LLParser.cpp revision 1fd7096407d5e598ed3366a1141548e71273f1c5
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/MDNode.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32namespace llvm {
33  /// ValID - Represents a reference of a definition of some sort with no type.
34  /// There are several cases where we have to parse the value but where the
35  /// type can depend on later context.  This may either be a numeric reference
36  /// or a symbolic (%var) reference.  This is just a discriminated union.
37  struct ValID {
38    enum {
39      t_LocalID, t_GlobalID,      // ID in UIntVal.
40      t_LocalName, t_GlobalName,  // Name in StrVal.
41      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
42      t_Null, t_Undef, t_Zero,    // No value.
43      t_EmptyArray,               // No value:  []
44      t_Constant,                 // Value in ConstantVal.
45      t_InlineAsm,                // Value in StrVal/StrVal2/UIntVal.
46      t_Metadata                  // Value in MetadataVal.
47    } Kind;
48
49    LLParser::LocTy Loc;
50    unsigned UIntVal;
51    std::string StrVal, StrVal2;
52    APSInt APSIntVal;
53    APFloat APFloatVal;
54    Constant *ConstantVal;
55    MetadataBase *MetadataVal;
56    ValID() : APFloatVal(0.0) {}
57  };
58}
59
60/// Run: module ::= toplevelentity*
61bool LLParser::Run() {
62  // Prime the lexer.
63  Lex.Lex();
64
65  return ParseTopLevelEntities() ||
66         ValidateEndOfModule();
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72  if (!ForwardRefTypes.empty())
73    return Error(ForwardRefTypes.begin()->second.second,
74                 "use of undefined type named '" +
75                 ForwardRefTypes.begin()->first + "'");
76  if (!ForwardRefTypeIDs.empty())
77    return Error(ForwardRefTypeIDs.begin()->second.second,
78                 "use of undefined type '%" +
79                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
80
81  if (!ForwardRefVals.empty())
82    return Error(ForwardRefVals.begin()->second.second,
83                 "use of undefined value '@" + ForwardRefVals.begin()->first +
84                 "'");
85
86  if (!ForwardRefValIDs.empty())
87    return Error(ForwardRefValIDs.begin()->second.second,
88                 "use of undefined value '@" +
89                 utostr(ForwardRefValIDs.begin()->first) + "'");
90
91  if (!ForwardRefMDNodes.empty())
92    return Error(ForwardRefMDNodes.begin()->second.second,
93                 "use of undefined metadata '!" +
94                 utostr(ForwardRefMDNodes.begin()->first) + "'");
95
96
97  // Look for intrinsic functions and CallInst that need to be upgraded
98  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
99    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
100
101  return false;
102}
103
104//===----------------------------------------------------------------------===//
105// Top-Level Entities
106//===----------------------------------------------------------------------===//
107
108bool LLParser::ParseTopLevelEntities() {
109  while (1) {
110    switch (Lex.getKind()) {
111    default:         return TokError("expected top-level entity");
112    case lltok::Eof: return false;
113    //case lltok::kw_define:
114    case lltok::kw_declare: if (ParseDeclare()) return true; break;
115    case lltok::kw_define:  if (ParseDefine()) return true; break;
116    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
117    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
118    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
119    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
120    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
121    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
122    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
123    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
124
125    // The Global variable production with no name can have many different
126    // optional leading prefixes, the production is:
127    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
128    //               OptionalAddrSpace ('constant'|'global') ...
129    case lltok::kw_private :       // OptionalLinkage
130    case lltok::kw_linker_private: // OptionalLinkage
131    case lltok::kw_internal:       // OptionalLinkage
132    case lltok::kw_weak:           // OptionalLinkage
133    case lltok::kw_weak_odr:       // OptionalLinkage
134    case lltok::kw_linkonce:       // OptionalLinkage
135    case lltok::kw_linkonce_odr:   // OptionalLinkage
136    case lltok::kw_appending:      // OptionalLinkage
137    case lltok::kw_dllexport:      // OptionalLinkage
138    case lltok::kw_common:         // OptionalLinkage
139    case lltok::kw_dllimport:      // OptionalLinkage
140    case lltok::kw_extern_weak:    // OptionalLinkage
141    case lltok::kw_external: {     // OptionalLinkage
142      unsigned Linkage, Visibility;
143      if (ParseOptionalLinkage(Linkage) ||
144          ParseOptionalVisibility(Visibility) ||
145          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
146        return true;
147      break;
148    }
149    case lltok::kw_default:       // OptionalVisibility
150    case lltok::kw_hidden:        // OptionalVisibility
151    case lltok::kw_protected: {   // OptionalVisibility
152      unsigned Visibility;
153      if (ParseOptionalVisibility(Visibility) ||
154          ParseGlobal("", SMLoc(), 0, false, Visibility))
155        return true;
156      break;
157    }
158
159    case lltok::kw_thread_local:  // OptionalThreadLocal
160    case lltok::kw_addrspace:     // OptionalAddrSpace
161    case lltok::kw_constant:      // GlobalType
162    case lltok::kw_global:        // GlobalType
163      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
164      break;
165    }
166  }
167}
168
169
170/// toplevelentity
171///   ::= 'module' 'asm' STRINGCONSTANT
172bool LLParser::ParseModuleAsm() {
173  assert(Lex.getKind() == lltok::kw_module);
174  Lex.Lex();
175
176  std::string AsmStr;
177  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
178      ParseStringConstant(AsmStr)) return true;
179
180  const std::string &AsmSoFar = M->getModuleInlineAsm();
181  if (AsmSoFar.empty())
182    M->setModuleInlineAsm(AsmStr);
183  else
184    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
185  return false;
186}
187
188/// toplevelentity
189///   ::= 'target' 'triple' '=' STRINGCONSTANT
190///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
191bool LLParser::ParseTargetDefinition() {
192  assert(Lex.getKind() == lltok::kw_target);
193  std::string Str;
194  switch (Lex.Lex()) {
195  default: return TokError("unknown target property");
196  case lltok::kw_triple:
197    Lex.Lex();
198    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
199        ParseStringConstant(Str))
200      return true;
201    M->setTargetTriple(Str);
202    return false;
203  case lltok::kw_datalayout:
204    Lex.Lex();
205    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
206        ParseStringConstant(Str))
207      return true;
208    M->setDataLayout(Str);
209    return false;
210  }
211}
212
213/// toplevelentity
214///   ::= 'deplibs' '=' '[' ']'
215///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
216bool LLParser::ParseDepLibs() {
217  assert(Lex.getKind() == lltok::kw_deplibs);
218  Lex.Lex();
219  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
220      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
221    return true;
222
223  if (EatIfPresent(lltok::rsquare))
224    return false;
225
226  std::string Str;
227  if (ParseStringConstant(Str)) return true;
228  M->addLibrary(Str);
229
230  while (EatIfPresent(lltok::comma)) {
231    if (ParseStringConstant(Str)) return true;
232    M->addLibrary(Str);
233  }
234
235  return ParseToken(lltok::rsquare, "expected ']' at end of list");
236}
237
238/// toplevelentity
239///   ::= 'type' type
240bool LLParser::ParseUnnamedType() {
241  assert(Lex.getKind() == lltok::kw_type);
242  LocTy TypeLoc = Lex.getLoc();
243  Lex.Lex(); // eat kw_type
244
245  PATypeHolder Ty(Type::VoidTy);
246  if (ParseType(Ty)) return true;
247
248  unsigned TypeID = NumberedTypes.size();
249
250  // See if this type was previously referenced.
251  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
252    FI = ForwardRefTypeIDs.find(TypeID);
253  if (FI != ForwardRefTypeIDs.end()) {
254    if (FI->second.first.get() == Ty)
255      return Error(TypeLoc, "self referential type is invalid");
256
257    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
258    Ty = FI->second.first.get();
259    ForwardRefTypeIDs.erase(FI);
260  }
261
262  NumberedTypes.push_back(Ty);
263
264  return false;
265}
266
267/// toplevelentity
268///   ::= LocalVar '=' 'type' type
269bool LLParser::ParseNamedType() {
270  std::string Name = Lex.getStrVal();
271  LocTy NameLoc = Lex.getLoc();
272  Lex.Lex();  // eat LocalVar.
273
274  PATypeHolder Ty(Type::VoidTy);
275
276  if (ParseToken(lltok::equal, "expected '=' after name") ||
277      ParseToken(lltok::kw_type, "expected 'type' after name") ||
278      ParseType(Ty))
279    return true;
280
281  // Set the type name, checking for conflicts as we do so.
282  bool AlreadyExists = M->addTypeName(Name, Ty);
283  if (!AlreadyExists) return false;
284
285  // See if this type is a forward reference.  We need to eagerly resolve
286  // types to allow recursive type redefinitions below.
287  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
288  FI = ForwardRefTypes.find(Name);
289  if (FI != ForwardRefTypes.end()) {
290    if (FI->second.first.get() == Ty)
291      return Error(NameLoc, "self referential type is invalid");
292
293    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
294    Ty = FI->second.first.get();
295    ForwardRefTypes.erase(FI);
296  }
297
298  // Inserting a name that is already defined, get the existing name.
299  const Type *Existing = M->getTypeByName(Name);
300  assert(Existing && "Conflict but no matching type?!");
301
302  // Otherwise, this is an attempt to redefine a type. That's okay if
303  // the redefinition is identical to the original.
304  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
305  if (Existing == Ty) return false;
306
307  // Any other kind of (non-equivalent) redefinition is an error.
308  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
309               Ty->getDescription() + "'");
310}
311
312
313/// toplevelentity
314///   ::= 'declare' FunctionHeader
315bool LLParser::ParseDeclare() {
316  assert(Lex.getKind() == lltok::kw_declare);
317  Lex.Lex();
318
319  Function *F;
320  return ParseFunctionHeader(F, false);
321}
322
323/// toplevelentity
324///   ::= 'define' FunctionHeader '{' ...
325bool LLParser::ParseDefine() {
326  assert(Lex.getKind() == lltok::kw_define);
327  Lex.Lex();
328
329  Function *F;
330  return ParseFunctionHeader(F, true) ||
331         ParseFunctionBody(*F);
332}
333
334/// ParseGlobalType
335///   ::= 'constant'
336///   ::= 'global'
337bool LLParser::ParseGlobalType(bool &IsConstant) {
338  if (Lex.getKind() == lltok::kw_constant)
339    IsConstant = true;
340  else if (Lex.getKind() == lltok::kw_global)
341    IsConstant = false;
342  else {
343    IsConstant = false;
344    return TokError("expected 'global' or 'constant'");
345  }
346  Lex.Lex();
347  return false;
348}
349
350/// ParseNamedGlobal:
351///   GlobalVar '=' OptionalVisibility ALIAS ...
352///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
353bool LLParser::ParseNamedGlobal() {
354  assert(Lex.getKind() == lltok::GlobalVar);
355  LocTy NameLoc = Lex.getLoc();
356  std::string Name = Lex.getStrVal();
357  Lex.Lex();
358
359  bool HasLinkage;
360  unsigned Linkage, Visibility;
361  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
362      ParseOptionalLinkage(Linkage, HasLinkage) ||
363      ParseOptionalVisibility(Visibility))
364    return true;
365
366  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
367    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
368  return ParseAlias(Name, NameLoc, Visibility);
369}
370
371// MDString:
372//   ::= '!' STRINGCONSTANT
373bool LLParser::ParseMDString(MetadataBase *&MDS) {
374  std::string Str;
375  if (ParseStringConstant(Str)) return true;
376  MDS = Context.getMDString(Str);
377  return false;
378}
379
380// MDNode:
381//   ::= '!' MDNodeNumber
382bool LLParser::ParseMDNode(MetadataBase *&Node) {
383  // !{ ..., !42, ... }
384  unsigned MID = 0;
385  if (ParseUInt32(MID))  return true;
386
387  // Check existing MDNode.
388  std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
389  if (I != MetadataCache.end()) {
390    Node = I->second;
391    return false;
392  }
393
394  // Check known forward references.
395  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
396    FI = ForwardRefMDNodes.find(MID);
397  if (FI != ForwardRefMDNodes.end()) {
398    Node = FI->second.first;
399    return false;
400  }
401
402  // Create MDNode forward reference
403  SmallVector<Value *, 1> Elts;
404  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
405  Elts.push_back(Context.getMDString(FwdRefName));
406  MDNode *FwdNode = Context.getMDNode(Elts.data(), Elts.size());
407  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
408  Node = FwdNode;
409  return false;
410}
411
412/// ParseStandaloneMetadata:
413///   !42 = !{...}
414bool LLParser::ParseStandaloneMetadata() {
415  assert(Lex.getKind() == lltok::Metadata);
416  Lex.Lex();
417  unsigned MetadataID = 0;
418  if (ParseUInt32(MetadataID))
419    return true;
420  if (MetadataCache.find(MetadataID) != MetadataCache.end())
421    return TokError("Metadata id is already used");
422  if (ParseToken(lltok::equal, "expected '=' here"))
423    return true;
424
425  LocTy TyLoc;
426  PATypeHolder Ty(Type::VoidTy);
427  if (ParseType(Ty, TyLoc))
428    return true;
429
430  if (Lex.getKind() != lltok::Metadata)
431    return TokError("Expected metadata here");
432
433  Lex.Lex();
434  if (Lex.getKind() != lltok::lbrace)
435    return TokError("Expected '{' here");
436
437  SmallVector<Value *, 16> Elts;
438  if (ParseMDNodeVector(Elts)
439      || ParseToken(lltok::rbrace, "expected end of metadata node"))
440    return true;
441
442  MDNode *Init = Context.getMDNode(Elts.data(), Elts.size());
443  MetadataCache[MetadataID] = Init;
444  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
445    FI = ForwardRefMDNodes.find(MetadataID);
446  if (FI != ForwardRefMDNodes.end()) {
447    MDNode *FwdNode = cast<MDNode>(FI->second.first);
448    FwdNode->replaceAllUsesWith(Init);
449    ForwardRefMDNodes.erase(FI);
450  }
451
452  return false;
453}
454
455/// ParseAlias:
456///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
457/// Aliasee
458///   ::= TypeAndValue
459///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
460///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
461///
462/// Everything through visibility has already been parsed.
