LLParser.cpp revision 35bda8914c0d1c02a6f90f42e7810c83150737e1
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29/// Run: module ::= toplevelentity*
30bool LLParser::Run() {
31  // Prime the lexer.
32  Lex.Lex();
33
34  return ParseTopLevelEntities() ||
35         ValidateEndOfModule();
36}
37
38/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
39/// module.
40bool LLParser::ValidateEndOfModule() {
41  // Handle any instruction metadata forward references.
42  if (!ForwardRefInstMetadata.empty()) {
43    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
44         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
45         I != E; ++I) {
46      Instruction *Inst = I->first;
47      const std::vector<MDRef> &MDList = I->second;
48
49      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
50        unsigned SlotNo = MDList[i].MDSlot;
51
52        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
53          return Error(MDList[i].Loc, "use of undefined metadata '!" +
54                       Twine(SlotNo) + "'");
55        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
56      }
57    }
58    ForwardRefInstMetadata.clear();
59  }
60
61
62  // Update auto-upgraded malloc calls to "malloc".
63  // FIXME: Remove in LLVM 3.0.
64  if (MallocF) {
65    MallocF->setName("malloc");
66    // If setName() does not set the name to "malloc", then there is already a
67    // declaration of "malloc".  In that case, iterate over all calls to MallocF
68    // and get them to call the declared "malloc" instead.
69    if (MallocF->getName() != "malloc") {
70      Constant *RealMallocF = M->getFunction("malloc");
71      if (RealMallocF->getType() != MallocF->getType())
72        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
73      MallocF->replaceAllUsesWith(RealMallocF);
74      MallocF->eraseFromParent();
75      MallocF = NULL;
76    }
77  }
78
79
80  // If there are entries in ForwardRefBlockAddresses at this point, they are
81  // references after the function was defined.  Resolve those now.
82  while (!ForwardRefBlockAddresses.empty()) {
83    // Okay, we are referencing an already-parsed function, resolve them now.
84    Function *TheFn = 0;
85    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
86    if (Fn.Kind == ValID::t_GlobalName)
87      TheFn = M->getFunction(Fn.StrVal);
88    else if (Fn.UIntVal < NumberedVals.size())
89      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
90
91    if (TheFn == 0)
92      return Error(Fn.Loc, "unknown function referenced by blockaddress");
93
94    // Resolve all these references.
95    if (ResolveForwardRefBlockAddresses(TheFn,
96                                      ForwardRefBlockAddresses.begin()->second,
97                                        0))
98      return true;
99
100    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
101  }
102
103
104  if (!ForwardRefTypes.empty())
105    return Error(ForwardRefTypes.begin()->second.second,
106                 "use of undefined type named '" +
107                 ForwardRefTypes.begin()->first + "'");
108  if (!ForwardRefTypeIDs.empty())
109    return Error(ForwardRefTypeIDs.begin()->second.second,
110                 "use of undefined type '%" +
111                 Twine(ForwardRefTypeIDs.begin()->first) + "'");
112
113  if (!ForwardRefVals.empty())
114    return Error(ForwardRefVals.begin()->second.second,
115                 "use of undefined value '@" + ForwardRefVals.begin()->first +
116                 "'");
117
118  if (!ForwardRefValIDs.empty())
119    return Error(ForwardRefValIDs.begin()->second.second,
120                 "use of undefined value '@" +
121                 Twine(ForwardRefValIDs.begin()->first) + "'");
122
123  if (!ForwardRefMDNodes.empty())
124    return Error(ForwardRefMDNodes.begin()->second.second,
125                 "use of undefined metadata '!" +
126                 Twine(ForwardRefMDNodes.begin()->first) + "'");
127
128
129  // Look for intrinsic functions and CallInst that need to be upgraded
130  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
131    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
132
133  // Check debug info intrinsics.
134  CheckDebugInfoIntrinsics(M);
135  return false;
136}
137
138bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
139                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
140                                               PerFunctionState *PFS) {
141  // Loop over all the references, resolving them.
142  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
143    BasicBlock *Res;
144    if (PFS) {
145      if (Refs[i].first.Kind == ValID::t_LocalName)
146        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
147      else
148        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
149    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
150      return Error(Refs[i].first.Loc,
151       "cannot take address of numeric label after the function is defined");
152    } else {
153      Res = dyn_cast_or_null<BasicBlock>(
154                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
155    }
156
157    if (Res == 0)
158      return Error(Refs[i].first.Loc,
159                   "referenced value is not a basic block");
160
161    // Get the BlockAddress for this and update references to use it.
162    BlockAddress *BA = BlockAddress::get(TheFn, Res);
163    Refs[i].second->replaceAllUsesWith(BA);
164    Refs[i].second->eraseFromParent();
165  }
166  return false;
167}
168
169
170//===----------------------------------------------------------------------===//
171// Top-Level Entities
172//===----------------------------------------------------------------------===//
173
174bool LLParser::ParseTopLevelEntities() {
175  while (1) {
176    switch (Lex.getKind()) {
177    default:         return TokError("expected top-level entity");
178    case lltok::Eof: return false;
179    //case lltok::kw_define:
180    case lltok::kw_declare: if (ParseDeclare()) return true; break;
181    case lltok::kw_define:  if (ParseDefine()) return true; break;
182    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
183    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
184    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
185    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
186    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
187    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
188    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
189    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
190    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
191    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
192    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
193
194    // The Global variable production with no name can have many different
195    // optional leading prefixes, the production is:
196    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
197    //               OptionalAddrSpace OptionalUnNammedAddr
198    //               ('constant'|'global') ...
199    case lltok::kw_private:             // OptionalLinkage
200    case lltok::kw_linker_private:      // OptionalLinkage
201    case lltok::kw_linker_private_weak: // OptionalLinkage
202    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
203    case lltok::kw_internal:            // OptionalLinkage
204    case lltok::kw_weak:                // OptionalLinkage
205    case lltok::kw_weak_odr:            // OptionalLinkage
206    case lltok::kw_linkonce:            // OptionalLinkage
207    case lltok::kw_linkonce_odr:        // OptionalLinkage
208    case lltok::kw_appending:           // OptionalLinkage
209    case lltok::kw_dllexport:           // OptionalLinkage
210    case lltok::kw_common:              // OptionalLinkage
211    case lltok::kw_dllimport:           // OptionalLinkage
212    case lltok::kw_extern_weak:         // OptionalLinkage
213    case lltok::kw_external: {          // OptionalLinkage
214      unsigned Linkage, Visibility;
215      if (ParseOptionalLinkage(Linkage) ||
216          ParseOptionalVisibility(Visibility) ||
217          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
218        return true;
219      break;
220    }
221    case lltok::kw_default:       // OptionalVisibility
222    case lltok::kw_hidden:        // OptionalVisibility
223    case lltok::kw_protected: {   // OptionalVisibility
224      unsigned Visibility;
225      if (ParseOptionalVisibility(Visibility) ||
226          ParseGlobal("", SMLoc(), 0, false, Visibility))
227        return true;
228      break;
229    }
230
231    case lltok::kw_thread_local:  // OptionalThreadLocal
232    case lltok::kw_addrspace:     // OptionalAddrSpace
233    case lltok::kw_constant:      // GlobalType
234    case lltok::kw_global:        // GlobalType
235      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
236      break;
237    }
238  }
239}
240
241
242/// toplevelentity
243///   ::= 'module' 'asm' STRINGCONSTANT
244bool LLParser::ParseModuleAsm() {
245  assert(Lex.getKind() == lltok::kw_module);
246  Lex.Lex();
247
248  std::string AsmStr;
249  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
250      ParseStringConstant(AsmStr)) return true;
251
252  const std::string &AsmSoFar = M->getModuleInlineAsm();
253  if (AsmSoFar.empty())
254    M->setModuleInlineAsm(AsmStr);
255  else
256    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
257  return false;
258}
259
260/// toplevelentity
261///   ::= 'target' 'triple' '=' STRINGCONSTANT
262///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
263bool LLParser::ParseTargetDefinition() {
264  assert(Lex.getKind() == lltok::kw_target);
265  std::string Str;
266  switch (Lex.Lex()) {
267  default: return TokError("unknown target property");
268  case lltok::kw_triple:
269    Lex.Lex();
270    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
271        ParseStringConstant(Str))
272      return true;
273    M->setTargetTriple(Str);
274    return false;
275  case lltok::kw_datalayout:
276    Lex.Lex();
277    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
278        ParseStringConstant(Str))
279      return true;
280    M->setDataLayout(Str);
281    return false;
282  }
283}
284
285/// toplevelentity
286///   ::= 'deplibs' '=' '[' ']'
287///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
288bool LLParser::ParseDepLibs() {
289  assert(Lex.getKind() == lltok::kw_deplibs);
290  Lex.Lex();
291  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
292      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
293    return true;
294
295  if (EatIfPresent(lltok::rsquare))
296    return false;
297
298  std::string Str;
299  if (ParseStringConstant(Str)) return true;
300  M->addLibrary(Str);
301
302  while (EatIfPresent(lltok::comma)) {
303    if (ParseStringConstant(Str)) return true;
304    M->addLibrary(Str);
305  }
306
307  return ParseToken(lltok::rsquare, "expected ']' at end of list");
308}
309
310/// ParseUnnamedType:
311///   ::= 'type' type
312///   ::= LocalVarID '=' 'type' type
313bool LLParser::ParseUnnamedType() {
314  unsigned TypeID = NumberedTypes.size();
315
316  // Handle the LocalVarID form.
317  if (Lex.getKind() == lltok::LocalVarID) {
318    if (Lex.getUIntVal() != TypeID)
319      return Error(Lex.getLoc(), "type expected to be numbered '%" +
320                   Twine(TypeID) + "'");
321    Lex.Lex(); // eat LocalVarID;
322
323    if (ParseToken(lltok::equal, "expected '=' after name"))
324      return true;
325  }
326
327  LocTy TypeLoc = Lex.getLoc();
328  if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
329
330  PATypeHolder Ty(Type::getVoidTy(Context));
331  if (ParseType(Ty)) return true;
332
333  // See if this type was previously referenced.
334  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
335    FI = ForwardRefTypeIDs.find(TypeID);
336  if (FI != ForwardRefTypeIDs.end()) {
337    if (FI->second.first.get() == Ty)
338      return Error(TypeLoc, "self referential type is invalid");
339
340    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
341    Ty = FI->second.first.get();
342    ForwardRefTypeIDs.erase(FI);
343  }
344
345  NumberedTypes.push_back(Ty);
346
347  return false;
348}
349
350/// toplevelentity
351///   ::= LocalVar '=' 'type' type
352bool LLParser::ParseNamedType() {
353  std::string Name = Lex.getStrVal();
354  LocTy NameLoc = Lex.getLoc();
355  Lex.Lex();  // eat LocalVar.
356
357  PATypeHolder Ty(Type::getVoidTy(Context));
358
359  if (ParseToken(lltok::equal, "expected '=' after name") ||
360      ParseToken(lltok::kw_type, "expected 'type' after name") ||
361      ParseType(Ty))
362    return true;
363
364  // Set the type name, checking for conflicts as we do so.
365  bool AlreadyExists = M->addTypeName(Name, Ty);
366  if (!AlreadyExists) return false;
367
368  // See if this type is a forward reference.  We need to eagerly resolve
369  // types to allow recursive type redefinitions below.
370  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
371  FI = ForwardRefTypes.find(Name);
372  if (FI != ForwardRefTypes.end()) {
373    if (FI->second.first.get() == Ty)
374      return Error(NameLoc, "self referential type is invalid");
375
376    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
377    Ty = FI->second.first.get();
378    ForwardRefTypes.erase(FI);
379  }
380
381  // Inserting a name that is already defined, get the existing name.
382  const Type *Existing = M->getTypeByName(Name);
383  assert(Existing && "Conflict but no matching type?!");
384
385  // Otherwise, this is an attempt to redefine a type. That's okay if
386  // the redefinition is identical to the original.
387  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
388  if (Existing == Ty) return false;
389
390  // Any other kind of (non-equivalent) redefinition is an error.
391  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
392               Ty->getDescription() + "'");
393}
394
395
396/// toplevelentity
397///   ::= 'declare' FunctionHeader
398bool LLParser::ParseDeclare() {
399  assert(Lex.getKind() == lltok::kw_declare);
400  Lex.Lex();
401
402  Function *F;
403  return ParseFunctionHeader(F, false);
404}
405
406/// toplevelentity
407///   ::= 'define' FunctionHeader '{' ...
408bool LLParser::ParseDefine() {
409  assert(Lex.getKind() == lltok::kw_define);
410  Lex.Lex();
411
412  Function *F;
413  return ParseFunctionHeader(F, true) ||
414         ParseFunctionBody(*F);
415}
416
417/// ParseGlobalType
418///   ::= 'constant'
419///   ::= 'global'
420bool LLParser::ParseGlobalType(bool &IsConstant) {
421  if (Lex.getKind() == lltok::kw_constant)
422    IsConstant = true;
423  else if (Lex.getKind() == lltok::kw_global)
424    IsConstant = false;
425  else {
426    IsConstant = false;
427    return TokError("expected 'global' or 'constant'");
428  }
429  Lex.Lex();
430  return false;
431}
432
433/// ParseUnnamedGlobal:
434///   OptionalVisibility ALIAS ...
435///   OptionalLinkage OptionalVisibility ...   -> global variable
436///   GlobalID '=' OptionalVisibility ALIAS ...
437///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
438bool LLParser::ParseUnnamedGlobal() {
439  unsigned VarID = NumberedVals.size();
440  std::string Name;
441  LocTy NameLoc = Lex.getLoc();
442
443  // Handle the GlobalID form.
444  if (Lex.getKind() == lltok::GlobalID) {
445    if (Lex.getUIntVal() != VarID)
446      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
447                   Twine(VarID) + "'");
448    Lex.Lex(); // eat GlobalID;
449
450    if (ParseToken(lltok::equal, "expected '=' after name"))
451      return true;
452  }
453
454  bool HasLinkage;
455  unsigned Linkage, Visibility;
456  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
457      ParseOptionalVisibility(Visibility))
458    return true;
459
460  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
461    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
462  return ParseAlias(Name, NameLoc, Visibility);
463}
464
465/// ParseNamedGlobal:
466///   GlobalVar '=' OptionalVisibility ALIAS ...
467///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
468bool LLParser::ParseNamedGlobal() {
469  assert(Lex.getKind() == lltok::GlobalVar);
470  LocTy NameLoc = Lex.getLoc();
471  std::string Name = Lex.getStrVal();
472  Lex.Lex();
473
474  bool HasLinkage;
475  unsigned Linkage, Visibility;
476  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
477      ParseOptionalLinkage(Linkage, HasLinkage) ||
478      ParseOptionalVisibility(Visibility))
479    return true;
480
481  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
482    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
483  return ParseAlias(Name, NameLoc, Visibility);
484}
485
486// MDString:
487//   ::= '!' STRINGCONSTANT
488bool LLParser::ParseMDString(MDString *&Result) {
489  std::string Str;
490  if (ParseStringConstant(Str)) return true;
491  Result = MDString::get(Context, Str);
492  return false;
493}
494
495// MDNode:
496//   ::= '!' MDNodeNumber
497//
498/// This version of ParseMDNodeID returns the slot number and null in the case
499/// of a forward reference.
500bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
501  // !{ ..., !42, ... }
502  if (ParseUInt32(SlotNo)) return true;
503
504  // Check existing MDNode.
505  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
506    Result = NumberedMetadata[SlotNo];
507  else
508    Result = 0;
509  return false;
510}
511
512bool LLParser::ParseMDNodeID(MDNode *&Result) {
513  // !{ ..., !42, ... }
514  unsigned MID = 0;
515  if (ParseMDNodeID(Result, MID)) return true;
516
517  // If not a forward reference, just return it now.
