1/*
2 *	dscore.c
3 *
4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/mod_devicetable.h>
25#include <linux/usb.h>
26#include <linux/slab.h>
27
28#include "../w1_int.h"
29#include "../w1.h"
30
31/* COMMAND TYPE CODES */
32#define CONTROL_CMD			0x00
33#define COMM_CMD			0x01
34#define MODE_CMD			0x02
35
36/* CONTROL COMMAND CODES */
37#define CTL_RESET_DEVICE		0x0000
38#define CTL_START_EXE			0x0001
39#define CTL_RESUME_EXE			0x0002
40#define CTL_HALT_EXE_IDLE		0x0003
41#define CTL_HALT_EXE_DONE		0x0004
42#define CTL_FLUSH_COMM_CMDS		0x0007
43#define CTL_FLUSH_RCV_BUFFER		0x0008
44#define CTL_FLUSH_XMT_BUFFER		0x0009
45#define CTL_GET_COMM_CMDS		0x000A
46
47/* MODE COMMAND CODES */
48#define MOD_PULSE_EN			0x0000
49#define MOD_SPEED_CHANGE_EN		0x0001
50#define MOD_1WIRE_SPEED			0x0002
51#define MOD_STRONG_PU_DURATION		0x0003
52#define MOD_PULLDOWN_SLEWRATE		0x0004
53#define MOD_PROG_PULSE_DURATION		0x0005
54#define MOD_WRITE1_LOWTIME		0x0006
55#define MOD_DSOW0_TREC			0x0007
56
57/* COMMUNICATION COMMAND CODES */
58#define COMM_ERROR_ESCAPE		0x0601
59#define COMM_SET_DURATION		0x0012
60#define COMM_BIT_IO			0x0020
61#define COMM_PULSE			0x0030
62#define COMM_1_WIRE_RESET		0x0042
63#define COMM_BYTE_IO			0x0052
64#define COMM_MATCH_ACCESS		0x0064
65#define COMM_BLOCK_IO			0x0074
66#define COMM_READ_STRAIGHT		0x0080
67#define COMM_DO_RELEASE			0x6092
68#define COMM_SET_PATH			0x00A2
69#define COMM_WRITE_SRAM_PAGE		0x00B2
70#define COMM_WRITE_EPROM		0x00C4
71#define COMM_READ_CRC_PROT_PAGE		0x00D4
72#define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
73#define COMM_SEARCH_ACCESS		0x00F4
74
75/* Communication command bits */
76#define COMM_TYPE			0x0008
77#define COMM_SE				0x0008
78#define COMM_D				0x0008
79#define COMM_Z				0x0008
80#define COMM_CH				0x0008
81#define COMM_SM				0x0008
82#define COMM_R				0x0008
83#define COMM_IM				0x0001
84
85#define COMM_PS				0x4000
86#define COMM_PST			0x4000
87#define COMM_CIB			0x4000
88#define COMM_RTS			0x4000
89#define COMM_DT				0x2000
90#define COMM_SPU			0x1000
91#define COMM_F				0x0800
92#define COMM_NTF			0x0400
93#define COMM_ICP			0x0200
94#define COMM_RST			0x0100
95
96#define PULSE_PROG			0x01
97#define PULSE_SPUE			0x02
98
99#define BRANCH_MAIN			0xCC
100#define BRANCH_AUX			0x33
101
102/* Status flags */
103#define ST_SPUA				0x01  /* Strong Pull-up is active */
104#define ST_PRGA				0x02  /* 12V programming pulse is being generated */
105#define ST_12VP				0x04  /* external 12V programming voltage is present */
106#define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
107#define ST_HALT				0x10  /* DS2490 is currently halted */
108#define ST_IDLE				0x20  /* DS2490 is currently idle */
109#define ST_EPOF				0x80
110
111/* Result Register flags */
112#define RR_DETECT			0xA5 /* New device detected */
113#define RR_NRS				0x01 /* Reset no presence or ... */
114#define RR_SH				0x02 /* short on reset or set path */
115#define RR_APP				0x04 /* alarming presence on reset */
116#define RR_VPP				0x08 /* 12V expected not seen */
117#define RR_CMP				0x10 /* compare error */
118#define RR_CRC				0x20 /* CRC error detected */
119#define RR_RDP				0x40 /* redirected page */
120#define RR_EOS				0x80 /* end of search error */
121
122#define SPEED_NORMAL			0x00
123#define SPEED_FLEXIBLE			0x01
124#define SPEED_OVERDRIVE			0x02
125
126#define NUM_EP				4
127#define EP_CONTROL			0
128#define EP_STATUS			1
129#define EP_DATA_OUT			2
130#define EP_DATA_IN			3
131
132struct ds_device
133{
134	struct list_head	ds_entry;
135
136	struct usb_device	*udev;
137	struct usb_interface	*intf;
138
139	int			ep[NUM_EP];
140
141	/* Strong PullUp
142	 * 0: pullup not active, else duration in milliseconds
143	 */
144	int			spu_sleep;
145	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
146	 * should be active or not for writes.