463///
464bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
465                          unsigned Visibility) {
466  assert(Lex.getKind() == lltok::kw_alias);
467  Lex.Lex();
468  unsigned Linkage;
469  LocTy LinkageLoc = Lex.getLoc();
470  if (ParseOptionalLinkage(Linkage))
471    return true;
472
473  if (Linkage != GlobalValue::ExternalLinkage &&
474      Linkage != GlobalValue::WeakAnyLinkage &&
475      Linkage != GlobalValue::WeakODRLinkage &&
476      Linkage != GlobalValue::InternalLinkage &&
477      Linkage != GlobalValue::PrivateLinkage &&
478      Linkage != GlobalValue::LinkerPrivateLinkage)
479    return Error(LinkageLoc, "invalid linkage type for alias");
480
481  Constant *Aliasee;
482  LocTy AliaseeLoc = Lex.getLoc();
483  if (Lex.getKind() != lltok::kw_bitcast &&
484      Lex.getKind() != lltok::kw_getelementptr) {
485    if (ParseGlobalTypeAndValue(Aliasee)) return true;
486  } else {
487    // The bitcast dest type is not present, it is implied by the dest type.
488    ValID ID;
489    if (ParseValID(ID)) return true;
490    if (ID.Kind != ValID::t_Constant)
491      return Error(AliaseeLoc, "invalid aliasee");
492    Aliasee = ID.ConstantVal;
493  }
494
495  if (!isa<PointerType>(Aliasee->getType()))
496    return Error(AliaseeLoc, "alias must have pointer type");
497
498  // Okay, create the alias but do not insert it into the module yet.
499  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
500                                    (GlobalValue::LinkageTypes)Linkage, Name,
501                                    Aliasee);
502  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
503
504  // See if this value already exists in the symbol table.  If so, it is either
505  // a redefinition or a definition of a forward reference.
506  if (GlobalValue *Val =
507        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
508    // See if this was a redefinition.  If so, there is no entry in
509    // ForwardRefVals.
510    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
511      I = ForwardRefVals.find(Name);
512    if (I == ForwardRefVals.end())
513      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
514
515    // Otherwise, this was a definition of forward ref.  Verify that types
516    // agree.
517    if (Val->getType() != GA->getType())
518      return Error(NameLoc,
519              "forward reference and definition of alias have different types");
520
521    // If they agree, just RAUW the old value with the alias and remove the
522    // forward ref info.
523    Val->replaceAllUsesWith(GA);
524    Val->eraseFromParent();
525    ForwardRefVals.erase(I);
526  }
527
528  // Insert into the module, we know its name won't collide now.
529  M->getAliasList().push_back(GA);
530  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
531
532  return false;
533}
534
535/// ParseGlobal
536///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
537///       OptionalAddrSpace GlobalType Type Const
538///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
539///       OptionalAddrSpace GlobalType Type Const
540///
541/// Everything through visibility has been parsed already.
542///
543bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
544                           unsigned Linkage, bool HasLinkage,
545                           unsigned Visibility) {
546  unsigned AddrSpace;
547  bool ThreadLocal, IsConstant;
548  LocTy TyLoc;
549
550  PATypeHolder Ty(Type::VoidTy);
551  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
552      ParseOptionalAddrSpace(AddrSpace) ||
553      ParseGlobalType(IsConstant) ||
554      ParseType(Ty, TyLoc))
555    return true;
556
557  // If the linkage is specified and is external, then no initializer is
558  // present.
559  Constant *Init = 0;
560  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
561                      Linkage != GlobalValue::ExternalWeakLinkage &&
562                      Linkage != GlobalValue::ExternalLinkage)) {
563    if (ParseGlobalValue(Ty, Init))
564      return true;
565  }
566
567  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
568    return Error(TyLoc, "invalid type for global variable");
569
570  GlobalVariable *GV = 0;
571
572  // See if the global was forward referenced, if so, use the global.
573  if (!Name.empty()) {
574    if ((GV = M->getGlobalVariable(Name, true)) &&
575        !ForwardRefVals.erase(Name))
576      return Error(NameLoc, "redefinition of global '@" + Name + "'");
577  } else {
578    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
579      I = ForwardRefValIDs.find(NumberedVals.size());
580    if (I != ForwardRefValIDs.end()) {
581      GV = cast<GlobalVariable>(I->second.first);
582      ForwardRefValIDs.erase(I);
583    }
584  }
585
586  if (GV == 0) {
587    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
588                            Name, 0, false, AddrSpace);
589  } else {
590    if (GV->getType()->getElementType() != Ty)
591      return Error(TyLoc,
592            "forward reference and definition of global have different types");
593
594    // Move the forward-reference to the correct spot in the module.
595    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
596  }
597
598  if (Name.empty())
599    NumberedVals.push_back(GV);
600
601  // Set the parsed properties on the global.
602  if (Init)
603    GV->setInitializer(Init);
604  GV->setConstant(IsConstant);
605  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
606  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
607  GV->setThreadLocal(ThreadLocal);
608
609  // Parse attributes on the global.
610  while (Lex.getKind() == lltok::comma) {
611    Lex.Lex();
612
613    if (Lex.getKind() == lltok::kw_section) {
614      Lex.Lex();
615      GV->setSection(Lex.getStrVal());
616      if (ParseToken(lltok::StringConstant, "expected global section string"))
617        return true;
618    } else if (Lex.getKind() == lltok::kw_align) {
619      unsigned Alignment;
620      if (ParseOptionalAlignment(Alignment)) return true;
621      GV->setAlignment(Alignment);
622    } else {
623      TokError("unknown global variable property!");
624    }
625  }
626
627  return false;
628}
629
630
631//===----------------------------------------------------------------------===//
632// GlobalValue Reference/Resolution Routines.
633//===----------------------------------------------------------------------===//
634
635/// GetGlobalVal - Get a value with the specified name or ID, creating a
636/// forward reference record if needed.  This can return null if the value
637/// exists but does not have the right type.
638GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
639                                    LocTy Loc) {
640  const PointerType *PTy = dyn_cast<PointerType>(Ty);
641  if (PTy == 0) {
642    Error(Loc, "global variable reference must have pointer type");
643    return 0;
644  }
645
646  // Look this name up in the normal function symbol table.
647  GlobalValue *Val =
648    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
649
650  // If this is a forward reference for the value, see if we already created a
651  // forward ref record.
652  if (Val == 0) {
653    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
654      I = ForwardRefVals.find(Name);
655    if (I != ForwardRefVals.end())
656      Val = I->second.first;
657  }
658
659  // If we have the value in the symbol table or fwd-ref table, return it.
660  if (Val) {
661    if (Val->getType() == Ty) return Val;
662    Error(Loc, "'@" + Name + "' defined with type '" +
663          Val->getType()->getDescription() + "'");
664    return 0;
665  }
666
667  // Otherwise, create a new forward reference for this value and remember it.
668  GlobalValue *FwdVal;
669  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
670    // Function types can return opaque but functions can't.
671    if (isa<OpaqueType>(FT->getReturnType())) {
672      Error(Loc, "function may not return opaque type");
673      return 0;
674    }
675
676    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
677  } else {
678    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
679                                GlobalValue::ExternalWeakLinkage, 0, Name);
680  }
681
682  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
683  return FwdVal;
684}
685
686GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
687  const PointerType *PTy = dyn_cast<PointerType>(Ty);
688  if (PTy == 0) {
689    Error(Loc, "global variable reference must have pointer type");
690    return 0;
691  }
692
693  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
694
695  // If this is a forward reference for the value, see if we already created a
696  // forward ref record.
697  if (Val == 0) {
698    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
699      I = ForwardRefValIDs.find(ID);
700    if (I != ForwardRefValIDs.end())
701      Val = I->second.first;
702  }
703
704  // If we have the value in the symbol table or fwd-ref table, return it.
705  if (Val) {
706    if (Val->getType() == Ty) return Val;
707    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
708          Val->getType()->getDescription() + "'");
709    return 0;
710  }
711
712  // Otherwise, create a new forward reference for this value and remember it.
713  GlobalValue *FwdVal;
714  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
715    // Function types can return opaque but functions can't.
716    if (isa<OpaqueType>(FT->getReturnType())) {
717      Error(Loc, "function may not return opaque type");
718      return 0;
719    }
720    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
721  } else {
722    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
723                                GlobalValue::ExternalWeakLinkage, 0, "");
724  }
725
726  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
727  return FwdVal;
728}
729
730
731//===----------------------------------------------------------------------===//
732// Helper Routines.
733//===----------------------------------------------------------------------===//
734
735/// ParseToken - If the current token has the specified kind, eat it and return
736/// success.  Otherwise, emit the specified error and return failure.
737bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
738  if (Lex.getKind() != T)
739    return TokError(ErrMsg);
740  Lex.Lex();
741  return false;
742}
743
744/// ParseStringConstant
745///   ::= StringConstant
746bool LLParser::ParseStringConstant(std::string &Result) {
747  if (Lex.getKind() != lltok::StringConstant)
748    return TokError("expected string constant");
749  Result = Lex.getStrVal();
750  Lex.Lex();
751  return false;
752}
753
754/// ParseUInt32
755///   ::= uint32
756bool LLParser::ParseUInt32(unsigned &Val) {
757  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
758    return TokError("expected integer");
759  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
760  if (Val64 != unsigned(Val64))
761    return TokError("expected 32-bit integer (too large)");
762  Val = Val64;
763  Lex.Lex();
764  return false;
765}
766
767
768/// ParseOptionalAddrSpace
769///   := /*empty*/
770///   := 'addrspace' '(' uint32 ')'
771bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
772  AddrSpace = 0;
773  if (!EatIfPresent(lltok::kw_addrspace))
774    return false;
775  return ParseToken(lltok::lparen, "expected '(' in address space") ||
776         ParseUInt32(AddrSpace) ||
777         ParseToken(lltok::rparen, "expected ')' in address space");
778}
779
780/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
781/// indicates what kind of attribute list this is: 0: function arg, 1: result,
782/// 2: function attr.
783/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
784bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
785  Attrs = Attribute::None;
786  LocTy AttrLoc = Lex.getLoc();
787
788  while (1) {
789    switch (Lex.getKind()) {
790    case lltok::kw_sext:
791    case lltok::kw_zext:
792      // Treat these as signext/zeroext if they occur in the argument list after
793      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
794      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
795      // expr.
796      // FIXME: REMOVE THIS IN LLVM 3.0
797      if (AttrKind == 3) {
798        if (Lex.getKind() == lltok::kw_sext)
799          Attrs |= Attribute::SExt;
800        else
801          Attrs |= Attribute::ZExt;
802        break;
803      }
804      // FALL THROUGH.
805    default:  // End of attributes.
806      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
807        return Error(AttrLoc, "invalid use of function-only attribute");
808
809      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
810        return Error(AttrLoc, "invalid use of parameter-only attribute");
811
812      return false;
813    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
814    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
815    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
816    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
817    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
818    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
819    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
820    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
821
822    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
823    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
824    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
825    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
826    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
827    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
828    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
829    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
830    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
831    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
832    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
833    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
834
835    case lltok::kw_align: {
836      unsigned Alignment;
837      if (ParseOptionalAlignment(Alignment))
838        return true;
839      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
840      continue;
841    }
842    }
843    Lex.Lex();
844  }
845}
846
847/// ParseOptionalLinkage
848///   ::= /*empty*/
849///   ::= 'private'
850///   ::= 'linker_private'
851///   ::= 'internal'
852///   ::= 'weak'
853///   ::= 'weak_odr'
854///   ::= 'linkonce'
855///   ::= 'linkonce_odr'
856///   ::= 'appending'
857///   ::= 'dllexport'
858///   ::= 'common'
859///   ::= 'dllimport'
860///   ::= 'extern_weak'
861///   ::= 'external'
862bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
863  HasLinkage = false;
864  switch (Lex.getKind()) {
865  default:                       Res=GlobalValue::ExternalLinkage; return false;
866  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
867  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
868  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
869  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
870  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
871  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
872  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
873  case lltok::kw_available_externally:
874    Res = GlobalValue::AvailableExternallyLinkage;
875    break;
876  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
877  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
878  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
879  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
880  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
881  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
882  }
883  Lex.Lex();
884  HasLinkage = true;
885  return false;
886}
887
888/// ParseOptionalVisibility
889///   ::= /*empty*/
890///   ::= 'default'
891///   ::= 'hidden'
892///   ::= 'protected'
893///
894bool LLParser::ParseOptionalVisibility(unsigned &Res) {
895  switch (Lex.getKind()) {
896  default:                  Res = GlobalValue::DefaultVisibility; return false;
897  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
898  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
899  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
900  }
901  Lex.Lex();
902  return false;
903}
904
905/// ParseOptionalCallingConv
906///   ::= /*empty*/
907///   ::= 'ccc'
908///   ::= 'fastcc'
909///   ::= 'coldcc'
910///   ::= 'x86_stdcallcc'
911///   ::= 'x86_fastcallcc'
912///   ::= 'arm_apcscc'
913///   ::= 'arm_aapcscc'
914///   ::= 'arm_aapcs_vfpcc'
915///   ::= 'cc' UINT
916///
917bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
918  switch (Lex.getKind()) {
919  default:                       CC = CallingConv::C; return false;
920  case lltok::kw_ccc:            CC = CallingConv::C; break;
921  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
922  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
923  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
924  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
925  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
926  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
927  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
928  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
929  }
930  Lex.Lex();
931  return false;
932}
933
934/// ParseOptionalAlignment
935///   ::= /* empty */
936///   ::= 'align' 4
937bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
938  Alignment = 0;
939  if (!EatIfPresent(lltok::kw_align))
940    return false;
941  LocTy AlignLoc = Lex.getLoc();
942  if (ParseUInt32(Alignment)) return true;
943  if (!isPowerOf2_32(Alignment))
944    return Error(AlignLoc, "alignment is not a power of two");
945  return false;
946}
947
948/// ParseOptionalCommaAlignment
949///   ::= /* empty */
950///   ::= ',' 'align' 4
951bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
952  Alignment = 0;
953  if (!EatIfPresent(lltok::comma))
954    return false;
955  return ParseToken(lltok::kw_align, "expected 'align'") ||
956         ParseUInt32(Alignment);
957}
958
959/// ParseIndexList
960///    ::=  (',' uint32)+
961bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
962  if (Lex.getKind() != lltok::comma)
963    return TokError("expected ',' as start of index list");
964
965  while (EatIfPresent(lltok::comma)) {
966    unsigned Idx;
967    if (ParseUInt32(Idx)) return true;
968    Indices.push_back(Idx);
969  }
970
971  return false;
972}
973
974//===----------------------------------------------------------------------===//
975// Type Parsing.
