LLParser.cpp revision 3ed88efb03c63aae5542efcdfc5cedec9bc4c18a
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28namespace llvm {
29  /// ValID - Represents a reference of a definition of some sort with no type.
30  /// There are several cases where we have to parse the value but where the
31  /// type can depend on later context.  This may either be a numeric reference
32  /// or a symbolic (%var) reference.  This is just a discriminated union.
33  struct ValID {
34    enum {
35      t_LocalID, t_GlobalID,      // ID in UIntVal.
36      t_LocalName, t_GlobalName,  // Name in StrVal.
37      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
38      t_Null, t_Undef, t_Zero,    // No value.
39      t_Constant,                 // Value in ConstantVal.
40      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
41    } Kind;
42
43    LLParser::LocTy Loc;
44    unsigned UIntVal;
45    std::string StrVal, StrVal2;
46    APSInt APSIntVal;
47    APFloat APFloatVal;
48    Constant *ConstantVal;
49    ValID() : APFloatVal(0.0) {}
50  };
51}
52
53/// Run: module ::= toplevelentity*
54Module *LLParser::Run() {
55  M = new Module(Lex.getFilename());
56
57  // Prime the lexer.
58  Lex.Lex();
59
60  if (ParseTopLevelEntities() ||
61      ValidateEndOfModule()) {
62    delete M;
63    return 0;
64  }
65
66  return M;
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72  if (!ForwardRefTypes.empty())
73    return Error(ForwardRefTypes.begin()->second.second,
74                 "use of undefined type named '" +
75                 ForwardRefTypes.begin()->first + "'");
76  if (!ForwardRefTypeIDs.empty())
77    return Error(ForwardRefTypeIDs.begin()->second.second,
78                 "use of undefined type '%" +
79                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
80
81  if (!ForwardRefVals.empty())
82    return Error(ForwardRefVals.begin()->second.second,
83                 "use of undefined value '@" + ForwardRefVals.begin()->first +
84                 "'");
85
86  if (!ForwardRefValIDs.empty())
87    return Error(ForwardRefValIDs.begin()->second.second,
88                 "use of undefined value '@" +
89                 utostr(ForwardRefValIDs.begin()->first) + "'");
90
91  // Look for intrinsic functions and CallInst that need to be upgraded
92  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
93    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
94
95  return false;
96}
97
98//===----------------------------------------------------------------------===//
99// Top-Level Entities
100//===----------------------------------------------------------------------===//
101
102bool LLParser::ParseTopLevelEntities() {
103  while (1) {
104    switch (Lex.getKind()) {
105    default:         return TokError("expected top-level entity");
106    case lltok::Eof: return false;
107    //case lltok::kw_define:
108    case lltok::kw_declare: if (ParseDeclare()) return true; break;
109    case lltok::kw_define:  if (ParseDefine()) return true; break;
110    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
111    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
112    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
113    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
114    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
115    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
116    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
117
118    // The Global variable production with no name can have many different
119    // optional leading prefixes, the production is:
120    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
121    //               OptionalAddrSpace ('constant'|'global') ...
122    case lltok::kw_internal:      // OptionalLinkage
123    case lltok::kw_weak:          // OptionalLinkage
124    case lltok::kw_linkonce:      // OptionalLinkage
125    case lltok::kw_appending:     // OptionalLinkage
126    case lltok::kw_dllexport:     // OptionalLinkage
127    case lltok::kw_common:        // OptionalLinkage
128    case lltok::kw_dllimport:     // OptionalLinkage
129    case lltok::kw_extern_weak:   // OptionalLinkage
130    case lltok::kw_external: {    // OptionalLinkage
131      unsigned Linkage, Visibility;
132      if (ParseOptionalLinkage(Linkage) ||
133          ParseOptionalVisibility(Visibility) ||
134          ParseGlobal("", 0, Linkage, true, Visibility))
135        return true;
136      break;
137    }
138    case lltok::kw_default:       // OptionalVisibility
139    case lltok::kw_hidden:        // OptionalVisibility
140    case lltok::kw_protected: {   // OptionalVisibility
141      unsigned Visibility;
142      if (ParseOptionalVisibility(Visibility) ||
143          ParseGlobal("", 0, 0, false, Visibility))
144        return true;
145      break;
146    }
147
148    case lltok::kw_thread_local:  // OptionalThreadLocal
149    case lltok::kw_addrspace:     // OptionalAddrSpace
150    case lltok::kw_constant:      // GlobalType
151    case lltok::kw_global:        // GlobalType
152      if (ParseGlobal("", 0, 0, false, 0)) return true;
153      break;
154    }
155  }
156}
157
158
159/// toplevelentity
160///   ::= 'module' 'asm' STRINGCONSTANT
161bool LLParser::ParseModuleAsm() {
162  assert(Lex.getKind() == lltok::kw_module);
163  Lex.Lex();
164
165  std::string AsmStr;
166  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
167      ParseStringConstant(AsmStr)) return true;
168
169  const std::string &AsmSoFar = M->getModuleInlineAsm();
170  if (AsmSoFar.empty())
171    M->setModuleInlineAsm(AsmStr);
172  else
173    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
174  return false;
175}
176
177/// toplevelentity
178///   ::= 'target' 'triple' '=' STRINGCONSTANT
179///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
180bool LLParser::ParseTargetDefinition() {
181  assert(Lex.getKind() == lltok::kw_target);
182  std::string Str;
183  switch (Lex.Lex()) {
184  default: return TokError("unknown target property");
185  case lltok::kw_triple:
186    Lex.Lex();
187    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
188        ParseStringConstant(Str))
189      return true;
190    M->setTargetTriple(Str);
191    return false;
192  case lltok::kw_datalayout:
193    Lex.Lex();
194    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
195        ParseStringConstant(Str))
196      return true;
197    M->setDataLayout(Str);
198    return false;
199  }
200}
201
202/// toplevelentity
203///   ::= 'deplibs' '=' '[' ']'
204///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
205bool LLParser::ParseDepLibs() {
206  assert(Lex.getKind() == lltok::kw_deplibs);
207  Lex.Lex();
208  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
209      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
210    return true;
211
212  if (EatIfPresent(lltok::rsquare))
213    return false;
214
215  std::string Str;
216  if (ParseStringConstant(Str)) return true;
217  M->addLibrary(Str);
218
219  while (EatIfPresent(lltok::comma)) {
220    if (ParseStringConstant(Str)) return true;
221    M->addLibrary(Str);
222  }
223
224  return ParseToken(lltok::rsquare, "expected ']' at end of list");
225}
226
227/// toplevelentity
228///   ::= 'type' type
229bool LLParser::ParseUnnamedType() {
230  assert(Lex.getKind() == lltok::kw_type);
231  LocTy TypeLoc = Lex.getLoc();
232  Lex.Lex(); // eat kw_type
233
234  PATypeHolder Ty(Type::VoidTy);
235  if (ParseType(Ty)) return true;
236
237  unsigned TypeID = NumberedTypes.size();
238
239  // We don't allow assigning names to void type
240  if (Ty == Type::VoidTy)
241    return Error(TypeLoc, "can't assign name to the void type");
242
243  // See if this type was previously referenced.
244  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
245    FI = ForwardRefTypeIDs.find(TypeID);
246  if (FI != ForwardRefTypeIDs.end()) {
247    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
248    Ty = FI->second.first.get();
249    ForwardRefTypeIDs.erase(FI);
250  }
251
252  NumberedTypes.push_back(Ty);
253
254  return false;
255}
256
257/// toplevelentity
258///   ::= LocalVar '=' 'type' type
259bool LLParser::ParseNamedType() {
260  std::string Name = Lex.getStrVal();
261  LocTy NameLoc = Lex.getLoc();
262  Lex.Lex();  // eat LocalVar.
263
264  PATypeHolder Ty(Type::VoidTy);
265
266  if (ParseToken(lltok::equal, "expected '=' after name") ||
267      ParseToken(lltok::kw_type, "expected 'type' after name") ||
268      ParseType(Ty))
269    return true;
270
271  // We don't allow assigning names to void type
272  if (Ty == Type::VoidTy)
273    return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
274
275  // Set the type name, checking for conflicts as we do so.
276  bool AlreadyExists = M->addTypeName(Name, Ty);
277  if (!AlreadyExists) return false;
278
279  // See if this type is a forward reference.  We need to eagerly resolve
280  // types to allow recursive type redefinitions below.
281  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
282  FI = ForwardRefTypes.find(Name);
283  if (FI != ForwardRefTypes.end()) {
284    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
285    Ty = FI->second.first.get();
286    ForwardRefTypes.erase(FI);
287  }
288
289  // Inserting a name that is already defined, get the existing name.
290  const Type *Existing = M->getTypeByName(Name);
291  assert(Existing && "Conflict but no matching type?!");
292
293  // Otherwise, this is an attempt to redefine a type. That's okay if
294  // the redefinition is identical to the original.
295  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
296  if (Existing == Ty) return false;
297
298  // Any other kind of (non-equivalent) redefinition is an error.
299  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
300               Ty->getDescription() + "'");
301}
302
303
304/// toplevelentity
305///   ::= 'declare' FunctionHeader
306bool LLParser::ParseDeclare() {
307  assert(Lex.getKind() == lltok::kw_declare);
308  Lex.Lex();
309
310  Function *F;
311  return ParseFunctionHeader(F, false);
312}
313
314/// toplevelentity
315///   ::= 'define' FunctionHeader '{' ...
316bool LLParser::ParseDefine() {
317  assert(Lex.getKind() == lltok::kw_define);
318  Lex.Lex();
319
320  Function *F;
321  return ParseFunctionHeader(F, true) ||
322         ParseFunctionBody(*F);
323}
324
325/// ParseGlobalType
326///   ::= 'constant'
327///   ::= 'global'
328bool LLParser::ParseGlobalType(bool &IsConstant) {
329  if (Lex.getKind() == lltok::kw_constant)
330    IsConstant = true;
331  else if (Lex.getKind() == lltok::kw_global)
332    IsConstant = false;
333  else
334    return TokError("expected 'global' or 'constant'");
335  Lex.Lex();
336  return false;
337}
338
339/// ParseNamedGlobal:
340///   GlobalVar '=' OptionalVisibility ALIAS ...
341///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
342bool LLParser::ParseNamedGlobal() {
343  assert(Lex.getKind() == lltok::GlobalVar);
344  LocTy NameLoc = Lex.getLoc();
345  std::string Name = Lex.getStrVal();
346  Lex.Lex();
347
348  bool HasLinkage;
349  unsigned Linkage, Visibility;
350  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
351      ParseOptionalLinkage(Linkage, HasLinkage) ||
352      ParseOptionalVisibility(Visibility))
353    return true;
354
355  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
356    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
357  return ParseAlias(Name, NameLoc, Visibility);
358}
359
360/// ParseAlias:
361///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
362/// Aliasee
363///   ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
364///
365/// Everything through visibility has already been parsed.
366///
367bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
368                          unsigned Visibility) {
369  assert(Lex.getKind() == lltok::kw_alias);
370  Lex.Lex();
371  unsigned Linkage;
372  LocTy LinkageLoc = Lex.getLoc();
373  if (ParseOptionalLinkage(Linkage))
374    return true;
375
376  if (Linkage != GlobalValue::ExternalLinkage &&
377      Linkage != GlobalValue::WeakLinkage &&
378      Linkage != GlobalValue::InternalLinkage)
379    return Error(LinkageLoc, "invalid linkage type for alias");
380
381  Constant *Aliasee;
382  LocTy AliaseeLoc = Lex.getLoc();
383  if (Lex.getKind() != lltok::kw_bitcast) {
384    if (ParseGlobalTypeAndValue(Aliasee)) return true;
385  } else {
386    // The bitcast dest type is not present, it is implied by the dest type.
387    ValID ID;
388    if (ParseValID(ID)) return true;
389    if (ID.Kind != ValID::t_Constant)
390      return Error(AliaseeLoc, "invalid aliasee");
391    Aliasee = ID.ConstantVal;
392  }
393
394  if (!isa<PointerType>(Aliasee->getType()))
395    return Error(AliaseeLoc, "alias must have pointer type");
396
397  // Okay, create the alias but do not insert it into the module yet.
398  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
399                                    (GlobalValue::LinkageTypes)Linkage, Name,
400                                    Aliasee);
401  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
402
403  // See if this value already exists in the symbol table.  If so, it is either
404  // a redefinition or a definition of a forward reference.
