intelfbhw.c revision 3f7a26b4b9768fe31597d1af35106aa512dc3742
1/*
2 * intelfb
3 *
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5 *
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 *                   2004 Sylvain Meyer
8 *
9 * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12 * provides the code to program the hardware.  Most of it is derived from
13 * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
15 *
16 * Author: David Dawes
17 *
18 */
19
20/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/errno.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/delay.h>
29#include <linux/fb.h>
30#include <linux/ioport.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/interrupt.h>
36
37#include <asm/io.h>
38
39#include "intelfb.h"
40#include "intelfbhw.h"
41
42struct pll_min_max {
43	int min_m, max_m, min_m1, max_m1;
44	int min_m2, max_m2, min_n, max_n;
45	int min_p, max_p, min_p1, max_p1;
46	int min_vco, max_vco, p_transition_clk, ref_clk;
47	int p_inc_lo, p_inc_hi;
48};
49
50#define PLLS_I8xx 0
51#define PLLS_I9xx 1
52#define PLLS_MAX 2
53
54static struct pll_min_max plls[PLLS_MAX] = {
55	{ 108, 140, 18, 26,
56	  6, 16, 3, 16,
57	  4, 128, 0, 31,
58	  930000, 1400000, 165000, 48000,
59	  4, 2 },		/* I8xx */
60
61	{ 75, 120, 10, 20,
62	  5, 9, 4, 7,
63	  5, 80, 1, 8,
64	  1400000, 2800000, 200000, 96000,
65	  10, 5 }		/* I9xx */
66};
67
68int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69{
70	u32 tmp;
71	if (!pdev || !dinfo)
72		return 1;
73
74	switch (pdev->device) {
75	case PCI_DEVICE_ID_INTEL_830M:
76		dinfo->name = "Intel(R) 830M";
77		dinfo->chipset = INTEL_830M;
78		dinfo->mobile = 1;
79		dinfo->pll_index = PLLS_I8xx;
80		return 0;
81	case PCI_DEVICE_ID_INTEL_845G:
82		dinfo->name = "Intel(R) 845G";
83		dinfo->chipset = INTEL_845G;
84		dinfo->mobile = 0;
85		dinfo->pll_index = PLLS_I8xx;
86		return 0;
87	case PCI_DEVICE_ID_INTEL_85XGM:
88		tmp = 0;
89		dinfo->mobile = 1;
90		dinfo->pll_index = PLLS_I8xx;
91		pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92		switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93			INTEL_85X_VARIANT_MASK) {
94		case INTEL_VAR_855GME:
95			dinfo->name = "Intel(R) 855GME";
96			dinfo->chipset = INTEL_855GME;
97			return 0;
98		case INTEL_VAR_855GM:
99			dinfo->name = "Intel(R) 855GM";
100			dinfo->chipset = INTEL_855GM;
101			return 0;
102		case INTEL_VAR_852GME:
103			dinfo->name = "Intel(R) 852GME";
104			dinfo->chipset = INTEL_852GME;
105			return 0;
106		case INTEL_VAR_852GM:
107			dinfo->name = "Intel(R) 852GM";
108			dinfo->chipset = INTEL_852GM;
109			return 0;
110		default:
111			dinfo->name = "Intel(R) 852GM/855GM";
112			dinfo->chipset = INTEL_85XGM;
113			return 0;
114		}
115		break;
116	case PCI_DEVICE_ID_INTEL_865G:
117		dinfo->name = "Intel(R) 865G";
118		dinfo->chipset = INTEL_865G;
119		dinfo->mobile = 0;
120		dinfo->pll_index = PLLS_I8xx;
121		return 0;
122	case PCI_DEVICE_ID_INTEL_915G:
123		dinfo->name = "Intel(R) 915G";
124		dinfo->chipset = INTEL_915G;
125		dinfo->mobile = 0;
126		dinfo->pll_index = PLLS_I9xx;
127		return 0;
128	case PCI_DEVICE_ID_INTEL_915GM:
129		dinfo->name = "Intel(R) 915GM";
130		dinfo->chipset = INTEL_915GM;
131		dinfo->mobile = 1;
132		dinfo->pll_index = PLLS_I9xx;
133		return 0;
134	case PCI_DEVICE_ID_INTEL_945G:
135		dinfo->name = "Intel(R) 945G";
136		dinfo->chipset = INTEL_945G;
137		dinfo->mobile = 0;
138		dinfo->pll_index = PLLS_I9xx;
139		return 0;
140	case PCI_DEVICE_ID_INTEL_945GM:
141		dinfo->name = "Intel(R) 945GM";
142		dinfo->chipset = INTEL_945GM;
143		dinfo->mobile = 1;
144		dinfo->pll_index = PLLS_I9xx;
145		return 0;
146	case PCI_DEVICE_ID_INTEL_945GME:
147		dinfo->name = "Intel(R) 945GME";
148		dinfo->chipset = INTEL_945GME;
149		dinfo->mobile = 1;
150		dinfo->pll_index = PLLS_I9xx;
151		return 0;
152	case PCI_DEVICE_ID_INTEL_965G:
153		dinfo->name = "Intel(R) 965G";
154		dinfo->chipset = INTEL_965G;
155		dinfo->mobile = 0;
156		dinfo->pll_index = PLLS_I9xx;
157		return 0;
158	case PCI_DEVICE_ID_INTEL_965GM:
159		dinfo->name = "Intel(R) 965GM";
160		dinfo->chipset = INTEL_965GM;
161		dinfo->mobile = 1;
162		dinfo->pll_index = PLLS_I9xx;
163		return 0;
164	default:
165		return 1;
166	}
167}
168
169int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
170			 int *stolen_size)
171{
172	struct pci_dev *bridge_dev;
173	u16 tmp;
174	int stolen_overhead;
175
176	if (!pdev || !aperture_size || !stolen_size)
177		return 1;
178
179	/* Find the bridge device.  It is always 0:0.0 */
180	if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
181		ERR_MSG("cannot find bridge device\n");
182		return 1;
183	}
184
185	/* Get the fb aperture size and "stolen" memory amount. */
186	tmp = 0;
187	pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
188	pci_dev_put(bridge_dev);
189
190	switch (pdev->device) {
191	case PCI_DEVICE_ID_INTEL_915G:
192	case PCI_DEVICE_ID_INTEL_915GM:
193	case PCI_DEVICE_ID_INTEL_945G:
194	case PCI_DEVICE_ID_INTEL_945GM:
195	case PCI_DEVICE_ID_INTEL_945GME:
196	case PCI_DEVICE_ID_INTEL_965G:
197	case PCI_DEVICE_ID_INTEL_965GM:
198		/* 915, 945 and 965 chipsets support a 256MB aperture.
199		   Aperture size is determined by inspected the
200		   base address of the aperture. */
201		if (pci_resource_start(pdev, 2) & 0x08000000)
202			*aperture_size = MB(128);
203		else
204			*aperture_size = MB(256);
205		break;
206	default:
207		if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
208			*aperture_size = MB(64);
209		else
210			*aperture_size = MB(128);
211		break;
212	}
213
214	/* Stolen memory size is reduced by the GTT and the popup.