147	 */
148	u16			spu_bit;
149
150	struct w1_bus_master	master;
151};
152
153struct ds_status
154{
155	u8			enable;
156	u8			speed;
157	u8			pullup_dur;
158	u8			ppuls_dur;
159	u8			pulldown_slew;
160	u8			write1_time;
161	u8			write0_time;
162	u8			reserved0;
163	u8			status;
164	u8			command0;
165	u8			command1;
166	u8			command_buffer_status;
167	u8			data_out_buffer_status;
168	u8			data_in_buffer_status;
169	u8			reserved1;
170	u8			reserved2;
171
172};
173
174static struct usb_device_id ds_id_table [] = {
175	{ USB_DEVICE(0x04fa, 0x2490) },
176	{ },
177};
178MODULE_DEVICE_TABLE(usb, ds_id_table);
179
180static int ds_probe(struct usb_interface *, const struct usb_device_id *);
181static void ds_disconnect(struct usb_interface *);
182
183static int ds_send_control(struct ds_device *, u16, u16);
184static int ds_send_control_cmd(struct ds_device *, u16, u16);
185
186static LIST_HEAD(ds_devices);
187static DEFINE_MUTEX(ds_mutex);
188
189static struct usb_driver ds_driver = {
190	.name =		"DS9490R",
191	.probe =	ds_probe,
192	.disconnect =	ds_disconnect,
193	.id_table =	ds_id_table,
194};
195
196static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
197{
198	int err;
199
200	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
201			CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
202	if (err < 0) {
203		printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
204				value, index, err);
205		return err;
206	}
207
208	return err;
209}
210
211static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
212{
213	int err;
214
215	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
216			MODE_CMD, 0x40, value, index, NULL, 0, 1000);
217	if (err < 0) {
218		printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
219				value, index, err);
220		return err;
221	}
222
223	return err;
224}
225
226static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
227{
228	int err;
229
230	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
231			COMM_CMD, 0x40, value, index, NULL, 0, 1000);
232	if (err < 0) {
233		printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
234				value, index, err);
235		return err;
236	}
237
238	return err;
239}
240
241static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
242				 unsigned char *buf, int size)
243{
244	int count, err;
245
246	memset(st, 0, sizeof(*st));
247
248	count = 0;
249	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
250	if (err < 0) {
251		printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
252		return err;
253	}
254
255	if (count >= sizeof(*st))
256		memcpy(st, buf, sizeof(*st));
257
258	return count;
259}
260
261static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
262{
263	printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
264}
265
266static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
267{
268	int i;
269
270	printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
271	for (i=0; i<count; ++i)
272		printk("%02x ", buf[i]);
273	printk(KERN_INFO "\n");
274
275	if (count >= 16) {
276		ds_print_msg(buf, "enable flag", 0);
277		ds_print_msg(buf, "1-wire speed", 1);
278		ds_print_msg(buf, "strong pullup duration", 2);
279		ds_print_msg(buf, "programming pulse duration", 3);
280		ds_print_msg(buf, "pulldown slew rate control", 4);
281		ds_print_msg(buf, "write-1 low time", 5);
282		ds_print_msg(buf, "data sample offset/write-0 recovery time",
283			6);
284		ds_print_msg(buf, "reserved (test register)", 7);
285		ds_print_msg(buf, "device status flags", 8);
286		ds_print_msg(buf, "communication command byte 1", 9);
287		ds_print_msg(buf, "communication command byte 2", 10);
288		ds_print_msg(buf, "communication command buffer status", 11);
289		ds_print_msg(buf, "1-wire data output buffer status", 12);
290		ds_print_msg(buf, "1-wire data input buffer status", 13);
291		ds_print_msg(buf, "reserved", 14);
292		ds_print_msg(buf, "reserved", 15);
293	}
294	for (i = 16; i < count; ++i) {
295		if (buf[i] == RR_DETECT) {
296			ds_print_msg(buf, "new device detect", i);
297			continue;
298		}
299		ds_print_msg(buf, "Result Register Value: ", i);
300		if (buf[i] & RR_NRS)
301			printk(KERN_INFO "NRS: Reset no presence or ...\n");
302		if (buf[i] & RR_SH)
303			printk(KERN_INFO "SH: short on reset or set path\n");
304		if (buf[i] & RR_APP)
305			printk(KERN_INFO "APP: alarming presence on reset\n");
306		if (buf[i] & RR_VPP)
307			printk(KERN_INFO "VPP: 12V expected not seen\n");
308		if (buf[i] & RR_CMP)