405  if (GlobalValue *Val =
406        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
407    // See if this was a redefinition.  If so, there is no entry in
408    // ForwardRefVals.
409    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
410      I = ForwardRefVals.find(Name);
411    if (I == ForwardRefVals.end())
412      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
413
414    // Otherwise, this was a definition of forward ref.  Verify that types
415    // agree.
416    if (Val->getType() != GA->getType())
417      return Error(NameLoc,
418              "forward reference and definition of alias have different types");
419
420    // If they agree, just RAUW the old value with the alias and remove the
421    // forward ref info.
422    Val->replaceAllUsesWith(GA);
423    Val->eraseFromParent();
424    ForwardRefVals.erase(I);
425  }
426
427  // Insert into the module, we know its name won't collide now.
428  M->getAliasList().push_back(GA);
429  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
430
431  return false;
432}
433
434/// ParseGlobal
435///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
436///       OptionalAddrSpace GlobalType Type Const
437///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
438///       OptionalAddrSpace GlobalType Type Const
439///
440/// Everything through visibility has been parsed already.
441///
442bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
443                           unsigned Linkage, bool HasLinkage,
444                           unsigned Visibility) {
445  unsigned AddrSpace;
446  bool ThreadLocal, IsConstant;
447  LocTy TyLoc;
448
449  PATypeHolder Ty(Type::VoidTy);
450  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
451      ParseOptionalAddrSpace(AddrSpace) ||
452      ParseGlobalType(IsConstant) ||
453      ParseType(Ty, TyLoc))
454    return true;
455
456  // If the linkage is specified and is external, then no initializer is
457  // present.
458  Constant *Init = 0;
459  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
460                      Linkage != GlobalValue::ExternalWeakLinkage &&
461                      Linkage != GlobalValue::ExternalLinkage)) {
462    if (ParseGlobalValue(Ty, Init))
463      return true;
464  }
465
466  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
467    return Error(TyLoc, "invald type for global variable");
468
469  GlobalVariable *GV = 0;
470
471  // See if the global was forward referenced, if so, use the global.
472  if (!Name.empty() && (GV = M->getGlobalVariable(Name, true))) {
473    if (!ForwardRefVals.erase(Name))
474      return Error(NameLoc, "redefinition of global '@" + Name + "'");
475  } else {
476    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
477      I = ForwardRefValIDs.find(NumberedVals.size());
478    if (I != ForwardRefValIDs.end()) {
479      GV = cast<GlobalVariable>(I->second.first);
480      ForwardRefValIDs.erase(I);
481    }
482  }
483
484  if (GV == 0) {
485    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
486                            M, false, AddrSpace);
487  } else {
488    if (GV->getType()->getElementType() != Ty)
489      return Error(TyLoc,
490            "forward reference and definition of global have different types");
491
492    // Move the forward-reference to the correct spot in the module.
493    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
494  }
495
496  if (Name.empty())
497    NumberedVals.push_back(GV);
498
499  // Set the parsed properties on the global.
500  if (Init)
501    GV->setInitializer(Init);
502  GV->setConstant(IsConstant);
503  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
504  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
505  GV->setThreadLocal(ThreadLocal);
506
507  // Parse attributes on the global.
508  while (Lex.getKind() == lltok::comma) {
509    Lex.Lex();
510
511    if (Lex.getKind() == lltok::kw_section) {
512      Lex.Lex();
513      GV->setSection(Lex.getStrVal());
514      if (ParseToken(lltok::StringConstant, "expected global section string"))
515        return true;
516    } else if (Lex.getKind() == lltok::kw_align) {
517      unsigned Alignment;
518      if (ParseOptionalAlignment(Alignment)) return true;
519      GV->setAlignment(Alignment);
520    } else {
521      TokError("unknown global variable property!");
522    }
523  }
524
525  return false;
526}
527
528
529//===----------------------------------------------------------------------===//
530// GlobalValue Reference/Resolution Routines.
531//===----------------------------------------------------------------------===//
532
533/// GetGlobalVal - Get a value with the specified name or ID, creating a
534/// forward reference record if needed.  This can return null if the value
535/// exists but does not have the right type.
536GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
537                                    LocTy Loc) {
538  const PointerType *PTy = dyn_cast<PointerType>(Ty);
539  if (PTy == 0) {
540    Error(Loc, "global variable reference must have pointer type");
541    return 0;
542  }
543
544  // Look this name up in the normal function symbol table.
545  GlobalValue *Val =
546    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
547
548  // If this is a forward reference for the value, see if we already created a
549  // forward ref record.
550  if (Val == 0) {
551    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
552      I = ForwardRefVals.find(Name);
553    if (I != ForwardRefVals.end())
554      Val = I->second.first;
555  }
556
557  // If we have the value in the symbol table or fwd-ref table, return it.
558  if (Val) {
559    if (Val->getType() == Ty) return Val;
560    Error(Loc, "'@" + Name + "' defined with type '" +
561          Val->getType()->getDescription() + "'");
562    return 0;
563  }
564
565  // Otherwise, create a new forward reference for this value and remember it.
566  GlobalValue *FwdVal;
567  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
568    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
569  else
570    FwdVal = new GlobalVariable(PTy->getElementType(), false,
571                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
572
573  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
574  return FwdVal;
575}
576
577GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
578  const PointerType *PTy = dyn_cast<PointerType>(Ty);
579  if (PTy == 0) {
580    Error(Loc, "global variable reference must have pointer type");
581    return 0;
582  }
583
584  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
585
586  // If this is a forward reference for the value, see if we already created a
587  // forward ref record.
588  if (Val == 0) {
589    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
590      I = ForwardRefValIDs.find(ID);
591    if (I != ForwardRefValIDs.end())
592      Val = I->second.first;
593  }
594
595  // If we have the value in the symbol table or fwd-ref table, return it.
596  if (Val) {
597    if (Val->getType() == Ty) return Val;
598    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
599          Val->getType()->getDescription() + "'");
600    return 0;
601  }
602
603  // Otherwise, create a new forward reference for this value and remember it.
604  GlobalValue *FwdVal;
605  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
606    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
607  else
608    FwdVal = new GlobalVariable(PTy->getElementType(), false,
609                                GlobalValue::ExternalWeakLinkage, 0, "", M);
610
611  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
612  return FwdVal;
613}
614
615
616//===----------------------------------------------------------------------===//
617// Helper Routines.
618//===----------------------------------------------------------------------===//
619
620/// ParseToken - If the current token has the specified kind, eat it and return
621/// success.  Otherwise, emit the specified error and return failure.
622bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
623  if (Lex.getKind() != T)
624    return TokError(ErrMsg);
625  Lex.Lex();
626  return false;
627}
628
629/// ParseStringConstant
630///   ::= StringConstant
631bool LLParser::ParseStringConstant(std::string &Result) {
632  if (Lex.getKind() != lltok::StringConstant)
633    return TokError("expected string constant");
634  Result = Lex.getStrVal();
635  Lex.Lex();
636  return false;
637}
638
639/// ParseUInt32
640///   ::= uint32
641bool LLParser::ParseUInt32(unsigned &Val) {
642  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
643    return TokError("expected integer");
644  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
645  if (Val64 != unsigned(Val64))
646    return TokError("expected 32-bit integer (too large)");
647  Val = Val64;
648  Lex.Lex();
649  return false;
650}
651
652
653/// ParseOptionalAddrSpace
654///   := /*empty*/
655///   := 'addrspace' '(' uint32 ')'
656bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
657  AddrSpace = 0;
658  if (!EatIfPresent(lltok::kw_addrspace))
659    return false;
660  return ParseToken(lltok::lparen, "expected '(' in address space") ||
661         ParseUInt32(AddrSpace) ||
662         ParseToken(lltok::rparen, "expected ')' in address space");
663}
664
665/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
666/// indicates what kind of attribute list this is: 0: function arg, 1: result,
667/// 2: function attr.
668bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
669  Attrs = Attribute::None;
670  LocTy AttrLoc = Lex.getLoc();
671
672  while (1) {
673    switch (Lex.getKind()) {
674    case lltok::kw_sext:
675    case lltok::kw_zext:
676      // Treat these as signext/zeroext unless they are function attrs.
677      // FIXME: REMOVE THIS IN LLVM 3.0
678      if (AttrKind != 2) {
679        if (Lex.getKind() == lltok::kw_sext)
680          Attrs |= Attribute::SExt;
681        else
682          Attrs |= Attribute::ZExt;
683        break;
684      }
685      // FALL THROUGH.
686    default:  // End of attributes.
687      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
688        return Error(AttrLoc, "invalid use of function-only attribute");
689
690      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
691        return Error(AttrLoc, "invalid use of parameter-only attribute");
692
693      return false;
694    case lltok::kw_zeroext:      Attrs |= Attribute::ZExt; break;
695    case lltok::kw_signext:      Attrs |= Attribute::SExt; break;
696    case lltok::kw_inreg:        Attrs |= Attribute::InReg; break;
697    case lltok::kw_sret:         Attrs |= Attribute::StructRet; break;
698    case lltok::kw_noalias:      Attrs |= Attribute::NoAlias; break;
699    case lltok::kw_nocapture:    Attrs |= Attribute::NoCapture; break;
700    case lltok::kw_byval:        Attrs |= Attribute::ByVal; break;
701    case lltok::kw_nest:         Attrs |= Attribute::Nest; break;
702
703    case lltok::kw_noreturn:     Attrs |= Attribute::NoReturn; break;
704    case lltok::kw_nounwind:     Attrs |= Attribute::NoUnwind; break;
705    case lltok::kw_noinline:     Attrs |= Attribute::NoInline; break;
706    case lltok::kw_readnone:     Attrs |= Attribute::ReadNone; break;
707    case lltok::kw_readonly:     Attrs |= Attribute::ReadOnly; break;
708    case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
709    case lltok::kw_optsize:      Attrs |= Attribute::OptimizeForSize; break;
710    case lltok::kw_ssp:          Attrs |= Attribute::StackProtect; break;
711    case lltok::kw_sspreq:       Attrs |= Attribute::StackProtectReq; break;
712
713
714    case lltok::kw_align: {
715      unsigned Alignment;
716      if (ParseOptionalAlignment(Alignment))
717        return true;
718      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
719      continue;
720    }
721    }
722    Lex.Lex();
723  }
724}
725
726/// ParseOptionalLinkage
727///   ::= /*empty*/
728///   ::= 'internal'
729///   ::= 'weak'
730///   ::= 'linkonce'
731///   ::= 'appending'
732///   ::= 'dllexport'
733///   ::= 'common'
734///   ::= 'dllimport'
735///   ::= 'extern_weak'
736///   ::= 'external'
737bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
738  HasLinkage = false;
739  switch (Lex.getKind()) {
740  default:                    Res = GlobalValue::ExternalLinkage; return false;
741  case lltok::kw_internal:    Res = GlobalValue::InternalLinkage; break;
742  case lltok::kw_weak:        Res = GlobalValue::WeakLinkage; break;
743  case lltok::kw_linkonce:    Res = GlobalValue::LinkOnceLinkage; break;
744  case lltok::kw_appending:   Res = GlobalValue::AppendingLinkage; break;
745  case lltok::kw_dllexport:   Res = GlobalValue::DLLExportLinkage; break;
746  case lltok::kw_common:      Res = GlobalValue::CommonLinkage; break;
747  case lltok::kw_dllimport:   Res = GlobalValue::DLLImportLinkage; break;
748  case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
749  case lltok::kw_external:    Res = GlobalValue::ExternalLinkage; break;
750  }
751  Lex.Lex();
752  HasLinkage = true;
753  return false;
754}
755
756/// ParseOptionalVisibility
757///   ::= /*empty*/
758///   ::= 'default'
759///   ::= 'hidden'
760///   ::= 'protected'
761///
762bool LLParser::ParseOptionalVisibility(unsigned &Res) {
763  switch (Lex.getKind()) {
764  default:                  Res = GlobalValue::DefaultVisibility; return false;
765  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
766  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
767  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
768  }
769  Lex.Lex();
770  return false;
771}
772
773/// ParseOptionalCallingConv
774///   ::= /*empty*/
775///   ::= 'ccc'
776///   ::= 'fastcc'
777///   ::= 'coldcc'
778///   ::= 'x86_stdcallcc'
779///   ::= 'x86_fastcallcc'
780///   ::= 'cc' UINT
781///
782bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
783  switch (Lex.getKind()) {
784  default:                       CC = CallingConv::C; return false;
785  case lltok::kw_ccc:            CC = CallingConv::C; break;
786  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
787  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
788  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
789  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
790  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
791  }
792  Lex.Lex();
793  return false;
794}
795
796/// ParseOptionalAlignment
797///   ::= /* empty */
798///   ::= 'align' 4
799bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
800  Alignment = 0;
801  if (!EatIfPresent(lltok::kw_align))
802    return false;
803  return ParseUInt32(Alignment);
804}
805
806/// ParseOptionalCommaAlignment
807///   ::= /* empty */
808///   ::= ',' 'align' 4
809bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
810  Alignment = 0;
811  if (!EatIfPresent(lltok::comma))
812    return false;
813  return ParseToken(lltok::kw_align, "expected 'align'") ||
814         ParseUInt32(Alignment);
815}
816
817/// ParseIndexList
818///    ::=  (',' uint32)+
819bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
820  if (Lex.getKind() != lltok::comma)
821    return TokError("expected ',' as start of index list");
822
823  while (EatIfPresent(lltok::comma)) {
824    unsigned Idx;
825    if (ParseUInt32(Idx)) return true;
826    Indices.push_back(Idx);
827  }
828
829  return false;
830}
831
832//===----------------------------------------------------------------------===//
833// Type Parsing.