215	   GTT is 1K per MB of aperture size, and popup is 4K. */
216	stolen_overhead = (*aperture_size / MB(1)) + 4;
217	switch(pdev->device) {
218	case PCI_DEVICE_ID_INTEL_830M:
219	case PCI_DEVICE_ID_INTEL_845G:
220		switch (tmp & INTEL_830_GMCH_GMS_MASK) {
221		case INTEL_830_GMCH_GMS_STOLEN_512:
222			*stolen_size = KB(512) - KB(stolen_overhead);
223			return 0;
224		case INTEL_830_GMCH_GMS_STOLEN_1024:
225			*stolen_size = MB(1) - KB(stolen_overhead);
226			return 0;
227		case INTEL_830_GMCH_GMS_STOLEN_8192:
228			*stolen_size = MB(8) - KB(stolen_overhead);
229			return 0;
230		case INTEL_830_GMCH_GMS_LOCAL:
231			ERR_MSG("only local memory found\n");
232			return 1;
233		case INTEL_830_GMCH_GMS_DISABLED:
234			ERR_MSG("video memory is disabled\n");
235			return 1;
236		default:
237			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
238				tmp & INTEL_830_GMCH_GMS_MASK);
239			return 1;
240		}
241		break;
242	default:
243		switch (tmp & INTEL_855_GMCH_GMS_MASK) {
244		case INTEL_855_GMCH_GMS_STOLEN_1M:
245			*stolen_size = MB(1) - KB(stolen_overhead);
246			return 0;
247		case INTEL_855_GMCH_GMS_STOLEN_4M:
248			*stolen_size = MB(4) - KB(stolen_overhead);
249			return 0;
250		case INTEL_855_GMCH_GMS_STOLEN_8M:
251			*stolen_size = MB(8) - KB(stolen_overhead);
252			return 0;
253		case INTEL_855_GMCH_GMS_STOLEN_16M:
254			*stolen_size = MB(16) - KB(stolen_overhead);
255			return 0;
256		case INTEL_855_GMCH_GMS_STOLEN_32M:
257			*stolen_size = MB(32) - KB(stolen_overhead);
258			return 0;
259		case INTEL_915G_GMCH_GMS_STOLEN_48M:
260			*stolen_size = MB(48) - KB(stolen_overhead);
261			return 0;
262		case INTEL_915G_GMCH_GMS_STOLEN_64M:
263			*stolen_size = MB(64) - KB(stolen_overhead);
264			return 0;
265		case INTEL_855_GMCH_GMS_DISABLED:
266			ERR_MSG("video memory is disabled\n");
267			return 0;
268		default:
269			ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
270				tmp & INTEL_855_GMCH_GMS_MASK);
271			return 1;
272		}
273	}
274}
275
276int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
277{
278	int dvo = 0;
279
280	if (INREG(LVDS) & PORT_ENABLE)
281		dvo |= LVDS_PORT;
282	if (INREG(DVOA) & PORT_ENABLE)
283		dvo |= DVOA_PORT;
284	if (INREG(DVOB) & PORT_ENABLE)
285		dvo |= DVOB_PORT;
286	if (INREG(DVOC) & PORT_ENABLE)
287		dvo |= DVOC_PORT;
288
289	return dvo;
290}
291
292const char * intelfbhw_dvo_to_string(int dvo)
293{
294	if (dvo & DVOA_PORT)
295		return "DVO port A";
296	else if (dvo & DVOB_PORT)
297		return "DVO port B";
298	else if (dvo & DVOC_PORT)
299		return "DVO port C";
300	else if (dvo & LVDS_PORT)
301		return "LVDS port";
302	else
303		return NULL;
304}
305
306
307int intelfbhw_validate_mode(struct intelfb_info *dinfo,
308			    struct fb_var_screeninfo *var)
309{
310	int bytes_per_pixel;
311	int tmp;
312
313#if VERBOSE > 0
314	DBG_MSG("intelfbhw_validate_mode\n");
315#endif
316
317	bytes_per_pixel = var->bits_per_pixel / 8;
318	if (bytes_per_pixel == 3)
319		bytes_per_pixel = 4;
320
321	/* Check if enough video memory. */
322	tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
323	if (tmp > dinfo->fb.size) {
324		WRN_MSG("Not enough video ram for mode "
325			"(%d KByte vs %d KByte).\n",
326			BtoKB(tmp), BtoKB(dinfo->fb.size));
327		return 1;
328	}
329
330	/* Check if x/y limits are OK. */
331	if (var->xres - 1 > HACTIVE_MASK) {
332		WRN_MSG("X resolution too large (%d vs %d).\n",
333			var->xres, HACTIVE_MASK + 1);
334		return 1;
335	}
336	if (var->yres - 1 > VACTIVE_MASK) {
337		WRN_MSG("Y resolution too large (%d vs %d).\n",
338			var->yres, VACTIVE_MASK + 1);
339		return 1;
340	}
341	if (var->xres < 4) {
342		WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
343		return 1;
344	}
345	if (var->yres < 4) {
346		WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
347		return 1;
348	}
349
350	/* Check for doublescan modes. */
351	if (var->vmode & FB_VMODE_DOUBLE) {
352		WRN_MSG("Mode is double-scan.\n");
353		return 1;
354	}
355
356	if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
357		WRN_MSG("Odd number of lines in interlaced mode\n");
358		return 1;
359	}
360
361	/* Check if clock is OK. */
362	tmp = 1000000000 / var->pixclock;
363	if (tmp < MIN_CLOCK) {
364		WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
365			(tmp + 500) / 1000, MIN_CLOCK / 1000);
366		return 1;
367	}
368	if (tmp > MAX_CLOCK) {
369		WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
370			(tmp + 500) / 1000, MAX_CLOCK / 1000);
371		return 1;
372	}
373
374	return 0;
375}
376
377int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
378{
379	struct intelfb_info *dinfo = GET_DINFO(info);
380	u32 offset, xoffset, yoffset;
381
382#if VERBOSE > 0
383	DBG_MSG("intelfbhw_pan_display\n");
384#endif
385
386	xoffset = ROUND_DOWN_TO(var->xoffset, 8);
387	yoffset = var->yoffset;
388
389	if ((xoffset + var->xres > var->xres_virtual) ||
390	    (yoffset + var->yres > var->yres_virtual))
391		return -EINVAL;
392
393	offset = (yoffset * dinfo->pitch) +
394		 (xoffset * var->bits_per_pixel) / 8;
395
396	offset += dinfo->fb.offset << 12;
397
398	dinfo->vsync.pan_offset = offset;
399	if ((var->activate & FB_ACTIVATE_VBL) &&
400	    !intelfbhw_enable_irq(dinfo))
401		dinfo->vsync.pan_display = 1;
402	else {
403		dinfo->vsync.pan_display = 0;
404		OUTREG(DSPABASE, offset);
405	}
406
407	return 0;
408}
409
410/* Blank the screen. */
411void intelfbhw_do_blank(int blank, struct fb_info *info)
412{
413	struct intelfb_info *dinfo = GET_DINFO(info);
414	u32 tmp;
415
416#if VERBOSE > 0
417	DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
418#endif
419
420	/* Turn plane A on or off */
421	tmp = INREG(DSPACNTR);
422	if (blank)
423		tmp &= ~DISPPLANE_PLANE_ENABLE;
424	else
425		tmp |= DISPPLANE_PLANE_ENABLE;
426	OUTREG(DSPACNTR, tmp);
427	/* Flush */
428	tmp = INREG(DSPABASE);
429	OUTREG(DSPABASE, tmp);
430
431	/* Turn off/on the HW cursor */
432#if VERBOSE > 0
433	DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
434#endif
435	if (dinfo->cursor_on) {
436		if (blank)
437			intelfbhw_cursor_hide(dinfo);
438		else
439			intelfbhw_cursor_show(dinfo);
440		dinfo->cursor_on = 1;
441	}
442	dinfo->cursor_blanked = blank;
443
444	/* Set DPMS level */
445	tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
446	switch (blank) {
447	case FB_BLANK_UNBLANK:
448	case FB_BLANK_NORMAL:
449		tmp |= ADPA_DPMS_D0;
450		break;
451	case FB_BLANK_VSYNC_SUSPEND:
452		tmp |= ADPA_DPMS_D1;
453		break;
454	case FB_BLANK_HSYNC_SUSPEND:
455		tmp |= ADPA_DPMS_D2;
456		break;
457	case FB_BLANK_POWERDOWN:
458		tmp |= ADPA_DPMS_D3;
459		break;
460	}
461	OUTREG(ADPA, tmp);
462
463	return;
464}
465
466
467void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
468			 unsigned red, unsigned green, unsigned blue,
469			 unsigned transp)
470{
471	u32 palette_reg = (dinfo->pipe == PIPE_A) ?