976//===----------------------------------------------------------------------===//
977
978/// ParseType - Parse and resolve a full type.
979bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
980  LocTy TypeLoc = Lex.getLoc();
981  if (ParseTypeRec(Result)) return true;
982
983  // Verify no unresolved uprefs.
984  if (!UpRefs.empty())
985    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
986
987  if (!AllowVoid && Result.get() == Type::VoidTy)
988    return Error(TypeLoc, "void type only allowed for function results");
989
990  return false;
991}
992
993/// HandleUpRefs - Every time we finish a new layer of types, this function is
994/// called.  It loops through the UpRefs vector, which is a list of the
995/// currently active types.  For each type, if the up-reference is contained in
996/// the newly completed type, we decrement the level count.  When the level
997/// count reaches zero, the up-referenced type is the type that is passed in:
998/// thus we can complete the cycle.
999///
1000PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1001  // If Ty isn't abstract, or if there are no up-references in it, then there is
1002  // nothing to resolve here.
1003  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1004
1005  PATypeHolder Ty(ty);
1006#if 0
1007  errs() << "Type '" << Ty->getDescription()
1008         << "' newly formed.  Resolving upreferences.\n"
1009         << UpRefs.size() << " upreferences active!\n";
1010#endif
1011
1012  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1013  // to zero), we resolve them all together before we resolve them to Ty.  At
1014  // the end of the loop, if there is anything to resolve to Ty, it will be in
1015  // this variable.
1016  OpaqueType *TypeToResolve = 0;
1017
1018  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1019    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1020    bool ContainsType =
1021      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1022                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1023
1024#if 0
1025    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1026           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1027           << (ContainsType ? "true" : "false")
1028           << " level=" << UpRefs[i].NestingLevel << "\n";
1029#endif
1030    if (!ContainsType)
1031      continue;
1032
1033    // Decrement level of upreference
1034    unsigned Level = --UpRefs[i].NestingLevel;
1035    UpRefs[i].LastContainedTy = Ty;
1036
1037    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1038    if (Level != 0)
1039      continue;
1040
1041#if 0
1042    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1043#endif
1044    if (!TypeToResolve)
1045      TypeToResolve = UpRefs[i].UpRefTy;
1046    else
1047      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1048    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1049    --i;                                // Do not skip the next element.
1050  }
1051
1052  if (TypeToResolve)
1053    TypeToResolve->refineAbstractTypeTo(Ty);
1054
1055  return Ty;
1056}
1057
1058
1059/// ParseTypeRec - The recursive function used to process the internal
1060/// implementation details of types.
1061bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1062  switch (Lex.getKind()) {
1063  default:
1064    return TokError("expected type");
1065  case lltok::Type:
1066    // TypeRec ::= 'float' | 'void' (etc)
1067    Result = Lex.getTyVal();
1068    Lex.Lex();
1069    break;
1070  case lltok::kw_opaque:
1071    // TypeRec ::= 'opaque'
1072    Result = Context.getOpaqueType();
1073    Lex.Lex();
1074    break;
1075  case lltok::lbrace:
1076    // TypeRec ::= '{' ... '}'
1077    if (ParseStructType(Result, false))
1078      return true;
1079    break;
1080  case lltok::lsquare:
1081    // TypeRec ::= '[' ... ']'
1082    Lex.Lex(); // eat the lsquare.
1083    if (ParseArrayVectorType(Result, false))
1084      return true;
1085    break;
1086  case lltok::less: // Either vector or packed struct.
1087    // TypeRec ::= '<' ... '>'
1088    Lex.Lex();
1089    if (Lex.getKind() == lltok::lbrace) {
1090      if (ParseStructType(Result, true) ||
1091          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1092        return true;
1093    } else if (ParseArrayVectorType(Result, true))
1094      return true;
1095    break;
1096  case lltok::LocalVar:
1097  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1098    // TypeRec ::= %foo
1099    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1100      Result = T;
1101    } else {
1102      Result = Context.getOpaqueType();
1103      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1104                                            std::make_pair(Result,
1105                                                           Lex.getLoc())));
1106      M->addTypeName(Lex.getStrVal(), Result.get());
1107    }
1108    Lex.Lex();
1109    break;
1110
1111  case lltok::LocalVarID:
1112    // TypeRec ::= %4
1113    if (Lex.getUIntVal() < NumberedTypes.size())
1114      Result = NumberedTypes[Lex.getUIntVal()];
1115    else {
1116      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1117        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1118      if (I != ForwardRefTypeIDs.end())
1119        Result = I->second.first;
1120      else {
1121        Result = Context.getOpaqueType();
1122        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1123                                                std::make_pair(Result,
1124                                                               Lex.getLoc())));
1125      }
1126    }
1127    Lex.Lex();
1128    break;
1129  case lltok::backslash: {
1130    // TypeRec ::= '\' 4
1131    Lex.Lex();
1132    unsigned Val;
1133    if (ParseUInt32(Val)) return true;
1134    OpaqueType *OT = Context.getOpaqueType(); //Use temporary placeholder.
1135    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1136    Result = OT;
1137    break;
1138  }
1139  }
1140
1141  // Parse the type suffixes.
1142  while (1) {
1143    switch (Lex.getKind()) {
1144    // End of type.
1145    default: return false;
1146
1147    // TypeRec ::= TypeRec '*'
1148    case lltok::star:
1149      if (Result.get() == Type::LabelTy)
1150        return TokError("basic block pointers are invalid");
1151      if (Result.get() == Type::VoidTy)
1152        return TokError("pointers to void are invalid; use i8* instead");
1153      if (!PointerType::isValidElementType(Result.get()))
1154        return TokError("pointer to this type is invalid");
1155      Result = HandleUpRefs(Context.getPointerTypeUnqual(Result.get()));
1156      Lex.Lex();
1157      break;
1158
1159    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1160    case lltok::kw_addrspace: {
1161      if (Result.get() == Type::LabelTy)
1162        return TokError("basic block pointers are invalid");
1163      if (Result.get() == Type::VoidTy)
1164        return TokError("pointers to void are invalid; use i8* instead");
1165      if (!PointerType::isValidElementType(Result.get()))
1166        return TokError("pointer to this type is invalid");
1167      unsigned AddrSpace;
1168      if (ParseOptionalAddrSpace(AddrSpace) ||
1169          ParseToken(lltok::star, "expected '*' in address space"))
1170        return true;
1171
1172      Result = HandleUpRefs(Context.getPointerType(Result.get(), AddrSpace));
1173      break;
1174    }
1175
1176    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1177    case lltok::lparen:
1178      if (ParseFunctionType(Result))
1179        return true;
1180      break;
1181    }
1182  }
1183}
1184
1185/// ParseParameterList
1186///    ::= '(' ')'
1187///    ::= '(' Arg (',' Arg)* ')'
1188///  Arg
1189///    ::= Type OptionalAttributes Value OptionalAttributes
1190bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1191                                  PerFunctionState &PFS) {
1192  if (ParseToken(lltok::lparen, "expected '(' in call"))
1193    return true;
1194
1195  while (Lex.getKind() != lltok::rparen) {
1196    // If this isn't the first argument, we need a comma.
1197    if (!ArgList.empty() &&
1198        ParseToken(lltok::comma, "expected ',' in argument list"))
1199      return true;
1200
1201    // Parse the argument.
1202    LocTy ArgLoc;
1203    PATypeHolder ArgTy(Type::VoidTy);
1204    unsigned ArgAttrs1, ArgAttrs2;
1205    Value *V;
1206    if (ParseType(ArgTy, ArgLoc) ||
1207        ParseOptionalAttrs(ArgAttrs1, 0) ||
1208        ParseValue(ArgTy, V, PFS) ||
1209        // FIXME: Should not allow attributes after the argument, remove this in
1210        // LLVM 3.0.
1211        ParseOptionalAttrs(ArgAttrs2, 3))
1212      return true;
1213    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1214  }
1215
1216  Lex.Lex();  // Lex the ')'.
1217  return false;
1218}
1219
1220
1221
1222/// ParseArgumentList - Parse the argument list for a function type or function
1223/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1224///   ::= '(' ArgTypeListI ')'
1225/// ArgTypeListI
1226///   ::= /*empty*/
1227///   ::= '...'
1228///   ::= ArgTypeList ',' '...'
1229///   ::= ArgType (',' ArgType)*
1230///
1231bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1232                                 bool &isVarArg, bool inType) {
1233  isVarArg = false;
1234  assert(Lex.getKind() == lltok::lparen);
1235  Lex.Lex(); // eat the (.
1236
1237  if (Lex.getKind() == lltok::rparen) {
1238    // empty
1239  } else if (Lex.getKind() == lltok::dotdotdot) {
1240    isVarArg = true;
1241    Lex.Lex();
1242  } else {
1243    LocTy TypeLoc = Lex.getLoc();
1244    PATypeHolder ArgTy(Type::VoidTy);
1245    unsigned Attrs;
1246    std::string Name;
1247
1248    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1249    // types (such as a function returning a pointer to itself).  If parsing a
1250    // function prototype, we require fully resolved types.
1251    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1252        ParseOptionalAttrs(Attrs, 0)) return true;
1253
1254    if (ArgTy == Type::VoidTy)
1255      return Error(TypeLoc, "argument can not have void type");
1256
1257    if (Lex.getKind() == lltok::LocalVar ||
1258        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1259      Name = Lex.getStrVal();
1260      Lex.Lex();
1261    }
1262
1263    if (!FunctionType::isValidArgumentType(ArgTy))
1264      return Error(TypeLoc, "invalid type for function argument");
1265
1266    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1267
1268    while (EatIfPresent(lltok::comma)) {
1269      // Handle ... at end of arg list.
1270      if (EatIfPresent(lltok::dotdotdot)) {
1271        isVarArg = true;
1272        break;
1273      }
1274
1275      // Otherwise must be an argument type.
1276      TypeLoc = Lex.getLoc();
1277      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1278          ParseOptionalAttrs(Attrs, 0)) return true;
1279
1280      if (ArgTy == Type::VoidTy)
1281        return Error(TypeLoc, "argument can not have void type");
1282
1283      if (Lex.getKind() == lltok::LocalVar ||
1284          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1285        Name = Lex.getStrVal();
1286        Lex.Lex();
1287      } else {
1288        Name = "";
1289      }
1290
1291      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1292        return Error(TypeLoc, "invalid type for function argument");
1293
1294      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1295    }
1296  }
1297
1298  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1299}
1300
1301/// ParseFunctionType
1302///  ::= Type ArgumentList OptionalAttrs
1303bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1304  assert(Lex.getKind() == lltok::lparen);
1305
1306  if (!FunctionType::isValidReturnType(Result))
1307    return TokError("invalid function return type");
1308
1309  std::vector<ArgInfo> ArgList;
1310  bool isVarArg;
1311  unsigned Attrs;
1312  if (ParseArgumentList(ArgList, isVarArg, true) ||
1313      // FIXME: Allow, but ignore attributes on function types!
1314      // FIXME: Remove in LLVM 3.0
1315      ParseOptionalAttrs(Attrs, 2))
1316    return true;
1317
1318  // Reject names on the arguments lists.
1319  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1320    if (!ArgList[i].Name.empty())
1321      return Error(ArgList[i].Loc, "argument name invalid in function type");
1322    if (!ArgList[i].Attrs != 0) {
1323      // Allow but ignore attributes on function types; this permits
1324      // auto-upgrade.
1325      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1326    }
1327  }
1328
1329  std::vector<const Type*> ArgListTy;
1330  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1331    ArgListTy.push_back(ArgList[i].Type);
1332
1333  Result = HandleUpRefs(Context.getFunctionType(Result.get(),
1334                                                ArgListTy, isVarArg));
1335  return false;
1336}
1337
1338/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1339///   TypeRec
1340///     ::= '{' '}'
1341///     ::= '{' TypeRec (',' TypeRec)* '}'
1342///     ::= '<' '{' '}' '>'
1343///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1344bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1345  assert(Lex.getKind() == lltok::lbrace);
1346  Lex.Lex(); // Consume the '{'
1347
1348  if (EatIfPresent(lltok::rbrace)) {
1349    Result = Context.getStructType(Packed);
1350    return false;
1351  }
1352
1353  std::vector<PATypeHolder> ParamsList;
1354  LocTy EltTyLoc = Lex.getLoc();
1355  if (ParseTypeRec(Result)) return true;
1356  ParamsList.push_back(Result);
1357
1358  if (Result == Type::VoidTy)
1359    return Error(EltTyLoc, "struct element can not have void type");
1360  if (!StructType::isValidElementType(Result))
1361    return Error(EltTyLoc, "invalid element type for struct");
1362
1363  while (EatIfPresent(lltok::comma)) {
1364    EltTyLoc = Lex.getLoc();
1365    if (ParseTypeRec(Result)) return true;
1366
1367    if (Result == Type::VoidTy)
1368      return Error(EltTyLoc, "struct element can not have void type");
1369    if (!StructType::isValidElementType(Result))
1370      return Error(EltTyLoc, "invalid element type for struct");
1371
1372    ParamsList.push_back(Result);
1373  }
1374
1375  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1376    return true;
1377
1378  std::vector<const Type*> ParamsListTy;
1379  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1380    ParamsListTy.push_back(ParamsList[i].get());
1381  Result = HandleUpRefs(Context.getStructType(ParamsListTy, Packed));
1382  return false;
1383}
1384
1385/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1386/// token has already been consumed.