834//===----------------------------------------------------------------------===//
835
836/// ParseType - Parse and resolve a full type.
837bool LLParser::ParseType(PATypeHolder &Result) {
838  if (ParseTypeRec(Result)) return true;
839
840  // Verify no unresolved uprefs.
841  if (!UpRefs.empty())
842    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
843
844  return false;
845}
846
847/// HandleUpRefs - Every time we finish a new layer of types, this function is
848/// called.  It loops through the UpRefs vector, which is a list of the
849/// currently active types.  For each type, if the up-reference is contained in
850/// the newly completed type, we decrement the level count.  When the level
851/// count reaches zero, the up-referenced type is the type that is passed in:
852/// thus we can complete the cycle.
853///
854PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
855  // If Ty isn't abstract, or if there are no up-references in it, then there is
856  // nothing to resolve here.
857  if (!ty->isAbstract() || UpRefs.empty()) return ty;
858
859  PATypeHolder Ty(ty);
860#if 0
861  errs() << "Type '" << Ty->getDescription()
862         << "' newly formed.  Resolving upreferences.\n"
863         << UpRefs.size() << " upreferences active!\n";
864#endif
865
866  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
867  // to zero), we resolve them all together before we resolve them to Ty.  At
868  // the end of the loop, if there is anything to resolve to Ty, it will be in
869  // this variable.
870  OpaqueType *TypeToResolve = 0;
871
872  for (unsigned i = 0; i != UpRefs.size(); ++i) {
873    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
874    bool ContainsType =
875      std::find(Ty->subtype_begin(), Ty->subtype_end(),
876                UpRefs[i].LastContainedTy) != Ty->subtype_end();
877
878#if 0
879    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
880           << UpRefs[i].LastContainedTy->getDescription() << ") = "
881           << (ContainsType ? "true" : "false")
882           << " level=" << UpRefs[i].NestingLevel << "\n";
883#endif
884    if (!ContainsType)
885      continue;
886
887    // Decrement level of upreference
888    unsigned Level = --UpRefs[i].NestingLevel;
889    UpRefs[i].LastContainedTy = Ty;
890
891    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
892    if (Level != 0)
893      continue;
894
895#if 0
896    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
897#endif
898    if (!TypeToResolve)
899      TypeToResolve = UpRefs[i].UpRefTy;
900    else
901      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
902    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
903    --i;                                // Do not skip the next element.
904  }
905
906  if (TypeToResolve)
907    TypeToResolve->refineAbstractTypeTo(Ty);
908
909  return Ty;
910}
911
912
913/// ParseTypeRec - The recursive function used to process the internal
914/// implementation details of types.
915bool LLParser::ParseTypeRec(PATypeHolder &Result) {
916  switch (Lex.getKind()) {
917  default:
918    return TokError("expected type");
919  case lltok::Type:
920    // TypeRec ::= 'float' | 'void' (etc)
921    Result = Lex.getTyVal();
922    Lex.Lex();
923    break;
924  case lltok::kw_opaque:
925    // TypeRec ::= 'opaque'
926    Result = OpaqueType::get();
927    Lex.Lex();
928    break;
929  case lltok::lbrace:
930    // TypeRec ::= '{' ... '}'
931    if (ParseStructType(Result, false))
932      return true;
933    break;
934  case lltok::lsquare:
935    // TypeRec ::= '[' ... ']'
936    Lex.Lex(); // eat the lsquare.
937    if (ParseArrayVectorType(Result, false))
938      return true;
939    break;
940  case lltok::less: // Either vector or packed struct.
941    // TypeRec ::= '<' ... '>'
942    Lex.Lex();
943    if (Lex.getKind() == lltok::lbrace) {
944      if (ParseStructType(Result, true) ||
945          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
946        return true;
947    } else if (ParseArrayVectorType(Result, true))
948      return true;
949    break;
950  case lltok::LocalVar:
951  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
952    // TypeRec ::= %foo
953    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
954      Result = T;
955    } else {
956      Result = OpaqueType::get();
957      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
958                                            std::make_pair(Result,
959                                                           Lex.getLoc())));
960      M->addTypeName(Lex.getStrVal(), Result.get());
961    }
962    Lex.Lex();
963    break;
964
965  case lltok::LocalVarID:
966    // TypeRec ::= %4
967    if (Lex.getUIntVal() < NumberedTypes.size())
968      Result = NumberedTypes[Lex.getUIntVal()];
969    else {
970      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
971        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
972      if (I != ForwardRefTypeIDs.end())
973        Result = I->second.first;
974      else {
975        Result = OpaqueType::get();
976        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
977                                                std::make_pair(Result,
978                                                               Lex.getLoc())));
979      }
980    }
981    Lex.Lex();
982    break;
983  case lltok::backslash: {
984    // TypeRec ::= '\' 4
985    Lex.Lex();
986    unsigned Val;
987    if (ParseUInt32(Val)) return true;
988    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
989    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
990    Result = OT;
991    break;
992  }
993  }
994
995  // Parse the type suffixes.
996  while (1) {
997    switch (Lex.getKind()) {
998    // End of type.
999    default: return false;
1000
1001    // TypeRec ::= TypeRec '*'
1002    case lltok::star:
1003      if (Result.get() == Type::LabelTy)
1004        return TokError("basic block pointers are invalid");
1005      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1006      Lex.Lex();
1007      break;
1008
1009    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1010    case lltok::kw_addrspace: {
1011      if (Result.get() == Type::LabelTy)
1012        return TokError("basic block pointers are invalid");
1013      unsigned AddrSpace;
1014      if (ParseOptionalAddrSpace(AddrSpace) ||
1015          ParseToken(lltok::star, "expected '*' in address space"))
1016        return true;
1017
1018      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1019      break;
1020    }
1021
1022    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1023    case lltok::lparen:
1024      if (ParseFunctionType(Result))
1025        return true;
1026      break;
1027    }
1028  }
1029}
1030
1031/// ParseParameterList
1032///    ::= '(' ')'
1033///    ::= '(' Arg (',' Arg)* ')'
1034///  Arg
1035///    ::= Type OptionalAttributes Value OptionalAttributes
1036bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1037                                  PerFunctionState &PFS) {
1038  if (ParseToken(lltok::lparen, "expected '(' in call"))
1039    return true;
1040
1041  while (Lex.getKind() != lltok::rparen) {
1042    // If this isn't the first argument, we need a comma.
1043    if (!ArgList.empty() &&
1044        ParseToken(lltok::comma, "expected ',' in argument list"))
1045      return true;
1046
1047    // Parse the argument.
1048    LocTy ArgLoc;
1049    PATypeHolder ArgTy(Type::VoidTy);
1050    unsigned ArgAttrs1, ArgAttrs2;
1051    Value *V;
1052    if (ParseType(ArgTy, ArgLoc) ||
1053        ParseOptionalAttrs(ArgAttrs1, 0) ||
1054        ParseValue(ArgTy, V, PFS) ||
1055        // FIXME: Should not allow attributes after the argument, remove this in
1056        // LLVM 3.0.
1057        ParseOptionalAttrs(ArgAttrs2, 0))
1058      return true;
1059    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1060  }
1061
1062  Lex.Lex();  // Lex the ')'.
1063  return false;
1064}
1065
1066
1067
1068/// ParseArgumentList
1069///   ::= '(' ArgTypeListI ')'
1070/// ArgTypeListI
1071///   ::= /*empty*/
1072///   ::= '...'
1073///   ::= ArgTypeList ',' '...'
1074///   ::= ArgType (',' ArgType)*
1075bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1076                                 bool &isVarArg) {
1077  isVarArg = false;
1078  assert(Lex.getKind() == lltok::lparen);
1079  Lex.Lex(); // eat the (.
1080
1081  if (Lex.getKind() == lltok::rparen) {
1082    // empty
1083  } else if (Lex.getKind() == lltok::dotdotdot) {
1084    isVarArg = true;
1085    Lex.Lex();
1086  } else {
1087    LocTy TypeLoc = Lex.getLoc();
1088    PATypeHolder ArgTy(Type::VoidTy);
1089    unsigned Attrs;
1090    std::string Name;
1091
1092    if (ParseTypeRec(ArgTy) ||
1093        ParseOptionalAttrs(Attrs, 0)) return true;
1094
1095    if (Lex.getKind() == lltok::LocalVar ||
1096        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1097      Name = Lex.getStrVal();
1098      Lex.Lex();
1099    }
1100
1101    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1102      return Error(TypeLoc, "invalid type for function argument");
1103
1104    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1105
1106    while (EatIfPresent(lltok::comma)) {
1107      // Handle ... at end of arg list.
1108      if (EatIfPresent(lltok::dotdotdot)) {
1109        isVarArg = true;
1110        break;
1111      }
1112
1113      // Otherwise must be an argument type.
1114      TypeLoc = Lex.getLoc();
1115      if (ParseTypeRec(ArgTy) ||
1116          ParseOptionalAttrs(Attrs, 0)) return true;
1117
1118      if (Lex.getKind() == lltok::LocalVar ||
1119          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1120        Name = Lex.getStrVal();
1121        Lex.Lex();
1122      } else {
1123        Name = "";
1124      }
1125
1126      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1127        return Error(TypeLoc, "invalid type for function argument");
1128
1129      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1130    }
1131  }
1132
1133  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1134}
1135
1136/// ParseFunctionType
1137///  ::= Type ArgumentList OptionalAttrs
1138bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1139  assert(Lex.getKind() == lltok::lparen);
1140
1141  std::vector<ArgInfo> ArgList;
1142  bool isVarArg;
1143  unsigned Attrs;
1144  if (ParseArgumentList(ArgList, isVarArg) ||
1145      // FIXME: Allow, but ignore attributes on function types!
1146      // FIXME: Remove in LLVM 3.0
1147      ParseOptionalAttrs(Attrs, 2))
1148    return true;
1149
1150  // Reject names on the arguments lists.
1151  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1152    if (!ArgList[i].Name.empty())
1153      return Error(ArgList[i].Loc, "argument name invalid in function type");
1154    if (!ArgList[i].Attrs != 0) {
1155      // Allow but ignore attributes on function types; this permits
1156      // auto-upgrade.
1157      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1158    }
1159  }
1160
1161  std::vector<const Type*> ArgListTy;
1162  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1163    ArgListTy.push_back(ArgList[i].Type);
1164
1165  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1166  return false;
1167}
1168
1169/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1170///   TypeRec
1171///     ::= '{' '}'
1172///     ::= '{' TypeRec (',' TypeRec)* '}'
1173///     ::= '<' '{' '}' '>'
1174///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1175bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1176  assert(Lex.getKind() == lltok::lbrace);
1177  Lex.Lex(); // Consume the '{'
1178
1179  if (EatIfPresent(lltok::rbrace)) {
1180    Result = StructType::get(std::vector<const Type*>(), Packed);
1181    return false;
1182  }
1183
1184  std::vector<PATypeHolder> ParamsList;
1185  if (ParseTypeRec(Result)) return true;
1186  ParamsList.push_back(Result);
1187
1188  while (EatIfPresent(lltok::comma)) {
1189    if (ParseTypeRec(Result)) return true;
1190    ParamsList.push_back(Result);
1191  }
1192
1193  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1194    return true;
1195
1196  std::vector<const Type*> ParamsListTy;
1197  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1198    ParamsListTy.push_back(ParamsList[i].get());
1199  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1200  return false;
1201}
1202
1203/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1204/// token has already been consumed.