518  if (Result) return false;
519
520  // Otherwise, create MDNode forward reference.
521  MDNode *FwdNode = MDNode::getTemporary(Context, 0, 0);
522  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
523
524  if (NumberedMetadata.size() <= MID)
525    NumberedMetadata.resize(MID+1);
526  NumberedMetadata[MID] = FwdNode;
527  Result = FwdNode;
528  return false;
529}
530
531/// ParseNamedMetadata:
532///   !foo = !{ !1, !2 }
533bool LLParser::ParseNamedMetadata() {
534  assert(Lex.getKind() == lltok::MetadataVar);
535  std::string Name = Lex.getStrVal();
536  Lex.Lex();
537
538  if (ParseToken(lltok::equal, "expected '=' here") ||
539      ParseToken(lltok::exclaim, "Expected '!' here") ||
540      ParseToken(lltok::lbrace, "Expected '{' here"))
541    return true;
542
543  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
544  if (Lex.getKind() != lltok::rbrace)
545    do {
546      if (ParseToken(lltok::exclaim, "Expected '!' here"))
547        return true;
548
549      MDNode *N = 0;
550      if (ParseMDNodeID(N)) return true;
551      NMD->addOperand(N);
552    } while (EatIfPresent(lltok::comma));
553
554  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
555    return true;
556
557  return false;
558}
559
560/// ParseStandaloneMetadata:
561///   !42 = !{...}
562bool LLParser::ParseStandaloneMetadata() {
563  assert(Lex.getKind() == lltok::exclaim);
564  Lex.Lex();
565  unsigned MetadataID = 0;
566
567  LocTy TyLoc;
568  PATypeHolder Ty(Type::getVoidTy(Context));
569  SmallVector<Value *, 16> Elts;
570  if (ParseUInt32(MetadataID) ||
571      ParseToken(lltok::equal, "expected '=' here") ||
572      ParseType(Ty, TyLoc) ||
573      ParseToken(lltok::exclaim, "Expected '!' here") ||
574      ParseToken(lltok::lbrace, "Expected '{' here") ||
575      ParseMDNodeVector(Elts, NULL) ||
576      ParseToken(lltok::rbrace, "expected end of metadata node"))
577    return true;
578
579  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
580
581  // See if this was forward referenced, if so, handle it.
582  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
583    FI = ForwardRefMDNodes.find(MetadataID);
584  if (FI != ForwardRefMDNodes.end()) {
585    MDNode *Temp = FI->second.first;
586    Temp->replaceAllUsesWith(Init);
587    MDNode::deleteTemporary(Temp);
588    ForwardRefMDNodes.erase(FI);
589
590    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
591  } else {
592    if (MetadataID >= NumberedMetadata.size())
593      NumberedMetadata.resize(MetadataID+1);
594
595    if (NumberedMetadata[MetadataID] != 0)
596      return TokError("Metadata id is already used");
597    NumberedMetadata[MetadataID] = Init;
598  }
599
600  return false;
601}
602
603/// ParseAlias:
604///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
605/// Aliasee
606///   ::= TypeAndValue
607///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
608///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
609///
610/// Everything through visibility has already been parsed.
611///
612bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
613                          unsigned Visibility) {
614  assert(Lex.getKind() == lltok::kw_alias);
615  Lex.Lex();
616  unsigned Linkage;
617  LocTy LinkageLoc = Lex.getLoc();
618  if (ParseOptionalLinkage(Linkage))
619    return true;
620
621  if (Linkage != GlobalValue::ExternalLinkage &&
622      Linkage != GlobalValue::WeakAnyLinkage &&
623      Linkage != GlobalValue::WeakODRLinkage &&
624      Linkage != GlobalValue::InternalLinkage &&
625      Linkage != GlobalValue::PrivateLinkage &&
626      Linkage != GlobalValue::LinkerPrivateLinkage &&
627      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
628      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
629    return Error(LinkageLoc, "invalid linkage type for alias");
630
631  Constant *Aliasee;
632  LocTy AliaseeLoc = Lex.getLoc();
633  if (Lex.getKind() != lltok::kw_bitcast &&
634      Lex.getKind() != lltok::kw_getelementptr) {
635    if (ParseGlobalTypeAndValue(Aliasee)) return true;
636  } else {
637    // The bitcast dest type is not present, it is implied by the dest type.
638    ValID ID;
639    if (ParseValID(ID)) return true;
640    if (ID.Kind != ValID::t_Constant)
641      return Error(AliaseeLoc, "invalid aliasee");
642    Aliasee = ID.ConstantVal;
643  }
644
645  if (!Aliasee->getType()->isPointerTy())
646    return Error(AliaseeLoc, "alias must have pointer type");
647
648  // Okay, create the alias but do not insert it into the module yet.
649  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
650                                    (GlobalValue::LinkageTypes)Linkage, Name,
651                                    Aliasee);
652  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
653
654  // See if this value already exists in the symbol table.  If so, it is either
655  // a redefinition or a definition of a forward reference.
656  if (GlobalValue *Val = M->getNamedValue(Name)) {
657    // See if this was a redefinition.  If so, there is no entry in
658    // ForwardRefVals.
659    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
660      I = ForwardRefVals.find(Name);
661    if (I == ForwardRefVals.end())
662      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
663
664    // Otherwise, this was a definition of forward ref.  Verify that types
665    // agree.
666    if (Val->getType() != GA->getType())
667      return Error(NameLoc,
668              "forward reference and definition of alias have different types");
669
670    // If they agree, just RAUW the old value with the alias and remove the
671    // forward ref info.
672    Val->replaceAllUsesWith(GA);
673    Val->eraseFromParent();
674    ForwardRefVals.erase(I);
675  }
676
677  // Insert into the module, we know its name won't collide now.
678  M->getAliasList().push_back(GA);
679  assert(GA->getName() == Name && "Should not be a name conflict!");
680
681  return false;
682}
683
684/// ParseGlobal
685///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
686///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
687///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
688///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
689///
690/// Everything through visibility has been parsed already.
691///
692bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
693                           unsigned Linkage, bool HasLinkage,
694                           unsigned Visibility) {
695  unsigned AddrSpace;
696  bool ThreadLocal, IsConstant, UnnamedAddr;
697  LocTy UnnamedAddrLoc;
698  LocTy TyLoc;
699
700  PATypeHolder Ty(Type::getVoidTy(Context));
701  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
702      ParseOptionalAddrSpace(AddrSpace) ||
703      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
704                         &UnnamedAddrLoc) ||
705      ParseGlobalType(IsConstant) ||
706      ParseType(Ty, TyLoc))
707    return true;
708
709  // If the linkage is specified and is external, then no initializer is
710  // present.
711  Constant *Init = 0;
712  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
713                      Linkage != GlobalValue::ExternalWeakLinkage &&
714                      Linkage != GlobalValue::ExternalLinkage)) {
715    if (ParseGlobalValue(Ty, Init))
716      return true;
717  }
718
719  if (Ty->isFunctionTy() || Ty->isLabelTy())
720    return Error(TyLoc, "invalid type for global variable");
721
722  GlobalVariable *GV = 0;
723
724  // See if the global was forward referenced, if so, use the global.
725  if (!Name.empty()) {
726    if (GlobalValue *GVal = M->getNamedValue(Name)) {
727      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
728        return Error(NameLoc, "redefinition of global '@" + Name + "'");
729      GV = cast<GlobalVariable>(GVal);
730    }
731  } else {
732    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
733      I = ForwardRefValIDs.find(NumberedVals.size());
734    if (I != ForwardRefValIDs.end()) {
735      GV = cast<GlobalVariable>(I->second.first);
736      ForwardRefValIDs.erase(I);
737    }
738  }
739
740  if (GV == 0) {
741    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
742                            Name, 0, false, AddrSpace);
743  } else {
744    if (GV->getType()->getElementType() != Ty)
745      return Error(TyLoc,
746            "forward reference and definition of global have different types");
747
748    // Move the forward-reference to the correct spot in the module.
749    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
750  }
751
752  if (Name.empty())
753    NumberedVals.push_back(GV);
754
755  // Set the parsed properties on the global.
756  if (Init)
757    GV->setInitializer(Init);
758  GV->setConstant(IsConstant);
759  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
760  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
761  GV->setThreadLocal(ThreadLocal);
762  GV->setUnnamedAddr(UnnamedAddr);
763
764  // Parse attributes on the global.
765  while (Lex.getKind() == lltok::comma) {
766    Lex.Lex();
767
768    if (Lex.getKind() == lltok::kw_section) {
769      Lex.Lex();
770      GV->setSection(Lex.getStrVal());
771      if (ParseToken(lltok::StringConstant, "expected global section string"))
772        return true;
773    } else if (Lex.getKind() == lltok::kw_align) {
774      unsigned Alignment;
775      if (ParseOptionalAlignment(Alignment)) return true;
776      GV->setAlignment(Alignment);
777    } else {
778      TokError("unknown global variable property!");
779    }
780  }
781
782  return false;
783}
784
785
786//===----------------------------------------------------------------------===//
787// GlobalValue Reference/Resolution Routines.
788//===----------------------------------------------------------------------===//
789
790/// GetGlobalVal - Get a value with the specified name or ID, creating a
791/// forward reference record if needed.  This can return null if the value
792/// exists but does not have the right type.
793GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
794                                    LocTy Loc) {
795  const PointerType *PTy = dyn_cast<PointerType>(Ty);
796  if (PTy == 0) {
797    Error(Loc, "global variable reference must have pointer type");
798    return 0;
799  }
800
801  // Look this name up in the normal function symbol table.
802  GlobalValue *Val =
803    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
804
805  // If this is a forward reference for the value, see if we already created a
806  // forward ref record.
807  if (Val == 0) {
808    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
809      I = ForwardRefVals.find(Name);
810    if (I != ForwardRefVals.end())
811      Val = I->second.first;
812  }
813
814  // If we have the value in the symbol table or fwd-ref table, return it.
815  if (Val) {
816    if (Val->getType() == Ty) return Val;
817    Error(Loc, "'@" + Name + "' defined with type '" +
818          Val->getType()->getDescription() + "'");
819    return 0;
820  }
821
822  // Otherwise, create a new forward reference for this value and remember it.
823  GlobalValue *FwdVal;
824  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
825    // Function types can return opaque but functions can't.
826    if (FT->getReturnType()->isOpaqueTy()) {
827      Error(Loc, "function may not return opaque type");
828      return 0;
829    }
830
831    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
832  } else {
833    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
834                                GlobalValue::ExternalWeakLinkage, 0, Name);
835  }
836
837  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
838  return FwdVal;
839}
840
841GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
842  const PointerType *PTy = dyn_cast<PointerType>(Ty);
843  if (PTy == 0) {
844    Error(Loc, "global variable reference must have pointer type");
845    return 0;
846  }
847
848  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
849
850  // If this is a forward reference for the value, see if we already created a
851  // forward ref record.
852  if (Val == 0) {
853    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
854      I = ForwardRefValIDs.find(ID);
855    if (I != ForwardRefValIDs.end())
856      Val = I->second.first;
857  }
858
859  // If we have the value in the symbol table or fwd-ref table, return it.
860  if (Val) {
861    if (Val->getType() == Ty) return Val;
862    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
863          Val->getType()->getDescription() + "'");
864    return 0;
865  }
866
867  // Otherwise, create a new forward reference for this value and remember it.
868  GlobalValue *FwdVal;
869  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
870    // Function types can return opaque but functions can't.
871    if (FT->getReturnType()->isOpaqueTy()) {
872      Error(Loc, "function may not return opaque type");
873      return 0;
874    }
875    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
876  } else {
877    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
878                                GlobalValue::ExternalWeakLinkage, 0, "");
879  }
880
881  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
882  return FwdVal;
883}
884
885
886//===----------------------------------------------------------------------===//
887// Helper Routines.
888//===----------------------------------------------------------------------===//
889
890/// ParseToken - If the current token has the specified kind, eat it and return
891/// success.  Otherwise, emit the specified error and return failure.
892bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
893  if (Lex.getKind() != T)
894    return TokError(ErrMsg);
895  Lex.Lex();
896  return false;
897}
898
899/// ParseStringConstant
900///   ::= StringConstant
901bool LLParser::ParseStringConstant(std::string &Result) {
902  if (Lex.getKind() != lltok::StringConstant)
903    return TokError("expected string constant");
904  Result = Lex.getStrVal();
905  Lex.Lex();
906  return false;
907}
908
909/// ParseUInt32
910///   ::= uint32
911bool LLParser::ParseUInt32(unsigned &Val) {
912  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
913    return TokError("expected integer");
914  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
915  if (Val64 != unsigned(Val64))
916    return TokError("expected 32-bit integer (too large)");
917  Val = Val64;
918  Lex.Lex();
919  return false;
920}
921
922
923/// ParseOptionalAddrSpace
924///   := /*empty*/
925///   := 'addrspace' '(' uint32 ')'
926bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
927  AddrSpace = 0;
928  if (!EatIfPresent(lltok::kw_addrspace))
929    return false;
930  return ParseToken(lltok::lparen, "expected '(' in address space") ||
931         ParseUInt32(AddrSpace) ||
932         ParseToken(lltok::rparen, "expected ')' in address space");
933}
934
935/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
936/// indicates what kind of attribute list this is: 0: function arg, 1: result,
937/// 2: function attr.
938/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
939bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
940  Attrs = Attribute::None;
941  LocTy AttrLoc = Lex.getLoc();
942
943  while (1) {
944    switch (Lex.getKind()) {
945    case lltok::kw_sext:
946    case lltok::kw_zext:
947      // Treat these as signext/zeroext if they occur in the argument list after
948      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
949      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
950      // expr.
951      // FIXME: REMOVE THIS IN LLVM 3.0
952      if (AttrKind == 3) {
953        if (Lex.getKind() == lltok::kw_sext)
954          Attrs |= Attribute::SExt;
955        else
956          Attrs |= Attribute::ZExt;
957        break;
958      }
959      // FALL THROUGH.
960    default:  // End of attributes.