1387///   TypeRec
1388///     ::= '[' APSINTVAL 'x' Types ']'
1389///     ::= '<' APSINTVAL 'x' Types '>'
1390bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1391  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1392      Lex.getAPSIntVal().getBitWidth() > 64)
1393    return TokError("expected number in address space");
1394
1395  LocTy SizeLoc = Lex.getLoc();
1396  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1397  Lex.Lex();
1398
1399  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1400      return true;
1401
1402  LocTy TypeLoc = Lex.getLoc();
1403  PATypeHolder EltTy(Type::VoidTy);
1404  if (ParseTypeRec(EltTy)) return true;
1405
1406  if (EltTy == Type::VoidTy)
1407    return Error(TypeLoc, "array and vector element type cannot be void");
1408
1409  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1410                 "expected end of sequential type"))
1411    return true;
1412
1413  if (isVector) {
1414    if (Size == 0)
1415      return Error(SizeLoc, "zero element vector is illegal");
1416    if ((unsigned)Size != Size)
1417      return Error(SizeLoc, "size too large for vector");
1418    if (!VectorType::isValidElementType(EltTy))
1419      return Error(TypeLoc, "vector element type must be fp or integer");
1420    Result = Context.getVectorType(EltTy, unsigned(Size));
1421  } else {
1422    if (!ArrayType::isValidElementType(EltTy))
1423      return Error(TypeLoc, "invalid array element type");
1424    Result = HandleUpRefs(Context.getArrayType(EltTy, Size));
1425  }
1426  return false;
1427}
1428
1429//===----------------------------------------------------------------------===//
1430// Function Semantic Analysis.
1431//===----------------------------------------------------------------------===//
1432
1433LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1434  : P(p), F(f) {
1435
1436  // Insert unnamed arguments into the NumberedVals list.
1437  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1438       AI != E; ++AI)
1439    if (!AI->hasName())
1440      NumberedVals.push_back(AI);
1441}
1442
1443LLParser::PerFunctionState::~PerFunctionState() {
1444  // If there were any forward referenced non-basicblock values, delete them.
1445  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1446       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1447    if (!isa<BasicBlock>(I->second.first)) {
1448      I->second.first->replaceAllUsesWith(
1449                           P.getContext().getUndef(I->second.first->getType()));
1450      delete I->second.first;
1451      I->second.first = 0;
1452    }
1453
1454  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1455       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1456    if (!isa<BasicBlock>(I->second.first)) {
1457      I->second.first->replaceAllUsesWith(
1458                           P.getContext().getUndef(I->second.first->getType()));
1459      delete I->second.first;
1460      I->second.first = 0;
1461    }
1462}
1463
1464bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1465  if (!ForwardRefVals.empty())
1466    return P.Error(ForwardRefVals.begin()->second.second,
1467                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1468                   "'");
1469  if (!ForwardRefValIDs.empty())
1470    return P.Error(ForwardRefValIDs.begin()->second.second,
1471                   "use of undefined value '%" +
1472                   utostr(ForwardRefValIDs.begin()->first) + "'");
1473  return false;
1474}
1475
1476
1477/// GetVal - Get a value with the specified name or ID, creating a
1478/// forward reference record if needed.  This can return null if the value
1479/// exists but does not have the right type.
1480Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1481                                          const Type *Ty, LocTy Loc) {
1482  // Look this name up in the normal function symbol table.
1483  Value *Val = F.getValueSymbolTable().lookup(Name);
1484
1485  // If this is a forward reference for the value, see if we already created a
1486  // forward ref record.
1487  if (Val == 0) {
1488    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1489      I = ForwardRefVals.find(Name);
1490    if (I != ForwardRefVals.end())
1491      Val = I->second.first;
1492  }
1493
1494  // If we have the value in the symbol table or fwd-ref table, return it.
1495  if (Val) {
1496    if (Val->getType() == Ty) return Val;
1497    if (Ty == Type::LabelTy)
1498      P.Error(Loc, "'%" + Name + "' is not a basic block");
1499    else
1500      P.Error(Loc, "'%" + Name + "' defined with type '" +
1501              Val->getType()->getDescription() + "'");
1502    return 0;
1503  }
1504
1505  // Don't make placeholders with invalid type.
1506  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1507    P.Error(Loc, "invalid use of a non-first-class type");
1508    return 0;
1509  }
1510
1511  // Otherwise, create a new forward reference for this value and remember it.
1512  Value *FwdVal;
1513  if (Ty == Type::LabelTy)
1514    FwdVal = BasicBlock::Create(Name, &F);
1515  else
1516    FwdVal = new Argument(Ty, Name);
1517
1518  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1519  return FwdVal;
1520}
1521
1522Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1523                                          LocTy Loc) {
1524  // Look this name up in the normal function symbol table.
1525  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1526
1527  // If this is a forward reference for the value, see if we already created a
1528  // forward ref record.
1529  if (Val == 0) {
1530    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1531      I = ForwardRefValIDs.find(ID);
1532    if (I != ForwardRefValIDs.end())
1533      Val = I->second.first;
1534  }
1535
1536  // If we have the value in the symbol table or fwd-ref table, return it.
1537  if (Val) {
1538    if (Val->getType() == Ty) return Val;
1539    if (Ty == Type::LabelTy)
1540      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1541    else
1542      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1543              Val->getType()->getDescription() + "'");
1544    return 0;
1545  }
1546
1547  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1548    P.Error(Loc, "invalid use of a non-first-class type");
1549    return 0;
1550  }
1551
1552  // Otherwise, create a new forward reference for this value and remember it.
1553  Value *FwdVal;
1554  if (Ty == Type::LabelTy)
1555    FwdVal = BasicBlock::Create("", &F);
1556  else
1557    FwdVal = new Argument(Ty);
1558
1559  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1560  return FwdVal;
1561}
1562
1563/// SetInstName - After an instruction is parsed and inserted into its
1564/// basic block, this installs its name.
1565bool LLParser::PerFunctionState::SetInstName(int NameID,
1566                                             const std::string &NameStr,
1567                                             LocTy NameLoc, Instruction *Inst) {
1568  // If this instruction has void type, it cannot have a name or ID specified.
1569  if (Inst->getType() == Type::VoidTy) {
1570    if (NameID != -1 || !NameStr.empty())
1571      return P.Error(NameLoc, "instructions returning void cannot have a name");
1572    return false;
1573  }
1574
1575  // If this was a numbered instruction, verify that the instruction is the
1576  // expected value and resolve any forward references.
1577  if (NameStr.empty()) {
1578    // If neither a name nor an ID was specified, just use the next ID.
1579    if (NameID == -1)
1580      NameID = NumberedVals.size();
1581
1582    if (unsigned(NameID) != NumberedVals.size())
1583      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1584                     utostr(NumberedVals.size()) + "'");
1585
1586    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1587      ForwardRefValIDs.find(NameID);
1588    if (FI != ForwardRefValIDs.end()) {
1589      if (FI->second.first->getType() != Inst->getType())
1590        return P.Error(NameLoc, "instruction forward referenced with type '" +
1591                       FI->second.first->getType()->getDescription() + "'");
1592      FI->second.first->replaceAllUsesWith(Inst);
1593      ForwardRefValIDs.erase(FI);
1594    }
1595
1596    NumberedVals.push_back(Inst);
1597    return false;
1598  }
1599
1600  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1601  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1602    FI = ForwardRefVals.find(NameStr);
1603  if (FI != ForwardRefVals.end()) {
1604    if (FI->second.first->getType() != Inst->getType())
1605      return P.Error(NameLoc, "instruction forward referenced with type '" +
1606                     FI->second.first->getType()->getDescription() + "'");
1607    FI->second.first->replaceAllUsesWith(Inst);
1608    ForwardRefVals.erase(FI);
1609  }
1610
1611  // Set the name on the instruction.
1612  Inst->setName(NameStr);
1613
1614  if (Inst->getNameStr() != NameStr)
1615    return P.Error(NameLoc, "multiple definition of local value named '" +
1616                   NameStr + "'");
1617  return false;
1618}
1619
1620/// GetBB - Get a basic block with the specified name or ID, creating a
1621/// forward reference record if needed.
1622BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1623                                              LocTy Loc) {
1624  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1625}
1626
1627BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1628  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1629}
1630
1631/// DefineBB - Define the specified basic block, which is either named or
1632/// unnamed.  If there is an error, this returns null otherwise it returns
1633/// the block being defined.
1634BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1635                                                 LocTy Loc) {
1636  BasicBlock *BB;
1637  if (Name.empty())
1638    BB = GetBB(NumberedVals.size(), Loc);
1639  else
1640    BB = GetBB(Name, Loc);
1641  if (BB == 0) return 0; // Already diagnosed error.
1642
1643  // Move the block to the end of the function.  Forward ref'd blocks are
1644  // inserted wherever they happen to be referenced.
1645  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1646
1647  // Remove the block from forward ref sets.
1648  if (Name.empty()) {
1649    ForwardRefValIDs.erase(NumberedVals.size());
1650    NumberedVals.push_back(BB);
1651  } else {
1652    // BB forward references are already in the function symbol table.
1653    ForwardRefVals.erase(Name);
1654  }
1655
1656  return BB;
1657}
1658
1659//===----------------------------------------------------------------------===//
1660// Constants.
1661//===----------------------------------------------------------------------===//
1662
1663/// ParseValID - Parse an abstract value that doesn't necessarily have a
1664/// type implied.  For example, if we parse "4" we don't know what integer type
1665/// it has.  The value will later be combined with its type and checked for
1666/// sanity.
1667bool LLParser::ParseValID(ValID &ID) {
1668  ID.Loc = Lex.getLoc();
1669  switch (Lex.getKind()) {
1670  default: return TokError("expected value token");
1671  case lltok::GlobalID:  // @42
1672    ID.UIntVal = Lex.getUIntVal();
1673    ID.Kind = ValID::t_GlobalID;
1674    break;
1675  case lltok::GlobalVar:  // @foo
1676    ID.StrVal = Lex.getStrVal();
1677    ID.Kind = ValID::t_GlobalName;
1678    break;
1679  case lltok::LocalVarID:  // %42
1680    ID.UIntVal = Lex.getUIntVal();
1681    ID.Kind = ValID::t_LocalID;
1682    break;
1683  case lltok::LocalVar:  // %foo
1684  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1685    ID.StrVal = Lex.getStrVal();
1686    ID.Kind = ValID::t_LocalName;
1687    break;
1688  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1689    ID.Kind = ValID::t_Metadata;
1690    Lex.Lex();
1691    if (Lex.getKind() == lltok::lbrace) {
1692      SmallVector<Value*, 16> Elts;
1693      if (ParseMDNodeVector(Elts) ||
1694          ParseToken(lltok::rbrace, "expected end of metadata node"))
1695        return true;
1696
1697      ID.MetadataVal = Context.getMDNode(Elts.data(), Elts.size());
1698      return false;
1699    }
1700
1701    // Standalone metadata reference
1702    // !{ ..., !42, ... }
1703    if (!ParseMDNode(ID.MetadataVal))
1704      return false;
1705
1706    // MDString:
1707    //   ::= '!' STRINGCONSTANT
1708    if (ParseMDString(ID.MetadataVal)) return true;
1709    ID.Kind = ValID::t_Metadata;
1710    return false;
1711  }
1712  case lltok::APSInt:
1713    ID.APSIntVal = Lex.getAPSIntVal();
1714    ID.Kind = ValID::t_APSInt;
1715    break;
1716  case lltok::APFloat:
1717    ID.APFloatVal = Lex.getAPFloatVal();
1718    ID.Kind = ValID::t_APFloat;
1719    break;
1720  case lltok::kw_true:
1721    ID.ConstantVal = Context.getTrue();
1722    ID.Kind = ValID::t_Constant;
1723    break;
1724  case lltok::kw_false:
1725    ID.ConstantVal = Context.getFalse();
1726    ID.Kind = ValID::t_Constant;
1727    break;
1728  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1729  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1730  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1731
1732  case lltok::lbrace: {
1733    // ValID ::= '{' ConstVector '}'
1734    Lex.Lex();
1735    SmallVector<Constant*, 16> Elts;
1736    if (ParseGlobalValueVector(Elts) ||
1737        ParseToken(lltok::rbrace, "expected end of struct constant"))
1738      return true;
1739
1740    ID.ConstantVal = ConstantStruct::get(Elts.data(), Elts.size(), false);
1741    ID.Kind = ValID::t_Constant;
1742    return false;
1743  }
1744  case lltok::less: {
1745    // ValID ::= '<' ConstVector '>'         --> Vector.
1746    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1747    Lex.Lex();
1748    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1749
1750    SmallVector<Constant*, 16> Elts;
1751    LocTy FirstEltLoc = Lex.getLoc();
1752    if (ParseGlobalValueVector(Elts) ||
1753        (isPackedStruct &&
1754         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1755        ParseToken(lltok::greater, "expected end of constant"))
1756      return true;
1757
1758    if (isPackedStruct) {
1759      ID.ConstantVal =
1760        ConstantStruct::get(Elts.data(), Elts.size(), true);
1761      ID.Kind = ValID::t_Constant;
1762      return false;
1763    }
1764
1765    if (Elts.empty())
1766      return Error(ID.Loc, "constant vector must not be empty");
1767
1768    if (!Elts[0]->getType()->isInteger() &&
1769        !Elts[0]->getType()->isFloatingPoint())
1770      return Error(FirstEltLoc,
1771                   "vector elements must have integer or floating point type");
1772
1773    // Verify that all the vector elements have the same type.