1205///   TypeRec
1206///     ::= '[' APSINTVAL 'x' Types ']'
1207///     ::= '<' APSINTVAL 'x' Types '>'
1208bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1209  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1210      Lex.getAPSIntVal().getBitWidth() > 64)
1211    return TokError("expected number in address space");
1212
1213  LocTy SizeLoc = Lex.getLoc();
1214  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1215  Lex.Lex();
1216
1217  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1218      return true;
1219
1220  LocTy TypeLoc = Lex.getLoc();
1221  PATypeHolder EltTy(Type::VoidTy);
1222  if (ParseTypeRec(EltTy)) return true;
1223
1224  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1225                 "expected end of sequential type"))
1226    return true;
1227
1228  if (isVector) {
1229    if ((unsigned)Size != Size)
1230      return Error(SizeLoc, "size too large for vector");
1231    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1232      return Error(TypeLoc, "vector element type must be fp or integer");
1233    Result = VectorType::get(EltTy, unsigned(Size));
1234  } else {
1235    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1236      return Error(TypeLoc, "invalid array element type");
1237    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1238  }
1239  return false;
1240}
1241
1242//===----------------------------------------------------------------------===//
1243// Function Semantic Analysis.
1244//===----------------------------------------------------------------------===//
1245
1246LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1247  : P(p), F(f) {
1248
1249  // Insert unnamed arguments into the NumberedVals list.
1250  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1251       AI != E; ++AI)
1252    if (!AI->hasName())
1253      NumberedVals.push_back(AI);
1254}
1255
1256LLParser::PerFunctionState::~PerFunctionState() {
1257  // If there were any forward referenced non-basicblock values, delete them.
1258  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1259       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1260    if (!isa<BasicBlock>(I->second.first)) {
1261      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1262                                                          ->getType()));
1263      delete I->second.first;
1264      I->second.first = 0;
1265    }
1266
1267  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1268       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1269    if (!isa<BasicBlock>(I->second.first)) {
1270      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1271                                                          ->getType()));
1272      delete I->second.first;
1273      I->second.first = 0;
1274    }
1275}
1276
1277bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1278  if (!ForwardRefVals.empty())
1279    return P.Error(ForwardRefVals.begin()->second.second,
1280                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1281                   "'");
1282  if (!ForwardRefValIDs.empty())
1283    return P.Error(ForwardRefValIDs.begin()->second.second,
1284                   "use of undefined value '%" +
1285                   utostr(ForwardRefValIDs.begin()->first) + "'");
1286  return false;
1287}
1288
1289
1290/// GetVal - Get a value with the specified name or ID, creating a
1291/// forward reference record if needed.  This can return null if the value
1292/// exists but does not have the right type.
1293Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1294                                          const Type *Ty, LocTy Loc) {
1295  // Look this name up in the normal function symbol table.
1296  Value *Val = F.getValueSymbolTable().lookup(Name);
1297
1298  // If this is a forward reference for the value, see if we already created a
1299  // forward ref record.
1300  if (Val == 0) {
1301    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1302      I = ForwardRefVals.find(Name);
1303    if (I != ForwardRefVals.end())
1304      Val = I->second.first;
1305  }
1306
1307  // If we have the value in the symbol table or fwd-ref table, return it.
1308  if (Val) {
1309    if (Val->getType() == Ty) return Val;
1310    if (Ty == Type::LabelTy)
1311      P.Error(Loc, "'%" + Name + "' is not a basic block");
1312    else
1313      P.Error(Loc, "'%" + Name + "' defined with type '" +
1314              Val->getType()->getDescription() + "'");
1315    return 0;
1316  }
1317
1318  // Don't make placeholders with invalid type.
1319  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1320    P.Error(Loc, "invalid use of a non-first-class type");
1321    return 0;
1322  }
1323
1324  // Otherwise, create a new forward reference for this value and remember it.
1325  Value *FwdVal;
1326  if (Ty == Type::LabelTy)
1327    FwdVal = BasicBlock::Create(Name, &F);
1328  else
1329    FwdVal = new Argument(Ty, Name);
1330
1331  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1332  return FwdVal;
1333}
1334
1335Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1336                                          LocTy Loc) {
1337  // Look this name up in the normal function symbol table.
1338  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1339
1340  // If this is a forward reference for the value, see if we already created a
1341  // forward ref record.
1342  if (Val == 0) {
1343    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1344      I = ForwardRefValIDs.find(ID);
1345    if (I != ForwardRefValIDs.end())
1346      Val = I->second.first;
1347  }
1348
1349  // If we have the value in the symbol table or fwd-ref table, return it.
1350  if (Val) {
1351    if (Val->getType() == Ty) return Val;
1352    if (Ty == Type::LabelTy)
1353      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1354    else
1355      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1356              Val->getType()->getDescription() + "'");
1357    return 0;
1358  }
1359
1360  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1361    P.Error(Loc, "invalid use of a non-first-class type");
1362    return 0;
1363  }
1364
1365  // Otherwise, create a new forward reference for this value and remember it.
1366  Value *FwdVal;
1367  if (Ty == Type::LabelTy)
1368    FwdVal = BasicBlock::Create("", &F);
1369  else
1370    FwdVal = new Argument(Ty);
1371
1372  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1373  return FwdVal;
1374}
1375
1376/// SetInstName - After an instruction is parsed and inserted into its
1377/// basic block, this installs its name.
1378bool LLParser::PerFunctionState::SetInstName(int NameID,
1379                                             const std::string &NameStr,
1380                                             LocTy NameLoc, Instruction *Inst) {
1381  // If this instruction has void type, it cannot have a name or ID specified.
1382  if (Inst->getType() == Type::VoidTy) {
1383    if (NameID != -1 || !NameStr.empty())
1384      return P.Error(NameLoc, "instructions returning void cannot have a name");
1385    return false;
1386  }
1387
1388  // If this was a numbered instruction, verify that the instruction is the
1389  // expected value and resolve any forward references.
1390  if (NameStr.empty()) {
1391    // If neither a name nor an ID was specified, just use the next ID.
1392    if (NameID == -1)
1393      NameID = NumberedVals.size();
1394
1395    if (unsigned(NameID) != NumberedVals.size())
1396      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1397                     utostr(NumberedVals.size()) + "'");
1398
1399    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1400      ForwardRefValIDs.find(NameID);
1401    if (FI != ForwardRefValIDs.end()) {
1402      if (FI->second.first->getType() != Inst->getType())
1403        return P.Error(NameLoc, "instruction forward referenced with type '" +
1404                       FI->second.first->getType()->getDescription() + "'");
1405      FI->second.first->replaceAllUsesWith(Inst);
1406      ForwardRefValIDs.erase(FI);
1407    }
1408
1409    NumberedVals.push_back(Inst);
1410    return false;
1411  }
1412
1413  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1414  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1415    FI = ForwardRefVals.find(NameStr);
1416  if (FI != ForwardRefVals.end()) {
1417    if (FI->second.first->getType() != Inst->getType())
1418      return P.Error(NameLoc, "instruction forward referenced with type '" +
1419                     FI->second.first->getType()->getDescription() + "'");
1420    FI->second.first->replaceAllUsesWith(Inst);
1421    ForwardRefVals.erase(FI);
1422  }
1423
1424  // Set the name on the instruction.
1425  Inst->setName(NameStr);
1426
1427  if (Inst->getNameStr() != NameStr)
1428    return P.Error(NameLoc, "multiple definition of local value named '" +
1429                   NameStr + "'");
1430  return false;
1431}
1432
1433/// GetBB - Get a basic block with the specified name or ID, creating a
1434/// forward reference record if needed.
1435BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1436                                              LocTy Loc) {
1437  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1438}
1439
1440BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1441  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1442}
1443
1444/// DefineBB - Define the specified basic block, which is either named or
1445/// unnamed.  If there is an error, this returns null otherwise it returns
1446/// the block being defined.
1447BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1448                                                 LocTy Loc) {
1449  BasicBlock *BB;
1450  if (Name.empty())
1451    BB = GetBB(NumberedVals.size(), Loc);
1452  else
1453    BB = GetBB(Name, Loc);
1454  if (BB == 0) return 0; // Already diagnosed error.
1455
1456  // Move the block to the end of the function.  Forward ref'd blocks are
1457  // inserted wherever they happen to be referenced.
1458  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1459
1460  // Remove the block from forward ref sets.
1461  if (Name.empty()) {
1462    ForwardRefValIDs.erase(NumberedVals.size());
1463    NumberedVals.push_back(BB);
1464  } else {
1465    // BB forward references are already in the function symbol table.
1466    ForwardRefVals.erase(Name);
1467  }
1468
1469  return BB;
1470}
1471
1472//===----------------------------------------------------------------------===//
1473// Constants.
1474//===----------------------------------------------------------------------===//
1475
1476/// ParseValID - Parse an abstract value that doesn't necessarily have a
1477/// type implied.  For example, if we parse "4" we don't know what integer type
1478/// it has.  The value will later be combined with its type and checked for
1479/// sanity.
1480bool LLParser::ParseValID(ValID &ID) {
1481  ID.Loc = Lex.getLoc();
1482  switch (Lex.getKind()) {
1483  default: return TokError("expected value token");
1484  case lltok::GlobalID:  // @42
1485    ID.UIntVal = Lex.getUIntVal();
1486    ID.Kind = ValID::t_GlobalID;
1487    break;
1488  case lltok::GlobalVar:  // @foo
1489    ID.StrVal = Lex.getStrVal();
1490    ID.Kind = ValID::t_GlobalName;
1491    break;
1492  case lltok::LocalVarID:  // %42
1493    ID.UIntVal = Lex.getUIntVal();
1494    ID.Kind = ValID::t_LocalID;
1495    break;
1496  case lltok::LocalVar:  // %foo
1497  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1498    ID.StrVal = Lex.getStrVal();
1499    ID.Kind = ValID::t_LocalName;
1500    break;
1501  case lltok::APSInt:
1502    ID.APSIntVal = Lex.getAPSIntVal();
1503    ID.Kind = ValID::t_APSInt;
1504    break;
1505  case lltok::APFloat:
1506    ID.APFloatVal = Lex.getAPFloatVal();
1507    ID.Kind = ValID::t_APFloat;
1508    break;
1509  case lltok::kw_true:
1510    ID.ConstantVal = ConstantInt::getTrue();
1511    ID.Kind = ValID::t_Constant;
1512    break;
1513  case lltok::kw_false:
1514    ID.ConstantVal = ConstantInt::getFalse();
1515    ID.Kind = ValID::t_Constant;
1516    break;
1517  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1518  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1519  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1520
1521  case lltok::lbrace: {
1522    // ValID ::= '{' ConstVector '}'
1523    Lex.Lex();
1524    SmallVector<Constant*, 16> Elts;
1525    if (ParseGlobalValueVector(Elts) ||
1526        ParseToken(lltok::rbrace, "expected end of struct constant"))
1527      return true;
1528
1529    ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1530    ID.Kind = ValID::t_Constant;
1531    return false;
1532  }
1533  case lltok::less: {
1534    // ValID ::= '<' ConstVector '>'         --> Vector.
1535    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1536    Lex.Lex();
1537    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1538
1539    SmallVector<Constant*, 16> Elts;
1540    LocTy FirstEltLoc = Lex.getLoc();
1541    if (ParseGlobalValueVector(Elts) ||
1542        (isPackedStruct &&
1543         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1544        ParseToken(lltok::greater, "expected end of constant"))
1545      return true;
1546
1547    if (isPackedStruct) {
1548      ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1549      ID.Kind = ValID::t_Constant;
1550      return false;
1551    }
1552
1553    if (Elts.empty())
1554      return Error(ID.Loc, "constant vector must not be empty");
1555
1556    if (!Elts[0]->getType()->isInteger() &&
1557        !Elts[0]->getType()->isFloatingPoint())
1558      return Error(FirstEltLoc,
1559                   "vector elements must have integer or floating point type");
1560
1561    // Verify that all the vector elements have the same type.