472			  PALETTE_A : PALETTE_B;
473
474#if VERBOSE > 0
475	DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
476		regno, red, green, blue);
477#endif
478
479	OUTREG(palette_reg + (regno << 2),
480	       (red << PALETTE_8_RED_SHIFT) |
481	       (green << PALETTE_8_GREEN_SHIFT) |
482	       (blue << PALETTE_8_BLUE_SHIFT));
483}
484
485
486int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
487			    struct intelfb_hwstate *hw, int flag)
488{
489	int i;
490
491#if VERBOSE > 0
492	DBG_MSG("intelfbhw_read_hw_state\n");
493#endif
494
495	if (!hw || !dinfo)
496		return -1;
497
498	/* Read in as much of the HW state as possible. */
499	hw->vga0_divisor = INREG(VGA0_DIVISOR);
500	hw->vga1_divisor = INREG(VGA1_DIVISOR);
501	hw->vga_pd = INREG(VGAPD);
502	hw->dpll_a = INREG(DPLL_A);
503	hw->dpll_b = INREG(DPLL_B);
504	hw->fpa0 = INREG(FPA0);
505	hw->fpa1 = INREG(FPA1);
506	hw->fpb0 = INREG(FPB0);
507	hw->fpb1 = INREG(FPB1);
508
509	if (flag == 1)
510		return flag;
511
512#if 0
513	/* This seems to be a problem with the 852GM/855GM */
514	for (i = 0; i < PALETTE_8_ENTRIES; i++) {
515		hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
516		hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
517	}
518#endif
519
520	if (flag == 2)
521		return flag;
522
523	hw->htotal_a = INREG(HTOTAL_A);
524	hw->hblank_a = INREG(HBLANK_A);
525	hw->hsync_a = INREG(HSYNC_A);
526	hw->vtotal_a = INREG(VTOTAL_A);
527	hw->vblank_a = INREG(VBLANK_A);
528	hw->vsync_a = INREG(VSYNC_A);
529	hw->src_size_a = INREG(SRC_SIZE_A);
530	hw->bclrpat_a = INREG(BCLRPAT_A);
531	hw->htotal_b = INREG(HTOTAL_B);
532	hw->hblank_b = INREG(HBLANK_B);
533	hw->hsync_b = INREG(HSYNC_B);
534	hw->vtotal_b = INREG(VTOTAL_B);
535	hw->vblank_b = INREG(VBLANK_B);
536	hw->vsync_b = INREG(VSYNC_B);
537	hw->src_size_b = INREG(SRC_SIZE_B);
538	hw->bclrpat_b = INREG(BCLRPAT_B);
539
540	if (flag == 3)
541		return flag;
542
543	hw->adpa = INREG(ADPA);
544	hw->dvoa = INREG(DVOA);
545	hw->dvob = INREG(DVOB);
546	hw->dvoc = INREG(DVOC);
547	hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
548	hw->dvob_srcdim = INREG(DVOB_SRCDIM);
549	hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
550	hw->lvds = INREG(LVDS);
551
552	if (flag == 4)
553		return flag;
554
555	hw->pipe_a_conf = INREG(PIPEACONF);
556	hw->pipe_b_conf = INREG(PIPEBCONF);
557	hw->disp_arb = INREG(DISPARB);
558
559	if (flag == 5)
560		return flag;
561
562	hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
563	hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
564	hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
565	hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
566
567	if (flag == 6)
568		return flag;
569
570	for (i = 0; i < 4; i++) {
571		hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
572		hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
573	}
574
575	if (flag == 7)
576		return flag;
577
578	hw->cursor_size = INREG(CURSOR_SIZE);
579
580	if (flag == 8)
581		return flag;
582
583	hw->disp_a_ctrl = INREG(DSPACNTR);
584	hw->disp_b_ctrl = INREG(DSPBCNTR);
585	hw->disp_a_base = INREG(DSPABASE);
586	hw->disp_b_base = INREG(DSPBBASE);
587	hw->disp_a_stride = INREG(DSPASTRIDE);
588	hw->disp_b_stride = INREG(DSPBSTRIDE);
589
590	if (flag == 9)
591		return flag;
592
593	hw->vgacntrl = INREG(VGACNTRL);
594
595	if (flag == 10)
596		return flag;
597
598	hw->add_id = INREG(ADD_ID);
599
600	if (flag == 11)
601		return flag;
602
603	for (i = 0; i < 7; i++) {
604		hw->swf0x[i] = INREG(SWF00 + (i << 2));
605		hw->swf1x[i] = INREG(SWF10 + (i << 2));
606		if (i < 3)
607			hw->swf3x[i] = INREG(SWF30 + (i << 2));
608	}
609
610	for (i = 0; i < 8; i++)
611		hw->fence[i] = INREG(FENCE + (i << 2));
612
613	hw->instpm = INREG(INSTPM);
614	hw->mem_mode = INREG(MEM_MODE);
615	hw->fw_blc_0 = INREG(FW_BLC_0);
616	hw->fw_blc_1 = INREG(FW_BLC_1);
617
618	hw->hwstam = INREG16(HWSTAM);
619	hw->ier = INREG16(IER);
620	hw->iir = INREG16(IIR);
621	hw->imr = INREG16(IMR);
622
623	return 0;
624}
625
626
627static int calc_vclock3(int index, int m, int n, int p)
628{
629	if (p == 0 || n == 0)
630		return 0;
631	return plls[index].ref_clk * m / n / p;
632}
633
634static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
635		       int lvds)
636{
637	struct pll_min_max *pll = &plls[index];
638	u32 m, vco, p;
639
640	m = (5 * (m1 + 2)) + (m2 + 2);
641	n += 2;
642	vco = pll->ref_clk * m / n;
643
644	if (index == PLLS_I8xx)
645		p = ((p1 + 2) * (1 << (p2 + 1)));
646	else
647		p = ((p1) * (p2 ? 5 : 10));
648	return vco / p;
649}
650
651#if REGDUMP
652static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
653			       int *o_p1, int *o_p2)
654{
655	int p1, p2;
656
657	if (IS_I9XX(dinfo)) {
658		if (dpll & DPLL_P1_FORCE_DIV2)
659			p1 = 1;
660		else
661			p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
662
663		p1 = ffs(p1);
664
665		p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
666	} else {
667		if (dpll & DPLL_P1_FORCE_DIV2)
668			p1 = 0;
669		else
670			p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
671		p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
672	}
673
674	*o_p1 = p1;
675	*o_p2 = p2;
676}
677#endif
678
679
680void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
681			      struct intelfb_hwstate *hw)
682{
683#if REGDUMP
684	int i, m1, m2, n, p1, p2;
685	int index = dinfo->pll_index;
686	DBG_MSG("intelfbhw_print_hw_state\n");
687
688	if (!hw)
689		return;
690	/* Read in as much of the HW state as possible. */
691	printk("hw state dump start\n");
692	printk("	VGA0_DIVISOR:		0x%08x\n", hw->vga0_divisor);
693	printk("	VGA1_DIVISOR:		0x%08x\n", hw->vga1_divisor);
694	printk("	VGAPD:			0x%08x\n", hw->vga_pd);
695	n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
696	m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
697	m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
698
699	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
700
701	printk("	VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
702	       m1, m2, n, p1, p2);
703	printk("	VGA0: clock is %d\n",
704	       calc_vclock(index, m1, m2, n, p1, p2, 0));
705
706	n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
707	m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
708	m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
709
710	intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
711	printk("	VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
712	       m1, m2, n, p1, p2);
713	printk("	VGA1: clock is %d\n",
714	       calc_vclock(index, m1, m2, n, p1, p2, 0));
715
716	printk("	DPLL_A:			0x%08x\n", hw->dpll_a);
717	printk("	DPLL_B:			0x%08x\n", hw->dpll_b);
718	printk("	FPA0:			0x%08x\n", hw->fpa0);
719	printk("	FPA1:			0x%08x\n", hw->fpa1);
720	printk("	FPB0:			0x%08x\n", hw->fpb0);
721	printk("	FPB1:			0x%08x\n", hw->fpb1);
722
723	n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
724	m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
725	m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726
727	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
728
729	printk("	PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
730	       m1, m2, n, p1, p2);
731	printk("	PLLA0: clock is %d\n",
732	       calc_vclock(index, m1, m2, n, p1, p2, 0));
733
734	n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
735	m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
736	m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737
738	intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
739
740	printk("	PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
741	       m1, m2, n, p1, p2);
742	printk("	PLLA1: clock is %d\n",
743	       calc_vclock(index, m1, m2, n, p1, p2, 0));
744
745#if 0
746	printk("	PALETTE_A:\n");
747	for (i = 0; i < PALETTE_8_ENTRIES)
748		printk("	%3d:	0x%08x\n", i, hw->palette_a[i]);
749	printk("	PALETTE_B:\n");
750	for (i = 0; i < PALETTE_8_ENTRIES)
751		printk("	%3d:	0x%08x\n", i, hw->palette_b[i]);
752#endif
753
754	printk("	HTOTAL_A:		0x%08x\n", hw->htotal_a);