309			printk(KERN_INFO "CMP: compare error\n");
310		if (buf[i] & RR_CRC)
311			printk(KERN_INFO "CRC: CRC error detected\n");
312		if (buf[i] & RR_RDP)
313			printk(KERN_INFO "RDP: redirected page\n");
314		if (buf[i] & RR_EOS)
315			printk(KERN_INFO "EOS: end of search error\n");
316	}
317}
318
319static void ds_reset_device(struct ds_device *dev)
320{
321	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
322	/* Always allow strong pullup which allow individual writes to use
323	 * the strong pullup.
324	 */
325	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
326		printk(KERN_ERR "ds_reset_device: "
327			"Error allowing strong pullup\n");
328	/* Chip strong pullup time was cleared. */
329	if (dev->spu_sleep) {
330		/* lower 4 bits are 0, see ds_set_pullup */
331		u8 del = dev->spu_sleep>>4;
332		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
333			printk(KERN_ERR "ds_reset_device: "
334				"Error setting duration\n");
335	}
336}
337
338static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
339{
340	int count, err;
341	struct ds_status st;
342
343	/* Careful on size.  If size is less than what is available in
344	 * the input buffer, the device fails the bulk transfer and
345	 * clears the input buffer.  It could read the maximum size of
346	 * the data buffer, but then do you return the first, last, or
347	 * some set of the middle size bytes?  As long as the rest of
348	 * the code is correct there will be size bytes waiting.  A
349	 * call to ds_wait_status will wait until the device is idle
350	 * and any data to be received would have been available.
351	 */
352	count = 0;
353	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
354				buf, size, &count, 1000);
355	if (err < 0) {
356		u8 buf[0x20];
357		int count;
358
359		printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
360		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
361
362		count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
363		ds_dump_status(dev, buf, count);
364		return err;
365	}
366
367#if 0
368	{
369		int i;
370
371		printk("%s: count=%d: ", __func__, count);
372		for (i=0; i<count; ++i)
373			printk("%02x ", buf[i]);
374		printk("\n");
375	}
376#endif
377	return count;
378}
379
380static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
381{
382	int count, err;
383
384	count = 0;
385	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
386	if (err < 0) {
387		printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
388			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
389		return err;
390	}
391
392	return err;
393}
394
395#if 0
396
397int ds_stop_pulse(struct ds_device *dev, int limit)
398{
399	struct ds_status st;
400	int count = 0, err = 0;
401	u8 buf[0x20];
402
403	do {
404		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
405		if (err)
406			break;
407		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
408		if (err)
409			break;
410		err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
411		if (err)
412			break;
413
414		if ((st.status & ST_SPUA) == 0) {
415			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
416			if (err)
417				break;
418		}
419	} while(++count < limit);
420
421	return err;
422}
423
424int ds_detect(struct ds_device *dev, struct ds_status *st)
425{
426	int err;
427
428	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
429	if (err)
430		return err;
431
432	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
433	if (err)
434		return err;
435
436	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
437	if (err)
438		return err;
439
440	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
441	if (err)
442		return err;
443
444	err = ds_dump_status(dev, st);
445
446	return err;
447}
448
449#endif  /*  0  */
450
451static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
452{
453	u8 buf[0x20];
454	int err, count = 0;
455
456	do {
457		err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
458#if 0
459		if (err >= 0) {
460			int i;
461			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
462			for (i=0; i<err; ++i)
463				printk("%02x ", buf[i]);
464			printk("\n");
465		}
466#endif
467	} while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
468
469	if (err >= 16 && st->status & ST_EPOF) {
470		printk(KERN_INFO "Resetting device after ST_EPOF.\n");
471		ds_reset_device(dev);
472		/* Always dump the device status. */
473		count = 101;
474	}
475
476	/* Dump the status for errors or if there is extended return data.