1562    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1563      if (Elts[i]->getType() != Elts[0]->getType())
1564        return Error(FirstEltLoc,
1565                     "vector element #" + utostr(i) +
1566                    " is not of type '" + Elts[0]->getType()->getDescription());
1567
1568    ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1569    ID.Kind = ValID::t_Constant;
1570    return false;
1571  }
1572  case lltok::lsquare: {   // Array Constant
1573    Lex.Lex();
1574    SmallVector<Constant*, 16> Elts;
1575    LocTy FirstEltLoc = Lex.getLoc();
1576    if (ParseGlobalValueVector(Elts) ||
1577        ParseToken(lltok::rsquare, "expected end of array constant"))
1578      return true;
1579
1580    // Handle empty element.
1581    if (Elts.empty()) {
1582      // Use undef instead of an array because it's inconvenient to determine
1583      // the element type at this point, there being no elements to examine.
1584      ID.Kind = ValID::t_Undef;
1585      return false;
1586    }
1587
1588    if (!Elts[0]->getType()->isFirstClassType())
1589      return Error(FirstEltLoc, "invalid array element type: " +
1590                   Elts[0]->getType()->getDescription());
1591
1592    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1593
1594    // Verify all elements are correct type!
1595    for (unsigned i = i, e = Elts.size() ; i != e; ++i) {
1596      if (Elts[i]->getType() != Elts[0]->getType())
1597        return Error(FirstEltLoc,
1598                     "array element #" + utostr(i) +
1599                     " is not of type '" +Elts[0]->getType()->getDescription());
1600    }
1601
1602    ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1603    ID.Kind = ValID::t_Constant;
1604    return false;
1605  }
1606  case lltok::kw_c:  // c "foo"
1607    Lex.Lex();
1608    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1609    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1610    ID.Kind = ValID::t_Constant;
1611    return false;
1612
1613  case lltok::kw_asm: {
1614    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1615    bool HasSideEffect;
1616    Lex.Lex();
1617    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1618        ParseStringConstant(ID.StrVal) ||
1619        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1620        ParseToken(lltok::StringConstant, "expected constraint string"))
1621      return true;
1622    ID.StrVal2 = Lex.getStrVal();
1623    ID.UIntVal = HasSideEffect;
1624    ID.Kind = ValID::t_InlineAsm;
1625    return false;
1626  }
1627
1628  case lltok::kw_trunc:
1629  case lltok::kw_zext:
1630  case lltok::kw_sext:
1631  case lltok::kw_fptrunc:
1632  case lltok::kw_fpext:
1633  case lltok::kw_bitcast:
1634  case lltok::kw_uitofp:
1635  case lltok::kw_sitofp:
1636  case lltok::kw_fptoui:
1637  case lltok::kw_fptosi:
1638  case lltok::kw_inttoptr:
1639  case lltok::kw_ptrtoint: {
1640    unsigned Opc = Lex.getUIntVal();
1641    PATypeHolder DestTy(Type::VoidTy);
1642    Constant *SrcVal;
1643    Lex.Lex();
1644    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1645        ParseGlobalTypeAndValue(SrcVal) ||
1646        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1647        ParseType(DestTy) ||
1648        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1649      return true;
1650    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1651      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1652                   SrcVal->getType()->getDescription() + "' to '" +
1653                   DestTy->getDescription() + "'");
1654    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1655                                           DestTy);
1656    ID.Kind = ValID::t_Constant;
1657    return false;
1658  }
1659  case lltok::kw_extractvalue: {
1660    Lex.Lex();
1661    Constant *Val;
1662    SmallVector<unsigned, 4> Indices;
1663    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1664        ParseGlobalTypeAndValue(Val) ||
1665        ParseIndexList(Indices) ||
1666        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1667      return true;
1668    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1669      return Error(ID.Loc, "extractvalue operand must be array or struct");
1670    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1671                                          Indices.end()))
1672      return Error(ID.Loc, "invalid indices for extractvalue");
1673    ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1674                                                   &Indices[0], Indices.size());
1675    ID.Kind = ValID::t_Constant;
1676    return false;
1677  }
1678  case lltok::kw_insertvalue: {
1679    Lex.Lex();
1680    Constant *Val0, *Val1;
1681    SmallVector<unsigned, 4> Indices;
1682    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1683        ParseGlobalTypeAndValue(Val0) ||
1684        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1685        ParseGlobalTypeAndValue(Val1) ||
1686        ParseIndexList(Indices) ||
1687        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1688      return true;
1689    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1690      return Error(ID.Loc, "extractvalue operand must be array or struct");
1691    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1692                                          Indices.end()))
1693      return Error(ID.Loc, "invalid indices for insertvalue");
1694    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1695                                                  &Indices[0], Indices.size());
1696    ID.Kind = ValID::t_Constant;
1697    return false;
1698  }
1699  case lltok::kw_icmp:
1700  case lltok::kw_fcmp:
1701  case lltok::kw_vicmp:
1702  case lltok::kw_vfcmp: {
1703    unsigned PredVal, Opc = Lex.getUIntVal();
1704    Constant *Val0, *Val1;
1705    Lex.Lex();
1706    if (ParseCmpPredicate(PredVal, Opc) ||
1707        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1708        ParseGlobalTypeAndValue(Val0) ||
1709        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1710        ParseGlobalTypeAndValue(Val1) ||
1711        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1712      return true;
1713
1714    if (Val0->getType() != Val1->getType())
1715      return Error(ID.Loc, "compare operands must have the same type");
1716
1717    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1718
1719    if (Opc == Instruction::FCmp) {
1720      if (!Val0->getType()->isFPOrFPVector())
1721        return Error(ID.Loc, "fcmp requires floating point operands");
1722      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1723    } else if (Opc == Instruction::ICmp) {
1724      if (!Val0->getType()->isIntOrIntVector() &&
1725          !isa<PointerType>(Val0->getType()))
1726        return Error(ID.Loc, "icmp requires pointer or integer operands");
1727      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1728    } else if (Opc == Instruction::VFCmp) {
1729      // FIXME: REMOVE VFCMP Support
1730      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1731    } else if (Opc == Instruction::VICmp) {
1732      // FIXME: REMOVE VFCMP Support
1733      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1734    }
1735    ID.Kind = ValID::t_Constant;
1736    return false;
1737  }
1738
1739  // Binary Operators.
1740  case lltok::kw_add:
1741  case lltok::kw_sub:
1742  case lltok::kw_mul:
1743  case lltok::kw_udiv:
1744  case lltok::kw_sdiv:
1745  case lltok::kw_fdiv:
1746  case lltok::kw_urem:
1747  case lltok::kw_srem:
1748  case lltok::kw_frem: {
1749    unsigned Opc = Lex.getUIntVal();
1750    Constant *Val0, *Val1;
1751    Lex.Lex();
1752    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1753        ParseGlobalTypeAndValue(Val0) ||
1754        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1755        ParseGlobalTypeAndValue(Val1) ||
1756        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1757      return true;
1758    if (Val0->getType() != Val1->getType())
1759      return Error(ID.Loc, "operands of constexpr must have same type");
1760    if (!Val0->getType()->isIntOrIntVector() &&
1761        !Val0->getType()->isFPOrFPVector())
1762      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1763    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1764    ID.Kind = ValID::t_Constant;
1765    return false;
1766  }
1767
1768  // Logical Operations
1769  case lltok::kw_shl:
1770  case lltok::kw_lshr:
1771  case lltok::kw_ashr:
1772  case lltok::kw_and:
1773  case lltok::kw_or:
1774  case lltok::kw_xor: {
1775    unsigned Opc = Lex.getUIntVal();
1776    Constant *Val0, *Val1;
1777    Lex.Lex();
1778    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1779        ParseGlobalTypeAndValue(Val0) ||
1780        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1781        ParseGlobalTypeAndValue(Val1) ||
1782        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1783      return true;
1784    if (Val0->getType() != Val1->getType())
1785      return Error(ID.Loc, "operands of constexpr must have same type");
1786    if (!Val0->getType()->isIntOrIntVector())
1787      return Error(ID.Loc,
1788                   "constexpr requires integer or integer vector operands");
1789    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1790    ID.Kind = ValID::t_Constant;
1791    return false;
1792  }
1793
1794  case lltok::kw_getelementptr:
1795  case lltok::kw_shufflevector:
1796  case lltok::kw_insertelement:
1797  case lltok::kw_extractelement:
1798  case lltok::kw_select: {
1799    unsigned Opc = Lex.getUIntVal();
1800    SmallVector<Constant*, 16> Elts;
1801    Lex.Lex();
1802    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1803        ParseGlobalValueVector(Elts) ||
1804        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1805      return true;
1806
1807    if (Opc == Instruction::GetElementPtr) {
1808      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1809        return Error(ID.Loc, "getelementptr requires pointer operand");
1810
1811      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1812                                             (Value**)&Elts[1], Elts.size()-1))
1813        return Error(ID.Loc, "invalid indices for getelementptr");
1814      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1815                                                      &Elts[1], Elts.size()-1);
1816    } else if (Opc == Instruction::Select) {
1817      if (Elts.size() != 3)
1818        return Error(ID.Loc, "expected three operands to select");
1819      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1820                                                              Elts[2]))
1821        return Error(ID.Loc, Reason);
1822      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1823    } else if (Opc == Instruction::ShuffleVector) {
1824      if (Elts.size() != 3)
1825        return Error(ID.Loc, "expected three operands to shufflevector");
1826      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1827        return Error(ID.Loc, "invalid operands to shufflevector");
1828      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1829    } else if (Opc == Instruction::ExtractElement) {
1830      if (Elts.size() != 2)
1831        return Error(ID.Loc, "expected two operands to extractelement");
1832      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1833        return Error(ID.Loc, "invalid extractelement operands");
1834      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1835    } else {
1836      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1837      if (Elts.size() != 3)
1838      return Error(ID.Loc, "expected three operands to insertelement");
1839      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1840        return Error(ID.Loc, "invalid insertelement operands");
1841      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1842    }
1843
1844    ID.Kind = ValID::t_Constant;
1845    return false;
1846  }
1847  }
1848
1849  Lex.Lex();
1850  return false;
1851}
1852
1853/// ParseGlobalValue - Parse a global value with the specified type.
1854bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1855  V = 0;
1856  ValID ID;
1857  return ParseValID(ID) ||
1858         ConvertGlobalValIDToValue(Ty, ID, V);
1859}
1860
1861/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1862/// constant.
1863bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1864                                         Constant *&V) {
1865  if (isa<FunctionType>(Ty))
1866    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1867
1868  switch (ID.Kind) {
1869  default: assert(0 && "Unknown ValID!");
1870  case ValID::t_LocalID:
1871  case ValID::t_LocalName:
1872    return Error(ID.Loc, "invalid use of function-local name");
1873  case ValID::t_InlineAsm:
1874    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1875  case ValID::t_GlobalName:
1876    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1877    return V == 0;
1878  case ValID::t_GlobalID:
1879    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1880    return V == 0;
1881  case ValID::t_APSInt:
1882    if (!isa<IntegerType>(Ty))
1883      return Error(ID.Loc, "integer constant must have integer type");
1884    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1885    V = ConstantInt::get(ID.APSIntVal);
1886    return false;
1887  case ValID::t_APFloat:
1888    if (!Ty->isFloatingPoint() ||
1889        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1890      return Error(ID.Loc, "floating point constant invalid for type");
1891
1892    // The lexer has no type info, so builds all float and double FP constants
1893    // as double.  Fix this here.  Long double does not need this.
1894    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1895        Ty == Type::FloatTy) {
1896      bool Ignored;
1897      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1898                            &Ignored);
1899    }
1900    V = ConstantFP::get(ID.APFloatVal);
1901    return false;
1902  case ValID::t_Null:
1903    if (!isa<PointerType>(Ty))
1904      return Error(ID.Loc, "null must be a pointer type");
1905    V = ConstantPointerNull::get(cast<PointerType>(Ty));
1906    return false;
1907  case ValID::t_Undef:
1908    V = UndefValue::get(Ty);
1909    return false;
1910  case ValID::t_Zero:
1911    if (!Ty->isFirstClassType())
1912      return Error(ID.Loc, "invalid type for null constant");
1913    V = Constant::getNullValue(Ty);
1914    return false;
1915  case ValID::t_Constant:
1916    if (ID.ConstantVal->getType() != Ty)
1917      return Error(ID.Loc, "constant expression type mismatch");
1918    V = ID.ConstantVal;
1919    return false;
1920  }
1921}
1922
1923bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1924  PATypeHolder Type(Type::VoidTy);
1925  return ParseType(Type) ||
1926         ParseGlobalValue(Type, V);
1927}
1928
1929/// ParseGlobalValueVector
1930///   ::= /*empty*/
1931///   ::= TypeAndValue (',' TypeAndValue)*
1932bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1933  // Empty list.