961      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
962        return Error(AttrLoc, "invalid use of function-only attribute");
963
964      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
965        return Error(AttrLoc, "invalid use of parameter-only attribute");
966
967      return false;
968    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
969    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
970    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
971    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
972    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
973    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
974    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
975    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
976
977    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
978    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
979    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
980    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
981    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
982    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
983    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
984    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
985    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
986    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
987    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
988    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
989    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
990    case lltok::kw_hotpatch:        Attrs |= Attribute::Hotpatch; break;
991
992    case lltok::kw_alignstack: {
993      unsigned Alignment;
994      if (ParseOptionalStackAlignment(Alignment))
995        return true;
996      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
997      continue;
998    }
999
1000    case lltok::kw_align: {
1001      unsigned Alignment;
1002      if (ParseOptionalAlignment(Alignment))
1003        return true;
1004      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1005      continue;
1006    }
1007
1008    }
1009    Lex.Lex();
1010  }
1011}
1012
1013/// ParseOptionalLinkage
1014///   ::= /*empty*/
1015///   ::= 'private'
1016///   ::= 'linker_private'
1017///   ::= 'linker_private_weak'
1018///   ::= 'linker_private_weak_def_auto'
1019///   ::= 'internal'
1020///   ::= 'weak'
1021///   ::= 'weak_odr'
1022///   ::= 'linkonce'
1023///   ::= 'linkonce_odr'
1024///   ::= 'available_externally'
1025///   ::= 'appending'
1026///   ::= 'dllexport'
1027///   ::= 'common'
1028///   ::= 'dllimport'
1029///   ::= 'extern_weak'
1030///   ::= 'external'
1031bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1032  HasLinkage = false;
1033  switch (Lex.getKind()) {
1034  default:                       Res=GlobalValue::ExternalLinkage; return false;
1035  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1036  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1037  case lltok::kw_linker_private_weak:
1038    Res = GlobalValue::LinkerPrivateWeakLinkage;
1039    break;
1040  case lltok::kw_linker_private_weak_def_auto:
1041    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
1042    break;
1043  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1044  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1045  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1046  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1047  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1048  case lltok::kw_available_externally:
1049    Res = GlobalValue::AvailableExternallyLinkage;
1050    break;
1051  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1052  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1053  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1054  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1055  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1056  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1057  }
1058  Lex.Lex();
1059  HasLinkage = true;
1060  return false;
1061}
1062
1063/// ParseOptionalVisibility
1064///   ::= /*empty*/
1065///   ::= 'default'
1066///   ::= 'hidden'
1067///   ::= 'protected'
1068///
1069bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1070  switch (Lex.getKind()) {
1071  default:                  Res = GlobalValue::DefaultVisibility; return false;
1072  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1073  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1074  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1075  }
1076  Lex.Lex();
1077  return false;
1078}
1079
1080/// ParseOptionalCallingConv
1081///   ::= /*empty*/
1082///   ::= 'ccc'
1083///   ::= 'fastcc'
1084///   ::= 'coldcc'
1085///   ::= 'x86_stdcallcc'
1086///   ::= 'x86_fastcallcc'
1087///   ::= 'x86_thiscallcc'
1088///   ::= 'arm_apcscc'
1089///   ::= 'arm_aapcscc'
1090///   ::= 'arm_aapcs_vfpcc'
1091///   ::= 'msp430_intrcc'
1092///   ::= 'ptx_kernel'
1093///   ::= 'ptx_device'
1094///   ::= 'cc' UINT
1095///
1096bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1097  switch (Lex.getKind()) {
1098  default:                       CC = CallingConv::C; return false;
1099  case lltok::kw_ccc:            CC = CallingConv::C; break;
1100  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1101  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1102  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1103  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1104  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1105  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1106  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1107  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1108  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1109  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1110  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1111  case lltok::kw_cc: {
1112      unsigned ArbitraryCC;
1113      Lex.Lex();
1114      if (ParseUInt32(ArbitraryCC)) {
1115        return true;
1116      } else
1117        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1118        return false;
1119    }
1120    break;
1121  }
1122
1123  Lex.Lex();
1124  return false;
1125}
1126
1127/// ParseInstructionMetadata
1128///   ::= !dbg !42 (',' !dbg !57)*
1129bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1130                                        PerFunctionState *PFS) {
1131  do {
1132    if (Lex.getKind() != lltok::MetadataVar)
1133      return TokError("expected metadata after comma");
1134
1135    std::string Name = Lex.getStrVal();
1136    unsigned MDK = M->getMDKindID(Name.c_str());
1137    Lex.Lex();
1138
1139    MDNode *Node;
1140    SMLoc Loc = Lex.getLoc();
1141
1142    if (ParseToken(lltok::exclaim, "expected '!' here"))
1143      return true;
1144
1145    // This code is similar to that of ParseMetadataValue, however it needs to
1146    // have special-case code for a forward reference; see the comments on
1147    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1148    // at the top level here.
1149    if (Lex.getKind() == lltok::lbrace) {
1150      ValID ID;
1151      if (ParseMetadataListValue(ID, PFS))
1152        return true;
1153      assert(ID.Kind == ValID::t_MDNode);
1154      Inst->setMetadata(MDK, ID.MDNodeVal);
1155    } else {
1156      unsigned NodeID = 0;
1157      if (ParseMDNodeID(Node, NodeID))
1158        return true;
1159      if (Node) {
1160        // If we got the node, add it to the instruction.
1161        Inst->setMetadata(MDK, Node);
1162      } else {
1163        MDRef R = { Loc, MDK, NodeID };
1164        // Otherwise, remember that this should be resolved later.
1165        ForwardRefInstMetadata[Inst].push_back(R);
1166      }
1167    }
1168
1169    // If this is the end of the list, we're done.
1170  } while (EatIfPresent(lltok::comma));
1171  return false;
1172}
1173
1174/// ParseOptionalAlignment
1175///   ::= /* empty */
1176///   ::= 'align' 4
1177bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1178  Alignment = 0;
1179  if (!EatIfPresent(lltok::kw_align))
1180    return false;
1181  LocTy AlignLoc = Lex.getLoc();
1182  if (ParseUInt32(Alignment)) return true;
1183  if (!isPowerOf2_32(Alignment))
1184    return Error(AlignLoc, "alignment is not a power of two");
1185  if (Alignment > Value::MaximumAlignment)
1186    return Error(AlignLoc, "huge alignments are not supported yet");
1187  return false;
1188}
1189
1190/// ParseOptionalCommaAlign
1191///   ::=
1192///   ::= ',' align 4
1193///
1194/// This returns with AteExtraComma set to true if it ate an excess comma at the
1195/// end.
1196bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1197                                       bool &AteExtraComma) {
1198  AteExtraComma = false;
1199  while (EatIfPresent(lltok::comma)) {
1200    // Metadata at the end is an early exit.
1201    if (Lex.getKind() == lltok::MetadataVar) {
1202      AteExtraComma = true;
1203      return false;
1204    }
1205
1206    if (Lex.getKind() != lltok::kw_align)
1207      return Error(Lex.getLoc(), "expected metadata or 'align'");
1208
1209    if (ParseOptionalAlignment(Alignment)) return true;
1210  }
1211
1212  return false;
1213}
1214
1215/// ParseOptionalStackAlignment
1216///   ::= /* empty */
1217///   ::= 'alignstack' '(' 4 ')'
1218bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1219  Alignment = 0;
1220  if (!EatIfPresent(lltok::kw_alignstack))
1221    return false;
1222  LocTy ParenLoc = Lex.getLoc();
1223  if (!EatIfPresent(lltok::lparen))
1224    return Error(ParenLoc, "expected '('");
1225  LocTy AlignLoc = Lex.getLoc();
1226  if (ParseUInt32(Alignment)) return true;
1227  ParenLoc = Lex.getLoc();
1228  if (!EatIfPresent(lltok::rparen))
1229    return Error(ParenLoc, "expected ')'");
1230  if (!isPowerOf2_32(Alignment))
1231    return Error(AlignLoc, "stack alignment is not a power of two");
1232  return false;
1233}
1234
1235/// ParseIndexList - This parses the index list for an insert/extractvalue
1236/// instruction.  This sets AteExtraComma in the case where we eat an extra
1237/// comma at the end of the line and find that it is followed by metadata.
1238/// Clients that don't allow metadata can call the version of this function that
1239/// only takes one argument.
1240///
1241/// ParseIndexList
1242///    ::=  (',' uint32)+
1243///
1244bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1245                              bool &AteExtraComma) {
1246  AteExtraComma = false;
1247
1248  if (Lex.getKind() != lltok::comma)
1249    return TokError("expected ',' as start of index list");
1250
1251  while (EatIfPresent(lltok::comma)) {
1252    if (Lex.getKind() == lltok::MetadataVar) {
1253      AteExtraComma = true;
1254      return false;
1255    }
1256    unsigned Idx = 0;
1257    if (ParseUInt32(Idx)) return true;
1258    Indices.push_back(Idx);
1259  }
1260
1261  return false;
1262}
1263
1264//===----------------------------------------------------------------------===//
1265// Type Parsing.
1266//===----------------------------------------------------------------------===//
1267
1268/// ParseType - Parse and resolve a full type.
1269bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1270  LocTy TypeLoc = Lex.getLoc();
1271  if (ParseTypeRec(Result)) return true;
1272
1273  // Verify no unresolved uprefs.
1274  if (!UpRefs.empty())
1275    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1276
1277  if (!AllowVoid && Result.get()->isVoidTy())
1278    return Error(TypeLoc, "void type only allowed for function results");
1279
1280  return false;
1281}
1282
1283/// HandleUpRefs - Every time we finish a new layer of types, this function is
1284/// called.  It loops through the UpRefs vector, which is a list of the
1285/// currently active types.  For each type, if the up-reference is contained in
1286/// the newly completed type, we decrement the level count.  When the level
1287/// count reaches zero, the up-referenced type is the type that is passed in:
1288/// thus we can complete the cycle.
1289///
1290PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1291  // If Ty isn't abstract, or if there are no up-references in it, then there is
1292  // nothing to resolve here.
1293  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1294
1295  PATypeHolder Ty(ty);
1296#if 0
1297  dbgs() << "Type '" << Ty->getDescription()
1298         << "' newly formed.  Resolving upreferences.\n"
1299         << UpRefs.size() << " upreferences active!\n";
1300#endif
1301
1302  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1303  // to zero), we resolve them all together before we resolve them to Ty.  At
1304  // the end of the loop, if there is anything to resolve to Ty, it will be in
1305  // this variable.
1306  OpaqueType *TypeToResolve = 0;
1307
1308  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1309    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1310    bool ContainsType =
1311      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1312                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1313
1314#if 0
1315    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1316           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1317           << (ContainsType ? "true" : "false")
1318           << " level=" << UpRefs[i].NestingLevel << "\n";
1319#endif
1320    if (!ContainsType)
1321      continue;
1322
1323    // Decrement level of upreference
1324    unsigned Level = --UpRefs[i].NestingLevel;
1325    UpRefs[i].LastContainedTy = Ty;
1326
1327    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1328    if (Level != 0)
1329      continue;
1330
1331#if 0
1332    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1333#endif
1334    if (!TypeToResolve)
1335      TypeToResolve = UpRefs[i].UpRefTy;
1336    else
1337      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1338    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1339    --i;                                // Do not skip the next element.
1340  }
1341
1342  if (TypeToResolve)
1343    TypeToResolve->refineAbstractTypeTo(Ty);
1344
1345  return Ty;
1346}
1347
1348
1349/// ParseTypeRec - The recursive function used to process the internal
1350/// implementation details of types.
1351bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1352  switch (Lex.getKind()) {
1353  default:
1354    return TokError("expected type");
1355  case lltok::Type:
1356    // TypeRec ::= 'float' | 'void' (etc)
1357    Result = Lex.getTyVal();
1358    Lex.Lex();
1359    break;
1360  case lltok::kw_opaque:
1361    // TypeRec ::= 'opaque'
1362    Result = OpaqueType::get(Context);
1363    Lex.Lex();
1364    break;
1365  case lltok::lbrace:
1366    // TypeRec ::= '{' ... '}'
1367    if (ParseStructType(Result, false))
1368      return true;
1369    break;
1370  case lltok::lsquare:
1371    // TypeRec ::= '[' ... ']'
1372    Lex.Lex(); // eat the lsquare.
1373    if (ParseArrayVectorType(Result, false))
1374      return true;
1375    break;
1376  case lltok::less: // Either vector or packed struct.
1377    // TypeRec ::= '<' ... '>'
1378    Lex.Lex();
1379    if (Lex.getKind() == lltok::lbrace) {
1380      if (ParseStructType(Result, true) ||
1381          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1382        return true;
1383    } else if (ParseArrayVectorType(Result, true))
1384      return true;
1385    break;
1386  case lltok::LocalVar:
1387  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1388    // TypeRec ::= %foo
1389    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1390      Result = T;
1391    } else {
1392      Result = OpaqueType::get(Context);
1393      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1394                                            std::make_pair(Result,
1395                                                           Lex.getLoc())));
1396      M->addTypeName(Lex.getStrVal(), Result.get());
1397    }
1398    Lex.Lex();
1399    break;
1400
1401  case lltok::LocalVarID:
1402    // TypeRec ::= %4
1403    if (Lex.getUIntVal() < NumberedTypes.size())
1404      Result = NumberedTypes[Lex.getUIntVal()];
1405    else {
1406      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1407        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1408      if (I != ForwardRefTypeIDs.end())
1409        Result = I->second.first;
1410      else {
1411        Result = OpaqueType::get(Context);
1412        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1413                                                std::make_pair(Result,
1414                                                               Lex.getLoc())));
1415      }
1416    }
1417    Lex.Lex();
1418    break;
1419  case lltok::backslash: {
1420    // TypeRec ::= '\' 4
1421    Lex.Lex();
1422    unsigned Val;
1423    if (ParseUInt32(Val)) return true;
1424    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1425    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1426    Result = OT;
1427    break;
1428  }
1429  }
1430
1431  // Parse the type suffixes.
1432  while (1) {
1433    switch (Lex.getKind()) {
1434    // End of type.
1435    default: return false;
1436
1437    // TypeRec ::= TypeRec '*'
1438    case lltok::star:
1439      if (Result.get()->isLabelTy())
1440        return TokError("basic block pointers are invalid");
1441      if (Result.get()->isVoidTy())
1442        return TokError("pointers to void are invalid; use i8* instead");
1443      if (!PointerType::isValidElementType(Result.get()))
1444        return TokError("pointer to this type is invalid");
1445      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1446      Lex.Lex();
1447      break;
1448
1449    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1450    case lltok::kw_addrspace: {
1451      if (Result.get()->isLabelTy())
1452        return TokError("basic block pointers are invalid");
1453      if (Result.get()->isVoidTy())
1454        return TokError("pointers to void are invalid; use i8* instead");
1455      if (!PointerType::isValidElementType(Result.get()))
1456        return TokError("pointer to this type is invalid");
1457      unsigned AddrSpace;
1458      if (ParseOptionalAddrSpace(AddrSpace) ||
1459          ParseToken(lltok::star, "expected '*' in address space"))
1460        return true;
1461
1462      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1463      break;
1464    }
1465
1466    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1467    case lltok::lparen:
1468      if (ParseFunctionType(Result))
1469        return true;
1470      break;
1471    }
1472  }
1473}
1474
1475/// ParseParameterList
1476///    ::= '(' ')'
1477///    ::= '(' Arg (',' Arg)* ')'
1478///  Arg
1479///    ::= Type OptionalAttributes Value OptionalAttributes
1480bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1481                                  PerFunctionState &PFS) {
1482  if (ParseToken(lltok::lparen, "expected '(' in call"))
1483    return true;
1484
1485  while (Lex.getKind() != lltok::rparen) {
1486    // If this isn't the first argument, we need a comma.
1487    if (!ArgList.empty() &&
1488        ParseToken(lltok::comma, "expected ',' in argument list"))
1489      return true;
1490
1491    // Parse the argument.
1492    LocTy ArgLoc;
1493    PATypeHolder ArgTy(Type::getVoidTy(Context));
1494    unsigned ArgAttrs1 = Attribute::None;
1495    unsigned ArgAttrs2 = Attribute::None;
1496    Value *V;
1497    if (ParseType(ArgTy, ArgLoc))
1498      return true;
1499
1500    // Otherwise, handle normal operands.
1501    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1502        ParseValue(ArgTy, V, PFS) ||
1503        // FIXME: Should not allow attributes after the argument, remove this
1504        // in LLVM 3.0.
1505        ParseOptionalAttrs(ArgAttrs2, 3))
1506      return true;
1507    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1508  }
1509
1510  Lex.Lex();  // Lex the ')'.
1511  return false;
1512}
1513
1514
1515
1516/// ParseArgumentList - Parse the argument list for a function type or function
1517/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1518///   ::= '(' ArgTypeListI ')'
1519/// ArgTypeListI
1520///   ::= /*empty*/
1521///   ::= '...'
1522///   ::= ArgTypeList ',' '...'
1523///   ::= ArgType (',' ArgType)*
1524///
1525bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1526                                 bool &isVarArg, bool inType) {
1527  isVarArg = false;
1528  assert(Lex.getKind() == lltok::lparen);
1529  Lex.Lex(); // eat the (.
1530
1531  if (Lex.getKind() == lltok::rparen) {
1532    // empty
1533  } else if (Lex.getKind() == lltok::dotdotdot) {
1534    isVarArg = true;
1535    Lex.Lex();
1536  } else {
1537    LocTy TypeLoc = Lex.getLoc();
1538    PATypeHolder ArgTy(Type::getVoidTy(Context));
1539    unsigned Attrs;
1540    std::string Name;
1541
1542    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1543    // types (such as a function returning a pointer to itself).  If parsing a
1544    // function prototype, we require fully resolved types.