477	 * The extended status includes new device detection (maybe someone
478	 * can do something with it).
479	 */
480	if (err > 16 || count >= 100 || err < 0)
481		ds_dump_status(dev, buf, err);
482
483	/* Extended data isn't an error.  Well, a short is, but the dump
484	 * would have already told the user that and we can't do anything
485	 * about it in software anyway.
486	 */
487	if (count >= 100 || err < 0)
488		return -1;
489	else
490		return 0;
491}
492
493static int ds_reset(struct ds_device *dev)
494{
495	int err;
496
497	/* Other potentionally interesting flags for reset.
498	 *
499	 * COMM_NTF: Return result register feedback.  This could be used to
500	 * detect some conditions such as short, alarming presence, or
501	 * detect if a new device was detected.
502	 *
503	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
504	 * Select the data transfer rate.
505	 */
506	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
507	if (err)
508		return err;
509
510	return 0;
511}
512
513#if 0
514static int ds_set_speed(struct ds_device *dev, int speed)
515{
516	int err;
517
518	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
519		return -EINVAL;
520
521	if (speed != SPEED_OVERDRIVE)
522		speed = SPEED_FLEXIBLE;
523
524	speed &= 0xff;
525
526	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
527	if (err)
528		return err;
529
530	return err;
531}
532#endif  /*  0  */
533
534static int ds_set_pullup(struct ds_device *dev, int delay)
535{
536	int err = 0;
537	u8 del = 1 + (u8)(delay >> 4);
538	/* Just storing delay would not get the trunication and roundup. */
539	int ms = del<<4;
540
541	/* Enable spu_bit if a delay is set. */
542	dev->spu_bit = delay ? COMM_SPU : 0;
543	/* If delay is zero, it has already been disabled, if the time is
544	 * the same as the hardware was last programmed to, there is also
545	 * nothing more to do.  Compare with the recalculated value ms
546	 * rather than del or delay which can have a different value.
547	 */
548	if (delay == 0 || ms == dev->spu_sleep)
549		return err;
550
551	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
552	if (err)
553		return err;
554
555	dev->spu_sleep = ms;
556
557	return err;
558}
559
560static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
561{
562	int err;
563	struct ds_status st;
564
565	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
566		0);
567	if (err)
568		return err;
569
570	ds_wait_status(dev, &st);
571
572	err = ds_recv_data(dev, tbit, sizeof(*tbit));
573	if (err < 0)
574		return err;
575
576	return 0;
577}
578
579#if 0
580static int ds_write_bit(struct ds_device *dev, u8 bit)
581{
582	int err;
583	struct ds_status st;
584
585	/* Set COMM_ICP to write without a readback.  Note, this will
586	 * produce one time slot, a down followed by an up with COMM_D
587	 * only determing the timing.
588	 */
589	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
590		(bit ? COMM_D : 0), 0);
591	if (err)
592		return err;
593
594	ds_wait_status(dev, &st);
595
596	return 0;
597}
598#endif
599
600static int ds_write_byte(struct ds_device *dev, u8 byte)
601{
602	int err;
603	struct ds_status st;
604	u8 rbyte;
605
606	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
607	if (err)
608		return err;
609
610	if (dev->spu_bit)
611		msleep(dev->spu_sleep);
612
613	err = ds_wait_status(dev, &st);
614	if (err)
615		return err;
616
617	err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
618	if (err < 0)
619		return err;
620
621	return !(byte == rbyte);
622}
623
624static int ds_read_byte(struct ds_device *dev, u8 *byte)
625{
626	int err;
627	struct ds_status st;
628
629	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
630	if (err)
631		return err;
632
633	ds_wait_status(dev, &st);
634
635	err = ds_recv_data(dev, byte, sizeof(*byte));
636	if (err < 0)
637		return err;
638
639	return 0;
640}
641
642static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
643{
644	struct ds_status st;
645	int err;
646
647	if (len > 64*1024)
648		return -E2BIG;
649
650	memset(buf, 0xFF, len);
651
652	err = ds_send_data(dev, buf, len);