1934  if (Lex.getKind() == lltok::rbrace ||
1935      Lex.getKind() == lltok::rsquare ||
1936      Lex.getKind() == lltok::greater ||
1937      Lex.getKind() == lltok::rparen)
1938    return false;
1939
1940  Constant *C;
1941  if (ParseGlobalTypeAndValue(C)) return true;
1942  Elts.push_back(C);
1943
1944  while (EatIfPresent(lltok::comma)) {
1945    if (ParseGlobalTypeAndValue(C)) return true;
1946    Elts.push_back(C);
1947  }
1948
1949  return false;
1950}
1951
1952
1953//===----------------------------------------------------------------------===//
1954// Function Parsing.
1955//===----------------------------------------------------------------------===//
1956
1957bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
1958                                   PerFunctionState &PFS) {
1959  if (ID.Kind == ValID::t_LocalID)
1960    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
1961  else if (ID.Kind == ValID::t_LocalName)
1962    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
1963  else if (ID.Kind == ValID::ValID::t_InlineAsm) {
1964    const PointerType *PTy = dyn_cast<PointerType>(Ty);
1965    const FunctionType *FTy =
1966      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1967    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
1968      return Error(ID.Loc, "invalid type for inline asm constraint string");
1969    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
1970    return false;
1971  } else {
1972    Constant *C;
1973    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
1974    V = C;
1975    return false;
1976  }
1977
1978  return V == 0;
1979}
1980
1981bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
1982  V = 0;
1983  ValID ID;
1984  return ParseValID(ID) ||
1985         ConvertValIDToValue(Ty, ID, V, PFS);
1986}
1987
1988bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
1989  PATypeHolder T(Type::VoidTy);
1990  return ParseType(T) ||
1991         ParseValue(T, V, PFS);
1992}
1993
1994/// FunctionHeader
1995///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
1996///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
1997///       OptionalAlign OptGC
1998bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
1999  // Parse the linkage.
2000  LocTy LinkageLoc = Lex.getLoc();
2001  unsigned Linkage;
2002
2003  unsigned Visibility, CC, RetAttrs;
2004  PATypeHolder RetType(Type::VoidTy);
2005  LocTy RetTypeLoc = Lex.getLoc();
2006  if (ParseOptionalLinkage(Linkage) ||
2007      ParseOptionalVisibility(Visibility) ||
2008      ParseOptionalCallingConv(CC) ||
2009      ParseOptionalAttrs(RetAttrs, 1) ||
2010      ParseType(RetType, RetTypeLoc))
2011    return true;
2012
2013  // Verify that the linkage is ok.
2014  switch ((GlobalValue::LinkageTypes)Linkage) {
2015  case GlobalValue::ExternalLinkage:
2016    break; // always ok.
2017  case GlobalValue::DLLImportLinkage:
2018  case GlobalValue::ExternalWeakLinkage:
2019    if (isDefine)
2020      return Error(LinkageLoc, "invalid linkage for function definition");
2021    break;
2022  case GlobalValue::InternalLinkage:
2023  case GlobalValue::LinkOnceLinkage:
2024  case GlobalValue::WeakLinkage:
2025  case GlobalValue::DLLExportLinkage:
2026    if (!isDefine)
2027      return Error(LinkageLoc, "invalid linkage for function declaration");
2028    break;
2029  case GlobalValue::AppendingLinkage:
2030  case GlobalValue::GhostLinkage:
2031  case GlobalValue::CommonLinkage:
2032    return Error(LinkageLoc, "invalid function linkage type");
2033  }
2034
2035  if (!FunctionType::isValidReturnType(RetType))
2036    return Error(RetTypeLoc, "invalid function return type");
2037
2038  if (Lex.getKind() != lltok::GlobalVar)
2039    return TokError("expected function name");
2040
2041  LocTy NameLoc = Lex.getLoc();
2042  std::string FunctionName = Lex.getStrVal();
2043  Lex.Lex();
2044
2045  if (Lex.getKind() != lltok::lparen)
2046    return TokError("expected '(' in function argument list");
2047
2048  std::vector<ArgInfo> ArgList;
2049  bool isVarArg;
2050  unsigned FuncAttrs;
2051  std::string Section;
2052  unsigned Alignment;
2053  std::string GC;
2054
2055  if (ParseArgumentList(ArgList, isVarArg) ||
2056      ParseOptionalAttrs(FuncAttrs, 2) ||
2057      (EatIfPresent(lltok::kw_section) &&
2058       ParseStringConstant(Section)) ||
2059      ParseOptionalAlignment(Alignment) ||
2060      (EatIfPresent(lltok::kw_gc) &&
2061       ParseStringConstant(GC)))
2062    return true;
2063
2064  // If the alignment was parsed as an attribute, move to the alignment field.
2065  if (FuncAttrs & Attribute::Alignment) {
2066    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2067    FuncAttrs &= ~Attribute::Alignment;
2068  }
2069
2070  // Okay, if we got here, the function is syntactically valid.  Convert types
2071  // and do semantic checks.
2072  std::vector<const Type*> ParamTypeList;
2073  SmallVector<AttributeWithIndex, 8> Attrs;
2074  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2075  // attributes.
2076  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2077  if (FuncAttrs & ObsoleteFuncAttrs) {
2078    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2079    FuncAttrs &= ~ObsoleteFuncAttrs;
2080  }
2081
2082  if (RetAttrs != Attribute::None)
2083    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2084
2085  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2086    ParamTypeList.push_back(ArgList[i].Type);
2087    if (ArgList[i].Attrs != Attribute::None)
2088      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2089  }
2090
2091  if (FuncAttrs != Attribute::None)
2092    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2093
2094  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2095
2096  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2097  const PointerType *PFT = PointerType::getUnqual(FT);
2098
2099  Fn = 0;
2100  if (!FunctionName.empty()) {
2101    // If this was a definition of a forward reference, remove the definition
2102    // from the forward reference table and fill in the forward ref.
2103    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2104      ForwardRefVals.find(FunctionName);
2105    if (FRVI != ForwardRefVals.end()) {
2106      Fn = M->getFunction(FunctionName);
2107      ForwardRefVals.erase(FRVI);
2108    } else if ((Fn = M->getFunction(FunctionName))) {
2109      // If this function already exists in the symbol table, then it is
2110      // multiply defined.  We accept a few cases for old backwards compat.
2111      // FIXME: Remove this stuff for LLVM 3.0.
2112      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2113          (!Fn->isDeclaration() && isDefine)) {
2114        // If the redefinition has different type or different attributes,
2115        // reject it.  If both have bodies, reject it.
2116        return Error(NameLoc, "invalid redefinition of function '" +
2117                     FunctionName + "'");
2118      } else if (Fn->isDeclaration()) {
2119        // Make sure to strip off any argument names so we can't get conflicts.
2120        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2121             AI != AE; ++AI)
2122          AI->setName("");
2123      }
2124    }
2125
2126  } else if (FunctionName.empty()) {
2127    // If this is a definition of a forward referenced function, make sure the
2128    // types agree.
2129    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2130      = ForwardRefValIDs.find(NumberedVals.size());
2131    if (I != ForwardRefValIDs.end()) {
2132      Fn = cast<Function>(I->second.first);
2133      if (Fn->getType() != PFT)
2134        return Error(NameLoc, "type of definition and forward reference of '@" +
2135                     utostr(NumberedVals.size()) +"' disagree");
2136      ForwardRefValIDs.erase(I);
2137    }
2138  }
2139
2140  if (Fn == 0)
2141    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2142  else // Move the forward-reference to the correct spot in the module.
2143    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2144
2145  if (FunctionName.empty())
2146    NumberedVals.push_back(Fn);
2147
2148  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2149  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2150  Fn->setCallingConv(CC);
2151  Fn->setAttributes(PAL);
2152  Fn->setAlignment(Alignment);
2153  Fn->setSection(Section);
2154  if (!GC.empty()) Fn->setGC(GC.c_str());
2155
2156  // Add all of the arguments we parsed to the function.
2157  Function::arg_iterator ArgIt = Fn->arg_begin();
2158  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2159    // If the argument has a name, insert it into the argument symbol table.
2160    if (ArgList[i].Name.empty()) continue;
2161
2162    // Set the name, if it conflicted, it will be auto-renamed.
2163    ArgIt->setName(ArgList[i].Name);
2164
2165    if (ArgIt->getNameStr() != ArgList[i].Name)
2166      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2167                   ArgList[i].Name + "'");
2168  }
2169
2170  return false;
2171}
2172
2173
2174/// ParseFunctionBody
2175///   ::= '{' BasicBlock+ '}'
2176///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2177///
2178bool LLParser::ParseFunctionBody(Function &Fn) {
2179  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2180    return TokError("expected '{' in function body");
2181  Lex.Lex();  // eat the {.
2182
2183  PerFunctionState PFS(*this, Fn);
2184
2185  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2186    if (ParseBasicBlock(PFS)) return true;
2187
2188  // Eat the }.
2189  Lex.Lex();
2190
2191  // Verify function is ok.
2192  return PFS.VerifyFunctionComplete();
2193}
2194
2195/// ParseBasicBlock
2196///   ::= LabelStr? Instruction*
2197bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2198  // If this basic block starts out with a name, remember it.
2199  std::string Name;
2200  LocTy NameLoc = Lex.getLoc();
2201  if (Lex.getKind() == lltok::LabelStr) {
2202    Name = Lex.getStrVal();
2203    Lex.Lex();
2204  }
2205
2206  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2207  if (BB == 0) return true;
2208
2209  std::string NameStr;
2210
2211  // Parse the instructions in this block until we get a terminator.
2212  Instruction *Inst;
2213  do {
2214    // This instruction may have three possibilities for a name: a) none
2215    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2216    LocTy NameLoc = Lex.getLoc();
2217    int NameID = -1;
2218    NameStr = "";
2219
2220    if (Lex.getKind() == lltok::LocalVarID) {
2221      NameID = Lex.getUIntVal();
2222      Lex.Lex();
2223      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2224        return true;
2225    } else if (Lex.getKind() == lltok::LocalVar ||
2226               // FIXME: REMOVE IN LLVM 3.0
2227               Lex.getKind() == lltok::StringConstant) {
2228      NameStr = Lex.getStrVal();
2229      Lex.Lex();
2230      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2231        return true;
2232    }
2233
2234    if (ParseInstruction(Inst, BB, PFS)) return true;
2235
2236    BB->getInstList().push_back(Inst);
2237
2238    // Set the name on the instruction.
2239    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2240  } while (!isa<TerminatorInst>(Inst));
2241
2242  return false;
2243}
2244
2245//===----------------------------------------------------------------------===//
2246// Instruction Parsing.
2247//===----------------------------------------------------------------------===//
2248
2249/// ParseInstruction - Parse one of the many different instructions.
2250///
2251bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2252                                PerFunctionState &PFS) {
2253  lltok::Kind Token = Lex.getKind();
2254  if (Token == lltok::Eof)
2255    return TokError("found end of file when expecting more instructions");
2256  LocTy Loc = Lex.getLoc();
2257  Lex.Lex();  // Eat the keyword.
2258
2259  switch (Token) {
2260  default:                    return Error(Loc, "expected instruction opcode");
2261  // Terminator Instructions.
2262  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2263  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2264  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2265  case lltok::kw_br:          return ParseBr(Inst, PFS);
2266  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2267  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2268  // Binary Operators.
2269  case lltok::kw_add:
2270  case lltok::kw_sub:
2271  case lltok::kw_mul:
2272  case lltok::kw_udiv:
2273  case lltok::kw_sdiv:
2274  case lltok::kw_fdiv:
2275  case lltok::kw_urem:
2276  case lltok::kw_srem:
2277  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, Lex.getUIntVal());
2278  case lltok::kw_shl:
2279  case lltok::kw_lshr:
2280  case lltok::kw_ashr:
2281  case lltok::kw_and:
2282  case lltok::kw_or:
2283  case lltok::kw_xor:    return ParseLogical(Inst, PFS, Lex.getUIntVal());
2284  case lltok::kw_icmp:
2285  case lltok::kw_fcmp:
2286  case lltok::kw_vicmp:
2287  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, Lex.getUIntVal());
2288  // Casts.