1545    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1546        ParseOptionalAttrs(Attrs, 0)) return true;
1547
1548    if (ArgTy->isVoidTy())
1549      return Error(TypeLoc, "argument can not have void type");
1550
1551    if (Lex.getKind() == lltok::LocalVar ||
1552        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1553      Name = Lex.getStrVal();
1554      Lex.Lex();
1555    }
1556
1557    if (!FunctionType::isValidArgumentType(ArgTy))
1558      return Error(TypeLoc, "invalid type for function argument");
1559
1560    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1561
1562    while (EatIfPresent(lltok::comma)) {
1563      // Handle ... at end of arg list.
1564      if (EatIfPresent(lltok::dotdotdot)) {
1565        isVarArg = true;
1566        break;
1567      }
1568
1569      // Otherwise must be an argument type.
1570      TypeLoc = Lex.getLoc();
1571      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1572          ParseOptionalAttrs(Attrs, 0)) return true;
1573
1574      if (ArgTy->isVoidTy())
1575        return Error(TypeLoc, "argument can not have void type");
1576
1577      if (Lex.getKind() == lltok::LocalVar ||
1578          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1579        Name = Lex.getStrVal();
1580        Lex.Lex();
1581      } else {
1582        Name = "";
1583      }
1584
1585      if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1586        return Error(TypeLoc, "invalid type for function argument");
1587
1588      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1589    }
1590  }
1591
1592  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1593}
1594
1595/// ParseFunctionType
1596///  ::= Type ArgumentList OptionalAttrs
1597bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1598  assert(Lex.getKind() == lltok::lparen);
1599
1600  if (!FunctionType::isValidReturnType(Result))
1601    return TokError("invalid function return type");
1602
1603  std::vector<ArgInfo> ArgList;
1604  bool isVarArg;
1605  unsigned Attrs;
1606  if (ParseArgumentList(ArgList, isVarArg, true) ||
1607      // FIXME: Allow, but ignore attributes on function types!
1608      // FIXME: Remove in LLVM 3.0
1609      ParseOptionalAttrs(Attrs, 2))
1610    return true;
1611
1612  // Reject names on the arguments lists.
1613  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1614    if (!ArgList[i].Name.empty())
1615      return Error(ArgList[i].Loc, "argument name invalid in function type");
1616    if (!ArgList[i].Attrs != 0) {
1617      // Allow but ignore attributes on function types; this permits
1618      // auto-upgrade.
1619      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1620    }
1621  }
1622
1623  std::vector<const Type*> ArgListTy;
1624  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1625    ArgListTy.push_back(ArgList[i].Type);
1626
1627  Result = HandleUpRefs(FunctionType::get(Result.get(),
1628                                                ArgListTy, isVarArg));
1629  return false;
1630}
1631
1632/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1633///   TypeRec
1634///     ::= '{' '}'
1635///     ::= '{' TypeRec (',' TypeRec)* '}'
1636///     ::= '<' '{' '}' '>'
1637///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1638bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1639  assert(Lex.getKind() == lltok::lbrace);
1640  Lex.Lex(); // Consume the '{'
1641
1642  if (EatIfPresent(lltok::rbrace)) {
1643    Result = StructType::get(Context, Packed);
1644    return false;
1645  }
1646
1647  std::vector<PATypeHolder> ParamsList;
1648  LocTy EltTyLoc = Lex.getLoc();
1649  if (ParseTypeRec(Result)) return true;
1650  ParamsList.push_back(Result);
1651
1652  if (Result->isVoidTy())
1653    return Error(EltTyLoc, "struct element can not have void type");
1654  if (!StructType::isValidElementType(Result))
1655    return Error(EltTyLoc, "invalid element type for struct");
1656
1657  while (EatIfPresent(lltok::comma)) {
1658    EltTyLoc = Lex.getLoc();
1659    if (ParseTypeRec(Result)) return true;
1660
1661    if (Result->isVoidTy())
1662      return Error(EltTyLoc, "struct element can not have void type");
1663    if (!StructType::isValidElementType(Result))
1664      return Error(EltTyLoc, "invalid element type for struct");
1665
1666    ParamsList.push_back(Result);
1667  }
1668
1669  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1670    return true;
1671
1672  std::vector<const Type*> ParamsListTy;
1673  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1674    ParamsListTy.push_back(ParamsList[i].get());
1675  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1676  return false;
1677}
1678
1679/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1680/// token has already been consumed.
1681///   TypeRec
1682///     ::= '[' APSINTVAL 'x' Types ']'
1683///     ::= '<' APSINTVAL 'x' Types '>'
1684bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1685  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1686      Lex.getAPSIntVal().getBitWidth() > 64)
1687    return TokError("expected number in address space");
1688
1689  LocTy SizeLoc = Lex.getLoc();
1690  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1691  Lex.Lex();
1692
1693  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1694      return true;
1695
1696  LocTy TypeLoc = Lex.getLoc();
1697  PATypeHolder EltTy(Type::getVoidTy(Context));
1698  if (ParseTypeRec(EltTy)) return true;
1699
1700  if (EltTy->isVoidTy())
1701    return Error(TypeLoc, "array and vector element type cannot be void");
1702
1703  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1704                 "expected end of sequential type"))
1705    return true;
1706
1707  if (isVector) {
1708    if (Size == 0)
1709      return Error(SizeLoc, "zero element vector is illegal");
1710    if ((unsigned)Size != Size)
1711      return Error(SizeLoc, "size too large for vector");
1712    if (!VectorType::isValidElementType(EltTy))
1713      return Error(TypeLoc, "vector element type must be fp or integer");
1714    Result = VectorType::get(EltTy, unsigned(Size));
1715  } else {
1716    if (!ArrayType::isValidElementType(EltTy))
1717      return Error(TypeLoc, "invalid array element type");
1718    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1719  }
1720  return false;
1721}
1722
1723//===----------------------------------------------------------------------===//
1724// Function Semantic Analysis.
1725//===----------------------------------------------------------------------===//
1726
1727LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1728                                             int functionNumber)
1729  : P(p), F(f), FunctionNumber(functionNumber) {
1730
1731  // Insert unnamed arguments into the NumberedVals list.
1732  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1733       AI != E; ++AI)
1734    if (!AI->hasName())
1735      NumberedVals.push_back(AI);
1736}
1737
1738LLParser::PerFunctionState::~PerFunctionState() {
1739  // If there were any forward referenced non-basicblock values, delete them.
1740  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1741       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1742    if (!isa<BasicBlock>(I->second.first)) {
1743      I->second.first->replaceAllUsesWith(
1744                           UndefValue::get(I->second.first->getType()));
1745      delete I->second.first;
1746      I->second.first = 0;
1747    }
1748
1749  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1750       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1751    if (!isa<BasicBlock>(I->second.first)) {
1752      I->second.first->replaceAllUsesWith(
1753                           UndefValue::get(I->second.first->getType()));
1754      delete I->second.first;
1755      I->second.first = 0;
1756    }
1757}
1758
1759bool LLParser::PerFunctionState::FinishFunction() {
1760  // Check to see if someone took the address of labels in this block.
1761  if (!P.ForwardRefBlockAddresses.empty()) {
1762    ValID FunctionID;
1763    if (!F.getName().empty()) {
1764      FunctionID.Kind = ValID::t_GlobalName;
1765      FunctionID.StrVal = F.getName();
1766    } else {
1767      FunctionID.Kind = ValID::t_GlobalID;
1768      FunctionID.UIntVal = FunctionNumber;
1769    }
1770
1771    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1772      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1773    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1774      // Resolve all these references.
1775      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1776        return true;
1777
1778      P.ForwardRefBlockAddresses.erase(FRBAI);
1779    }
1780  }
1781
1782  if (!ForwardRefVals.empty())
1783    return P.Error(ForwardRefVals.begin()->second.second,
1784                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1785                   "'");
1786  if (!ForwardRefValIDs.empty())
1787    return P.Error(ForwardRefValIDs.begin()->second.second,
1788                   "use of undefined value '%" +
1789                   Twine(ForwardRefValIDs.begin()->first) + "'");
1790  return false;
1791}
1792
1793
1794/// GetVal - Get a value with the specified name or ID, creating a
1795/// forward reference record if needed.  This can return null if the value
1796/// exists but does not have the right type.
1797Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1798                                          const Type *Ty, LocTy Loc) {
1799  // Look this name up in the normal function symbol table.
1800  Value *Val = F.getValueSymbolTable().lookup(Name);
1801
1802  // If this is a forward reference for the value, see if we already created a
1803  // forward ref record.
1804  if (Val == 0) {
1805    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1806      I = ForwardRefVals.find(Name);
1807    if (I != ForwardRefVals.end())
1808      Val = I->second.first;
1809  }
1810
1811  // If we have the value in the symbol table or fwd-ref table, return it.
1812  if (Val) {
1813    if (Val->getType() == Ty) return Val;
1814    if (Ty->isLabelTy())
1815      P.Error(Loc, "'%" + Name + "' is not a basic block");
1816    else
1817      P.Error(Loc, "'%" + Name + "' defined with type '" +
1818              Val->getType()->getDescription() + "'");
1819    return 0;
1820  }
1821
1822  // Don't make placeholders with invalid type.
1823  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1824    P.Error(Loc, "invalid use of a non-first-class type");
1825    return 0;
1826  }
1827
1828  // Otherwise, create a new forward reference for this value and remember it.
1829  Value *FwdVal;
1830  if (Ty->isLabelTy())
1831    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1832  else
1833    FwdVal = new Argument(Ty, Name);
1834
1835  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1836  return FwdVal;
1837}
1838
1839Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1840                                          LocTy Loc) {
1841  // Look this name up in the normal function symbol table.
1842  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1843
1844  // If this is a forward reference for the value, see if we already created a
1845  // forward ref record.
1846  if (Val == 0) {
1847    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1848      I = ForwardRefValIDs.find(ID);
1849    if (I != ForwardRefValIDs.end())
1850      Val = I->second.first;
1851  }
1852
1853  // If we have the value in the symbol table or fwd-ref table, return it.
1854  if (Val) {
1855    if (Val->getType() == Ty) return Val;
1856    if (Ty->isLabelTy())
1857      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1858    else
1859      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1860              Val->getType()->getDescription() + "'");
1861    return 0;
1862  }
1863
1864  if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1865    P.Error(Loc, "invalid use of a non-first-class type");
1866    return 0;
1867  }
1868
1869  // Otherwise, create a new forward reference for this value and remember it.
1870  Value *FwdVal;
1871  if (Ty->isLabelTy())
1872    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1873  else
1874    FwdVal = new Argument(Ty);
1875
1876  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1877  return FwdVal;
1878}
1879
1880/// SetInstName - After an instruction is parsed and inserted into its
1881/// basic block, this installs its name.
1882bool LLParser::PerFunctionState::SetInstName(int NameID,
1883                                             const std::string &NameStr,
1884                                             LocTy NameLoc, Instruction *Inst) {
1885  // If this instruction has void type, it cannot have a name or ID specified.
1886  if (Inst->getType()->isVoidTy()) {
1887    if (NameID != -1 || !NameStr.empty())
1888      return P.Error(NameLoc, "instructions returning void cannot have a name");
1889    return false;
1890  }
1891
1892  // If this was a numbered instruction, verify that the instruction is the
1893  // expected value and resolve any forward references.
1894  if (NameStr.empty()) {
1895    // If neither a name nor an ID was specified, just use the next ID.
1896    if (NameID == -1)
1897      NameID = NumberedVals.size();
1898
1899    if (unsigned(NameID) != NumberedVals.size())
1900      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1901                     Twine(NumberedVals.size()) + "'");
1902
1903    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1904      ForwardRefValIDs.find(NameID);
1905    if (FI != ForwardRefValIDs.end()) {
1906      if (FI->second.first->getType() != Inst->getType())
1907        return P.Error(NameLoc, "instruction forward referenced with type '" +
1908                       FI->second.first->getType()->getDescription() + "'");
1909      FI->second.first->replaceAllUsesWith(Inst);
1910      delete FI->second.first;
1911      ForwardRefValIDs.erase(FI);
1912    }
1913
1914    NumberedVals.push_back(Inst);
1915    return false;
1916  }
1917
1918  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1919  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1920    FI = ForwardRefVals.find(NameStr);
1921  if (FI != ForwardRefVals.end()) {
1922    if (FI->second.first->getType() != Inst->getType())
1923      return P.Error(NameLoc, "instruction forward referenced with type '" +
1924                     FI->second.first->getType()->getDescription() + "'");
1925    FI->second.first->replaceAllUsesWith(Inst);
1926    delete FI->second.first;
1927    ForwardRefVals.erase(FI);
1928  }
1929
1930  // Set the name on the instruction.
1931  Inst->setName(NameStr);
1932
1933  if (Inst->getName() != NameStr)
1934    return P.Error(NameLoc, "multiple definition of local value named '" +
1935                   NameStr + "'");
1936  return false;
1937}
1938
1939/// GetBB - Get a basic block with the specified name or ID, creating a
1940/// forward reference record if needed.
1941BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1942                                              LocTy Loc) {
1943  return cast_or_null<BasicBlock>(GetVal(Name,
1944                                        Type::getLabelTy(F.getContext()), Loc));
1945}
1946
1947BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1948  return cast_or_null<BasicBlock>(GetVal(ID,
1949                                        Type::getLabelTy(F.getContext()), Loc));
1950}
1951
1952/// DefineBB - Define the specified basic block, which is either named or
1953/// unnamed.  If there is an error, this returns null otherwise it returns
1954/// the block being defined.
1955BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1956                                                 LocTy Loc) {
1957  BasicBlock *BB;
1958  if (Name.empty())
1959    BB = GetBB(NumberedVals.size(), Loc);
1960  else
1961    BB = GetBB(Name, Loc);
1962  if (BB == 0) return 0; // Already diagnosed error.
1963
1964  // Move the block to the end of the function.  Forward ref'd blocks are
1965  // inserted wherever they happen to be referenced.
1966  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1967
1968  // Remove the block from forward ref sets.
1969  if (Name.empty()) {
1970    ForwardRefValIDs.erase(NumberedVals.size());
1971    NumberedVals.push_back(BB);
1972  } else {
1973    // BB forward references are already in the function symbol table.
1974    ForwardRefVals.erase(Name);
1975  }
1976
1977  return BB;
1978}
1979
1980//===----------------------------------------------------------------------===//
1981// Constants.
1982//===----------------------------------------------------------------------===//
1983
1984/// ParseValID - Parse an abstract value that doesn't necessarily have a
1985/// type implied.  For example, if we parse "4" we don't know what integer type
1986/// it has.  The value will later be combined with its type and checked for
1987/// sanity.  PFS is used to convert function-local operands of metadata (since
1988/// metadata operands are not just parsed here but also converted to values).
1989/// PFS can be null when we are not parsing metadata values inside a function.