653	if (err < 0)
654		return err;
655
656	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
657	if (err)
658		return err;
659
660	ds_wait_status(dev, &st);
661
662	memset(buf, 0x00, len);
663	err = ds_recv_data(dev, buf, len);
664
665	return err;
666}
667
668static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
669{
670	int err;
671	struct ds_status st;
672
673	err = ds_send_data(dev, buf, len);
674	if (err < 0)
675		return err;
676
677	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
678	if (err)
679		return err;
680
681	if (dev->spu_bit)
682		msleep(dev->spu_sleep);
683
684	ds_wait_status(dev, &st);
685
686	err = ds_recv_data(dev, buf, len);
687	if (err < 0)
688		return err;
689
690	return !(err == len);
691}
692
693#if 0
694
695static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
696{
697	int err;
698	u16 value, index;
699	struct ds_status st;
700
701	memset(buf, 0, sizeof(buf));
702
703	err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
704	if (err)
705		return err;
706
707	ds_wait_status(ds_dev, &st);
708
709	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
710	index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
711	err = ds_send_control(ds_dev, value, index);
712	if (err)
713		return err;
714
715	ds_wait_status(ds_dev, &st);
716
717	err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
718	if (err < 0)
719		return err;
720
721	return err/8;
722}
723
724static int ds_match_access(struct ds_device *dev, u64 init)
725{
726	int err;
727	struct ds_status st;
728
729	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
730	if (err)
731		return err;
732
733	ds_wait_status(dev, &st);
734
735	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
736	if (err)
737		return err;
738
739	ds_wait_status(dev, &st);
740
741	return 0;
742}
743
744static int ds_set_path(struct ds_device *dev, u64 init)
745{
746	int err;
747	struct ds_status st;
748	u8 buf[9];
749
750	memcpy(buf, &init, 8);
751	buf[8] = BRANCH_MAIN;
752
753	err = ds_send_data(dev, buf, sizeof(buf));
754	if (err)
755		return err;
756
757	ds_wait_status(dev, &st);
758
759	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
760	if (err)
761		return err;
762
763	ds_wait_status(dev, &st);
764
765	return 0;
766}
767
768#endif  /*  0  */
769
770static u8 ds9490r_touch_bit(void *data, u8 bit)
771{
772	u8 ret;
773	struct ds_device *dev = data;
774
775	if (ds_touch_bit(dev, bit, &ret))
776		return 0;
777
778	return ret;
779}
780
781#if 0
782static void ds9490r_write_bit(void *data, u8 bit)
783{
784	struct ds_device *dev = data;
785
786	ds_write_bit(dev, bit);
787}
788
789static u8 ds9490r_read_bit(void *data)
790{
791	struct ds_device *dev = data;
792	int err;
793	u8 bit = 0;
794
795	err = ds_touch_bit(dev, 1, &bit);
796	if (err)
797		return 0;
798
799	return bit & 1;
800}
801#endif
802
803static void ds9490r_write_byte(void *data, u8 byte)
804{
805	struct ds_device *dev = data;
806
807	ds_write_byte(dev, byte);
808}
809
810static u8 ds9490r_read_byte(void *data)
811{
812	struct ds_device *dev = data;
813	int err;
814	u8 byte = 0;
815
816	err = ds_read_byte(dev, &byte);
817	if (err)
818		return 0;
819
820	return byte;
821}
822
823static void ds9490r_write_block(void *data, const u8 *buf, int len)
824{
825	struct ds_device *dev = data;
826
827	ds_write_block(dev, (u8 *)buf, len);
828}
829
830static u8 ds9490r_read_block(void *data, u8 *buf, int len)
831{
832	struct ds_device *dev = data;
833	int err;
834
835	err = ds_read_block(dev, buf, len);
836	if (err < 0)
837		return 0;
838
839	return len;
840}
841
842static u8 ds9490r_reset(void *data)
843{
844	struct ds_device *dev = data;
845	int err;
846
847	err = ds_reset(dev);
848	if (err)
849		return 1;
850
851	return 0;
852}
853
854static u8 ds9490r_set_pullup(void *data, int delay)
855{
856	struct ds_device *dev = data;
857
858	if (ds_set_pullup(dev, delay))
859		return 1;
860
861	return 0;
862}
863
864static int ds_w1_init(struct ds_device *dev)
865{
866	memset(&dev->master, 0, sizeof(struct w1_bus_master));
867
868	/* Reset the device as it can be in a bad state.