1774    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1775      if (Elts[i]->getType() != Elts[0]->getType())
1776        return Error(FirstEltLoc,
1777                     "vector element #" + utostr(i) +
1778                    " is not of type '" + Elts[0]->getType()->getDescription());
1779
1780    ID.ConstantVal = Context.getConstantVector(Elts.data(), Elts.size());
1781    ID.Kind = ValID::t_Constant;
1782    return false;
1783  }
1784  case lltok::lsquare: {   // Array Constant
1785    Lex.Lex();
1786    SmallVector<Constant*, 16> Elts;
1787    LocTy FirstEltLoc = Lex.getLoc();
1788    if (ParseGlobalValueVector(Elts) ||
1789        ParseToken(lltok::rsquare, "expected end of array constant"))
1790      return true;
1791
1792    // Handle empty element.
1793    if (Elts.empty()) {
1794      // Use undef instead of an array because it's inconvenient to determine
1795      // the element type at this point, there being no elements to examine.
1796      ID.Kind = ValID::t_EmptyArray;
1797      return false;
1798    }
1799
1800    if (!Elts[0]->getType()->isFirstClassType())
1801      return Error(FirstEltLoc, "invalid array element type: " +
1802                   Elts[0]->getType()->getDescription());
1803
1804    ArrayType *ATy = Context.getArrayType(Elts[0]->getType(), Elts.size());
1805
1806    // Verify all elements are correct type!
1807    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1808      if (Elts[i]->getType() != Elts[0]->getType())
1809        return Error(FirstEltLoc,
1810                     "array element #" + utostr(i) +
1811                     " is not of type '" +Elts[0]->getType()->getDescription());
1812    }
1813
1814    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1815    ID.Kind = ValID::t_Constant;
1816    return false;
1817  }
1818  case lltok::kw_c:  // c "foo"
1819    Lex.Lex();
1820    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1821    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1822    ID.Kind = ValID::t_Constant;
1823    return false;
1824
1825  case lltok::kw_asm: {
1826    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1827    bool HasSideEffect;
1828    Lex.Lex();
1829    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1830        ParseStringConstant(ID.StrVal) ||
1831        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1832        ParseToken(lltok::StringConstant, "expected constraint string"))
1833      return true;
1834    ID.StrVal2 = Lex.getStrVal();
1835    ID.UIntVal = HasSideEffect;
1836    ID.Kind = ValID::t_InlineAsm;
1837    return false;
1838  }
1839
1840  case lltok::kw_trunc:
1841  case lltok::kw_zext:
1842  case lltok::kw_sext:
1843  case lltok::kw_fptrunc:
1844  case lltok::kw_fpext:
1845  case lltok::kw_bitcast:
1846  case lltok::kw_uitofp:
1847  case lltok::kw_sitofp:
1848  case lltok::kw_fptoui:
1849  case lltok::kw_fptosi:
1850  case lltok::kw_inttoptr:
1851  case lltok::kw_ptrtoint: {
1852    unsigned Opc = Lex.getUIntVal();
1853    PATypeHolder DestTy(Type::VoidTy);
1854    Constant *SrcVal;
1855    Lex.Lex();
1856    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1857        ParseGlobalTypeAndValue(SrcVal) ||
1858        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1859        ParseType(DestTy) ||
1860        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1861      return true;
1862    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1863      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1864                   SrcVal->getType()->getDescription() + "' to '" +
1865                   DestTy->getDescription() + "'");
1866    ID.ConstantVal = Context.getConstantExprCast((Instruction::CastOps)Opc,
1867                                                 SrcVal, DestTy);
1868    ID.Kind = ValID::t_Constant;
1869    return false;
1870  }
1871  case lltok::kw_extractvalue: {
1872    Lex.Lex();
1873    Constant *Val;
1874    SmallVector<unsigned, 4> Indices;
1875    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1876        ParseGlobalTypeAndValue(Val) ||
1877        ParseIndexList(Indices) ||
1878        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1879      return true;
1880    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1881      return Error(ID.Loc, "extractvalue operand must be array or struct");
1882    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1883                                          Indices.end()))
1884      return Error(ID.Loc, "invalid indices for extractvalue");
1885    ID.ConstantVal =
1886      Context.getConstantExprExtractValue(Val, Indices.data(), Indices.size());
1887    ID.Kind = ValID::t_Constant;
1888    return false;
1889  }
1890  case lltok::kw_insertvalue: {
1891    Lex.Lex();
1892    Constant *Val0, *Val1;
1893    SmallVector<unsigned, 4> Indices;
1894    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1895        ParseGlobalTypeAndValue(Val0) ||
1896        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1897        ParseGlobalTypeAndValue(Val1) ||
1898        ParseIndexList(Indices) ||
1899        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1900      return true;
1901    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1902      return Error(ID.Loc, "extractvalue operand must be array or struct");
1903    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1904                                          Indices.end()))
1905      return Error(ID.Loc, "invalid indices for insertvalue");
1906    ID.ConstantVal = Context.getConstantExprInsertValue(Val0, Val1,
1907                       Indices.data(), Indices.size());
1908    ID.Kind = ValID::t_Constant;
1909    return false;
1910  }
1911  case lltok::kw_icmp:
1912  case lltok::kw_fcmp: {
1913    unsigned PredVal, Opc = Lex.getUIntVal();
1914    Constant *Val0, *Val1;
1915    Lex.Lex();
1916    if (ParseCmpPredicate(PredVal, Opc) ||
1917        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1918        ParseGlobalTypeAndValue(Val0) ||
1919        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1920        ParseGlobalTypeAndValue(Val1) ||
1921        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1922      return true;
1923
1924    if (Val0->getType() != Val1->getType())
1925      return Error(ID.Loc, "compare operands must have the same type");
1926
1927    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1928
1929    if (Opc == Instruction::FCmp) {
1930      if (!Val0->getType()->isFPOrFPVector())
1931        return Error(ID.Loc, "fcmp requires floating point operands");
1932      ID.ConstantVal = Context.getConstantExprFCmp(Pred, Val0, Val1);
1933    } else {
1934      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
1935      if (!Val0->getType()->isIntOrIntVector() &&
1936          !isa<PointerType>(Val0->getType()))
1937        return Error(ID.Loc, "icmp requires pointer or integer operands");
1938      ID.ConstantVal = Context.getConstantExprICmp(Pred, Val0, Val1);
1939    }
1940    ID.Kind = ValID::t_Constant;
1941    return false;
1942  }
1943
1944  // Binary Operators.
1945  case lltok::kw_add:
1946  case lltok::kw_fadd:
1947  case lltok::kw_sub:
1948  case lltok::kw_fsub:
1949  case lltok::kw_mul:
1950  case lltok::kw_fmul:
1951  case lltok::kw_udiv:
1952  case lltok::kw_sdiv:
1953  case lltok::kw_fdiv:
1954  case lltok::kw_urem:
1955  case lltok::kw_srem:
1956  case lltok::kw_frem: {
1957    bool NUW = false;
1958    bool NSW = false;
1959    bool Exact = false;
1960    unsigned Opc = Lex.getUIntVal();
1961    Constant *Val0, *Val1;
1962    Lex.Lex();
1963    LocTy ModifierLoc = Lex.getLoc();
1964    if (Opc == Instruction::Add ||
1965        Opc == Instruction::Sub ||
1966        Opc == Instruction::Mul) {
1967      if (EatIfPresent(lltok::kw_nuw))
1968        NUW = true;
1969      if (EatIfPresent(lltok::kw_nsw)) {
1970        NSW = true;
1971        if (EatIfPresent(lltok::kw_nuw))
1972          NUW = true;
1973      }
1974    } else if (Opc == Instruction::SDiv) {
1975      if (EatIfPresent(lltok::kw_exact))
1976        Exact = true;
1977    }
1978    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1979        ParseGlobalTypeAndValue(Val0) ||
1980        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1981        ParseGlobalTypeAndValue(Val1) ||
1982        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1983      return true;
1984    if (Val0->getType() != Val1->getType())
1985      return Error(ID.Loc, "operands of constexpr must have same type");
1986    if (!Val0->getType()->isIntOrIntVector()) {
1987      if (NUW)
1988        return Error(ModifierLoc, "nuw only applies to integer operations");
1989      if (NSW)
1990        return Error(ModifierLoc, "nsw only applies to integer operations");
1991    }
1992    // API compatibility: Accept either integer or floating-point types with
1993    // add, sub, and mul.
1994    if (!Val0->getType()->isIntOrIntVector() &&
1995        !Val0->getType()->isFPOrFPVector())
1996      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1997    Constant *C = Context.getConstantExpr(Opc, Val0, Val1);
1998    if (NUW)
1999      cast<OverflowingBinaryOperator>(C)->setHasNoUnsignedOverflow(true);
2000    if (NSW)
2001      cast<OverflowingBinaryOperator>(C)->setHasNoSignedOverflow(true);
2002    if (Exact)
2003      cast<SDivOperator>(C)->setIsExact(true);
2004    ID.ConstantVal = C;
2005    ID.Kind = ValID::t_Constant;
2006    return false;
2007  }
2008
2009  // Logical Operations
2010  case lltok::kw_shl:
2011  case lltok::kw_lshr:
2012  case lltok::kw_ashr:
2013  case lltok::kw_and:
2014  case lltok::kw_or:
2015  case lltok::kw_xor: {
2016    unsigned Opc = Lex.getUIntVal();
2017    Constant *Val0, *Val1;
2018    Lex.Lex();
2019    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2020        ParseGlobalTypeAndValue(Val0) ||
2021        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2022        ParseGlobalTypeAndValue(Val1) ||
2023        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2024      return true;
2025    if (Val0->getType() != Val1->getType())
2026      return Error(ID.Loc, "operands of constexpr must have same type");
2027    if (!Val0->getType()->isIntOrIntVector())
2028      return Error(ID.Loc,
2029                   "constexpr requires integer or integer vector operands");
2030    ID.ConstantVal = Context.getConstantExpr(Opc, Val0, Val1);
2031    ID.Kind = ValID::t_Constant;
2032    return false;
2033  }
2034
2035  case lltok::kw_getelementptr:
2036  case lltok::kw_shufflevector:
2037  case lltok::kw_insertelement:
2038  case lltok::kw_extractelement:
2039  case lltok::kw_select: {
2040    unsigned Opc = Lex.getUIntVal();
2041    SmallVector<Constant*, 16> Elts;
2042    bool InBounds = false;
2043    Lex.Lex();
2044    if (Opc == Instruction::GetElementPtr)
2045      if (EatIfPresent(lltok::kw_inbounds))
2046        InBounds = true;
2047    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2048        ParseGlobalValueVector(Elts) ||
2049        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2050      return true;
2051
2052    if (Opc == Instruction::GetElementPtr) {
2053      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2054        return Error(ID.Loc, "getelementptr requires pointer operand");
2055
2056      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2057                                             (Value**)(Elts.data() + 1),
2058                                             Elts.size() - 1))
2059        return Error(ID.Loc, "invalid indices for getelementptr");
2060      ID.ConstantVal = Context.getConstantExprGetElementPtr(Elts[0],
2061                                              Elts.data() + 1, Elts.size() - 1);
2062      if (InBounds)
2063        cast<GEPOperator>(ID.ConstantVal)->setIsInBounds(true);
2064    } else if (Opc == Instruction::Select) {
2065      if (Elts.size() != 3)
2066        return Error(ID.Loc, "expected three operands to select");
2067      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2068                                                              Elts[2]))
2069        return Error(ID.Loc, Reason);
2070      ID.ConstantVal = Context.getConstantExprSelect(Elts[0], Elts[1], Elts[2]);
2071    } else if (Opc == Instruction::ShuffleVector) {
2072      if (Elts.size() != 3)
2073        return Error(ID.Loc, "expected three operands to shufflevector");
2074      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2075        return Error(ID.Loc, "invalid operands to shufflevector");
2076      ID.ConstantVal =
2077                 Context.getConstantExprShuffleVector(Elts[0], Elts[1],Elts[2]);
2078    } else if (Opc == Instruction::ExtractElement) {
2079      if (Elts.size() != 2)
2080        return Error(ID.Loc, "expected two operands to extractelement");
2081      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2082        return Error(ID.Loc, "invalid extractelement operands");
2083      ID.ConstantVal = Context.getConstantExprExtractElement(Elts[0], Elts[1]);
2084    } else {
2085      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2086      if (Elts.size() != 3)
2087      return Error(ID.Loc, "expected three operands to insertelement");
2088      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2089        return Error(ID.Loc, "invalid insertelement operands");
2090      ID.ConstantVal =
2091                 Context.getConstantExprInsertElement(Elts[0], Elts[1],Elts[2]);
2092    }
2093
2094    ID.Kind = ValID::t_Constant;
2095    return false;
2096  }
2097  }
2098
2099  Lex.Lex();
2100  return false;
2101}
2102
2103/// ParseGlobalValue - Parse a global value with the specified type.
2104bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2105  V = 0;
2106  ValID ID;
2107  return ParseValID(ID) ||
2108         ConvertGlobalValIDToValue(Ty, ID, V);
2109}
2110
2111/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2112/// constant.
2113bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2114                                         Constant *&V) {
2115  if (isa<FunctionType>(Ty))
2116    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2117
2118  switch (ID.Kind) {
2119  default: llvm_unreachable("Unknown ValID!");
2120  case ValID::t_Metadata:
2121    return Error(ID.Loc, "invalid use of metadata");
2122  case ValID::t_LocalID:
2123  case ValID::t_LocalName:
2124    return Error(ID.Loc, "invalid use of function-local name");
2125  case ValID::t_InlineAsm:
2126    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2127  case ValID::t_GlobalName:
2128    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2129    return V == 0;
2130  case ValID::t_GlobalID:
2131    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2132    return V == 0;
2133  case ValID::t_APSInt:
2134    if (!isa<IntegerType>(Ty))
2135      return Error(ID.Loc, "integer constant must have integer type");
2136    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2137    V = ConstantInt::get(Context, ID.APSIntVal);
2138    return false;
2139  case ValID::t_APFloat:
2140    if (!Ty->isFloatingPoint() ||
2141        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2142      return Error(ID.Loc, "floating point constant invalid for type");
2143
2144    // The lexer has no type info, so builds all float and double FP constants
2145    // as double.  Fix this here.  Long double does not need this.