755	printk("	HBLANK_A:		0x%08x\n", hw->hblank_a);
756	printk("	HSYNC_A:		0x%08x\n", hw->hsync_a);
757	printk("	VTOTAL_A:		0x%08x\n", hw->vtotal_a);
758	printk("	VBLANK_A:		0x%08x\n", hw->vblank_a);
759	printk("	VSYNC_A:		0x%08x\n", hw->vsync_a);
760	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);
761	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);
762	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);
763	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);
764	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);
765	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);
766	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);
767	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);
768	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);
769	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);
770
771	printk("	ADPA:			0x%08x\n", hw->adpa);
772	printk("	DVOA:			0x%08x\n", hw->dvoa);
773	printk("	DVOB:			0x%08x\n", hw->dvob);
774	printk("	DVOC:			0x%08x\n", hw->dvoc);
775	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);
776	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);
777	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);
778	printk("	LVDS:			0x%08x\n", hw->lvds);
779
780	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);
781	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);
782	printk("	DISPARB:		0x%08x\n", hw->disp_arb);
783
784	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);
785	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);
786	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);
787	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);
788
789	printk("	CURSOR_A_PALETTE:	");
790	for (i = 0; i < 4; i++) {
791		printk("0x%08x", hw->cursor_a_palette[i]);
792		if (i < 3)
793			printk(", ");
794	}
795	printk("\n");
796	printk("	CURSOR_B_PALETTE:	");
797	for (i = 0; i < 4; i++) {
798		printk("0x%08x", hw->cursor_b_palette[i]);
799		if (i < 3)
800			printk(", ");
801	}
802	printk("\n");
803
804	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);
805
806	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);
807	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);
808	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);
809	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);
810	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);
811	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);
812
813	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);
814	printk("	ADD_ID:			0x%08x\n", hw->add_id);
815
816	for (i = 0; i < 7; i++) {
817		printk("	SWF0%d			0x%08x\n", i,
818			hw->swf0x[i]);
819	}
820	for (i = 0; i < 7; i++) {
821		printk("	SWF1%d			0x%08x\n", i,
822			hw->swf1x[i]);
823	}
824	for (i = 0; i < 3; i++) {
825		printk("	SWF3%d			0x%08x\n", i,
826		       hw->swf3x[i]);
827	}
828	for (i = 0; i < 8; i++)
829		printk("	FENCE%d			0x%08x\n", i,
830		       hw->fence[i]);
831
832	printk("	INSTPM			0x%08x\n", hw->instpm);
833	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);
834	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);
835	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);
836
837	printk("	HWSTAM			0x%04x\n", hw->hwstam);
838	printk("	IER			0x%04x\n", hw->ier);
839	printk("	IIR			0x%04x\n", hw->iir);
840	printk("	IMR			0x%04x\n", hw->imr);
841	printk("hw state dump end\n");
842#endif
843}
844
845
846
847/* Split the M parameter into M1 and M2. */
848static int splitm(int index, unsigned int m, unsigned int *retm1,
849		  unsigned int *retm2)
850{
851	int m1, m2;
852	int testm;
853	struct pll_min_max *pll = &plls[index];
854
855	/* no point optimising too much - brute force m */
856	for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
857		for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
858			testm = (5 * (m1 + 2)) + (m2 + 2);
859			if (testm == m) {
860				*retm1 = (unsigned int)m1;
861				*retm2 = (unsigned int)m2;
862				return 0;
863			}
864		}
865	}
866	return 1;
867}
868
869/* Split the P parameter into P1 and P2. */
870static int splitp(int index, unsigned int p, unsigned int *retp1,
871		  unsigned int *retp2)
872{
873	int p1, p2;
874	struct pll_min_max *pll = &plls[index];
875
876	if (index == PLLS_I9xx) {
877		p2 = (p % 10) ? 1 : 0;
878
879		p1 = p / (p2 ? 5 : 10);
880
881		*retp1 = (unsigned int)p1;
882		*retp2 = (unsigned int)p2;
883		return 0;
884	}
885
886	if (p % 4 == 0)
887		p2 = 1;
888	else
889		p2 = 0;
890	p1 = (p / (1 << (p2 + 1))) - 2;
891	if (p % 4 == 0 && p1 < pll->min_p1) {
892		p2 = 0;
893		p1 = (p / (1 << (p2 + 1))) - 2;
894	}
895	if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
896	    (p1 + 2) * (1 << (p2 + 1)) != p) {
897		return 1;
898	} else {
899		*retp1 = (unsigned int)p1;
900		*retp2 = (unsigned int)p2;
901		return 0;
902	}
903}
904
905static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
906			   u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
907{
908	u32 m1, m2, n, p1, p2, n1, testm;
909	u32 f_vco, p, p_best = 0, m, f_out = 0;
910	u32 err_max, err_target, err_best = 10000000;
911	u32 n_best = 0, m_best = 0, f_best, f_err;
912	u32 p_min, p_max, p_inc, div_max;
913	struct pll_min_max *pll = &plls[index];
914
915	/* Accept 0.5% difference, but aim for 0.1% */
916	err_max = 5 * clock / 1000;
917	err_target = clock / 1000;
918
919	DBG_MSG("Clock is %d\n", clock);
920
921	div_max = pll->max_vco / clock;
922
923	p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
924	p_min = p_inc;
925	p_max = ROUND_DOWN_TO(div_max, p_inc);
926	if (p_min < pll->min_p)
927		p_min = pll->min_p;
928	if (p_max > pll->max_p)
929		p_max = pll->max_p;
930
931	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
932
933	p = p_min;
934	do {
935		if (splitp(index, p, &p1, &p2)) {
936			WRN_MSG("cannot split p = %d\n", p);
937			p += p_inc;
938			continue;
939		}
940		n = pll->min_n;
941		f_vco = clock * p;
942
943		do {
944			m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
945			if (m < pll->min_m)
946				m = pll->min_m + 1;
947			if (m > pll->max_m)
948				m = pll->max_m - 1;
949			for (testm = m - 1; testm <= m; testm++) {
950				f_out = calc_vclock3(index, testm, n, p);
951				if (splitm(index, testm, &m1, &m2)) {
952					WRN_MSG("cannot split m = %d\n",
953						testm);
954					continue;
955				}
956				if (clock > f_out)
957					f_err = clock - f_out;
958				else/* slightly bias the error for bigger clocks */
959					f_err = f_out - clock + 1;
960
961				if (f_err < err_best) {
962					m_best = testm;
963					n_best = n;
964					p_best = p;
965					f_best = f_out;
966					err_best = f_err;
967				}
968			}
969			n++;
970		} while ((n <= pll->max_n) && (f_out >= clock));
971		p += p_inc;
972	} while ((p <= p_max));
973
974	if (!m_best) {
975		WRN_MSG("cannot find parameters for clock %d\n", clock);
976		return 1;
977	}
978	m = m_best;
979	n = n_best;
980	p = p_best;
981	splitm(index, m, &m1, &m2);
982	splitp(index, p, &p1, &p2);
983	n1 = n - 2;
984
985	DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
986		"f: %d (%d), VCO: %d\n",
987		m, m1, m2, n, n1, p, p1, p2,
988		calc_vclock3(index, m, n, p),
989		calc_vclock(index, m1, m2, n1, p1, p2, 0),
990		calc_vclock3(index, m, n, p) * p);
991	*retm1 = m1;
992	*retm2 = m2;
993	*retn = n1;
994	*retp1 = p1;
995	*retp2 = p2;
996	*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
997
998	return 0;
999}
1000
1001static __inline__ int check_overflow(u32 value, u32 limit,
1002				     const char *description)
1003{
1004	if (value > limit) {
1005		WRN_MSG("%s value %d exceeds limit %d\n",
1006			description, value, limit);
1007		return 1;
1008	}
1009	return 0;
1010}
1011
1012/* It is assumed that hw is filled in with the initial state information. */
1013int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1014			 struct intelfb_hwstate *hw,
1015			 struct fb_var_screeninfo *var)
1016{
1017	int pipe = PIPE_A;
1018	u32 *dpll, *fp0, *fp1;
1019	u32 m1, m2, n, p1, p2, clock_target, clock;