1990bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1991  ID.Loc = Lex.getLoc();
1992  switch (Lex.getKind()) {
1993  default: return TokError("expected value token");
1994  case lltok::GlobalID:  // @42
1995    ID.UIntVal = Lex.getUIntVal();
1996    ID.Kind = ValID::t_GlobalID;
1997    break;
1998  case lltok::GlobalVar:  // @foo
1999    ID.StrVal = Lex.getStrVal();
2000    ID.Kind = ValID::t_GlobalName;
2001    break;
2002  case lltok::LocalVarID:  // %42
2003    ID.UIntVal = Lex.getUIntVal();
2004    ID.Kind = ValID::t_LocalID;
2005    break;
2006  case lltok::LocalVar:  // %foo
2007  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2008    ID.StrVal = Lex.getStrVal();
2009    ID.Kind = ValID::t_LocalName;
2010    break;
2011  case lltok::exclaim:   // !42, !{...}, or !"foo"
2012    return ParseMetadataValue(ID, PFS);
2013  case lltok::APSInt:
2014    ID.APSIntVal = Lex.getAPSIntVal();
2015    ID.Kind = ValID::t_APSInt;
2016    break;
2017  case lltok::APFloat:
2018    ID.APFloatVal = Lex.getAPFloatVal();
2019    ID.Kind = ValID::t_APFloat;
2020    break;
2021  case lltok::kw_true:
2022    ID.ConstantVal = ConstantInt::getTrue(Context);
2023    ID.Kind = ValID::t_Constant;
2024    break;
2025  case lltok::kw_false:
2026    ID.ConstantVal = ConstantInt::getFalse(Context);
2027    ID.Kind = ValID::t_Constant;
2028    break;
2029  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2030  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2031  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2032
2033  case lltok::lbrace: {
2034    // ValID ::= '{' ConstVector '}'
2035    Lex.Lex();
2036    SmallVector<Constant*, 16> Elts;
2037    if (ParseGlobalValueVector(Elts) ||
2038        ParseToken(lltok::rbrace, "expected end of struct constant"))
2039      return true;
2040
2041    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2042                                         Elts.size(), false);
2043    ID.Kind = ValID::t_Constant;
2044    return false;
2045  }
2046  case lltok::less: {
2047    // ValID ::= '<' ConstVector '>'         --> Vector.
2048    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2049    Lex.Lex();
2050    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2051
2052    SmallVector<Constant*, 16> Elts;
2053    LocTy FirstEltLoc = Lex.getLoc();
2054    if (ParseGlobalValueVector(Elts) ||
2055        (isPackedStruct &&
2056         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2057        ParseToken(lltok::greater, "expected end of constant"))
2058      return true;
2059
2060    if (isPackedStruct) {
2061      ID.ConstantVal =
2062        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2063      ID.Kind = ValID::t_Constant;
2064      return false;
2065    }
2066
2067    if (Elts.empty())
2068      return Error(ID.Loc, "constant vector must not be empty");
2069
2070    if (!Elts[0]->getType()->isIntegerTy() &&
2071        !Elts[0]->getType()->isFloatingPointTy())
2072      return Error(FirstEltLoc,
2073                   "vector elements must have integer or floating point type");
2074
2075    // Verify that all the vector elements have the same type.
2076    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2077      if (Elts[i]->getType() != Elts[0]->getType())
2078        return Error(FirstEltLoc,
2079                     "vector element #" + Twine(i) +
2080                    " is not of type '" + Elts[0]->getType()->getDescription());
2081
2082    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2083    ID.Kind = ValID::t_Constant;
2084    return false;
2085  }
2086  case lltok::lsquare: {   // Array Constant
2087    Lex.Lex();
2088    SmallVector<Constant*, 16> Elts;
2089    LocTy FirstEltLoc = Lex.getLoc();
2090    if (ParseGlobalValueVector(Elts) ||
2091        ParseToken(lltok::rsquare, "expected end of array constant"))
2092      return true;
2093
2094    // Handle empty element.
2095    if (Elts.empty()) {
2096      // Use undef instead of an array because it's inconvenient to determine
2097      // the element type at this point, there being no elements to examine.
2098      ID.Kind = ValID::t_EmptyArray;
2099      return false;
2100    }
2101
2102    if (!Elts[0]->getType()->isFirstClassType())
2103      return Error(FirstEltLoc, "invalid array element type: " +
2104                   Elts[0]->getType()->getDescription());
2105
2106    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2107
2108    // Verify all elements are correct type!
2109    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2110      if (Elts[i]->getType() != Elts[0]->getType())
2111        return Error(FirstEltLoc,
2112                     "array element #" + Twine(i) +
2113                     " is not of type '" +Elts[0]->getType()->getDescription());
2114    }
2115
2116    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2117    ID.Kind = ValID::t_Constant;
2118    return false;
2119  }
2120  case lltok::kw_c:  // c "foo"
2121    Lex.Lex();
2122    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2123    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2124    ID.Kind = ValID::t_Constant;
2125    return false;
2126
2127  case lltok::kw_asm: {
2128    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2129    bool HasSideEffect, AlignStack;
2130    Lex.Lex();
2131    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2132        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2133        ParseStringConstant(ID.StrVal) ||
2134        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2135        ParseToken(lltok::StringConstant, "expected constraint string"))
2136      return true;
2137    ID.StrVal2 = Lex.getStrVal();
2138    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2139    ID.Kind = ValID::t_InlineAsm;
2140    return false;
2141  }
2142
2143  case lltok::kw_blockaddress: {
2144    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2145    Lex.Lex();
2146
2147    ValID Fn, Label;
2148    LocTy FnLoc, LabelLoc;
2149
2150    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2151        ParseValID(Fn) ||
2152        ParseToken(lltok::comma, "expected comma in block address expression")||
2153        ParseValID(Label) ||
2154        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2155      return true;
2156
2157    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2158      return Error(Fn.Loc, "expected function name in blockaddress");
2159    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2160      return Error(Label.Loc, "expected basic block name in blockaddress");
2161
2162    // Make a global variable as a placeholder for this reference.
2163    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2164                                           false, GlobalValue::InternalLinkage,
2165                                                0, "");
2166    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2167    ID.ConstantVal = FwdRef;
2168    ID.Kind = ValID::t_Constant;
2169    return false;
2170  }
2171
2172  case lltok::kw_trunc:
2173  case lltok::kw_zext:
2174  case lltok::kw_sext:
2175  case lltok::kw_fptrunc:
2176  case lltok::kw_fpext:
2177  case lltok::kw_bitcast:
2178  case lltok::kw_uitofp:
2179  case lltok::kw_sitofp:
2180  case lltok::kw_fptoui:
2181  case lltok::kw_fptosi:
2182  case lltok::kw_inttoptr:
2183  case lltok::kw_ptrtoint: {
2184    unsigned Opc = Lex.getUIntVal();
2185    PATypeHolder DestTy(Type::getVoidTy(Context));
2186    Constant *SrcVal;
2187    Lex.Lex();
2188    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2189        ParseGlobalTypeAndValue(SrcVal) ||
2190        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2191        ParseType(DestTy) ||
2192        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2193      return true;
2194    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2195      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2196                   SrcVal->getType()->getDescription() + "' to '" +
2197                   DestTy->getDescription() + "'");
2198    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2199                                                 SrcVal, DestTy);
2200    ID.Kind = ValID::t_Constant;
2201    return false;
2202  }
2203  case lltok::kw_extractvalue: {
2204    Lex.Lex();
2205    Constant *Val;
2206    SmallVector<unsigned, 4> Indices;
2207    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2208        ParseGlobalTypeAndValue(Val) ||
2209        ParseIndexList(Indices) ||
2210        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2211      return true;
2212
2213    if (!Val->getType()->isAggregateType())
2214      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2215    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2216                                          Indices.end()))
2217      return Error(ID.Loc, "invalid indices for extractvalue");
2218    ID.ConstantVal =
2219      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2220    ID.Kind = ValID::t_Constant;
2221    return false;
2222  }
2223  case lltok::kw_insertvalue: {
2224    Lex.Lex();
2225    Constant *Val0, *Val1;
2226    SmallVector<unsigned, 4> Indices;
2227    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2228        ParseGlobalTypeAndValue(Val0) ||
2229        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2230        ParseGlobalTypeAndValue(Val1) ||
2231        ParseIndexList(Indices) ||
2232        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2233      return true;
2234    if (!Val0->getType()->isAggregateType())
2235      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2236    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2237                                          Indices.end()))
2238      return Error(ID.Loc, "invalid indices for insertvalue");
2239    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2240                       Indices.data(), Indices.size());
2241    ID.Kind = ValID::t_Constant;
2242    return false;
2243  }
2244  case lltok::kw_icmp:
2245  case lltok::kw_fcmp: {
2246    unsigned PredVal, Opc = Lex.getUIntVal();
2247    Constant *Val0, *Val1;
2248    Lex.Lex();
2249    if (ParseCmpPredicate(PredVal, Opc) ||
2250        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2251        ParseGlobalTypeAndValue(Val0) ||
2252        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2253        ParseGlobalTypeAndValue(Val1) ||
2254        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2255      return true;
2256
2257    if (Val0->getType() != Val1->getType())
2258      return Error(ID.Loc, "compare operands must have the same type");
2259
2260    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2261
2262    if (Opc == Instruction::FCmp) {
2263      if (!Val0->getType()->isFPOrFPVectorTy())
2264        return Error(ID.Loc, "fcmp requires floating point operands");
2265      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2266    } else {
2267      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2268      if (!Val0->getType()->isIntOrIntVectorTy() &&
2269          !Val0->getType()->isPointerTy())
2270        return Error(ID.Loc, "icmp requires pointer or integer operands");
2271      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2272    }
2273    ID.Kind = ValID::t_Constant;
2274    return false;
2275  }
2276
2277  // Binary Operators.
2278  case lltok::kw_add:
2279  case lltok::kw_fadd:
2280  case lltok::kw_sub:
2281  case lltok::kw_fsub:
2282  case lltok::kw_mul:
2283  case lltok::kw_fmul:
2284  case lltok::kw_udiv:
2285  case lltok::kw_sdiv:
2286  case lltok::kw_fdiv:
2287  case lltok::kw_urem:
2288  case lltok::kw_srem:
2289  case lltok::kw_frem: {
2290    bool NUW = false;
2291    bool NSW = false;
2292    bool Exact = false;
2293    unsigned Opc = Lex.getUIntVal();
2294    Constant *Val0, *Val1;
2295    Lex.Lex();
2296    LocTy ModifierLoc = Lex.getLoc();
2297    if (Opc == Instruction::Add ||
2298        Opc == Instruction::Sub ||
2299        Opc == Instruction::Mul) {
2300      if (EatIfPresent(lltok::kw_nuw))
2301        NUW = true;
2302      if (EatIfPresent(lltok::kw_nsw)) {
2303        NSW = true;
2304        if (EatIfPresent(lltok::kw_nuw))
2305          NUW = true;
2306      }
2307    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv) {
2308      if (EatIfPresent(lltok::kw_exact))
2309        Exact = true;
2310    }
2311    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2312        ParseGlobalTypeAndValue(Val0) ||
2313        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2314        ParseGlobalTypeAndValue(Val1) ||
2315        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2316      return true;
2317    if (Val0->getType() != Val1->getType())
2318      return Error(ID.Loc, "operands of constexpr must have same type");
2319    if (!Val0->getType()->isIntOrIntVectorTy()) {
2320      if (NUW)
2321        return Error(ModifierLoc, "nuw only applies to integer operations");
2322      if (NSW)
2323        return Error(ModifierLoc, "nsw only applies to integer operations");
2324    }
2325    // Check that the type is valid for the operator.
2326    switch (Opc) {
2327    case Instruction::Add:
2328    case Instruction::Sub:
2329    case Instruction::Mul:
2330    case Instruction::UDiv:
2331    case Instruction::SDiv:
2332    case Instruction::URem:
2333    case Instruction::SRem:
2334      if (!Val0->getType()->isIntOrIntVectorTy())
2335        return Error(ID.Loc, "constexpr requires integer operands");
2336      break;
2337    case Instruction::FAdd:
2338    case Instruction::FSub:
2339    case Instruction::FMul:
2340    case Instruction::FDiv:
2341    case Instruction::FRem:
2342      if (!Val0->getType()->isFPOrFPVectorTy())
2343        return Error(ID.Loc, "constexpr requires fp operands");
2344      break;
2345    default: llvm_unreachable("Unknown binary operator!");
2346    }
2347    unsigned Flags = 0;
2348    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2349    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2350    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2351    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2352    ID.ConstantVal = C;
2353    ID.Kind = ValID::t_Constant;
2354    return false;
2355  }
2356
2357  // Logical Operations
2358  case lltok::kw_shl:
2359  case lltok::kw_lshr:
2360  case lltok::kw_ashr:
2361  case lltok::kw_and:
2362  case lltok::kw_or:
2363  case lltok::kw_xor: {
2364    unsigned Opc = Lex.getUIntVal();
2365    Constant *Val0, *Val1;
2366    Lex.Lex();
2367    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2368        ParseGlobalTypeAndValue(Val0) ||
2369        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2370        ParseGlobalTypeAndValue(Val1) ||
2371        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2372      return true;
2373    if (Val0->getType() != Val1->getType())
2374      return Error(ID.Loc, "operands of constexpr must have same type");
2375    if (!Val0->getType()->isIntOrIntVectorTy())
2376      return Error(ID.Loc,
2377                   "constexpr requires integer or integer vector operands");
2378    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2379    ID.Kind = ValID::t_Constant;
2380    return false;
2381  }
2382
2383  case lltok::kw_getelementptr:
2384  case lltok::kw_shufflevector:
2385  case lltok::kw_insertelement:
2386  case lltok::kw_extractelement:
2387  case lltok::kw_select: {
2388    unsigned Opc = Lex.getUIntVal();
2389    SmallVector<Constant*, 16> Elts;
2390    bool InBounds = false;
2391    Lex.Lex();
2392    if (Opc == Instruction::GetElementPtr)
2393      InBounds = EatIfPresent(lltok::kw_inbounds);
2394    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2395        ParseGlobalValueVector(Elts) ||
2396        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2397      return true;
2398
2399    if (Opc == Instruction::GetElementPtr) {
2400      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2401        return Error(ID.Loc, "getelementptr requires pointer operand");
2402
2403      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2404                                             (Value**)(Elts.data() + 1),
2405                                             Elts.size() - 1))
2406        return Error(ID.Loc, "invalid indices for getelementptr");
2407      ID.ConstantVal = InBounds ?
2408        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2409                                               Elts.data() + 1,
2410                                               Elts.size() - 1) :
2411        ConstantExpr::getGetElementPtr(Elts[0],
2412                                       Elts.data() + 1, Elts.size() - 1);
2413    } else if (Opc == Instruction::Select) {
2414      if (Elts.size() != 3)
2415        return Error(ID.Loc, "expected three operands to select");
2416      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2417                                                              Elts[2]))
2418        return Error(ID.Loc, Reason);
2419      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2420    } else if (Opc == Instruction::ShuffleVector) {
2421      if (Elts.size() != 3)
2422        return Error(ID.Loc, "expected three operands to shufflevector");
2423      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2424        return Error(ID.Loc, "invalid operands to shufflevector");
2425      ID.ConstantVal =
2426                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2427    } else if (Opc == Instruction::ExtractElement) {
2428      if (Elts.size() != 2)
2429        return Error(ID.Loc, "expected two operands to extractelement");
2430      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2431        return Error(ID.Loc, "invalid extractelement operands");
2432      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2433    } else {
2434      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2435      if (Elts.size() != 3)
2436      return Error(ID.Loc, "expected three operands to insertelement");
2437      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2438        return Error(ID.Loc, "invalid insertelement operands");
2439      ID.ConstantVal =
2440                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2441    }
2442
2443    ID.Kind = ValID::t_Constant;
2444    return false;
2445  }
2446  }
2447
2448  Lex.Lex();
2449  return false;
2450}
2451
2452/// ParseGlobalValue - Parse a global value with the specified type.
2453bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2454  C = 0;
2455  ValID ID;
2456  Value *V = NULL;
2457  bool Parsed = ParseValID(ID) ||
2458                ConvertValIDToValue(Ty, ID, V, NULL);
2459  if (V && !(C = dyn_cast<Constant>(V)))
2460    return Error(ID.Loc, "global values must be constants");
2461  return Parsed;
2462}
2463
2464bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2465  PATypeHolder Type(Type::getVoidTy(Context));
2466  return ParseType(Type) ||
2467         ParseGlobalValue(Type, V);
2468}
2469
2470/// ParseGlobalValueVector
2471///   ::= /*empty*/
2472///   ::= TypeAndValue (',' TypeAndValue)*
2473bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2474  // Empty list.