869	 * This is necessary because a block write will wait for data
870	 * to be placed in the output buffer and block any later
871	 * commands which will keep accumulating and the device will
872	 * not be idle.  Another case is removing the ds2490 module
873	 * while a bus search is in progress, somehow a few commands
874	 * get through, but the input transfers fail leaving data in
875	 * the input buffer.  This will cause the next read to fail
876	 * see the note in ds_recv_data.
877	 */
878	ds_reset_device(dev);
879
880	dev->master.data	= dev;
881	dev->master.touch_bit	= &ds9490r_touch_bit;
882	/* read_bit and write_bit in w1_bus_master are expected to set and
883	 * sample the line level.  For write_bit that means it is expected to
884	 * set it to that value and leave it there.  ds2490 only supports an
885	 * individual time slot at the lowest level.  The requirement from
886	 * pulling the bus state down to reading the state is 15us, something
887	 * that isn't realistic on the USB bus anyway.
888	dev->master.read_bit	= &ds9490r_read_bit;
889	dev->master.write_bit	= &ds9490r_write_bit;
890	*/
891	dev->master.read_byte	= &ds9490r_read_byte;
892	dev->master.write_byte	= &ds9490r_write_byte;
893	dev->master.read_block	= &ds9490r_read_block;
894	dev->master.write_block	= &ds9490r_write_block;
895	dev->master.reset_bus	= &ds9490r_reset;
896	dev->master.set_pullup	= &ds9490r_set_pullup;
897
898	return w1_add_master_device(&dev->master);
899}
900
901static void ds_w1_fini(struct ds_device *dev)
902{
903	w1_remove_master_device(&dev->master);
904}
905
906static int ds_probe(struct usb_interface *intf,
907		    const struct usb_device_id *udev_id)
908{
909	struct usb_device *udev = interface_to_usbdev(intf);
910	struct usb_endpoint_descriptor *endpoint;
911	struct usb_host_interface *iface_desc;
912	struct ds_device *dev;
913	int i, err;
914
915	dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
916	if (!dev) {
917		printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
918		return -ENOMEM;
919	}
920	dev->spu_sleep = 0;
921	dev->spu_bit = 0;
922	dev->udev = usb_get_dev(udev);
923	if (!dev->udev) {
924		err = -ENOMEM;
925		goto err_out_free;
926	}
927	memset(dev->ep, 0, sizeof(dev->ep));
928
929	usb_set_intfdata(intf, dev);
930
931	err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
932	if (err) {
933		printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
934				intf->altsetting[0].desc.bInterfaceNumber, err);
935		goto err_out_clear;
936	}
937
938	err = usb_reset_configuration(dev->udev);
939	if (err) {
940		printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
941		goto err_out_clear;
942	}
943
944	iface_desc = &intf->altsetting[0];
945	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
946		printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
947		err = -EINVAL;
948		goto err_out_clear;
949	}
950
951	/*
952	 * This loop doesn'd show control 0 endpoint,
953	 * so we will fill only 1-3 endpoints entry.
954	 */
955	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
956		endpoint = &iface_desc->endpoint[i].desc;
957
958		dev->ep[i+1] = endpoint->bEndpointAddress;
959#if 0
960		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
961			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
962			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
963			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
964#endif
965	}
966
967	err = ds_w1_init(dev);
968	if (err)
969		goto err_out_clear;
970
971	mutex_lock(&ds_mutex);
972	list_add_tail(&dev->ds_entry, &ds_devices);
973	mutex_unlock(&ds_mutex);
974
975	return 0;
976
977err_out_clear:
978	usb_set_intfdata(intf, NULL);
979	usb_put_dev(dev->udev);
980err_out_free:
981	kfree(dev);
982	return err;
983}
984
985static void ds_disconnect(struct usb_interface *intf)
986{
987	struct ds_device *dev;
988
989	dev = usb_get_intfdata(intf);
990	if (!dev)
991		return;
992
993	mutex_lock(&ds_mutex);
994	list_del(&dev->ds_entry);
995	mutex_unlock(&ds_mutex);
996
997	ds_w1_fini(dev);
998
999	usb_set_intfdata(intf, NULL);
1000
1001	usb_put_dev(dev->udev);
1002	kfree(dev);
1003}
1004
1005module_usb_driver(ds_driver);
1006
1007MODULE_LICENSE("GPL");
1008MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1009MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1010