2146    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2147        Ty == Type::FloatTy) {
2148      bool Ignored;
2149      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2150                            &Ignored);
2151    }
2152    V = ConstantFP::get(Context, ID.APFloatVal);
2153
2154    if (V->getType() != Ty)
2155      return Error(ID.Loc, "floating point constant does not have type '" +
2156                   Ty->getDescription() + "'");
2157
2158    return false;
2159  case ValID::t_Null:
2160    if (!isa<PointerType>(Ty))
2161      return Error(ID.Loc, "null must be a pointer type");
2162    V = Context.getConstantPointerNull(cast<PointerType>(Ty));
2163    return false;
2164  case ValID::t_Undef:
2165    // FIXME: LabelTy should not be a first-class type.
2166    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
2167        !isa<OpaqueType>(Ty))
2168      return Error(ID.Loc, "invalid type for undef constant");
2169    V = Context.getUndef(Ty);
2170    return false;
2171  case ValID::t_EmptyArray:
2172    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2173      return Error(ID.Loc, "invalid empty array initializer");
2174    V = Context.getUndef(Ty);
2175    return false;
2176  case ValID::t_Zero:
2177    // FIXME: LabelTy should not be a first-class type.
2178    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
2179      return Error(ID.Loc, "invalid type for null constant");
2180    V = Context.getNullValue(Ty);
2181    return false;
2182  case ValID::t_Constant:
2183    if (ID.ConstantVal->getType() != Ty)
2184      return Error(ID.Loc, "constant expression type mismatch");
2185    V = ID.ConstantVal;
2186    return false;
2187  }
2188}
2189
2190bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2191  PATypeHolder Type(Type::VoidTy);
2192  return ParseType(Type) ||
2193         ParseGlobalValue(Type, V);
2194}
2195
2196/// ParseGlobalValueVector
2197///   ::= /*empty*/
2198///   ::= TypeAndValue (',' TypeAndValue)*
2199bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2200  // Empty list.
2201  if (Lex.getKind() == lltok::rbrace ||
2202      Lex.getKind() == lltok::rsquare ||
2203      Lex.getKind() == lltok::greater ||
2204      Lex.getKind() == lltok::rparen)
2205    return false;
2206
2207  Constant *C;
2208  if (ParseGlobalTypeAndValue(C)) return true;
2209  Elts.push_back(C);
2210
2211  while (EatIfPresent(lltok::comma)) {
2212    if (ParseGlobalTypeAndValue(C)) return true;
2213    Elts.push_back(C);
2214  }
2215
2216  return false;
2217}
2218
2219
2220//===----------------------------------------------------------------------===//
2221// Function Parsing.
2222//===----------------------------------------------------------------------===//
2223
2224bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2225                                   PerFunctionState &PFS) {
2226  if (ID.Kind == ValID::t_LocalID)
2227    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2228  else if (ID.Kind == ValID::t_LocalName)
2229    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2230  else if (ID.Kind == ValID::t_InlineAsm) {
2231    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2232    const FunctionType *FTy =
2233      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2234    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2235      return Error(ID.Loc, "invalid type for inline asm constraint string");
2236    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2237    return false;
2238  } else if (ID.Kind == ValID::t_Metadata) {
2239    V = ID.MetadataVal;
2240  } else {
2241    Constant *C;
2242    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2243    V = C;
2244    return false;
2245  }
2246
2247  return V == 0;
2248}
2249
2250bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2251  V = 0;
2252  ValID ID;
2253  return ParseValID(ID) ||
2254         ConvertValIDToValue(Ty, ID, V, PFS);
2255}
2256
2257bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2258  PATypeHolder T(Type::VoidTy);
2259  return ParseType(T) ||
2260         ParseValue(T, V, PFS);
2261}
2262
2263/// FunctionHeader
2264///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2265///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2266///       OptionalAlign OptGC
2267bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2268  // Parse the linkage.
2269  LocTy LinkageLoc = Lex.getLoc();
2270  unsigned Linkage;
2271
2272  unsigned Visibility, CC, RetAttrs;
2273  PATypeHolder RetType(Type::VoidTy);
2274  LocTy RetTypeLoc = Lex.getLoc();
2275  if (ParseOptionalLinkage(Linkage) ||
2276      ParseOptionalVisibility(Visibility) ||
2277      ParseOptionalCallingConv(CC) ||
2278      ParseOptionalAttrs(RetAttrs, 1) ||
2279      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2280    return true;
2281
2282  // Verify that the linkage is ok.
2283  switch ((GlobalValue::LinkageTypes)Linkage) {
2284  case GlobalValue::ExternalLinkage:
2285    break; // always ok.
2286  case GlobalValue::DLLImportLinkage:
2287  case GlobalValue::ExternalWeakLinkage:
2288    if (isDefine)
2289      return Error(LinkageLoc, "invalid linkage for function definition");
2290    break;
2291  case GlobalValue::PrivateLinkage:
2292  case GlobalValue::LinkerPrivateLinkage:
2293  case GlobalValue::InternalLinkage:
2294  case GlobalValue::AvailableExternallyLinkage:
2295  case GlobalValue::LinkOnceAnyLinkage:
2296  case GlobalValue::LinkOnceODRLinkage:
2297  case GlobalValue::WeakAnyLinkage:
2298  case GlobalValue::WeakODRLinkage:
2299  case GlobalValue::DLLExportLinkage:
2300    if (!isDefine)
2301      return Error(LinkageLoc, "invalid linkage for function declaration");
2302    break;
2303  case GlobalValue::AppendingLinkage:
2304  case GlobalValue::GhostLinkage:
2305  case GlobalValue::CommonLinkage:
2306    return Error(LinkageLoc, "invalid function linkage type");
2307  }
2308
2309  if (!FunctionType::isValidReturnType(RetType) ||
2310      isa<OpaqueType>(RetType))
2311    return Error(RetTypeLoc, "invalid function return type");
2312
2313  LocTy NameLoc = Lex.getLoc();
2314
2315  std::string FunctionName;
2316  if (Lex.getKind() == lltok::GlobalVar) {
2317    FunctionName = Lex.getStrVal();
2318  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2319    unsigned NameID = Lex.getUIntVal();
2320
2321    if (NameID != NumberedVals.size())
2322      return TokError("function expected to be numbered '%" +
2323                      utostr(NumberedVals.size()) + "'");
2324  } else {
2325    return TokError("expected function name");
2326  }
2327
2328  Lex.Lex();
2329
2330  if (Lex.getKind() != lltok::lparen)
2331    return TokError("expected '(' in function argument list");
2332
2333  std::vector<ArgInfo> ArgList;
2334  bool isVarArg;
2335  unsigned FuncAttrs;
2336  std::string Section;
2337  unsigned Alignment;
2338  std::string GC;
2339
2340  if (ParseArgumentList(ArgList, isVarArg, false) ||
2341      ParseOptionalAttrs(FuncAttrs, 2) ||
2342      (EatIfPresent(lltok::kw_section) &&
2343       ParseStringConstant(Section)) ||
2344      ParseOptionalAlignment(Alignment) ||
2345      (EatIfPresent(lltok::kw_gc) &&
2346       ParseStringConstant(GC)))
2347    return true;
2348
2349  // If the alignment was parsed as an attribute, move to the alignment field.
2350  if (FuncAttrs & Attribute::Alignment) {
2351    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2352    FuncAttrs &= ~Attribute::Alignment;
2353  }
2354
2355  // Okay, if we got here, the function is syntactically valid.  Convert types
2356  // and do semantic checks.
2357  std::vector<const Type*> ParamTypeList;
2358  SmallVector<AttributeWithIndex, 8> Attrs;
2359  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2360  // attributes.
2361  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2362  if (FuncAttrs & ObsoleteFuncAttrs) {
2363    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2364    FuncAttrs &= ~ObsoleteFuncAttrs;
2365  }
2366
2367  if (RetAttrs != Attribute::None)
2368    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2369
2370  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2371    ParamTypeList.push_back(ArgList[i].Type);
2372    if (ArgList[i].Attrs != Attribute::None)
2373      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2374  }
2375
2376  if (FuncAttrs != Attribute::None)
2377    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2378
2379  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2380
2381  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2382      RetType != Type::VoidTy)
2383    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2384
2385  const FunctionType *FT =
2386    Context.getFunctionType(RetType, ParamTypeList, isVarArg);
2387  const PointerType *PFT = Context.getPointerTypeUnqual(FT);
2388
2389  Fn = 0;
2390  if (!FunctionName.empty()) {
2391    // If this was a definition of a forward reference, remove the definition
2392    // from the forward reference table and fill in the forward ref.
2393    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2394      ForwardRefVals.find(FunctionName);
2395    if (FRVI != ForwardRefVals.end()) {
2396      Fn = M->getFunction(FunctionName);
2397      ForwardRefVals.erase(FRVI);
2398    } else if ((Fn = M->getFunction(FunctionName))) {
2399      // If this function already exists in the symbol table, then it is
2400      // multiply defined.  We accept a few cases for old backwards compat.
2401      // FIXME: Remove this stuff for LLVM 3.0.
2402      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2403          (!Fn->isDeclaration() && isDefine)) {
2404        // If the redefinition has different type or different attributes,
2405        // reject it.  If both have bodies, reject it.
2406        return Error(NameLoc, "invalid redefinition of function '" +
2407                     FunctionName + "'");
2408      } else if (Fn->isDeclaration()) {
2409        // Make sure to strip off any argument names so we can't get conflicts.
2410        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2411             AI != AE; ++AI)
2412          AI->setName("");
2413      }
2414    }
2415
2416  } else if (FunctionName.empty()) {
2417    // If this is a definition of a forward referenced function, make sure the
2418    // types agree.
2419    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2420      = ForwardRefValIDs.find(NumberedVals.size());
2421    if (I != ForwardRefValIDs.end()) {
2422      Fn = cast<Function>(I->second.first);
2423      if (Fn->getType() != PFT)
2424        return Error(NameLoc, "type of definition and forward reference of '@" +
2425                     utostr(NumberedVals.size()) +"' disagree");
2426      ForwardRefValIDs.erase(I);
2427    }
2428  }
2429
2430  if (Fn == 0)
2431    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2432  else // Move the forward-reference to the correct spot in the module.
2433    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2434
2435  if (FunctionName.empty())
2436    NumberedVals.push_back(Fn);
2437
2438  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2439  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2440  Fn->setCallingConv(CC);
2441  Fn->setAttributes(PAL);
2442  Fn->setAlignment(Alignment);
2443  Fn->setSection(Section);
2444  if (!GC.empty()) Fn->setGC(GC.c_str());
2445
2446  // Add all of the arguments we parsed to the function.
2447  Function::arg_iterator ArgIt = Fn->arg_begin();
2448  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2449    // If the argument has a name, insert it into the argument symbol table.
2450    if (ArgList[i].Name.empty()) continue;
2451
2452    // Set the name, if it conflicted, it will be auto-renamed.
2453    ArgIt->setName(ArgList[i].Name);
2454
2455    if (ArgIt->getNameStr() != ArgList[i].Name)
2456      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2457                   ArgList[i].Name + "'");
2458  }
2459
2460  return false;
2461}
2462
2463
2464/// ParseFunctionBody
2465///   ::= '{' BasicBlock+ '}'
2466///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2467///
2468bool LLParser::ParseFunctionBody(Function &Fn) {
2469  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2470    return TokError("expected '{' in function body");
2471  Lex.Lex();  // eat the {.
2472
2473  PerFunctionState PFS(*this, Fn);
2474
2475  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2476    if (ParseBasicBlock(PFS)) return true;
2477
2478  // Eat the }.
2479  Lex.Lex();
2480
2481  // Verify function is ok.
2482  return PFS.VerifyFunctionComplete();
2483}
2484
2485/// ParseBasicBlock
2486///   ::= LabelStr? Instruction*
2487bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2488  // If this basic block starts out with a name, remember it.
2489  std::string Name;
2490  LocTy NameLoc = Lex.getLoc();
2491  if (Lex.getKind() == lltok::LabelStr) {
2492    Name = Lex.getStrVal();
2493    Lex.Lex();
2494  }
2495
2496  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2497  if (BB == 0) return true;
2498
2499  std::string NameStr;
2500
2501  // Parse the instructions in this block until we get a terminator.
2502  Instruction *Inst;
2503  do {
2504    // This instruction may have three possibilities for a name: a) none
2505    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2506    LocTy NameLoc = Lex.getLoc();
2507    int NameID = -1;
2508    NameStr = "";
2509
2510    if (Lex.getKind() == lltok::LocalVarID) {
2511      NameID = Lex.getUIntVal();
2512      Lex.Lex();
2513      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2514        return true;
2515    } else if (Lex.getKind() == lltok::LocalVar ||
2516               // FIXME: REMOVE IN LLVM 3.0
2517               Lex.getKind() == lltok::StringConstant) {
2518      NameStr = Lex.getStrVal();
2519      Lex.Lex();
2520      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2521        return true;
2522    }
2523
2524    if (ParseInstruction(Inst, BB, PFS)) return true;
2525
2526    BB->getInstList().push_back(Inst);
2527
2528    // Set the name on the instruction.
2529    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2530  } while (!isa<TerminatorInst>(Inst));
2531
2532  return false;
2533}
2534
2535//===----------------------------------------------------------------------===//
2536// Instruction Parsing.
2537//===----------------------------------------------------------------------===//
2538
2539/// ParseInstruction - Parse one of the many different instructions.
2540///
2541bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2542                                PerFunctionState &PFS) {
2543  lltok::Kind Token = Lex.getKind();
2544  if (Token == lltok::Eof)
2545    return TokError("found end of file when expecting more instructions");
2546  LocTy Loc = Lex.getLoc();
2547  unsigned KeywordVal = Lex.getUIntVal();
2548  Lex.Lex();  // Eat the keyword.
2549
2550  switch (Token) {
2551  default:                    return Error(Loc, "expected instruction opcode");
2552  // Terminator Instructions.
2553  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2554  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2555  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2556  case lltok::kw_br:          return ParseBr(Inst, PFS);
2557  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2558  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2559  // Binary Operators.