1020	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1021	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1022	u32 vsync_pol, hsync_pol;
1023	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1024	u32 stride_alignment;
1025
1026	DBG_MSG("intelfbhw_mode_to_hw\n");
1027
1028	/* Disable VGA */
1029	hw->vgacntrl |= VGA_DISABLE;
1030
1031	/* Check whether pipe A or pipe B is enabled. */
1032	if (hw->pipe_a_conf & PIPECONF_ENABLE)
1033		pipe = PIPE_A;
1034	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1035		pipe = PIPE_B;
1036
1037	/* Set which pipe's registers will be set. */
1038	if (pipe == PIPE_B) {
1039		dpll = &hw->dpll_b;
1040		fp0 = &hw->fpb0;
1041		fp1 = &hw->fpb1;
1042		hs = &hw->hsync_b;
1043		hb = &hw->hblank_b;
1044		ht = &hw->htotal_b;
1045		vs = &hw->vsync_b;
1046		vb = &hw->vblank_b;
1047		vt = &hw->vtotal_b;
1048		ss = &hw->src_size_b;
1049		pipe_conf = &hw->pipe_b_conf;
1050	} else {
1051		dpll = &hw->dpll_a;
1052		fp0 = &hw->fpa0;
1053		fp1 = &hw->fpa1;
1054		hs = &hw->hsync_a;
1055		hb = &hw->hblank_a;
1056		ht = &hw->htotal_a;
1057		vs = &hw->vsync_a;
1058		vb = &hw->vblank_a;
1059		vt = &hw->vtotal_a;
1060		ss = &hw->src_size_a;
1061		pipe_conf = &hw->pipe_a_conf;
1062	}
1063
1064	/* Use ADPA register for sync control. */
1065	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1066
1067	/* sync polarity */
1068	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1069			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1070	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1071			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1072	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1073		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1074	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1075		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1076
1077	/* Connect correct pipe to the analog port DAC */
1078	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1079	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1080
1081	/* Set DPMS state to D0 (on) */
1082	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1083	hw->adpa |= ADPA_DPMS_D0;
1084
1085	hw->adpa |= ADPA_DAC_ENABLE;
1086
1087	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1088	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1089	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1090
1091	/* Desired clock in kHz */
1092	clock_target = 1000000000 / var->pixclock;
1093
1094	if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1095			    &n, &p1, &p2, &clock)) {
1096		WRN_MSG("calc_pll_params failed\n");
1097		return 1;
1098	}
1099
1100	/* Check for overflow. */
1101	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1102		return 1;
1103	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1104		return 1;
1105	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1106		return 1;
1107	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1108		return 1;
1109	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1110		return 1;
1111
1112	*dpll &= ~DPLL_P1_FORCE_DIV2;
1113	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1114		   (DPLL_P1_MASK << DPLL_P1_SHIFT));
1115
1116	if (IS_I9XX(dinfo)) {
1117		*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1118		*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1119	} else
1120		*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1121
1122	*fp0 = (n << FP_N_DIVISOR_SHIFT) |
1123	       (m1 << FP_M1_DIVISOR_SHIFT) |
1124	       (m2 << FP_M2_DIVISOR_SHIFT);
1125	*fp1 = *fp0;
1126
1127	hw->dvob &= ~PORT_ENABLE;
1128	hw->dvoc &= ~PORT_ENABLE;
1129
1130	/* Use display plane A. */
1131	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1132	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1133	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1134	switch (intelfb_var_to_depth(var)) {
1135	case 8:
1136		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1137		break;
1138	case 15:
1139		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1140		break;
1141	case 16:
1142		hw->disp_a_ctrl |= DISPPLANE_16BPP;
1143		break;
1144	case 24:
1145		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1146		break;
1147	}
1148	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1149	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1150
1151	/* Set CRTC registers. */
1152	hactive = var->xres;
1153	hsync_start = hactive + var->right_margin;
1154	hsync_end = hsync_start + var->hsync_len;
1155	htotal = hsync_end + var->left_margin;
1156	hblank_start = hactive;
1157	hblank_end = htotal;
1158
1159	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1160		hactive, hsync_start, hsync_end, htotal, hblank_start,
1161		hblank_end);
1162
1163	vactive = var->yres;
1164	if (var->vmode & FB_VMODE_INTERLACED)
1165		vactive--; /* the chip adds 2 halflines automatically */
1166	vsync_start = vactive + var->lower_margin;
1167	vsync_end = vsync_start + var->vsync_len;
1168	vtotal = vsync_end + var->upper_margin;
1169	vblank_start = vactive;
1170	vblank_end = vtotal;
1171	vblank_end = vsync_end + 1;
1172
1173	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1174		vactive, vsync_start, vsync_end, vtotal, vblank_start,
1175		vblank_end);
1176
1177	/* Adjust for register values, and check for overflow. */
1178	hactive--;
1179	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1180		return 1;
1181	hsync_start--;
1182	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1183		return 1;
1184	hsync_end--;
1185	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1186		return 1;
1187	htotal--;
1188	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1189		return 1;
1190	hblank_start--;
1191	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1192		return 1;
1193	hblank_end--;
1194	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1195		return 1;
1196
1197	vactive--;
1198	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1199		return 1;
1200	vsync_start--;
1201	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1202		return 1;
1203	vsync_end--;
1204	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1205		return 1;
1206	vtotal--;
1207	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1208		return 1;
1209	vblank_start--;
1210	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1211		return 1;
1212	vblank_end--;
1213	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1214		return 1;
1215
1216	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1217	*hb = (hblank_start << HBLANKSTART_SHIFT) |
1218	      (hblank_end << HSYNCEND_SHIFT);
1219	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1220
1221	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1222	*vb = (vblank_start << VBLANKSTART_SHIFT) |
1223	      (vblank_end << VSYNCEND_SHIFT);
1224	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1225	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1226	      (vactive << SRC_SIZE_VERT_SHIFT);
1227
1228	hw->disp_a_stride = dinfo->pitch;
1229	DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1230
1231	hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1232			  var->xoffset * var->bits_per_pixel / 8;
1233
1234	hw->disp_a_base += dinfo->fb.offset << 12;
1235
1236	/* Check stride alignment. */
1237	stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1238					    STRIDE_ALIGNMENT;
1239	if (hw->disp_a_stride % stride_alignment != 0) {
1240		WRN_MSG("display stride %d has bad alignment %d\n",
1241			hw->disp_a_stride, stride_alignment);
1242		return 1;
1243	}
1244
1245	/* Set the palette to 8-bit mode. */
1246	*pipe_conf &= ~PIPECONF_GAMMA;
1247
1248	if (var->vmode & FB_VMODE_INTERLACED)
1249		*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1250	else
1251		*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1252
1253	return 0;
1254}
1255
1256/* Program a (non-VGA) video mode. */
1257int intelfbhw_program_mode(struct intelfb_info *dinfo,
1258			   const struct intelfb_hwstate *hw, int blank)
1259{
1260	int pipe = PIPE_A;
1261	u32 tmp;
1262	const u32 *dpll, *fp0, *fp1, *pipe_conf;