2289  case lltok::kw_trunc:
2290  case lltok::kw_zext:
2291  case lltok::kw_sext:
2292  case lltok::kw_fptrunc:
2293  case lltok::kw_fpext:
2294  case lltok::kw_bitcast:
2295  case lltok::kw_uitofp:
2296  case lltok::kw_sitofp:
2297  case lltok::kw_fptoui:
2298  case lltok::kw_fptosi:
2299  case lltok::kw_inttoptr:
2300  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, Lex.getUIntVal());
2301  // Other.
2302  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2303  case lltok::kw_va_arg:         return ParseVAArg(Inst, PFS);
2304  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2305  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2306  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2307  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2308  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2309  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2310  // Memory.
2311  case lltok::kw_alloca:
2312  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2313  case lltok::kw_free:           return ParseFree(Inst, PFS);
2314  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2315  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2316  case lltok::kw_volatile:
2317    if (EatIfPresent(lltok::kw_load))
2318      return ParseLoad(Inst, PFS, true);
2319    else if (EatIfPresent(lltok::kw_store))
2320      return ParseStore(Inst, PFS, true);
2321    else
2322      return TokError("expected 'load' or 'store'");
2323  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2324  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2325  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2326  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2327  }
2328}
2329
2330/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2331bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2332  // FIXME: REMOVE vicmp/vfcmp!
2333  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2334    switch (Lex.getKind()) {
2335    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2336    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2337    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2338    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2339    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2340    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2341    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2342    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2343    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2344    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2345    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2346    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2347    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2348    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2349    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2350    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2351    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2352    }
2353  } else {
2354    switch (Lex.getKind()) {
2355    default: TokError("expected icmp predicate (e.g. 'eq')");
2356    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2357    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2358    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2359    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2360    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2361    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2362    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2363    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2364    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2365    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2366    }
2367  }
2368  Lex.Lex();
2369  return false;
2370}
2371
2372//===----------------------------------------------------------------------===//
2373// Terminator Instructions.
2374//===----------------------------------------------------------------------===//
2375
2376/// ParseRet - Parse a return instruction.
2377///   ::= 'ret' void
2378///   ::= 'ret' TypeAndValue
2379///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2380bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2381                        PerFunctionState &PFS) {
2382  PATypeHolder Ty(Type::VoidTy);
2383  if (ParseType(Ty)) return true;
2384
2385  if (Ty == Type::VoidTy) {
2386    Inst = ReturnInst::Create();
2387    return false;
2388  }
2389
2390  Value *RV;
2391  if (ParseValue(Ty, RV, PFS)) return true;
2392
2393  // The normal case is one return value.
2394  if (Lex.getKind() == lltok::comma) {
2395    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2396    // of 'ret {i32,i32} {i32 1, i32 2}'
2397    SmallVector<Value*, 8> RVs;
2398    RVs.push_back(RV);
2399
2400    while (EatIfPresent(lltok::comma)) {
2401      if (ParseTypeAndValue(RV, PFS)) return true;
2402      RVs.push_back(RV);
2403    }
2404
2405    RV = UndefValue::get(PFS.getFunction().getReturnType());
2406    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2407      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2408      BB->getInstList().push_back(I);
2409      RV = I;
2410    }
2411  }
2412  Inst = ReturnInst::Create(RV);
2413  return false;
2414}
2415
2416
2417/// ParseBr
2418///   ::= 'br' TypeAndValue
2419///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2420bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2421  LocTy Loc, Loc2;
2422  Value *Op0, *Op1, *Op2;
2423  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2424
2425  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2426    Inst = BranchInst::Create(BB);
2427    return false;
2428  }
2429
2430  if (Op0->getType() != Type::Int1Ty)
2431    return Error(Loc, "branch condition must have 'i1' type");
2432
2433  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2434      ParseTypeAndValue(Op1, Loc, PFS) ||
2435      ParseToken(lltok::comma, "expected ',' after true destination") ||
2436      ParseTypeAndValue(Op2, Loc2, PFS))
2437    return true;
2438
2439  if (!isa<BasicBlock>(Op1))
2440    return Error(Loc, "true destination of branch must be a basic block");
2441  if (!isa<BasicBlock>(Op2))
2442    return Error(Loc2, "true destination of branch must be a basic block");
2443
2444  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2445  return false;
2446}
2447
2448/// ParseSwitch
2449///  Instruction
2450///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2451///  JumpTable
2452///    ::= (TypeAndValue ',' TypeAndValue)*
2453bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2454  LocTy CondLoc, BBLoc;
2455  Value *Cond, *DefaultBB;
2456  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2457      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2458      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2459      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2460    return true;
2461
2462  if (!isa<IntegerType>(Cond->getType()))
2463    return Error(CondLoc, "switch condition must have integer type");
2464  if (!isa<BasicBlock>(DefaultBB))
2465    return Error(BBLoc, "default destination must be a basic block");
2466
2467  // Parse the jump table pairs.
2468  SmallPtrSet<Value*, 32> SeenCases;
2469  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2470  while (Lex.getKind() != lltok::rsquare) {
2471    Value *Constant, *DestBB;
2472
2473    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2474        ParseToken(lltok::comma, "expected ',' after case value") ||
2475        ParseTypeAndValue(DestBB, BBLoc, PFS))
2476      return true;
2477
2478    if (!SeenCases.insert(Constant))
2479      return Error(CondLoc, "duplicate case value in switch");
2480    if (!isa<ConstantInt>(Constant))
2481      return Error(CondLoc, "case value is not a constant integer");
2482    if (!isa<BasicBlock>(DestBB))
2483      return Error(BBLoc, "case destination is not a basic block");
2484
2485    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2486                                   cast<BasicBlock>(DestBB)));
2487  }
2488
2489  Lex.Lex();  // Eat the ']'.
2490
2491  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2492                                      Table.size());
2493  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2494    SI->addCase(Table[i].first, Table[i].second);
2495  Inst = SI;
2496  return false;
2497}
2498
2499/// ParseInvoke
2500///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2501///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2502bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2503  LocTy CallLoc = Lex.getLoc();
2504  unsigned CC, RetAttrs, FnAttrs;
2505  PATypeHolder RetType(Type::VoidTy);
2506  LocTy RetTypeLoc;
2507  ValID CalleeID;
2508  SmallVector<ParamInfo, 16> ArgList;
2509
2510  Value *NormalBB, *UnwindBB;
2511  if (ParseOptionalCallingConv(CC) ||
2512      ParseOptionalAttrs(RetAttrs, 1) ||
2513      ParseType(RetType, RetTypeLoc) ||
2514      ParseValID(CalleeID) ||
2515      ParseParameterList(ArgList, PFS) ||
2516      ParseOptionalAttrs(FnAttrs, 2) ||
2517      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2518      ParseTypeAndValue(NormalBB, PFS) ||
2519      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2520      ParseTypeAndValue(UnwindBB, PFS))
2521    return true;
2522
2523  if (!isa<BasicBlock>(NormalBB))
2524    return Error(CallLoc, "normal destination is not a basic block");
2525  if (!isa<BasicBlock>(UnwindBB))
2526    return Error(CallLoc, "unwind destination is not a basic block");
2527
2528  // If RetType is a non-function pointer type, then this is the short syntax
2529  // for the call, which means that RetType is just the return type.  Infer the
2530  // rest of the function argument types from the arguments that are present.
2531  const PointerType *PFTy = 0;
2532  const FunctionType *Ty = 0;
2533  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2534      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2535    // Pull out the types of all of the arguments...
2536    std::vector<const Type*> ParamTypes;
2537    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2538      ParamTypes.push_back(ArgList[i].V->getType());
2539
2540    if (!FunctionType::isValidReturnType(RetType))
2541      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2542
2543    Ty = FunctionType::get(RetType, ParamTypes, false);
2544    PFTy = PointerType::getUnqual(Ty);
2545  }
2546
2547  // Look up the callee.
2548  Value *Callee;
2549  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2550
2551  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2552  // function attributes.
2553  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2554  if (FnAttrs & ObsoleteFuncAttrs) {
2555    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2556    FnAttrs &= ~ObsoleteFuncAttrs;
2557  }
2558
2559  // Set up the Attributes for the function.
2560  SmallVector<AttributeWithIndex, 8> Attrs;
2561  if (RetAttrs != Attribute::None)
2562    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2563
2564  SmallVector<Value*, 8> Args;
2565
2566  // Loop through FunctionType's arguments and ensure they are specified
2567  // correctly.  Also, gather any parameter attributes.
2568  FunctionType::param_iterator I = Ty->param_begin();
2569  FunctionType::param_iterator E = Ty->param_end();
2570  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2571    const Type *ExpectedTy = 0;
2572    if (I != E) {
2573      ExpectedTy = *I++;
2574    } else if (!Ty->isVarArg()) {
2575      return Error(ArgList[i].Loc, "too many arguments specified");
2576    }
2577
2578    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2579      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2580                   ExpectedTy->getDescription() + "'");
2581    Args.push_back(ArgList[i].V);
2582    if (ArgList[i].Attrs != Attribute::None)
2583      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2584  }
2585
2586  if (I != E)
2587    return Error(CallLoc, "not enough parameters specified for call");
2588
2589  if (FnAttrs != Attribute::None)
2590    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2591
2592  // Finish off the Attributes and check them
2593  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2594
2595  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2596                                      cast<BasicBlock>(UnwindBB),
2597                                      Args.begin(), Args.end());
2598  II->setCallingConv(CC);
2599  II->setAttributes(PAL);
2600  Inst = II;
2601  return false;
2602}
2603
2604
2605
2606//===----------------------------------------------------------------------===//
2607// Binary Operators.
2608//===----------------------------------------------------------------------===//
2609
2610/// ParseArithmetic
2611///  ::= ArithmeticOps TypeAndValue ',' Value {
2612bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2613                               unsigned Opc) {
2614  LocTy Loc; Value *LHS, *RHS;
2615  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2616      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2617      ParseValue(LHS->getType(), RHS, PFS))
2618    return true;
2619
2620  if (!isa<IntegerType>(LHS->getType()) && !LHS->getType()->isFloatingPoint() &&
2621      !isa<VectorType>(LHS->getType()))
2622    return Error(Loc, "instruction requires integer, fp, or vector operands");
2623
2624  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2625  return false;
2626}
2627
2628/// ParseLogical
2629///  ::= ArithmeticOps TypeAndValue ',' Value {
2630bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2631                            unsigned Opc) {
2632  LocTy Loc; Value *LHS, *RHS;
2633  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2634      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2635      ParseValue(LHS->getType(), RHS, PFS))
2636    return true;
2637
2638  if (!LHS->getType()->isIntOrIntVector())
2639    return Error(Loc,"instruction requires integer or integer vector operands");
2640
2641  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2642  return false;
2643}
2644
2645
2646/// ParseCompare
2647///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2648///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2649///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2650///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2651bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2652                            unsigned Opc) {
2653  // Parse the integer/fp comparison predicate.
2654  LocTy Loc;
2655  unsigned Pred;
2656  Value *LHS, *RHS;
2657  if (ParseCmpPredicate(Pred, Opc) ||
2658      ParseTypeAndValue(LHS, Loc, PFS) ||
2659      ParseToken(lltok::comma, "expected ',' after compare value") ||
2660      ParseValue(LHS->getType(), RHS, PFS))
2661    return true;
2662
2663  if (Opc == Instruction::FCmp) {
2664    if (!LHS->getType()->isFPOrFPVector())
2665      return Error(Loc, "fcmp requires floating point operands");
2666    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2667  } else if (Opc == Instruction::ICmp) {
2668    if (!LHS->getType()->isIntOrIntVector() &&
2669        !isa<PointerType>(LHS->getType()))
2670      return Error(Loc, "icmp requires integer operands");
2671    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2672  } else if (Opc == Instruction::VFCmp) {
2673    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2674  } else if (Opc == Instruction::VICmp) {
2675    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2676  }
2677  return false;
2678}
2679
2680//===----------------------------------------------------------------------===//
2681// Other Instructions.