2560  case lltok::kw_add:
2561  case lltok::kw_sub:
2562  case lltok::kw_mul: {
2563    bool NUW = false;
2564    bool NSW = false;
2565    LocTy ModifierLoc = Lex.getLoc();
2566    if (EatIfPresent(lltok::kw_nuw))
2567      NUW = true;
2568    if (EatIfPresent(lltok::kw_nsw)) {
2569      NSW = true;
2570      if (EatIfPresent(lltok::kw_nuw))
2571        NUW = true;
2572    }
2573    // API compatibility: Accept either integer or floating-point types.
2574    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2575    if (!Result) {
2576      if (!Inst->getType()->isIntOrIntVector()) {
2577        if (NUW)
2578          return Error(ModifierLoc, "nuw only applies to integer operations");
2579        if (NSW)
2580          return Error(ModifierLoc, "nsw only applies to integer operations");
2581      }
2582      if (NUW)
2583        cast<OverflowingBinaryOperator>(Inst)->setHasNoUnsignedOverflow(true);
2584      if (NSW)
2585        cast<OverflowingBinaryOperator>(Inst)->setHasNoSignedOverflow(true);
2586    }
2587    return Result;
2588  }
2589  case lltok::kw_fadd:
2590  case lltok::kw_fsub:
2591  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2592
2593  case lltok::kw_sdiv: {
2594    bool Exact = false;
2595    if (EatIfPresent(lltok::kw_exact))
2596      Exact = true;
2597    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2598    if (!Result)
2599      if (Exact)
2600        cast<SDivOperator>(Inst)->setIsExact(true);
2601    return Result;
2602  }
2603
2604  case lltok::kw_udiv:
2605  case lltok::kw_urem:
2606  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2607  case lltok::kw_fdiv:
2608  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2609  case lltok::kw_shl:
2610  case lltok::kw_lshr:
2611  case lltok::kw_ashr:
2612  case lltok::kw_and:
2613  case lltok::kw_or:
2614  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2615  case lltok::kw_icmp:
2616  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2617  // Casts.
2618  case lltok::kw_trunc:
2619  case lltok::kw_zext:
2620  case lltok::kw_sext:
2621  case lltok::kw_fptrunc:
2622  case lltok::kw_fpext:
2623  case lltok::kw_bitcast:
2624  case lltok::kw_uitofp:
2625  case lltok::kw_sitofp:
2626  case lltok::kw_fptoui:
2627  case lltok::kw_fptosi:
2628  case lltok::kw_inttoptr:
2629  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2630  // Other.
2631  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2632  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2633  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2634  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2635  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2636  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2637  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2638  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2639  // Memory.
2640  case lltok::kw_alloca:
2641  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2642  case lltok::kw_free:           return ParseFree(Inst, PFS);
2643  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2644  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2645  case lltok::kw_volatile:
2646    if (EatIfPresent(lltok::kw_load))
2647      return ParseLoad(Inst, PFS, true);
2648    else if (EatIfPresent(lltok::kw_store))
2649      return ParseStore(Inst, PFS, true);
2650    else
2651      return TokError("expected 'load' or 'store'");
2652  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2653  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2654  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2655  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2656  }
2657}
2658
2659/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2660bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2661  if (Opc == Instruction::FCmp) {
2662    switch (Lex.getKind()) {
2663    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2664    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2665    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2666    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2667    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2668    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2669    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2670    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2671    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2672    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2673    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2674    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2675    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2676    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2677    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2678    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2679    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2680    }
2681  } else {
2682    switch (Lex.getKind()) {
2683    default: TokError("expected icmp predicate (e.g. 'eq')");
2684    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2685    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2686    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2687    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2688    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2689    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2690    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2691    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2692    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2693    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2694    }
2695  }
2696  Lex.Lex();
2697  return false;
2698}
2699
2700//===----------------------------------------------------------------------===//
2701// Terminator Instructions.
2702//===----------------------------------------------------------------------===//
2703
2704/// ParseRet - Parse a return instruction.
2705///   ::= 'ret' void
2706///   ::= 'ret' TypeAndValue
2707///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2708bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2709                        PerFunctionState &PFS) {
2710  PATypeHolder Ty(Type::VoidTy);
2711  if (ParseType(Ty, true /*void allowed*/)) return true;
2712
2713  if (Ty == Type::VoidTy) {
2714    Inst = ReturnInst::Create();
2715    return false;
2716  }
2717
2718  Value *RV;
2719  if (ParseValue(Ty, RV, PFS)) return true;
2720
2721  // The normal case is one return value.
2722  if (Lex.getKind() == lltok::comma) {
2723    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2724    // of 'ret {i32,i32} {i32 1, i32 2}'
2725    SmallVector<Value*, 8> RVs;
2726    RVs.push_back(RV);
2727
2728    while (EatIfPresent(lltok::comma)) {
2729      if (ParseTypeAndValue(RV, PFS)) return true;
2730      RVs.push_back(RV);
2731    }
2732
2733    RV = Context.getUndef(PFS.getFunction().getReturnType());
2734    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2735      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2736      BB->getInstList().push_back(I);
2737      RV = I;
2738    }
2739  }
2740  Inst = ReturnInst::Create(RV);
2741  return false;
2742}
2743
2744
2745/// ParseBr
2746///   ::= 'br' TypeAndValue
2747///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2748bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2749  LocTy Loc, Loc2;
2750  Value *Op0, *Op1, *Op2;
2751  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2752
2753  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2754    Inst = BranchInst::Create(BB);
2755    return false;
2756  }
2757
2758  if (Op0->getType() != Type::Int1Ty)
2759    return Error(Loc, "branch condition must have 'i1' type");
2760
2761  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2762      ParseTypeAndValue(Op1, Loc, PFS) ||
2763      ParseToken(lltok::comma, "expected ',' after true destination") ||
2764      ParseTypeAndValue(Op2, Loc2, PFS))
2765    return true;
2766
2767  if (!isa<BasicBlock>(Op1))
2768    return Error(Loc, "true destination of branch must be a basic block");
2769  if (!isa<BasicBlock>(Op2))
2770    return Error(Loc2, "true destination of branch must be a basic block");
2771
2772  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2773  return false;
2774}
2775
2776/// ParseSwitch
2777///  Instruction
2778///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2779///  JumpTable
2780///    ::= (TypeAndValue ',' TypeAndValue)*
2781bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2782  LocTy CondLoc, BBLoc;
2783  Value *Cond, *DefaultBB;
2784  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2785      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2786      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2787      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2788    return true;
2789
2790  if (!isa<IntegerType>(Cond->getType()))
2791    return Error(CondLoc, "switch condition must have integer type");
2792  if (!isa<BasicBlock>(DefaultBB))
2793    return Error(BBLoc, "default destination must be a basic block");
2794
2795  // Parse the jump table pairs.
2796  SmallPtrSet<Value*, 32> SeenCases;
2797  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2798  while (Lex.getKind() != lltok::rsquare) {
2799    Value *Constant, *DestBB;
2800
2801    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2802        ParseToken(lltok::comma, "expected ',' after case value") ||
2803        ParseTypeAndValue(DestBB, BBLoc, PFS))
2804      return true;
2805
2806    if (!SeenCases.insert(Constant))
2807      return Error(CondLoc, "duplicate case value in switch");
2808    if (!isa<ConstantInt>(Constant))
2809      return Error(CondLoc, "case value is not a constant integer");
2810    if (!isa<BasicBlock>(DestBB))
2811      return Error(BBLoc, "case destination is not a basic block");
2812
2813    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2814                                   cast<BasicBlock>(DestBB)));
2815  }
2816
2817  Lex.Lex();  // Eat the ']'.
2818
2819  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2820                                      Table.size());
2821  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2822    SI->addCase(Table[i].first, Table[i].second);
2823  Inst = SI;
2824  return false;
2825}
2826
2827/// ParseInvoke
2828///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2829///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2830bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2831  LocTy CallLoc = Lex.getLoc();
2832  unsigned CC, RetAttrs, FnAttrs;
2833  PATypeHolder RetType(Type::VoidTy);
2834  LocTy RetTypeLoc;
2835  ValID CalleeID;
2836  SmallVector<ParamInfo, 16> ArgList;
2837
2838  Value *NormalBB, *UnwindBB;
2839  if (ParseOptionalCallingConv(CC) ||
2840      ParseOptionalAttrs(RetAttrs, 1) ||
2841      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2842      ParseValID(CalleeID) ||
2843      ParseParameterList(ArgList, PFS) ||
2844      ParseOptionalAttrs(FnAttrs, 2) ||
2845      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2846      ParseTypeAndValue(NormalBB, PFS) ||
2847      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2848      ParseTypeAndValue(UnwindBB, PFS))
2849    return true;
2850
2851  if (!isa<BasicBlock>(NormalBB))
2852    return Error(CallLoc, "normal destination is not a basic block");
2853  if (!isa<BasicBlock>(UnwindBB))
2854    return Error(CallLoc, "unwind destination is not a basic block");
2855
2856  // If RetType is a non-function pointer type, then this is the short syntax
2857  // for the call, which means that RetType is just the return type.  Infer the
2858  // rest of the function argument types from the arguments that are present.
2859  const PointerType *PFTy = 0;
2860  const FunctionType *Ty = 0;
2861  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2862      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2863    // Pull out the types of all of the arguments...
2864    std::vector<const Type*> ParamTypes;
2865    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2866      ParamTypes.push_back(ArgList[i].V->getType());
2867
2868    if (!FunctionType::isValidReturnType(RetType))
2869      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2870
2871    Ty = Context.getFunctionType(RetType, ParamTypes, false);
2872    PFTy = Context.getPointerTypeUnqual(Ty);
2873  }
2874
2875  // Look up the callee.
2876  Value *Callee;
2877  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2878
2879  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2880  // function attributes.
2881  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2882  if (FnAttrs & ObsoleteFuncAttrs) {
2883    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2884    FnAttrs &= ~ObsoleteFuncAttrs;
2885  }
2886
2887  // Set up the Attributes for the function.
2888  SmallVector<AttributeWithIndex, 8> Attrs;
2889  if (RetAttrs != Attribute::None)
2890    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2891
2892  SmallVector<Value*, 8> Args;
2893
2894  // Loop through FunctionType's arguments and ensure they are specified
2895  // correctly.  Also, gather any parameter attributes.
2896  FunctionType::param_iterator I = Ty->param_begin();
2897  FunctionType::param_iterator E = Ty->param_end();
2898  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2899    const Type *ExpectedTy = 0;
2900    if (I != E) {
2901      ExpectedTy = *I++;
2902    } else if (!Ty->isVarArg()) {
2903      return Error(ArgList[i].Loc, "too many arguments specified");
2904    }
2905
2906    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2907      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2908                   ExpectedTy->getDescription() + "'");
2909    Args.push_back(ArgList[i].V);
2910    if (ArgList[i].Attrs != Attribute::None)
2911      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2912  }
2913
2914  if (I != E)
2915    return Error(CallLoc, "not enough parameters specified for call");
2916
2917  if (FnAttrs != Attribute::None)
2918    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2919
2920  // Finish off the Attributes and check them
2921  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2922
2923  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2924                                      cast<BasicBlock>(UnwindBB),
2925                                      Args.begin(), Args.end());
2926  II->setCallingConv(CC);
2927  II->setAttributes(PAL);
2928  Inst = II;
2929  return false;
2930}
2931
2932
2933
2934//===----------------------------------------------------------------------===//
2935// Binary Operators.
2936//===----------------------------------------------------------------------===//
2937
2938/// ParseArithmetic
2939///  ::= ArithmeticOps TypeAndValue ',' Value
2940///
2941/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2942/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2943bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2944                               unsigned Opc, unsigned OperandType) {
2945  LocTy Loc; Value *LHS, *RHS;
2946  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2947      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2948      ParseValue(LHS->getType(), RHS, PFS))
2949    return true;
2950
2951  bool Valid;
2952  switch (OperandType) {
2953  default: llvm_unreachable("Unknown operand type!");
2954  case 0: // int or FP.
2955    Valid = LHS->getType()->isIntOrIntVector() ||
2956            LHS->getType()->isFPOrFPVector();
2957    break;
2958  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2959  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2960  }
2961
2962  if (!Valid)
2963    return Error(Loc, "invalid operand type for instruction");
2964
2965  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2966  return false;
2967}
2968
2969/// ParseLogical
2970///  ::= ArithmeticOps TypeAndValue ',' Value {
2971bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2972                            unsigned Opc) {
2973  LocTy Loc; Value *LHS, *RHS;
2974  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2975      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2976      ParseValue(LHS->getType(), RHS, PFS))
2977    return true;
2978
2979  if (!LHS->getType()->isIntOrIntVector())
2980    return Error(Loc,"instruction requires integer or integer vector operands");
2981
2982  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2983  return false;
2984}
2985
2986
2987/// ParseCompare
2988///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2989///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2990bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2991                            unsigned Opc) {
2992  // Parse the integer/fp comparison predicate.
2993  LocTy Loc;
2994  unsigned Pred;
2995  Value *LHS, *RHS;
2996  if (ParseCmpPredicate(Pred, Opc) ||
2997      ParseTypeAndValue(LHS, Loc, PFS) ||
2998      ParseToken(lltok::comma, "expected ',' after compare value") ||
2999      ParseValue(LHS->getType(), RHS, PFS))
3000    return true;
3001
3002  if (Opc == Instruction::FCmp) {
3003    if (!LHS->getType()->isFPOrFPVector())
3004      return Error(Loc, "fcmp requires floating point operands");
3005    Inst = new FCmpInst(Context, CmpInst::Predicate(Pred), LHS, RHS);
3006  } else {
3007    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3008    if (!LHS->getType()->isIntOrIntVector() &&
3009        !isa<PointerType>(LHS->getType()))
3010      return Error(Loc, "icmp requires integer operands");
3011    Inst = new ICmpInst(Context, CmpInst::Predicate(Pred), LHS, RHS);
3012  }
3013  return false;
3014}
3015
3016//===----------------------------------------------------------------------===//
3017// Other Instructions.