1263	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1264	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1265	u32 hsync_reg, htotal_reg, hblank_reg;
1266	u32 vsync_reg, vtotal_reg, vblank_reg;
1267	u32 src_size_reg;
1268	u32 count, tmp_val[3];
1269
1270	/* Assume single pipe, display plane A, analog CRT. */
1271
1272#if VERBOSE > 0
1273	DBG_MSG("intelfbhw_program_mode\n");
1274#endif
1275
1276	/* Disable VGA */
1277	tmp = INREG(VGACNTRL);
1278	tmp |= VGA_DISABLE;
1279	OUTREG(VGACNTRL, tmp);
1280
1281	/* Check whether pipe A or pipe B is enabled. */
1282	if (hw->pipe_a_conf & PIPECONF_ENABLE)
1283		pipe = PIPE_A;
1284	else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1285		pipe = PIPE_B;
1286
1287	dinfo->pipe = pipe;
1288
1289	if (pipe == PIPE_B) {
1290		dpll = &hw->dpll_b;
1291		fp0 = &hw->fpb0;
1292		fp1 = &hw->fpb1;
1293		pipe_conf = &hw->pipe_b_conf;
1294		hs = &hw->hsync_b;
1295		hb = &hw->hblank_b;
1296		ht = &hw->htotal_b;
1297		vs = &hw->vsync_b;
1298		vb = &hw->vblank_b;
1299		vt = &hw->vtotal_b;
1300		ss = &hw->src_size_b;
1301		dpll_reg = DPLL_B;
1302		fp0_reg = FPB0;
1303		fp1_reg = FPB1;
1304		pipe_conf_reg = PIPEBCONF;
1305		pipe_stat_reg = PIPEBSTAT;
1306		hsync_reg = HSYNC_B;
1307		htotal_reg = HTOTAL_B;
1308		hblank_reg = HBLANK_B;
1309		vsync_reg = VSYNC_B;
1310		vtotal_reg = VTOTAL_B;
1311		vblank_reg = VBLANK_B;
1312		src_size_reg = SRC_SIZE_B;
1313	} else {
1314		dpll = &hw->dpll_a;
1315		fp0 = &hw->fpa0;
1316		fp1 = &hw->fpa1;
1317		pipe_conf = &hw->pipe_a_conf;
1318		hs = &hw->hsync_a;
1319		hb = &hw->hblank_a;
1320		ht = &hw->htotal_a;
1321		vs = &hw->vsync_a;
1322		vb = &hw->vblank_a;
1323		vt = &hw->vtotal_a;
1324		ss = &hw->src_size_a;
1325		dpll_reg = DPLL_A;
1326		fp0_reg = FPA0;
1327		fp1_reg = FPA1;
1328		pipe_conf_reg = PIPEACONF;
1329		pipe_stat_reg = PIPEASTAT;
1330		hsync_reg = HSYNC_A;
1331		htotal_reg = HTOTAL_A;
1332		hblank_reg = HBLANK_A;
1333		vsync_reg = VSYNC_A;
1334		vtotal_reg = VTOTAL_A;
1335		vblank_reg = VBLANK_A;
1336		src_size_reg = SRC_SIZE_A;
1337	}
1338
1339	/* turn off pipe */
1340	tmp = INREG(pipe_conf_reg);
1341	tmp &= ~PIPECONF_ENABLE;
1342	OUTREG(pipe_conf_reg, tmp);
1343
1344	count = 0;
1345	do {
1346		tmp_val[count % 3] = INREG(PIPEA_DSL);
1347		if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1348			break;
1349		count++;
1350		udelay(1);
1351		if (count % 200 == 0) {
1352			tmp = INREG(pipe_conf_reg);
1353			tmp &= ~PIPECONF_ENABLE;
1354			OUTREG(pipe_conf_reg, tmp);
1355		}
1356	} while (count < 2000);
1357
1358	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1359
1360	/* Disable planes A and B. */
1361	tmp = INREG(DSPACNTR);
1362	tmp &= ~DISPPLANE_PLANE_ENABLE;
1363	OUTREG(DSPACNTR, tmp);
1364	tmp = INREG(DSPBCNTR);
1365	tmp &= ~DISPPLANE_PLANE_ENABLE;
1366	OUTREG(DSPBCNTR, tmp);
1367
1368	/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1369	mdelay(20);
1370
1371	OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1372	OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1373	OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1374
1375	/* Disable Sync */
1376	tmp = INREG(ADPA);
1377	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1378	tmp |= ADPA_DPMS_D3;
1379	OUTREG(ADPA, tmp);
1380
1381	/* do some funky magic - xyzzy */
1382	OUTREG(0x61204, 0xabcd0000);
1383
1384	/* turn off PLL */
1385	tmp = INREG(dpll_reg);
1386	tmp &= ~DPLL_VCO_ENABLE;
1387	OUTREG(dpll_reg, tmp);
1388
1389	/* Set PLL parameters */
1390	OUTREG(fp0_reg, *fp0);
1391	OUTREG(fp1_reg, *fp1);
1392
1393	/* Enable PLL */
1394	OUTREG(dpll_reg, *dpll);
1395
1396	/* Set DVOs B/C */
1397	OUTREG(DVOB, hw->dvob);
1398	OUTREG(DVOC, hw->dvoc);
1399
1400	/* undo funky magic */
1401	OUTREG(0x61204, 0x00000000);
1402
1403	/* Set ADPA */
1404	OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1405	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1406
1407	/* Set pipe parameters */
1408	OUTREG(hsync_reg, *hs);
1409	OUTREG(hblank_reg, *hb);
1410	OUTREG(htotal_reg, *ht);
1411	OUTREG(vsync_reg, *vs);
1412	OUTREG(vblank_reg, *vb);
1413	OUTREG(vtotal_reg, *vt);
1414	OUTREG(src_size_reg, *ss);
1415
1416	switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1417					  FB_VMODE_ODD_FLD_FIRST)) {
1418	case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1419		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1420		break;
1421	case FB_VMODE_INTERLACED: /* even lines first */
1422		OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1423		break;
1424	default:		/* non-interlaced */
1425		OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1426	}
1427	/* Enable pipe */
1428	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1429
1430	/* Enable sync */
1431	tmp = INREG(ADPA);
1432	tmp &= ~ADPA_DPMS_CONTROL_MASK;
1433	tmp |= ADPA_DPMS_D0;
1434	OUTREG(ADPA, tmp);
1435
1436	/* setup display plane */
1437	if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1438		/*
1439		 *      i830M errata: the display plane must be enabled
1440		 *      to allow writes to the other bits in the plane
1441		 *      control register.
1442		 */
1443		tmp = INREG(DSPACNTR);
1444		if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1445			tmp |= DISPPLANE_PLANE_ENABLE;
1446			OUTREG(DSPACNTR, tmp);
1447			OUTREG(DSPACNTR,
1448			       hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1449			mdelay(1);
1450		}
1451	}
1452
1453	OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1454	OUTREG(DSPASTRIDE, hw->disp_a_stride);
1455	OUTREG(DSPABASE, hw->disp_a_base);
1456
1457	/* Enable plane */
1458	if (!blank) {
1459		tmp = INREG(DSPACNTR);
1460		tmp |= DISPPLANE_PLANE_ENABLE;
1461		OUTREG(DSPACNTR, tmp);
1462		OUTREG(DSPABASE, hw->disp_a_base);
1463	}
1464
1465	return 0;
1466}
1467
1468/* forward declarations */
1469static void refresh_ring(struct intelfb_info *dinfo);
1470static void reset_state(struct intelfb_info *dinfo);
1471static void do_flush(struct intelfb_info *dinfo);
1472
1473static  u32 get_ring_space(struct intelfb_info *dinfo)
1474{
1475	u32 ring_space;
1476
1477	if (dinfo->ring_tail >= dinfo->ring_head)
1478		ring_space = dinfo->ring.size -
1479			(dinfo->ring_tail - dinfo->ring_head);
1480	else
1481		ring_space = dinfo->ring_head - dinfo->ring_tail;
1482
1483	if (ring_space > RING_MIN_FREE)
1484		ring_space -= RING_MIN_FREE;
1485	else
1486		ring_space = 0;
1487
1488	return ring_space;
1489}
1490
1491static int wait_ring(struct intelfb_info *dinfo, int n)
1492{
1493	int i = 0;
1494	unsigned long end;
1495	u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1496
1497#if VERBOSE > 0
1498	DBG_MSG("wait_ring: %d\n", n);
1499#endif
1500
1501	end = jiffies + (HZ * 3);
1502	while (dinfo->ring_space < n) {
1503		dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1504		dinfo->ring_space = get_ring_space(dinfo);
1505
1506		if (dinfo->ring_head != last_head) {
1507			end = jiffies + (HZ * 3);
1508			last_head = dinfo->ring_head;
1509		}
1510		i++;
1511		if (time_before(end, jiffies)) {
1512			if (!i) {
1513				/* Try again */
1514				reset_state(dinfo);
1515				refresh_ring(dinfo);
1516				do_flush(dinfo);
1517				end = jiffies + (HZ * 3);
1518				i = 1;
1519			} else {
1520				WRN_MSG("ring buffer : space: %d wanted %d\n",
1521					dinfo->ring_space, n);
1522				WRN_MSG("lockup - turning off hardware "
1523					"acceleration\n");
1524				dinfo->ring_lockup = 1;
1525				break;
1526			}
1527		}
1528		udelay(1);
1529	}
1530	return i;
1531}
1532
1533static void do_flush(struct intelfb_info *dinfo)
1534{
1535	START_RING(2);
1536	OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1537	OUT_RING(MI_NOOP);
1538	ADVANCE_RING();
1539}
1540
1541void intelfbhw_do_sync(struct intelfb_info *dinfo)
1542{
1543#if VERBOSE > 0
1544	DBG_MSG("intelfbhw_do_sync\n");
1545#endif
1546
1547	if (!dinfo->accel)
1548		return;
1549
1550	/*
1551	 * Send a flush, then wait until the ring is empty.  This is what
1552	 * the XFree86 driver does, and actually it doesn't seem a lot worse
1553	 * than the recommended method (both have problems).
