
1660				ix = 0;
1661				++iy;
1662			}
1663		}
1664		OUT_RING(dat);
1665	}
1666	if (pad)
1667		OUT_RING(MI_NOOP);
1668	ADVANCE_RING();
1669
1670	return 1;
1671}
1672
1673/* HW cursor functions. */
1674void
1675intelfbhw_cursor_init(struct intelfb_info *dinfo)
1676{
1677	u32 tmp;
1678
1679#if VERBOSE > 0
1680	DBG_MSG("intelfbhw_cursor_init\n");
1681#endif
1682
1683	if (dinfo->mobile) {
1684		if (!dinfo->cursor.physical)
1685			return;
1686		tmp = INREG(CURSOR_A_CONTROL);
1687		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1688			 CURSOR_MEM_TYPE_LOCAL |
1689			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1690		tmp |= CURSOR_MODE_DISABLE;
1691		OUTREG(CURSOR_A_CONTROL, tmp);
1692		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1693	} else {
1694		tmp = INREG(CURSOR_CONTROL);
1695		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1696			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1697		tmp = CURSOR_FORMAT_3C;
1698		OUTREG(CURSOR_CONTROL, tmp);
1699		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1700		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1701		      (64 << CURSOR_SIZE_V_SHIFT);
1702		OUTREG(CURSOR_SIZE, tmp);
1703	}
1704}
1705
1706void
1707intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1708{
1709	u32 tmp;
1710
1711#if VERBOSE > 0
1712	DBG_MSG("intelfbhw_cursor_hide\n");
1713#endif
1714
1715	dinfo->cursor_on = 0;
1716	if (dinfo->mobile) {
1717		if (!dinfo->cursor.physical)
1718			return;
1719		tmp = INREG(CURSOR_A_CONTROL);
1720		tmp &= ~CURSOR_MODE_MASK;
1721		tmp |= CURSOR_MODE_DISABLE;
1722		OUTREG(CURSOR_A_CONTROL, tmp);
1723		/* Flush changes */
1724		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1725	} else {
1726		tmp = INREG(CURSOR_CONTROL);
1727		tmp &= ~CURSOR_ENABLE;
1728		OUTREG(CURSOR_CONTROL, tmp);
1729	}
1730}
1731
1732void
1733intelfbhw_cursor_show(struct intelfb_info *dinfo)
1734{
1735	u32 tmp;
1736
1737#if VERBOSE > 0
1738	DBG_MSG("intelfbhw_cursor_show\n");
1739#endif
1740
1741	dinfo->cursor_on = 1;
1742
1743	if (dinfo->cursor_blanked)
1744		return;
1745
1746	if (dinfo->mobile) {
1747		if (!dinfo->cursor.physical)
1748			return;
1749		tmp = INREG(CURSOR_A_CONTROL);
1750		tmp &= ~CURSOR_MODE_MASK;
1751		tmp |= CURSOR_MODE_64_4C_AX;
1752		OUTREG(CURSOR_A_CONTROL, tmp);
1753		/* Flush changes */
1754		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1755	} else {
1756		tmp = INREG(CURSOR_CONTROL);
1757		tmp |= CURSOR_ENABLE;
1758		OUTREG(CURSOR_CONTROL, tmp);
1759	}
1760}
1761
1762void
1763intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1764{
1765	u32 tmp;
1766
1767#if VERBOSE > 0
1768	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1769#endif
1770
1771	/*
1772	 * Sets the position.  The coordinates are assumed to already
1773	 * have any offset adjusted.  Assume that the cursor is never
1774	 * completely off-screen, and that x, y are always >= 0.
1775	 */
1776
1777	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1778	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1779	OUTREG(CURSOR_A_POSITION, tmp);
1780}
1781
1782void
1783intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1784{
1785#if VERBOSE > 0
1786	DBG_MSG("intelfbhw_cursor_setcolor\n");
1787#endif
1788
1789	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1790	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1791	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1792	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1793}
1794
1795void
1796intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1797		      u8 *data)
1798{
1799	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1800	int i, j, w = width / 8;
1801	int mod = width % 8, t_mask, d_mask;
1802
1803#if VERBOSE > 0
1804	DBG_MSG("intelfbhw_cursor_load\n");
1805#endif
1806
1807	if (!dinfo->cursor.virtual)
1808		return;
1809
1810	t_mask = 0xff >> mod;
1811	d_mask = ~(0xff >> mod);
1812	for (i = height; i--; ) {
1813		for (j = 0; j < w; j++) {
1814			writeb(0x00, addr + j);
1815			writeb(*(data++), addr + j+8);
1816		}
1817		if (mod) {
1818			writeb(t_mask, addr + j);
1819			writeb(*(data++) & d_mask, addr + j+8);
1820		}
1821		addr += 16;
1822	}
1823}
1824
1825void
1826intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1827	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1828	int i, j;
1829
1830#if VERBOSE > 0
1831	DBG_MSG("intelfbhw_cursor_reset\n");
1832#endif
1833
1834	if (!dinfo->cursor.virtual)
1835		return;
1836
1837	for (i = 64; i--; ) {
1838		for (j = 0; j < 8; j++) {
1839			writeb(0xff, addr + j+0);
1840			writeb(0x00, addr + j+8);
1841		}
1842		addr += 16;
1843	}
1844}
1845