3018//===----------------------------------------------------------------------===//
3019
3020
3021/// ParseCast
3022///   ::= CastOpc TypeAndValue 'to' Type
3023bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3024                         unsigned Opc) {
3025  LocTy Loc;  Value *Op;
3026  PATypeHolder DestTy(Type::VoidTy);
3027  if (ParseTypeAndValue(Op, Loc, PFS) ||
3028      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3029      ParseType(DestTy))
3030    return true;
3031
3032  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3033    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3034    return Error(Loc, "invalid cast opcode for cast from '" +
3035                 Op->getType()->getDescription() + "' to '" +
3036                 DestTy->getDescription() + "'");
3037  }
3038  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3039  return false;
3040}
3041
3042/// ParseSelect
3043///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3044bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3045  LocTy Loc;
3046  Value *Op0, *Op1, *Op2;
3047  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3048      ParseToken(lltok::comma, "expected ',' after select condition") ||
3049      ParseTypeAndValue(Op1, PFS) ||
3050      ParseToken(lltok::comma, "expected ',' after select value") ||
3051      ParseTypeAndValue(Op2, PFS))
3052    return true;
3053
3054  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3055    return Error(Loc, Reason);
3056
3057  Inst = SelectInst::Create(Op0, Op1, Op2);
3058  return false;
3059}
3060
3061/// ParseVA_Arg
3062///   ::= 'va_arg' TypeAndValue ',' Type
3063bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3064  Value *Op;
3065  PATypeHolder EltTy(Type::VoidTy);
3066  LocTy TypeLoc;
3067  if (ParseTypeAndValue(Op, PFS) ||
3068      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3069      ParseType(EltTy, TypeLoc))
3070    return true;
3071
3072  if (!EltTy->isFirstClassType())
3073    return Error(TypeLoc, "va_arg requires operand with first class type");
3074
3075  Inst = new VAArgInst(Op, EltTy);
3076  return false;
3077}
3078
3079/// ParseExtractElement
3080///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3081bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3082  LocTy Loc;
3083  Value *Op0, *Op1;
3084  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3085      ParseToken(lltok::comma, "expected ',' after extract value") ||
3086      ParseTypeAndValue(Op1, PFS))
3087    return true;
3088
3089  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3090    return Error(Loc, "invalid extractelement operands");
3091
3092  Inst = ExtractElementInst::Create(Op0, Op1);
3093  return false;
3094}
3095
3096/// ParseInsertElement
3097///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3098bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3099  LocTy Loc;
3100  Value *Op0, *Op1, *Op2;
3101  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3102      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3103      ParseTypeAndValue(Op1, PFS) ||
3104      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3105      ParseTypeAndValue(Op2, PFS))
3106    return true;
3107
3108  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3109    return Error(Loc, "invalid insertelement operands");
3110
3111  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3112  return false;
3113}
3114
3115/// ParseShuffleVector
3116///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3117bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3118  LocTy Loc;
3119  Value *Op0, *Op1, *Op2;
3120  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3121      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3122      ParseTypeAndValue(Op1, PFS) ||
3123      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3124      ParseTypeAndValue(Op2, PFS))
3125    return true;
3126
3127  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3128    return Error(Loc, "invalid extractelement operands");
3129
3130  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3131  return false;
3132}
3133
3134/// ParsePHI
3135///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3136bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3137  PATypeHolder Ty(Type::VoidTy);
3138  Value *Op0, *Op1;
3139  LocTy TypeLoc = Lex.getLoc();
3140
3141  if (ParseType(Ty) ||
3142      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3143      ParseValue(Ty, Op0, PFS) ||
3144      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3145      ParseValue(Type::LabelTy, Op1, PFS) ||
3146      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3147    return true;
3148
3149  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3150  while (1) {
3151    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3152
3153    if (!EatIfPresent(lltok::comma))
3154      break;
3155
3156    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3157        ParseValue(Ty, Op0, PFS) ||
3158        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3159        ParseValue(Type::LabelTy, Op1, PFS) ||
3160        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3161      return true;
3162  }
3163
3164  if (!Ty->isFirstClassType())
3165    return Error(TypeLoc, "phi node must have first class type");
3166
3167  PHINode *PN = PHINode::Create(Ty);
3168  PN->reserveOperandSpace(PHIVals.size());
3169  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3170    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3171  Inst = PN;
3172  return false;
3173}
3174
3175/// ParseCall
3176///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3177///       ParameterList OptionalAttrs
3178bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3179                         bool isTail) {
3180  unsigned CC, RetAttrs, FnAttrs;
3181  PATypeHolder RetType(Type::VoidTy);
3182  LocTy RetTypeLoc;
3183  ValID CalleeID;
3184  SmallVector<ParamInfo, 16> ArgList;
3185  LocTy CallLoc = Lex.getLoc();
3186
3187  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3188      ParseOptionalCallingConv(CC) ||
3189      ParseOptionalAttrs(RetAttrs, 1) ||
3190      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3191      ParseValID(CalleeID) ||
3192      ParseParameterList(ArgList, PFS) ||
3193      ParseOptionalAttrs(FnAttrs, 2))
3194    return true;
3195
3196  // If RetType is a non-function pointer type, then this is the short syntax
3197  // for the call, which means that RetType is just the return type.  Infer the
3198  // rest of the function argument types from the arguments that are present.
3199  const PointerType *PFTy = 0;
3200  const FunctionType *Ty = 0;
3201  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3202      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3203    // Pull out the types of all of the arguments...
3204    std::vector<const Type*> ParamTypes;
3205    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3206      ParamTypes.push_back(ArgList[i].V->getType());
3207
3208    if (!FunctionType::isValidReturnType(RetType))
3209      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3210
3211    Ty = Context.getFunctionType(RetType, ParamTypes, false);
3212    PFTy = Context.getPointerTypeUnqual(Ty);
3213  }
3214
3215  // Look up the callee.
3216  Value *Callee;
3217  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3218
3219  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3220  // function attributes.
3221  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3222  if (FnAttrs & ObsoleteFuncAttrs) {
3223    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3224    FnAttrs &= ~ObsoleteFuncAttrs;
3225  }
3226
3227  // Set up the Attributes for the function.
3228  SmallVector<AttributeWithIndex, 8> Attrs;
3229  if (RetAttrs != Attribute::None)
3230    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3231
3232  SmallVector<Value*, 8> Args;
3233
3234  // Loop through FunctionType's arguments and ensure they are specified
3235  // correctly.  Also, gather any parameter attributes.
3236  FunctionType::param_iterator I = Ty->param_begin();
3237  FunctionType::param_iterator E = Ty->param_end();
3238  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3239    const Type *ExpectedTy = 0;
3240    if (I != E) {
3241      ExpectedTy = *I++;
3242    } else if (!Ty->isVarArg()) {
3243      return Error(ArgList[i].Loc, "too many arguments specified");
3244    }
3245
3246    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3247      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3248                   ExpectedTy->getDescription() + "'");
3249    Args.push_back(ArgList[i].V);
3250    if (ArgList[i].Attrs != Attribute::None)
3251      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3252  }
3253
3254  if (I != E)
3255    return Error(CallLoc, "not enough parameters specified for call");
3256
3257  if (FnAttrs != Attribute::None)
3258    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3259
3260  // Finish off the Attributes and check them
3261  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3262
3263  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3264  CI->setTailCall(isTail);
3265  CI->setCallingConv(CC);
3266  CI->setAttributes(PAL);
3267  Inst = CI;
3268  return false;
3269}
3270
3271//===----------------------------------------------------------------------===//
3272// Memory Instructions.
3273//===----------------------------------------------------------------------===//
3274
3275/// ParseAlloc
3276///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3277///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3278bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3279                          unsigned Opc) {
3280  PATypeHolder Ty(Type::VoidTy);
3281  Value *Size = 0;
3282  LocTy SizeLoc;
3283  unsigned Alignment = 0;
3284  if (ParseType(Ty)) return true;
3285
3286  if (EatIfPresent(lltok::comma)) {
3287    if (Lex.getKind() == lltok::kw_align) {
3288      if (ParseOptionalAlignment(Alignment)) return true;
3289    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3290               ParseOptionalCommaAlignment(Alignment)) {
3291      return true;
3292    }
3293  }
3294
3295  if (Size && Size->getType() != Type::Int32Ty)
3296    return Error(SizeLoc, "element count must be i32");
3297
3298  if (Opc == Instruction::Malloc)
3299    Inst = new MallocInst(Ty, Size, Alignment);
3300  else
3301    Inst = new AllocaInst(Ty, Size, Alignment);
3302  return false;
3303}
3304
3305/// ParseFree
3306///   ::= 'free' TypeAndValue
3307bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3308  Value *Val; LocTy Loc;
3309  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3310  if (!isa<PointerType>(Val->getType()))
3311    return Error(Loc, "operand to free must be a pointer");
3312  Inst = new FreeInst(Val);
3313  return false;
3314}
3315
3316/// ParseLoad
3317///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
3318bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3319                         bool isVolatile) {
3320  Value *Val; LocTy Loc;
3321  unsigned Alignment;
3322  if (ParseTypeAndValue(Val, Loc, PFS) ||
3323      ParseOptionalCommaAlignment(Alignment))
3324    return true;
3325
3326  if (!isa<PointerType>(Val->getType()) ||
3327      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3328    return Error(Loc, "load operand must be a pointer to a first class type");
3329
3330  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3331  return false;
3332}
3333
3334/// ParseStore
3335///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3336bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3337                          bool isVolatile) {
3338  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3339  unsigned Alignment;
3340  if (ParseTypeAndValue(Val, Loc, PFS) ||
3341      ParseToken(lltok::comma, "expected ',' after store operand") ||
3342      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3343      ParseOptionalCommaAlignment(Alignment))
3344    return true;
3345
3346  if (!isa<PointerType>(Ptr->getType()))
3347    return Error(PtrLoc, "store operand must be a pointer");
3348  if (!Val->getType()->isFirstClassType())
3349    return Error(Loc, "store operand must be a first class value");
3350  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3351    return Error(Loc, "stored value and pointer type do not match");
3352
3353  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3354  return false;
3355}
3356
3357/// ParseGetResult
3358///   ::= 'getresult' TypeAndValue ',' i32
3359/// FIXME: Remove support for getresult in LLVM 3.0
3360bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3361  Value *Val; LocTy ValLoc, EltLoc;
3362  unsigned Element;
3363  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3364      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3365      ParseUInt32(Element, EltLoc))
3366    return true;
3367
3368  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3369    return Error(ValLoc, "getresult inst requires an aggregate operand");
3370  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3371    return Error(EltLoc, "invalid getresult index for value");
3372  Inst = ExtractValueInst::Create(Val, Element);
3373  return false;
3374}
3375
3376/// ParseGetElementPtr
3377///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3378bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3379  Value *Ptr, *Val; LocTy Loc, EltLoc;
3380  bool InBounds = false;
3381
3382  if (EatIfPresent(lltok::kw_inbounds))
3383    InBounds = true;
3384
3385  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3386
3387  if (!isa<PointerType>(Ptr->getType()))
3388    return Error(Loc, "base of getelementptr must be a pointer");
3389
3390  SmallVector<Value*, 16> Indices;
3391  while (EatIfPresent(lltok::comma)) {
3392    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3393    if (!isa<IntegerType>(Val->getType()))
3394      return Error(EltLoc, "getelementptr index must be an integer");
3395    Indices.push_back(Val);
3396  }
3397
3398  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3399                                         Indices.begin(), Indices.end()))
3400    return Error(Loc, "invalid getelementptr indices");
3401  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3402  if (InBounds)
3403    cast<GEPOperator>(Inst)->setIsInBounds(true);
3404  return false;
3405}
3406
3407/// ParseExtractValue
3408///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3409bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3410  Value *Val; LocTy Loc;
3411  SmallVector<unsigned, 4> Indices;
3412  if (ParseTypeAndValue(Val, Loc, PFS) ||
3413      ParseIndexList(Indices))
3414    return true;
3415
3416  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3417    return Error(Loc, "extractvalue operand must be array or struct");
3418
3419  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3420                                        Indices.end()))
3421    return Error(Loc, "invalid indices for extractvalue");
3422  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3423  return false;
3424}
3425
3426/// ParseInsertValue
3427///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3428bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3429  Value *Val0, *Val1; LocTy Loc0, Loc1;
3430  SmallVector<unsigned, 4> Indices;
3431  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3432      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3433      ParseTypeAndValue(Val1, Loc1, PFS) ||
3434      ParseIndexList(Indices))
3435    return true;
3436
3437  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3438    return Error(Loc0, "extractvalue operand must be array or struct");
3439
3440  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3441                                        Indices.end()))
3442    return Error(Loc0, "invalid indices for insertvalue");
3443  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3444  return false;
3445}
3446
3447//===----------------------------------------------------------------------===//
3448// Embedded metadata.
3449//===----------------------------------------------------------------------===//
3450
3451/// ParseMDNodeVector
3452///   ::= Element (',' Element)*
3453/// Element
3454///   ::= 'null' | TypeAndValue
3455bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3456  assert(Lex.getKind() == lltok::lbrace);
3457  Lex.Lex();
3458  do {
3459    Value *V = 0;
3460    if (Lex.getKind() == lltok::kw_null) {
3461      Lex.Lex();
3462      V = 0;
3463    } else {
3464      PATypeHolder Ty(Type::VoidTy);
3465      if (ParseType(Ty)) return true;
3466      if (Lex.getKind() == lltok::Metadata) {
3467        Lex.Lex();
3468        MetadataBase *Node = 0;
3469        if (!ParseMDNode(Node))
3470          V = Node;
3471        else {
3472          MetadataBase *MDS = 0;
3473          if (ParseMDString(MDS)) return true;
3474          V = MDS;
3475        }
3476      } else {
3477        Constant *C;
3478        if (ParseGlobalValue(Ty, C)) return true;
3479        V = C;
3480      }
3481    }
3482    Elts.push_back(V);
3483  } while (EatIfPresent(lltok::comma));
3484
3485  return false;
3486}
3487