1554	 */
1555	do_flush(dinfo);
1556	wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1557	dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1558}
1559
1560static void refresh_ring(struct intelfb_info *dinfo)
1561{
1562#if VERBOSE > 0
1563	DBG_MSG("refresh_ring\n");
1564#endif
1565
1566	dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1567	dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1568	dinfo->ring_space = get_ring_space(dinfo);
1569}
1570
1571static void reset_state(struct intelfb_info *dinfo)
1572{
1573	int i;
1574	u32 tmp;
1575
1576#if VERBOSE > 0
1577	DBG_MSG("reset_state\n");
1578#endif
1579
1580	for (i = 0; i < FENCE_NUM; i++)
1581		OUTREG(FENCE + (i << 2), 0);
1582
1583	/* Flush the ring buffer if it's enabled. */
1584	tmp = INREG(PRI_RING_LENGTH);
1585	if (tmp & RING_ENABLE) {
1586#if VERBOSE > 0
1587		DBG_MSG("reset_state: ring was enabled\n");
1588#endif
1589		refresh_ring(dinfo);
1590		intelfbhw_do_sync(dinfo);
1591		DO_RING_IDLE();
1592	}
1593
1594	OUTREG(PRI_RING_LENGTH, 0);
1595	OUTREG(PRI_RING_HEAD, 0);
1596	OUTREG(PRI_RING_TAIL, 0);
1597	OUTREG(PRI_RING_START, 0);
1598}
1599
1600/* Stop the 2D engine, and turn off the ring buffer. */
1601void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1602{
1603#if VERBOSE > 0
1604	DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1605		dinfo->accel, dinfo->ring_active);
1606#endif
1607
1608	if (!dinfo->accel)
1609		return;
1610
1611	dinfo->ring_active = 0;
1612	reset_state(dinfo);
1613}
1614
1615/*
1616 * Enable the ring buffer, and initialise the 2D engine.
1617 * It is assumed that the graphics engine has been stopped by previously
1618 * calling intelfb_2d_stop().
1619 */
1620void intelfbhw_2d_start(struct intelfb_info *dinfo)
1621{
1622#if VERBOSE > 0
1623	DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1624		dinfo->accel, dinfo->ring_active);
1625#endif
1626
1627	if (!dinfo->accel)
1628		return;
1629
1630	/* Initialise the primary ring buffer. */
1631	OUTREG(PRI_RING_LENGTH, 0);
1632	OUTREG(PRI_RING_TAIL, 0);
1633	OUTREG(PRI_RING_HEAD, 0);
1634
1635	OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1636	OUTREG(PRI_RING_LENGTH,
1637		((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1638		RING_NO_REPORT | RING_ENABLE);
1639	refresh_ring(dinfo);
1640	dinfo->ring_active = 1;
1641}
1642
1643/* 2D fillrect (solid fill or invert) */
1644void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1645			   u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1646{
1647	u32 br00, br09, br13, br14, br16;
1648
1649#if VERBOSE > 0
1650	DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1651		"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1652#endif
1653
1654	br00 = COLOR_BLT_CMD;
1655	br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1656	br13 = (rop << ROP_SHIFT) | pitch;
1657	br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1658	br16 = color;
1659
1660	switch (bpp) {
1661	case 8:
1662		br13 |= COLOR_DEPTH_8;
1663		break;
1664	case 16:
1665		br13 |= COLOR_DEPTH_16;
1666		break;
1667	case 32:
1668		br13 |= COLOR_DEPTH_32;
1669		br00 |= WRITE_ALPHA | WRITE_RGB;
1670		break;
1671	}
1672
1673	START_RING(6);
1674	OUT_RING(br00);
1675	OUT_RING(br13);
1676	OUT_RING(br14);
1677	OUT_RING(br09);
1678	OUT_RING(br16);
1679	OUT_RING(MI_NOOP);
1680	ADVANCE_RING();
1681
1682#if VERBOSE > 0
1683	DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1684		dinfo->ring_tail, dinfo->ring_space);
1685#endif
1686}
1687
1688void
1689intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1690		    u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1691{
1692	u32 br00, br09, br11, br12, br13, br22, br23, br26;
1693
1694#if VERBOSE > 0
1695	DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1696		curx, cury, dstx, dsty, w, h, pitch, bpp);
1697#endif
1698
1699	br00 = XY_SRC_COPY_BLT_CMD;
1700	br09 = dinfo->fb_start;
1701	br11 = (pitch << PITCH_SHIFT);
1702	br12 = dinfo->fb_start;
1703	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1704	br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1705	br23 = ((dstx + w) << WIDTH_SHIFT) |
1706	       ((dsty + h) << HEIGHT_SHIFT);
1707	br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1708
1709	switch (bpp) {
1710	case 8:
1711		br13 |= COLOR_DEPTH_8;
1712		break;
1713	case 16:
1714		br13 |= COLOR_DEPTH_16;
1715		break;
1716	case 32:
1717		br13 |= COLOR_DEPTH_32;
1718		br00 |= WRITE_ALPHA | WRITE_RGB;
1719		break;
1720	}
1721
1722	START_RING(8);
1723	OUT_RING(br00);
1724	OUT_RING(br13);
1725	OUT_RING(br22);
1726	OUT_RING(br23);
1727	OUT_RING(br09);
1728	OUT_RING(br26);
1729	OUT_RING(br11);
1730	OUT_RING(br12);
1731	ADVANCE_RING();
1732}
1733
1734int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1735			   u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1736			   u32 bpp)
1737{
1738	int nbytes, ndwords, pad, tmp;
1739	u32 br00, br09, br13, br18, br19, br22, br23;
1740	int dat, ix, iy, iw;
1741	int i, j;
1742
1743#if VERBOSE > 0
1744	DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1745#endif
1746
1747	/* size in bytes of a padded scanline */
1748	nbytes = ROUND_UP_TO(w, 16) / 8;
1749
1750	/* Total bytes of padded scanline data to write out. */
1751	nbytes = nbytes * h;
1752
1753	/*
1754	 * Check if the glyph data exceeds the immediate mode limit.
1755	 * It would take a large font (1K pixels) to hit this limit.