2475  if (Lex.getKind() == lltok::rbrace ||
2476      Lex.getKind() == lltok::rsquare ||
2477      Lex.getKind() == lltok::greater ||
2478      Lex.getKind() == lltok::rparen)
2479    return false;
2480
2481  Constant *C;
2482  if (ParseGlobalTypeAndValue(C)) return true;
2483  Elts.push_back(C);
2484
2485  while (EatIfPresent(lltok::comma)) {
2486    if (ParseGlobalTypeAndValue(C)) return true;
2487    Elts.push_back(C);
2488  }
2489
2490  return false;
2491}
2492
2493bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2494  assert(Lex.getKind() == lltok::lbrace);
2495  Lex.Lex();
2496
2497  SmallVector<Value*, 16> Elts;
2498  if (ParseMDNodeVector(Elts, PFS) ||
2499      ParseToken(lltok::rbrace, "expected end of metadata node"))
2500    return true;
2501
2502  ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
2503  ID.Kind = ValID::t_MDNode;
2504  return false;
2505}
2506
2507/// ParseMetadataValue
2508///  ::= !42
2509///  ::= !{...}
2510///  ::= !"string"
2511bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2512  assert(Lex.getKind() == lltok::exclaim);
2513  Lex.Lex();
2514
2515  // MDNode:
2516  // !{ ... }
2517  if (Lex.getKind() == lltok::lbrace)
2518    return ParseMetadataListValue(ID, PFS);
2519
2520  // Standalone metadata reference
2521  // !42
2522  if (Lex.getKind() == lltok::APSInt) {
2523    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2524    ID.Kind = ValID::t_MDNode;
2525    return false;
2526  }
2527
2528  // MDString:
2529  //   ::= '!' STRINGCONSTANT
2530  if (ParseMDString(ID.MDStringVal)) return true;
2531  ID.Kind = ValID::t_MDString;
2532  return false;
2533}
2534
2535
2536//===----------------------------------------------------------------------===//
2537// Function Parsing.
2538//===----------------------------------------------------------------------===//
2539
2540bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2541                                   PerFunctionState *PFS) {
2542  if (Ty->isFunctionTy())
2543    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2544
2545  switch (ID.Kind) {
2546  default: llvm_unreachable("Unknown ValID!");
2547  case ValID::t_LocalID:
2548    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2549    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2550    return (V == 0);
2551  case ValID::t_LocalName:
2552    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2553    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2554    return (V == 0);
2555  case ValID::t_InlineAsm: {
2556    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2557    const FunctionType *FTy =
2558      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2559    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2560      return Error(ID.Loc, "invalid type for inline asm constraint string");
2561    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2562    return false;
2563  }
2564  case ValID::t_MDNode:
2565    if (!Ty->isMetadataTy())
2566      return Error(ID.Loc, "metadata value must have metadata type");
2567    V = ID.MDNodeVal;
2568    return false;
2569  case ValID::t_MDString:
2570    if (!Ty->isMetadataTy())
2571      return Error(ID.Loc, "metadata value must have metadata type");
2572    V = ID.MDStringVal;
2573    return false;
2574  case ValID::t_GlobalName:
2575    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2576    return V == 0;
2577  case ValID::t_GlobalID:
2578    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2579    return V == 0;
2580  case ValID::t_APSInt:
2581    if (!Ty->isIntegerTy())
2582      return Error(ID.Loc, "integer constant must have integer type");
2583    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2584    V = ConstantInt::get(Context, ID.APSIntVal);
2585    return false;
2586  case ValID::t_APFloat:
2587    if (!Ty->isFloatingPointTy() ||
2588        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2589      return Error(ID.Loc, "floating point constant invalid for type");
2590
2591    // The lexer has no type info, so builds all float and double FP constants
2592    // as double.  Fix this here.  Long double does not need this.
2593    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2594        Ty->isFloatTy()) {
2595      bool Ignored;
2596      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2597                            &Ignored);
2598    }
2599    V = ConstantFP::get(Context, ID.APFloatVal);
2600
2601    if (V->getType() != Ty)
2602      return Error(ID.Loc, "floating point constant does not have type '" +
2603                   Ty->getDescription() + "'");
2604
2605    return false;
2606  case ValID::t_Null:
2607    if (!Ty->isPointerTy())
2608      return Error(ID.Loc, "null must be a pointer type");
2609    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2610    return false;
2611  case ValID::t_Undef:
2612    // FIXME: LabelTy should not be a first-class type.
2613    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2614        !Ty->isOpaqueTy())
2615      return Error(ID.Loc, "invalid type for undef constant");
2616    V = UndefValue::get(Ty);
2617    return false;
2618  case ValID::t_EmptyArray:
2619    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2620      return Error(ID.Loc, "invalid empty array initializer");
2621    V = UndefValue::get(Ty);
2622    return false;
2623  case ValID::t_Zero:
2624    // FIXME: LabelTy should not be a first-class type.
2625    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2626      return Error(ID.Loc, "invalid type for null constant");
2627    V = Constant::getNullValue(Ty);
2628    return false;
2629  case ValID::t_Constant:
2630    if (ID.ConstantVal->getType() != Ty)
2631      return Error(ID.Loc, "constant expression type mismatch");
2632
2633    V = ID.ConstantVal;
2634    return false;
2635  }
2636}
2637
2638bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2639  V = 0;
2640  ValID ID;
2641  return ParseValID(ID, &PFS) ||
2642         ConvertValIDToValue(Ty, ID, V, &PFS);
2643}
2644
2645bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2646  PATypeHolder T(Type::getVoidTy(Context));
2647  return ParseType(T) ||
2648         ParseValue(T, V, PFS);
2649}
2650
2651bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2652                                      PerFunctionState &PFS) {
2653  Value *V;
2654  Loc = Lex.getLoc();
2655  if (ParseTypeAndValue(V, PFS)) return true;
2656  if (!isa<BasicBlock>(V))
2657    return Error(Loc, "expected a basic block");
2658  BB = cast<BasicBlock>(V);
2659  return false;
2660}
2661
2662
2663/// FunctionHeader
2664///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2665///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2666///       OptionalAlign OptGC
2667bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2668  // Parse the linkage.
2669  LocTy LinkageLoc = Lex.getLoc();
2670  unsigned Linkage;
2671
2672  unsigned Visibility, RetAttrs;
2673  CallingConv::ID CC;
2674  PATypeHolder RetType(Type::getVoidTy(Context));
2675  LocTy RetTypeLoc = Lex.getLoc();
2676  if (ParseOptionalLinkage(Linkage) ||
2677      ParseOptionalVisibility(Visibility) ||
2678      ParseOptionalCallingConv(CC) ||
2679      ParseOptionalAttrs(RetAttrs, 1) ||
2680      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2681    return true;
2682
2683  // Verify that the linkage is ok.
2684  switch ((GlobalValue::LinkageTypes)Linkage) {
2685  case GlobalValue::ExternalLinkage:
2686    break; // always ok.
2687  case GlobalValue::DLLImportLinkage:
2688  case GlobalValue::ExternalWeakLinkage:
2689    if (isDefine)
2690      return Error(LinkageLoc, "invalid linkage for function definition");
2691    break;
2692  case GlobalValue::PrivateLinkage:
2693  case GlobalValue::LinkerPrivateLinkage:
2694  case GlobalValue::LinkerPrivateWeakLinkage:
2695  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2696  case GlobalValue::InternalLinkage:
2697  case GlobalValue::AvailableExternallyLinkage:
2698  case GlobalValue::LinkOnceAnyLinkage:
2699  case GlobalValue::LinkOnceODRLinkage:
2700  case GlobalValue::WeakAnyLinkage:
2701  case GlobalValue::WeakODRLinkage:
2702  case GlobalValue::DLLExportLinkage:
2703    if (!isDefine)
2704      return Error(LinkageLoc, "invalid linkage for function declaration");
2705    break;
2706  case GlobalValue::AppendingLinkage:
2707  case GlobalValue::CommonLinkage:
2708    return Error(LinkageLoc, "invalid function linkage type");
2709  }
2710
2711  if (!FunctionType::isValidReturnType(RetType) ||
2712      RetType->isOpaqueTy())
2713    return Error(RetTypeLoc, "invalid function return type");
2714
2715  LocTy NameLoc = Lex.getLoc();
2716
2717  std::string FunctionName;
2718  if (Lex.getKind() == lltok::GlobalVar) {
2719    FunctionName = Lex.getStrVal();
2720  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2721    unsigned NameID = Lex.getUIntVal();
2722
2723    if (NameID != NumberedVals.size())
2724      return TokError("function expected to be numbered '%" +
2725                      Twine(NumberedVals.size()) + "'");
2726  } else {
2727    return TokError("expected function name");
2728  }
2729
2730  Lex.Lex();
2731
2732  if (Lex.getKind() != lltok::lparen)
2733    return TokError("expected '(' in function argument list");
2734
2735  std::vector<ArgInfo> ArgList;
2736  bool isVarArg;
2737  unsigned FuncAttrs;
2738  std::string Section;
2739  unsigned Alignment;
2740  std::string GC;
2741  bool UnnamedAddr;
2742  LocTy UnnamedAddrLoc;
2743
2744  if (ParseArgumentList(ArgList, isVarArg, false) ||
2745      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2746                         &UnnamedAddrLoc) ||
2747      ParseOptionalAttrs(FuncAttrs, 2) ||
2748      (EatIfPresent(lltok::kw_section) &&
2749       ParseStringConstant(Section)) ||
2750      ParseOptionalAlignment(Alignment) ||
2751      (EatIfPresent(lltok::kw_gc) &&
2752       ParseStringConstant(GC)))
2753    return true;
2754
2755  // If the alignment was parsed as an attribute, move to the alignment field.
2756  if (FuncAttrs & Attribute::Alignment) {
2757    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2758    FuncAttrs &= ~Attribute::Alignment;
2759  }
2760
2761  // Okay, if we got here, the function is syntactically valid.  Convert types
2762  // and do semantic checks.
2763  std::vector<const Type*> ParamTypeList;
2764  SmallVector<AttributeWithIndex, 8> Attrs;
2765  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2766  // attributes.
2767  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2768  if (FuncAttrs & ObsoleteFuncAttrs) {
2769    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2770    FuncAttrs &= ~ObsoleteFuncAttrs;
2771  }
2772
2773  if (RetAttrs != Attribute::None)
2774    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2775
2776  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2777    ParamTypeList.push_back(ArgList[i].Type);
2778    if (ArgList[i].Attrs != Attribute::None)
2779      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2780  }
2781
2782  if (FuncAttrs != Attribute::None)
2783    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2784
2785  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2786
2787  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2788    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2789
2790  const FunctionType *FT =
2791    FunctionType::get(RetType, ParamTypeList, isVarArg);
2792  const PointerType *PFT = PointerType::getUnqual(FT);
2793
2794  Fn = 0;
2795  if (!FunctionName.empty()) {
2796    // If this was a definition of a forward reference, remove the definition
2797    // from the forward reference table and fill in the forward ref.
2798    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2799      ForwardRefVals.find(FunctionName);
2800    if (FRVI != ForwardRefVals.end()) {
2801      Fn = M->getFunction(FunctionName);
2802      if (Fn->getType() != PFT)
2803        return Error(FRVI->second.second, "invalid forward reference to "
2804                     "function '" + FunctionName + "' with wrong type!");
2805
2806      ForwardRefVals.erase(FRVI);
2807    } else if ((Fn = M->getFunction(FunctionName))) {
2808      // If this function already exists in the symbol table, then it is
2809      // multiply defined.  We accept a few cases for old backwards compat.
2810      // FIXME: Remove this stuff for LLVM 3.0.
2811      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2812          (!Fn->isDeclaration() && isDefine)) {
2813        // If the redefinition has different type or different attributes,
2814        // reject it.  If both have bodies, reject it.
2815        return Error(NameLoc, "invalid redefinition of function '" +
2816                     FunctionName + "'");
2817      } else if (Fn->isDeclaration()) {
2818        // Make sure to strip off any argument names so we can't get conflicts.
2819        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2820             AI != AE; ++AI)
2821          AI->setName("");
2822      }
2823    } else if (M->getNamedValue(FunctionName)) {
2824      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2825    }
2826
2827  } else {
2828    // If this is a definition of a forward referenced function, make sure the
2829    // types agree.
2830    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2831      = ForwardRefValIDs.find(NumberedVals.size());
2832    if (I != ForwardRefValIDs.end()) {
2833      Fn = cast<Function>(I->second.first);
2834      if (Fn->getType() != PFT)
2835        return Error(NameLoc, "type of definition and forward reference of '@" +
2836                     Twine(NumberedVals.size()) + "' disagree");
2837      ForwardRefValIDs.erase(I);
2838    }
2839  }
2840
2841  if (Fn == 0)
2842    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2843  else // Move the forward-reference to the correct spot in the module.
2844    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2845
2846  if (FunctionName.empty())
2847    NumberedVals.push_back(Fn);
2848
2849  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2850  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2851  Fn->setCallingConv(CC);
2852  Fn->setAttributes(PAL);
2853  Fn->setUnnamedAddr(UnnamedAddr);
2854  Fn->setAlignment(Alignment);
2855  Fn->setSection(Section);
2856  if (!GC.empty()) Fn->setGC(GC.c_str());
2857
2858  // Add all of the arguments we parsed to the function.
2859  Function::arg_iterator ArgIt = Fn->arg_begin();
2860  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2861    // If we run out of arguments in the Function prototype, exit early.
2862    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2863    if (ArgIt == Fn->arg_end()) break;
2864
2865    // If the argument has a name, insert it into the argument symbol table.
2866    if (ArgList[i].Name.empty()) continue;
2867
2868    // Set the name, if it conflicted, it will be auto-renamed.
2869    ArgIt->setName(ArgList[i].Name);
2870
2871    if (ArgIt->getName() != ArgList[i].Name)
2872      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2873                   ArgList[i].Name + "'");
2874  }
2875
2876  return false;
2877}
2878
2879
2880/// ParseFunctionBody
2881///   ::= '{' BasicBlock+ '}'
2882///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2883///
2884bool LLParser::ParseFunctionBody(Function &Fn) {
2885  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2886    return TokError("expected '{' in function body");
2887  Lex.Lex();  // eat the {.
2888
2889  int FunctionNumber = -1;
2890  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2891
2892  PerFunctionState PFS(*this, Fn, FunctionNumber);
2893
2894  // We need at least one basic block.
2895  if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2896    return TokError("function body requires at least one basic block");
2897
2898  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2899    if (ParseBasicBlock(PFS)) return true;
2900
2901  // Eat the }.
2902  Lex.Lex();
2903
2904  // Verify function is ok.
2905  return PFS.FinishFunction();
2906}
2907
2908/// ParseBasicBlock
2909///   ::= LabelStr? Instruction*
2910bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2911  // If this basic block starts out with a name, remember it.
2912  std::string Name;
2913  LocTy NameLoc = Lex.getLoc();
2914  if (Lex.getKind() == lltok::LabelStr) {
2915    Name = Lex.getStrVal();
2916    Lex.Lex();
2917  }
2918
2919  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2920  if (BB == 0) return true;
2921
2922  std::string NameStr;
2923
2924  // Parse the instructions in this block until we get a terminator.