2682//===----------------------------------------------------------------------===//
2683
2684
2685/// ParseCast
2686///   ::= CastOpc TypeAndValue 'to' Type
2687bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2688                         unsigned Opc) {
2689  LocTy Loc;  Value *Op;
2690  PATypeHolder DestTy(Type::VoidTy);
2691  if (ParseTypeAndValue(Op, Loc, PFS) ||
2692      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2693      ParseType(DestTy))
2694    return true;
2695
2696  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2697    return Error(Loc, "invalid cast opcode for cast from '" +
2698                 Op->getType()->getDescription() + "' to '" +
2699                 DestTy->getDescription() + "'");
2700  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2701  return false;
2702}
2703
2704/// ParseSelect
2705///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2706bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2707  LocTy Loc;
2708  Value *Op0, *Op1, *Op2;
2709  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2710      ParseToken(lltok::comma, "expected ',' after select condition") ||
2711      ParseTypeAndValue(Op1, PFS) ||
2712      ParseToken(lltok::comma, "expected ',' after select value") ||
2713      ParseTypeAndValue(Op2, PFS))
2714    return true;
2715
2716  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2717    return Error(Loc, Reason);
2718
2719  Inst = SelectInst::Create(Op0, Op1, Op2);
2720  return false;
2721}
2722
2723/// ParseVAArg
2724///   ::= 'vaarg' TypeAndValue ',' Type
2725bool LLParser::ParseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
2726  Value *Op;
2727  PATypeHolder EltTy(Type::VoidTy);
2728  if (ParseTypeAndValue(Op, PFS) ||
2729      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2730      ParseType(EltTy))
2731    return true;
2732
2733  Inst = new VAArgInst(Op, EltTy);
2734  return false;
2735}
2736
2737/// ParseExtractElement
2738///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2739bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2740  LocTy Loc;
2741  Value *Op0, *Op1;
2742  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2743      ParseToken(lltok::comma, "expected ',' after extract value") ||
2744      ParseTypeAndValue(Op1, PFS))
2745    return true;
2746
2747  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2748    return Error(Loc, "invalid extractelement operands");
2749
2750  Inst = new ExtractElementInst(Op0, Op1);
2751  return false;
2752}
2753
2754/// ParseInsertElement
2755///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2756bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2757  LocTy Loc;
2758  Value *Op0, *Op1, *Op2;
2759  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2760      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2761      ParseTypeAndValue(Op1, PFS) ||
2762      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2763      ParseTypeAndValue(Op2, PFS))
2764    return true;
2765
2766  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2767    return Error(Loc, "invalid extractelement operands");
2768
2769  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2770  return false;
2771}
2772
2773/// ParseShuffleVector
2774///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2775bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2776  LocTy Loc;
2777  Value *Op0, *Op1, *Op2;
2778  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2779      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2780      ParseTypeAndValue(Op1, PFS) ||
2781      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2782      ParseTypeAndValue(Op2, PFS))
2783    return true;
2784
2785  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2786    return Error(Loc, "invalid extractelement operands");
2787
2788  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2789  return false;
2790}
2791
2792/// ParsePHI
2793///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2794bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2795  PATypeHolder Ty(Type::VoidTy);
2796  Value *Op0, *Op1;
2797  LocTy TypeLoc = Lex.getLoc();
2798
2799  if (ParseType(Ty) ||
2800      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2801      ParseValue(Ty, Op0, PFS) ||
2802      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2803      ParseValue(Type::LabelTy, Op1, PFS) ||
2804      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2805    return true;
2806
2807  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2808  while (1) {
2809    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2810
2811    if (!EatIfPresent(lltok::comma))
2812      break;
2813
2814    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2815        ParseValue(Ty, Op0, PFS) ||
2816        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2817        ParseValue(Type::LabelTy, Op1, PFS) ||
2818        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2819      return true;
2820  }
2821
2822  if (!Ty->isFirstClassType())
2823    return Error(TypeLoc, "phi node must have first class type");
2824
2825  PHINode *PN = PHINode::Create(Ty);
2826  PN->reserveOperandSpace(PHIVals.size());
2827  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2828    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2829  Inst = PN;
2830  return false;
2831}
2832
2833/// ParseCall
2834///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2835///       ParameterList OptionalAttrs
2836bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2837                         bool isTail) {
2838  unsigned CC, RetAttrs, FnAttrs;
2839  PATypeHolder RetType(Type::VoidTy);
2840  LocTy RetTypeLoc;
2841  ValID CalleeID;
2842  SmallVector<ParamInfo, 16> ArgList;
2843  LocTy CallLoc = Lex.getLoc();
2844
2845  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2846      ParseOptionalCallingConv(CC) ||
2847      ParseOptionalAttrs(RetAttrs, 1) ||
2848      ParseType(RetType, RetTypeLoc) ||
2849      ParseValID(CalleeID) ||
2850      ParseParameterList(ArgList, PFS) ||
2851      ParseOptionalAttrs(FnAttrs, 2))
2852    return true;
2853
2854  // If RetType is a non-function pointer type, then this is the short syntax
2855  // for the call, which means that RetType is just the return type.  Infer the
2856  // rest of the function argument types from the arguments that are present.
2857  const PointerType *PFTy = 0;
2858  const FunctionType *Ty = 0;
2859  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2860      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2861    // Pull out the types of all of the arguments...
2862    std::vector<const Type*> ParamTypes;
2863    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2864      ParamTypes.push_back(ArgList[i].V->getType());
2865
2866    if (!FunctionType::isValidReturnType(RetType))
2867      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2868
2869    Ty = FunctionType::get(RetType, ParamTypes, false);
2870    PFTy = PointerType::getUnqual(Ty);
2871  }
2872
2873  // Look up the callee.
2874  Value *Callee;
2875  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2876
2877  // Check for call to invalid intrinsic to avoid crashing later.
2878  if (Function *F = dyn_cast<Function>(Callee)) {
2879    if (F->hasName() && F->getNameLen() >= 5 &&
2880        !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2881        !F->getIntrinsicID(true))
2882      return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2883                   F->getNameStr() + "'");
2884  }
2885
2886  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2887  // function attributes.
2888  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2889  if (FnAttrs & ObsoleteFuncAttrs) {
2890    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2891    FnAttrs &= ~ObsoleteFuncAttrs;
2892  }
2893
2894  // Set up the Attributes for the function.
2895  SmallVector<AttributeWithIndex, 8> Attrs;
2896  if (RetAttrs != Attribute::None)
2897    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2898
2899  SmallVector<Value*, 8> Args;
2900
2901  // Loop through FunctionType's arguments and ensure they are specified
2902  // correctly.  Also, gather any parameter attributes.
2903  FunctionType::param_iterator I = Ty->param_begin();
2904  FunctionType::param_iterator E = Ty->param_end();
2905  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2906    const Type *ExpectedTy = 0;
2907    if (I != E) {
2908      ExpectedTy = *I++;
2909    } else if (!Ty->isVarArg()) {
2910      return Error(ArgList[i].Loc, "too many arguments specified");
2911    }
2912
2913    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2914      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2915                   ExpectedTy->getDescription() + "'");
2916    Args.push_back(ArgList[i].V);
2917    if (ArgList[i].Attrs != Attribute::None)
2918      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2919  }
2920
2921  if (I != E)
2922    return Error(CallLoc, "not enough parameters specified for call");
2923
2924  if (FnAttrs != Attribute::None)
2925    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2926
2927  // Finish off the Attributes and check them
2928  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2929
2930  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
2931  CI->setTailCall(isTail);
2932  CI->setCallingConv(CC);
2933  CI->setAttributes(PAL);
2934  Inst = CI;
2935  return false;
2936}
2937
2938//===----------------------------------------------------------------------===//
2939// Memory Instructions.
2940//===----------------------------------------------------------------------===//
2941
2942/// ParseAlloc
2943///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2944///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2945bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
2946                          unsigned Opc) {
2947  PATypeHolder Ty(Type::VoidTy);
2948  Value *Size = 0;
2949  LocTy SizeLoc = 0;
2950  unsigned Alignment = 0;
2951  if (ParseType(Ty)) return true;
2952
2953  if (EatIfPresent(lltok::comma)) {
2954    if (Lex.getKind() == lltok::kw_align) {
2955      if (ParseOptionalAlignment(Alignment)) return true;
2956    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
2957               ParseOptionalCommaAlignment(Alignment)) {
2958      return true;
2959    }
2960  }
2961
2962  if (Size && Size->getType() != Type::Int32Ty)
2963    return Error(SizeLoc, "element count must be i32");
2964
2965  if (Opc == Instruction::Malloc)
2966    Inst = new MallocInst(Ty, Size, Alignment);
2967  else
2968    Inst = new AllocaInst(Ty, Size, Alignment);
2969  return false;
2970}
2971
2972/// ParseFree
2973///   ::= 'free' TypeAndValue
2974bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
2975  Value *Val; LocTy Loc;
2976  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
2977  if (!isa<PointerType>(Val->getType()))
2978    return Error(Loc, "operand to free must be a pointer");
2979  Inst = new FreeInst(Val);
2980  return false;
2981}
2982
2983/// ParseLoad
2984///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
2985bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
2986                         bool isVolatile) {
2987  Value *Val; LocTy Loc;
2988  unsigned Alignment;
2989  if (ParseTypeAndValue(Val, Loc, PFS) ||
2990      ParseOptionalCommaAlignment(Alignment))
2991    return true;
2992
2993  if (!isa<PointerType>(Val->getType()) ||
2994      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
2995    return Error(Loc, "load operand must be a pointer to a first class type");
2996
2997  Inst = new LoadInst(Val, "", isVolatile, Alignment);
2998  return false;
2999}
3000
3001/// ParseStore
3002///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3003bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3004                          bool isVolatile) {
3005  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3006  unsigned Alignment;
3007  if (ParseTypeAndValue(Val, Loc, PFS) ||
3008      ParseToken(lltok::comma, "expected ',' after store operand") ||
3009      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3010      ParseOptionalCommaAlignment(Alignment))
3011    return true;
3012
3013  if (!isa<PointerType>(Ptr->getType()))
3014    return Error(PtrLoc, "store operand must be a pointer");
3015  if (!Val->getType()->isFirstClassType())
3016    return Error(Loc, "store operand must be a first class value");
3017  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3018    return Error(Loc, "stored value and pointer type do not match");
3019
3020  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3021  return false;
3022}
3023
3024/// ParseGetResult
3025///   ::= 'getresult' TypeAndValue ',' uint
3026/// FIXME: Remove support for getresult in LLVM 3.0
3027bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3028  Value *Val; LocTy ValLoc, EltLoc;
3029  unsigned Element;
3030  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3031      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3032      ParseUInt32(Element, EltLoc))
3033    return true;
3034
3035  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3036    return Error(ValLoc, "getresult inst requires an aggregate operand");
3037  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3038    return Error(EltLoc, "invalid getresult index for value");
3039  Inst = ExtractValueInst::Create(Val, Element);
3040  return false;
3041}
3042
3043/// ParseGetElementPtr
3044///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3045bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3046  Value *Ptr, *Val; LocTy Loc, EltLoc;
3047  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3048
3049  if (!isa<PointerType>(Ptr->getType()))
3050    return Error(Loc, "base of getelementptr must be a pointer");
3051
3052  SmallVector<Value*, 16> Indices;
3053  while (EatIfPresent(lltok::comma)) {
3054    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3055    if (!isa<IntegerType>(Val->getType()))
3056      return Error(EltLoc, "getelementptr index must be an integer");
3057    Indices.push_back(Val);
3058  }
3059
3060  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3061                                         Indices.begin(), Indices.end()))
3062    return Error(Loc, "invalid getelementptr indices");
3063  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3064  return false;
3065}
3066
3067/// ParseExtractValue
3068///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3069bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3070  Value *Val; LocTy Loc;
3071  SmallVector<unsigned, 4> Indices;
3072  if (ParseTypeAndValue(Val, Loc, PFS) ||
3073      ParseIndexList(Indices))
3074    return true;
3075
3076  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3077    return Error(Loc, "extractvalue operand must be array or struct");
3078
3079  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3080                                        Indices.end()))
3081    return Error(Loc, "invalid indices for extractvalue");
3082  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3083  return false;
3084}
3085
3086/// ParseInsertValue
3087///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3088bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3089  Value *Val0, *Val1; LocTy Loc0, Loc1;
3090  SmallVector<unsigned, 4> Indices;
3091  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3092      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3093      ParseTypeAndValue(Val1, Loc1, PFS) ||
3094      ParseIndexList(Indices))
3095    return true;
3096
3097  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3098    return Error(Loc0, "extractvalue operand must be array or struct");
3099
3100  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3101                                        Indices.end()))
3102    return Error(Loc0, "invalid indices for insertvalue");
3103  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3104  return false;
3105}
3106