1756	 */
1757	if (nbytes > MAX_MONO_IMM_SIZE)
1758		return 0;
1759
1760	/* Src data is packaged a dword (32-bit) at a time. */
1761	ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1762
1763	/*
1764	 * Ring has to be padded to a quad word. But because the command starts
1765	   with 7 bytes, pad only if there is an even number of ndwords
1766	 */
1767	pad = !(ndwords % 2);
1768
1769	tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1770	br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1771	br09 = dinfo->fb_start;
1772	br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1773	br18 = bg;
1774	br19 = fg;
1775	br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1776	br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1777
1778	switch (bpp) {
1779	case 8:
1780		br13 |= COLOR_DEPTH_8;
1781		break;
1782	case 16:
1783		br13 |= COLOR_DEPTH_16;
1784		break;
1785	case 32:
1786		br13 |= COLOR_DEPTH_32;
1787		br00 |= WRITE_ALPHA | WRITE_RGB;
1788		break;
1789	}
1790
1791	START_RING(8 + ndwords);
1792	OUT_RING(br00);
1793	OUT_RING(br13);
1794	OUT_RING(br22);
1795	OUT_RING(br23);
1796	OUT_RING(br09);
1797	OUT_RING(br18);
1798	OUT_RING(br19);
1799	ix = iy = 0;
1800	iw = ROUND_UP_TO(w, 8) / 8;
1801	while (ndwords--) {
1802		dat = 0;
1803		for (j = 0; j < 2; ++j) {
1804			for (i = 0; i < 2; ++i) {
1805				if (ix != iw || i == 0)
1806					dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1807			}
1808			if (ix == iw && iy != (h-1)) {
1809				ix = 0;
1810				++iy;
1811			}
1812		}
1813		OUT_RING(dat);
1814	}
1815	if (pad)
1816		OUT_RING(MI_NOOP);
1817	ADVANCE_RING();
1818
1819	return 1;
1820}
1821
1822/* HW cursor functions. */
1823void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1824{
1825	u32 tmp;
1826
1827#if VERBOSE > 0
1828	DBG_MSG("intelfbhw_cursor_init\n");
1829#endif
1830
1831	if (dinfo->mobile || IS_I9XX(dinfo)) {
1832		if (!dinfo->cursor.physical)
1833			return;
1834		tmp = INREG(CURSOR_A_CONTROL);
1835		tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1836			 CURSOR_MEM_TYPE_LOCAL |
1837			 (1 << CURSOR_PIPE_SELECT_SHIFT));
1838		tmp |= CURSOR_MODE_DISABLE;
1839		OUTREG(CURSOR_A_CONTROL, tmp);
1840		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1841	} else {
1842		tmp = INREG(CURSOR_CONTROL);
1843		tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1844			 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1845		tmp = CURSOR_FORMAT_3C;
1846		OUTREG(CURSOR_CONTROL, tmp);
1847		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1848		tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1849		      (64 << CURSOR_SIZE_V_SHIFT);
1850		OUTREG(CURSOR_SIZE, tmp);
1851	}
1852}
1853
1854void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1855{
1856	u32 tmp;
1857
1858#if VERBOSE > 0
1859	DBG_MSG("intelfbhw_cursor_hide\n");
1860#endif
1861
1862	dinfo->cursor_on = 0;
1863	if (dinfo->mobile || IS_I9XX(dinfo)) {
1864		if (!dinfo->cursor.physical)
1865			return;
1866		tmp = INREG(CURSOR_A_CONTROL);
1867		tmp &= ~CURSOR_MODE_MASK;
1868		tmp |= CURSOR_MODE_DISABLE;
1869		OUTREG(CURSOR_A_CONTROL, tmp);
1870		/* Flush changes */
1871		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1872	} else {
1873		tmp = INREG(CURSOR_CONTROL);
1874		tmp &= ~CURSOR_ENABLE;
1875		OUTREG(CURSOR_CONTROL, tmp);
1876	}
1877}
1878
1879void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1880{
1881	u32 tmp;
1882
1883#if VERBOSE > 0
1884	DBG_MSG("intelfbhw_cursor_show\n");
1885#endif
1886
1887	dinfo->cursor_on = 1;
1888
1889	if (dinfo->cursor_blanked)
1890		return;
1891
1892	if (dinfo->mobile || IS_I9XX(dinfo)) {
1893		if (!dinfo->cursor.physical)
1894			return;
1895		tmp = INREG(CURSOR_A_CONTROL);
1896		tmp &= ~CURSOR_MODE_MASK;
1897		tmp |= CURSOR_MODE_64_4C_AX;
1898		OUTREG(CURSOR_A_CONTROL, tmp);
1899		/* Flush changes */
1900		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1901	} else {
1902		tmp = INREG(CURSOR_CONTROL);
1903		tmp |= CURSOR_ENABLE;
1904		OUTREG(CURSOR_CONTROL, tmp);
1905	}
1906}
1907
1908void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1909{
1910	u32 tmp;
1911
1912#if VERBOSE > 0
1913	DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1914#endif
1915
1916	/*
1917	 * Sets the position. The coordinates are assumed to already
1918	 * have any offset adjusted. Assume that the cursor is never
1919	 * completely off-screen, and that x, y are always >= 0.
1920	 */
1921
1922	tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1923	      ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1924	OUTREG(CURSOR_A_POSITION, tmp);
1925
1926	if (IS_I9XX(dinfo))
1927		OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1928}
1929
1930void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1931{
1932#if VERBOSE > 0
1933	DBG_MSG("intelfbhw_cursor_setcolor\n");
1934#endif
1935
1936	OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1937	OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1938	OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1939	OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1940}
1941
1942void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1943			   u8 *data)
1944{
1945	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1946	int i, j, w = width / 8;
1947	int mod = width % 8, t_mask, d_mask;
1948
1949#if VERBOSE > 0
1950	DBG_MSG("intelfbhw_cursor_load\n");
1951#endif
1952
1953	if (!dinfo->cursor.virtual)
1954		return;
1955
1956	t_mask = 0xff >> mod;
1957	d_mask = ~(0xff >> mod);
1958	for (i = height; i--; ) {
1959		for (j = 0; j < w; j++) {
1960			writeb(0x00, addr + j);
1961			writeb(*(data++), addr + j+8);
1962		}
1963		if (mod) {
1964			writeb(t_mask, addr + j);
1965			writeb(*(data++) & d_mask, addr + j+8);
1966		}
1967		addr += 16;
1968	}
1969}
1970
1971void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1972{
1973	u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1974	int i, j;
1975
1976#if VERBOSE > 0
1977	DBG_MSG("intelfbhw_cursor_reset\n");
1978#endif
1979
1980	if (!dinfo->cursor.virtual)
1981		return;
1982
1983	for (i = 64; i--; ) {
1984		for (j = 0; j < 8; j++) {
1985			writeb(0xff, addr + j+0);
1986			writeb(0x00, addr + j+8);
1987		}
1988		addr += 16;
1989	}
1990}
1991
1992static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
1993{
1994	u16 tmp;
1995	struct intelfb_info *dinfo = dev_id;
1996
1997	spin_lock(&dinfo->int_lock);
1998
1999	tmp = INREG16(IIR);
2000	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2001		tmp &= PIPE_A_EVENT_INTERRUPT;
2002	else
2003		tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2004
2005	if (tmp == 0) {
2006		spin_unlock(&dinfo->int_lock);
2007		return IRQ_RETVAL(0); /* not us */
2008	}
2009
2010	/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2011	OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2012
2013	OUTREG16(IIR, tmp);
2014	if (dinfo->vsync.pan_display) {
2015		dinfo->vsync.pan_display = 0;
2016		OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2017	}
2018
2019	dinfo->vsync.count++;
2020	wake_up_interruptible(&dinfo->vsync.wait);
2021
2022	spin_unlock(&dinfo->int_lock);
2023
2024	return IRQ_RETVAL(1);
2025}
2026
2027int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2028{
2029	u16 tmp;
2030	if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2031		if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2032				"intelfb", dinfo)) {
2033			clear_bit(0, &dinfo->irq_flags);
2034			return -EINVAL;
2035		}
2036
2037		spin_lock_irq(&dinfo->int_lock);
2038		OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2039		OUTREG16(IMR, 0);
2040	} else
2041		spin_lock_irq(&dinfo->int_lock);
2042
2043	if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2044		tmp = PIPE_A_EVENT_INTERRUPT;
2045	else
2046		tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2047	if (tmp != INREG16(IER)) {
2048		DBG_MSG("changing IER to 0x%X\n", tmp);
2049		OUTREG16(IER, tmp);
2050	}
2051
2052	spin_unlock_irq(&dinfo->int_lock);
2053	return 0;
2054}
2055
2056void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2057{
2058	if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2059		if (dinfo->vsync.pan_display) {
2060			dinfo->vsync.pan_display = 0;
2061			OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2062		}
2063		spin_lock_irq(&dinfo->int_lock);
2064		OUTREG16(HWSTAM, 0xffff);
2065		OUTREG16(IMR, 0xffff);
2066		OUTREG16(IER, 0x0);
2067
2068		OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2069		spin_unlock_irq(&dinfo->int_lock);
2070
2071		free_irq(dinfo->pdev->irq, dinfo);
2072	}
2073}
2074
2075int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2076{
2077	struct intelfb_vsync *vsync;
2078	unsigned int count;
2079	int ret;
2080
2081	switch (pipe) {
2082		case 0:
2083			vsync = &dinfo->vsync;
2084			break;
2085		default:
2086			return -ENODEV;
2087	}
2088
2089	ret = intelfbhw_enable_irq(dinfo);
2090	if (ret)
2091		return ret;
2092
2093	count = vsync->count;
2094	ret = wait_event_interruptible_timeout(vsync->wait,
2095					       count != vsync->count, HZ / 10);
2096	if (ret < 0)
2097		return ret;
2098	if (ret == 0) {
2099		DBG_MSG("wait_for_vsync timed out!\n");
2100		return -ETIMEDOUT;
2101	}
2102
2103	return 0;
2104}
2105