2925  Instruction *Inst;
2926  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2927  do {
2928    // This instruction may have three possibilities for a name: a) none
2929    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2930    LocTy NameLoc = Lex.getLoc();
2931    int NameID = -1;
2932    NameStr = "";
2933
2934    if (Lex.getKind() == lltok::LocalVarID) {
2935      NameID = Lex.getUIntVal();
2936      Lex.Lex();
2937      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2938        return true;
2939    } else if (Lex.getKind() == lltok::LocalVar ||
2940               // FIXME: REMOVE IN LLVM 3.0
2941               Lex.getKind() == lltok::StringConstant) {
2942      NameStr = Lex.getStrVal();
2943      Lex.Lex();
2944      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2945        return true;
2946    }
2947
2948    switch (ParseInstruction(Inst, BB, PFS)) {
2949    default: assert(0 && "Unknown ParseInstruction result!");
2950    case InstError: return true;
2951    case InstNormal:
2952      BB->getInstList().push_back(Inst);
2953
2954      // With a normal result, we check to see if the instruction is followed by
2955      // a comma and metadata.
2956      if (EatIfPresent(lltok::comma))
2957        if (ParseInstructionMetadata(Inst, &PFS))
2958          return true;
2959      break;
2960    case InstExtraComma:
2961      BB->getInstList().push_back(Inst);
2962
2963      // If the instruction parser ate an extra comma at the end of it, it
2964      // *must* be followed by metadata.
2965      if (ParseInstructionMetadata(Inst, &PFS))
2966        return true;
2967      break;
2968    }
2969
2970    // Set the name on the instruction.
2971    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2972  } while (!isa<TerminatorInst>(Inst));
2973
2974  return false;
2975}
2976
2977//===----------------------------------------------------------------------===//
2978// Instruction Parsing.
2979//===----------------------------------------------------------------------===//
2980
2981/// ParseInstruction - Parse one of the many different instructions.
2982///
2983int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2984                               PerFunctionState &PFS) {
2985  lltok::Kind Token = Lex.getKind();
2986  if (Token == lltok::Eof)
2987    return TokError("found end of file when expecting more instructions");
2988  LocTy Loc = Lex.getLoc();
2989  unsigned KeywordVal = Lex.getUIntVal();
2990  Lex.Lex();  // Eat the keyword.
2991
2992  switch (Token) {
2993  default:                    return Error(Loc, "expected instruction opcode");
2994  // Terminator Instructions.
2995  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2996  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2997  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2998  case lltok::kw_br:          return ParseBr(Inst, PFS);
2999  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3000  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3001  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3002  // Binary Operators.
3003  case lltok::kw_add:
3004  case lltok::kw_sub:
3005  case lltok::kw_mul: {
3006    bool NUW = false;
3007    bool NSW = false;
3008    LocTy ModifierLoc = Lex.getLoc();
3009    if (EatIfPresent(lltok::kw_nuw))
3010      NUW = true;
3011    if (EatIfPresent(lltok::kw_nsw)) {
3012      NSW = true;
3013      if (EatIfPresent(lltok::kw_nuw))
3014        NUW = true;
3015    }
3016    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3017    if (!Result) {
3018      if (!Inst->getType()->isIntOrIntVectorTy()) {
3019        if (NUW)
3020          return Error(ModifierLoc, "nuw only applies to integer operations");
3021        if (NSW)
3022          return Error(ModifierLoc, "nsw only applies to integer operations");
3023      }
3024      if (NUW)
3025        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3026      if (NSW)
3027        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3028    }
3029    return Result;
3030  }
3031  case lltok::kw_fadd:
3032  case lltok::kw_fsub:
3033  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3034
3035  case lltok::kw_sdiv:
3036  case lltok::kw_udiv: {
3037    bool Exact = false;
3038    if (EatIfPresent(lltok::kw_exact))
3039      Exact = true;
3040    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3041    if (!Result)
3042      if (Exact)
3043        cast<BinaryOperator>(Inst)->setIsExact(true);
3044    return Result;
3045  }
3046
3047  case lltok::kw_urem:
3048  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3049  case lltok::kw_fdiv:
3050  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3051  case lltok::kw_shl:
3052  case lltok::kw_lshr:
3053  case lltok::kw_ashr:
3054  case lltok::kw_and:
3055  case lltok::kw_or:
3056  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3057  case lltok::kw_icmp:
3058  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3059  // Casts.
3060  case lltok::kw_trunc:
3061  case lltok::kw_zext:
3062  case lltok::kw_sext:
3063  case lltok::kw_fptrunc:
3064  case lltok::kw_fpext:
3065  case lltok::kw_bitcast:
3066  case lltok::kw_uitofp:
3067  case lltok::kw_sitofp:
3068  case lltok::kw_fptoui:
3069  case lltok::kw_fptosi:
3070  case lltok::kw_inttoptr:
3071  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3072  // Other.
3073  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3074  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3075  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3076  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3077  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3078  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3079  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3080  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3081  // Memory.
3082  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3083  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3084  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3085  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3086  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3087  case lltok::kw_volatile:
3088    if (EatIfPresent(lltok::kw_load))
3089      return ParseLoad(Inst, PFS, true);
3090    else if (EatIfPresent(lltok::kw_store))
3091      return ParseStore(Inst, PFS, true);
3092    else
3093      return TokError("expected 'load' or 'store'");
3094  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3095  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3096  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3097  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3098  }
3099}
3100
3101/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3102bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3103  if (Opc == Instruction::FCmp) {
3104    switch (Lex.getKind()) {
3105    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3106    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3107    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3108    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3109    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3110    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3111    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3112    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3113    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3114    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3115    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3116    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3117    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3118    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3119    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3120    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3121    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3122    }
3123  } else {
3124    switch (Lex.getKind()) {
3125    default: TokError("expected icmp predicate (e.g. 'eq')");
3126    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3127    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3128    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3129    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3130    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3131    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3132    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3133    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3134    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3135    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3136    }
3137  }
3138  Lex.Lex();
3139  return false;
3140}
3141
3142//===----------------------------------------------------------------------===//
3143// Terminator Instructions.
3144//===----------------------------------------------------------------------===//
3145
3146/// ParseRet - Parse a return instruction.
3147///   ::= 'ret' void (',' !dbg, !1)*
3148///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3149///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3150///         [[obsolete: LLVM 3.0]]
3151int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3152                       PerFunctionState &PFS) {
3153  PATypeHolder Ty(Type::getVoidTy(Context));
3154  if (ParseType(Ty, true /*void allowed*/)) return true;
3155
3156  if (Ty->isVoidTy()) {
3157    Inst = ReturnInst::Create(Context);
3158    return false;
3159  }
3160
3161  Value *RV;
3162  if (ParseValue(Ty, RV, PFS)) return true;
3163
3164  bool ExtraComma = false;
3165  if (EatIfPresent(lltok::comma)) {
3166    // Parse optional custom metadata, e.g. !dbg
3167    if (Lex.getKind() == lltok::MetadataVar) {
3168      ExtraComma = true;
3169    } else {
3170      // The normal case is one return value.
3171      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3172      // use of 'ret {i32,i32} {i32 1, i32 2}'
3173      SmallVector<Value*, 8> RVs;
3174      RVs.push_back(RV);
3175
3176      do {
3177        // If optional custom metadata, e.g. !dbg is seen then this is the
3178        // end of MRV.
3179        if (Lex.getKind() == lltok::MetadataVar)
3180          break;
3181        if (ParseTypeAndValue(RV, PFS)) return true;
3182        RVs.push_back(RV);
3183      } while (EatIfPresent(lltok::comma));
3184
3185      RV = UndefValue::get(PFS.getFunction().getReturnType());
3186      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3187        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3188        BB->getInstList().push_back(I);
3189        RV = I;
3190      }
3191    }
3192  }
3193
3194  Inst = ReturnInst::Create(Context, RV);
3195  return ExtraComma ? InstExtraComma : InstNormal;
3196}
3197
3198
3199/// ParseBr
3200///   ::= 'br' TypeAndValue
3201///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3202bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3203  LocTy Loc, Loc2;
3204  Value *Op0;
3205  BasicBlock *Op1, *Op2;
3206  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3207
3208  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3209    Inst = BranchInst::Create(BB);
3210    return false;
3211  }
3212
3213  if (Op0->getType() != Type::getInt1Ty(Context))
3214    return Error(Loc, "branch condition must have 'i1' type");
3215
3216  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3217      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3218      ParseToken(lltok::comma, "expected ',' after true destination") ||
3219      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3220    return true;
3221
3222  Inst = BranchInst::Create(Op1, Op2, Op0);
3223  return false;
3224}
3225
3226/// ParseSwitch
3227///  Instruction
3228///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3229///  JumpTable
3230///    ::= (TypeAndValue ',' TypeAndValue)*
3231bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3232  LocTy CondLoc, BBLoc;
3233  Value *Cond;
3234  BasicBlock *DefaultBB;
3235  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3236      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3237      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3238      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3239    return true;
3240
3241  if (!Cond->getType()->isIntegerTy())
3242    return Error(CondLoc, "switch condition must have integer type");
3243
3244  // Parse the jump table pairs.
3245  SmallPtrSet<Value*, 32> SeenCases;
3246  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3247  while (Lex.getKind() != lltok::rsquare) {
3248    Value *Constant;
3249    BasicBlock *DestBB;
3250
3251    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3252        ParseToken(lltok::comma, "expected ',' after case value") ||
3253        ParseTypeAndBasicBlock(DestBB, PFS))
3254      return true;
3255
3256    if (!SeenCases.insert(Constant))
3257      return Error(CondLoc, "duplicate case value in switch");
3258    if (!isa<ConstantInt>(Constant))
3259      return Error(CondLoc, "case value is not a constant integer");
3260
3261    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3262  }
3263
3264  Lex.Lex();  // Eat the ']'.
3265
3266  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3267  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3268    SI->addCase(Table[i].first, Table[i].second);
3269  Inst = SI;
3270  return false;
3271}
3272
3273/// ParseIndirectBr
3274///  Instruction
3275///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3276bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3277  LocTy AddrLoc;
3278  Value *Address;
3279  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3280      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3281      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3282    return true;
3283
3284  if (!Address->getType()->isPointerTy())
3285    return Error(AddrLoc, "indirectbr address must have pointer type");
3286
3287  // Parse the destination list.
3288  SmallVector<BasicBlock*, 16> DestList;
3289
3290  if (Lex.getKind() != lltok::rsquare) {
3291    BasicBlock *DestBB;
3292    if (ParseTypeAndBasicBlock(DestBB, PFS))
3293      return true;
3294    DestList.push_back(DestBB);
3295
3296    while (EatIfPresent(lltok::comma)) {
3297      if (ParseTypeAndBasicBlock(DestBB, PFS))
3298        return true;
3299      DestList.push_back(DestBB);
3300    }
3301  }
3302
3303  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3304    return true;
3305
3306  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3307  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3308    IBI->addDestination(DestList[i]);
3309  Inst = IBI;
3310  return false;
3311}
3312
3313
3314/// ParseInvoke
3315///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3316///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3317bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3318  LocTy CallLoc = Lex.getLoc();
3319  unsigned RetAttrs, FnAttrs;
3320  CallingConv::ID CC;
3321  PATypeHolder RetType(Type::getVoidTy(Context));
3322  LocTy RetTypeLoc;
3323  ValID CalleeID;
3324  SmallVector<ParamInfo, 16> ArgList;
3325
3326  BasicBlock *NormalBB, *UnwindBB;
3327  if (ParseOptionalCallingConv(CC) ||
3328      ParseOptionalAttrs(RetAttrs, 1) ||
3329      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3330      ParseValID(CalleeID) ||
3331      ParseParameterList(ArgList, PFS) ||
3332      ParseOptionalAttrs(FnAttrs, 2) ||
3333      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3334      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3335      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3336      ParseTypeAndBasicBlock(UnwindBB, PFS))
3337    return true;
3338
3339  // If RetType is a non-function pointer type, then this is the short syntax
3340  // for the call, which means that RetType is just the return type.  Infer the
3341  // rest of the function argument types from the arguments that are present.
3342  const PointerType *PFTy = 0;
3343  const FunctionType *Ty = 0;
3344  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3345      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3346    // Pull out the types of all of the arguments...
3347    std::vector<const Type*> ParamTypes;
3348    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3349      ParamTypes.push_back(ArgList[i].V->getType());
3350
3351    if (!FunctionType::isValidReturnType(RetType))
3352      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3353
3354    Ty = FunctionType::get(RetType, ParamTypes, false);
3355    PFTy = PointerType::getUnqual(Ty);
3356  }
3357
3358  // Look up the callee.
3359  Value *Callee;
3360  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3361
3362  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3363  // function attributes.
3364  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3365  if (FnAttrs & ObsoleteFuncAttrs) {
3366    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3367    FnAttrs &= ~ObsoleteFuncAttrs;
3368  }
3369
3370  // Set up the Attributes for the function.
3371  SmallVector<AttributeWithIndex, 8> Attrs;
3372  if (RetAttrs != Attribute::None)
3373    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3374
3375  SmallVector<Value*, 8> Args;
3376
3377  // Loop through FunctionType's arguments and ensure they are specified
3378  // correctly.  Also, gather any parameter attributes.
3379  FunctionType::param_iterator I = Ty->param_begin();
3380  FunctionType::param_iterator E = Ty->param_end();
3381  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3382    const Type *ExpectedTy = 0;
3383    if (I != E) {
3384      ExpectedTy = *I++;
3385    } else if (!Ty->isVarArg()) {
3386      return Error(ArgList[i].Loc, "too many arguments specified");
3387    }
3388
3389    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3390      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3391                   ExpectedTy->getDescription() + "'");
3392    Args.push_back(ArgList[i].V);
3393    if (ArgList[i].Attrs != Attribute::None)
3394      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3395  }
3396
3397  if (I != E)
3398    return Error(CallLoc, "not enough parameters specified for call");
3399
3400  if (FnAttrs != Attribute::None)
3401    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3402
3403  // Finish off the Attributes and check them
3404  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3405
3406  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3407                                      Args.begin(), Args.end());
3408  II->setCallingConv(CC);
3409  II->setAttributes(PAL);
3410  Inst = II;
3411  return false;
3412}
3413
3414
3415
3416//===----------------------------------------------------------------------===//
3417// Binary Operators.
3418//===----------------------------------------------------------------------===//
3419
3420/// ParseArithmetic
3421///  ::= ArithmeticOps TypeAndValue ',' Value
3422///
3423/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3424/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3425bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3426                               unsigned Opc, unsigned OperandType) {
3427  LocTy Loc; Value *LHS, *RHS;
3428  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3429      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3430      ParseValue(LHS->getType(), RHS, PFS))
3431    return true;
3432
3433  bool Valid;
3434  switch (OperandType) {
3435  default: llvm_unreachable("Unknown operand type!");
3436  case 0: // int or FP.
3437    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3438            LHS->getType()->isFPOrFPVectorTy();
3439    break;
3440  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3441  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3442  }
3443
3444  if (!Valid)
3445    return Error(Loc, "invalid operand type for instruction");
3446
3447  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3448  return false;
3449}
3450
3451/// ParseLogical
3452///  ::= ArithmeticOps TypeAndValue ',' Value {
3453bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3454                            unsigned Opc) {
3455  LocTy Loc; Value *LHS, *RHS;
3456  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3457      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3458      ParseValue(LHS->getType(), RHS, PFS))
3459    return true;
3460
3461  if (!LHS->getType()->isIntOrIntVectorTy())
3462    return Error(Loc,"instruction requires integer or integer vector operands");
3463
3464  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3465  return false;
3466}
3467
3468
3469/// ParseCompare
3470///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3471///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3472bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3473                            unsigned Opc) {
3474  // Parse the integer/fp comparison predicate.
3475  LocTy Loc;
3476  unsigned Pred;
3477  Value *LHS, *RHS;
3478  if (ParseCmpPredicate(Pred, Opc) ||
3479      ParseTypeAndValue(LHS, Loc, PFS) ||
3480      ParseToken(lltok::comma, "expected ',' after compare value") ||
3481      ParseValue(LHS->getType(), RHS, PFS))
3482    return true;
3483
3484  if (Opc == Instruction::FCmp) {
3485    if (!LHS->getType()->isFPOrFPVectorTy())
3486      return Error(Loc, "fcmp requires floating point operands");
3487    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3488  } else {
3489    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3490    if (!LHS->getType()->isIntOrIntVectorTy() &&
3491        !LHS->getType()->isPointerTy())
3492      return Error(Loc, "icmp requires integer operands");
3493    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3494  }
3495  return false;
3496}
3497
3498//===----------------------------------------------------------------------===//
3499// Other Instructions.
3500//===----------------------------------------------------------------------===//
3501
3502
3503/// ParseCast
3504///   ::= CastOpc TypeAndValue 'to' Type
3505bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3506                         unsigned Opc) {
3507  LocTy Loc;  Value *Op;
3508  PATypeHolder DestTy(Type::getVoidTy(Context));
3509  if (ParseTypeAndValue(Op, Loc, PFS) ||
3510      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3511      ParseType(DestTy))
3512    return true;
3513
3514  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3515    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3516    return Error(Loc, "invalid cast opcode for cast from '" +
3517                 Op->getType()->getDescription() + "' to '" +
3518                 DestTy->getDescription() + "'");
3519  }
3520  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3521  return false;
3522}
3523
3524/// ParseSelect
3525///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3526bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3527  LocTy Loc;
3528  Value *Op0, *Op1, *Op2;
3529  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3530      ParseToken(lltok::comma, "expected ',' after select condition") ||
3531      ParseTypeAndValue(Op1, PFS) ||
3532      ParseToken(lltok::comma, "expected ',' after select value") ||
3533      ParseTypeAndValue(Op2, PFS))
3534    return true;
3535
3536  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3537    return Error(Loc, Reason);
3538
3539  Inst = SelectInst::Create(Op0, Op1, Op2);
3540  return false;
3541}
3542
3543/// ParseVA_Arg
3544///   ::= 'va_arg' TypeAndValue ',' Type
3545bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3546  Value *Op;
3547  PATypeHolder EltTy(Type::getVoidTy(Context));
3548  LocTy TypeLoc;
3549  if (ParseTypeAndValue(Op, PFS) ||
3550      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3551      ParseType(EltTy, TypeLoc))
3552    return true;
3553
3554  if (!EltTy->isFirstClassType())
3555    return Error(TypeLoc, "va_arg requires operand with first class type");
3556
3557  Inst = new VAArgInst(Op, EltTy);
3558  return false;
3559}
3560
3561/// ParseExtractElement
3562///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3563bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3564  LocTy Loc;
3565  Value *Op0, *Op1;
3566  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3567      ParseToken(lltok::comma, "expected ',' after extract value") ||
3568      ParseTypeAndValue(Op1, PFS))
3569    return true;
3570
3571  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3572    return Error(Loc, "invalid extractelement operands");
3573
3574  Inst = ExtractElementInst::Create(Op0, Op1);
3575  return false;
3576}
3577
3578/// ParseInsertElement
3579///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3580bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3581  LocTy Loc;
3582  Value *Op0, *Op1, *Op2;
3583  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3584      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3585      ParseTypeAndValue(Op1, PFS) ||
3586      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3587      ParseTypeAndValue(Op2, PFS))
3588    return true;
3589
3590  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3591    return Error(Loc, "invalid insertelement operands");
3592
3593  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3594  return false;
3595}
3596
3597/// ParseShuffleVector
3598///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3599bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3600  LocTy Loc;
3601  Value *Op0, *Op1, *Op2;
3602  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3603      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3604      ParseTypeAndValue(Op1, PFS) ||
3605      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3606      ParseTypeAndValue(Op2, PFS))
3607    return true;
3608
3609  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3610    return Error(Loc, "invalid extractelement operands");
3611
3612  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3613  return false;
3614}
3615
3616/// ParsePHI
3617///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3618int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3619  PATypeHolder Ty(Type::getVoidTy(Context));
3620  Value *Op0, *Op1;
3621  LocTy TypeLoc = Lex.getLoc();
3622
3623  if (ParseType(Ty) ||
3624      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3625      ParseValue(Ty, Op0, PFS) ||
3626      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3627      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3628      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3629    return true;
3630
3631  bool AteExtraComma = false;
3632  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3633  while (1) {
3634    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3635
3636    if (!EatIfPresent(lltok::comma))
3637      break;
3638
3639    if (Lex.getKind() == lltok::MetadataVar) {
3640      AteExtraComma = true;
3641      break;
3642    }
3643
3644    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3645        ParseValue(Ty, Op0, PFS) ||
3646        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3647        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3648        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3649      return true;
3650  }
3651
3652  if (!Ty->isFirstClassType())
3653    return Error(TypeLoc, "phi node must have first class type");
3654
3655  PHINode *PN = PHINode::Create(Ty);
3656  PN->reserveOperandSpace(PHIVals.size());
3657  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3658    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3659  Inst = PN;
3660  return AteExtraComma ? InstExtraComma : InstNormal;
3661}
3662
3663/// ParseCall
3664///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3665///       ParameterList OptionalAttrs
3666bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3667                         bool isTail) {
3668  unsigned RetAttrs, FnAttrs;
3669  CallingConv::ID CC;
3670  PATypeHolder RetType(Type::getVoidTy(Context));
3671  LocTy RetTypeLoc;
3672  ValID CalleeID;
3673  SmallVector<ParamInfo, 16> ArgList;
3674  LocTy CallLoc = Lex.getLoc();
3675
3676  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3677      ParseOptionalCallingConv(CC) ||
3678      ParseOptionalAttrs(RetAttrs, 1) ||
3679      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3680      ParseValID(CalleeID) ||
3681      ParseParameterList(ArgList, PFS) ||
3682      ParseOptionalAttrs(FnAttrs, 2))
3683    return true;
3684
3685  // If RetType is a non-function pointer type, then this is the short syntax
3686  // for the call, which means that RetType is just the return type.  Infer the
3687  // rest of the function argument types from the arguments that are present.
3688  const PointerType *PFTy = 0;
3689  const FunctionType *Ty = 0;
3690  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3691      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3692    // Pull out the types of all of the arguments...
3693    std::vector<const Type*> ParamTypes;
3694    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3695      ParamTypes.push_back(ArgList[i].V->getType());
3696
3697    if (!FunctionType::isValidReturnType(RetType))
3698      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3699
3700    Ty = FunctionType::get(RetType, ParamTypes, false);
3701    PFTy = PointerType::getUnqual(Ty);
3702  }
3703
3704  // Look up the callee.
3705  Value *Callee;
3706  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3707
3708  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3709  // function attributes.
3710  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3711  if (FnAttrs & ObsoleteFuncAttrs) {
3712    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3713    FnAttrs &= ~ObsoleteFuncAttrs;
3714  }
3715
3716  // Set up the Attributes for the function.
3717  SmallVector<AttributeWithIndex, 8> Attrs;
3718  if (RetAttrs != Attribute::None)
3719    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3720
3721  SmallVector<Value*, 8> Args;
3722
3723  // Loop through FunctionType's arguments and ensure they are specified
3724  // correctly.  Also, gather any parameter attributes.
3725  FunctionType::param_iterator I = Ty->param_begin();
3726  FunctionType::param_iterator E = Ty->param_end();
3727  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3728    const Type *ExpectedTy = 0;
3729    if (I != E) {
3730      ExpectedTy = *I++;
3731    } else if (!Ty->isVarArg()) {
3732      return Error(ArgList[i].Loc, "too many arguments specified");
3733    }
3734
3735    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3736      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3737                   ExpectedTy->getDescription() + "'");
3738    Args.push_back(ArgList[i].V);
3739    if (ArgList[i].Attrs != Attribute::None)
3740      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3741  }
3742
3743  if (I != E)
3744    return Error(CallLoc, "not enough parameters specified for call");
3745
3746  if (FnAttrs != Attribute::None)
3747    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3748
3749  // Finish off the Attributes and check them
3750  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3751
3752  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3753  CI->setTailCall(isTail);
3754  CI->setCallingConv(CC);
3755  CI->setAttributes(PAL);
3756  Inst = CI;
3757  return false;
3758}
3759
3760//===----------------------------------------------------------------------===//
3761// Memory Instructions.
3762//===----------------------------------------------------------------------===//
3763
3764/// ParseAlloc
3765///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3766///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3767int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3768                         BasicBlock* BB, bool isAlloca) {
3769  PATypeHolder Ty(Type::getVoidTy(Context));
3770  Value *Size = 0;
3771  LocTy SizeLoc;
3772  unsigned Alignment = 0;
3773  if (ParseType(Ty)) return true;
3774
3775  bool AteExtraComma = false;
3776  if (EatIfPresent(lltok::comma)) {
3777    if (Lex.getKind() == lltok::kw_align) {
3778      if (ParseOptionalAlignment(Alignment)) return true;
3779    } else if (Lex.getKind() == lltok::MetadataVar) {
3780      AteExtraComma = true;
3781    } else {
3782      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3783          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3784        return true;
3785    }
3786  }
3787
3788  if (Size && !Size->getType()->isIntegerTy())
3789    return Error(SizeLoc, "element count must have integer type");
3790
3791  if (isAlloca) {
3792    Inst = new AllocaInst(Ty, Size, Alignment);
3793    return AteExtraComma ? InstExtraComma : InstNormal;
3794  }
3795
3796  // Autoupgrade old malloc instruction to malloc call.
3797  // FIXME: Remove in LLVM 3.0.
3798  if (Size && !Size->getType()->isIntegerTy(32))
3799    return Error(SizeLoc, "element count must be i32");
3800  const Type *IntPtrTy = Type::getInt32Ty(Context);
3801  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3802  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3803  if (!MallocF)
3804    // Prototype malloc as "void *(int32)".
3805    // This function is renamed as "malloc" in ValidateEndOfModule().
3806    MallocF = cast<Function>(
3807       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3808  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3809return AteExtraComma ? InstExtraComma : InstNormal;
3810}
3811
3812/// ParseFree
3813///   ::= 'free' TypeAndValue
3814bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3815                         BasicBlock* BB) {
3816  Value *Val; LocTy Loc;
3817  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3818  if (!Val->getType()->isPointerTy())
3819    return Error(Loc, "operand to free must be a pointer");
3820  Inst = CallInst::CreateFree(Val, BB);
3821  return false;
3822}
3823
3824/// ParseLoad
3825///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3826int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3827                        bool isVolatile) {
3828  Value *Val; LocTy Loc;
3829  unsigned Alignment = 0;
3830  bool AteExtraComma = false;
3831  if (ParseTypeAndValue(Val, Loc, PFS) ||
3832      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3833    return true;
3834
3835  if (!Val->getType()->isPointerTy() ||
3836      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3837    return Error(Loc, "load operand must be a pointer to a first class type");
3838
3839  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3840  return AteExtraComma ? InstExtraComma : InstNormal;
3841}
3842
3843/// ParseStore
3844///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3845int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3846                         bool isVolatile) {
3847  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3848  unsigned Alignment = 0;
3849  bool AteExtraComma = false;
3850  if (ParseTypeAndValue(Val, Loc, PFS) ||
3851      ParseToken(lltok::comma, "expected ',' after store operand") ||
3852      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3853      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3854    return true;
3855
3856  if (!Ptr->getType()->isPointerTy())
3857    return Error(PtrLoc, "store operand must be a pointer");
3858  if (!Val->getType()->isFirstClassType())
3859    return Error(Loc, "store operand must be a first class value");
3860  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3861    return Error(Loc, "stored value and pointer type do not match");
3862
3863  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3864  return AteExtraComma ? InstExtraComma : InstNormal;
3865}
3866
3867/// ParseGetResult
3868///   ::= 'getresult' TypeAndValue ',' i32
3869/// FIXME: Remove support for getresult in LLVM 3.0
3870bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3871  Value *Val; LocTy ValLoc, EltLoc;
3872  unsigned Element;
3873  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3874      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3875      ParseUInt32(Element, EltLoc))
3876    return true;
3877
3878  if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3879    return Error(ValLoc, "getresult inst requires an aggregate operand");
3880  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3881    return Error(EltLoc, "invalid getresult index for value");
3882  Inst = ExtractValueInst::Create(Val, Element);
3883  return false;
3884}
3885
3886/// ParseGetElementPtr
3887///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3888int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3889  Value *Ptr, *Val; LocTy Loc, EltLoc;
3890
3891  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3892
3893  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3894
3895  if (!Ptr->getType()->isPointerTy())
3896    return Error(Loc, "base of getelementptr must be a pointer");
3897
3898  SmallVector<Value*, 16> Indices;
3899  bool AteExtraComma = false;
3900  while (EatIfPresent(lltok::comma)) {
3901    if (Lex.getKind() == lltok::MetadataVar) {
3902      AteExtraComma = true;
3903      break;
3904    }
3905    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3906    if (!Val->getType()->isIntegerTy())
3907      return Error(EltLoc, "getelementptr index must be an integer");
3908    Indices.push_back(Val);
3909  }
3910
3911  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3912                                         Indices.begin(), Indices.end()))
3913    return Error(Loc, "invalid getelementptr indices");
3914  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3915  if (InBounds)
3916    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3917  return AteExtraComma ? InstExtraComma : InstNormal;
3918}
3919
3920/// ParseExtractValue
3921///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3922int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3923  Value *Val; LocTy Loc;
3924  SmallVector<unsigned, 4> Indices;
3925  bool AteExtraComma;
3926  if (ParseTypeAndValue(Val, Loc, PFS) ||
3927      ParseIndexList(Indices, AteExtraComma))
3928    return true;
3929
3930  if (!Val->getType()->isAggregateType())
3931    return Error(Loc, "extractvalue operand must be aggregate type");
3932
3933  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3934                                        Indices.end()))
3935    return Error(Loc, "invalid indices for extractvalue");
3936  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3937  return AteExtraComma ? InstExtraComma : InstNormal;
3938}
3939
3940/// ParseInsertValue
3941///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3942int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3943  Value *Val0, *Val1; LocTy Loc0, Loc1;
3944  SmallVector<unsigned, 4> Indices;
3945  bool AteExtraComma;
3946  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3947      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3948      ParseTypeAndValue(Val1, Loc1, PFS) ||
3949      ParseIndexList(Indices, AteExtraComma))
3950    return true;
3951
3952  if (!Val0->getType()->isAggregateType())
3953    return Error(Loc0, "insertvalue operand must be aggregate type");
3954
3955  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3956                                        Indices.end()))
3957    return Error(Loc0, "invalid indices for insertvalue");
3958  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3959  return AteExtraComma ? InstExtraComma : InstNormal;
3960}
3961
3962//===----------------------------------------------------------------------===//
3963// Embedded metadata.
3964//===----------------------------------------------------------------------===//
3965
3966/// ParseMDNodeVector
3967///   ::= Element (',' Element)*
3968/// Element
3969///   ::= 'null' | TypeAndValue
3970bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3971                                 PerFunctionState *PFS) {
3972  // Check for an empty list.
3973  if (Lex.getKind() == lltok::rbrace)
3974    return false;
3975
3976  do {
3977    // Null is a special case since it is typeless.
3978    if (EatIfPresent(lltok::kw_null)) {
3979      Elts.push_back(0);
3980      continue;
3981    }
3982
3983    Value *V = 0;
3984    PATypeHolder Ty(Type::getVoidTy(Context));
3985    ValID ID;
3986    if (ParseType(Ty) || ParseValID(ID, PFS) ||
3987        ConvertValIDToValue(Ty, ID, V, PFS))
3988      return true;
3989
3990    Elts.push_back(V);
3991  } while (EatIfPresent(lltok::comma));
3992
3993  return false;
3994}
3995