LLParser.cpp revision 3fbb3ab14d86f752a933b5af4e6728c5e57e1155
1db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//
3db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//                     The LLVM Compiler Infrastructure
4db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//
5db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block// This file is distributed under the University of Illinois Open Source
6db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block// License. See LICENSE.TXT for details.
7db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//
8db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//===----------------------------------------------------------------------===//
9db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//
10db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//  This file defines the parser class for .ll files.
11db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//
12db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block//===----------------------------------------------------------------------===//
13db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block
14db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "LLParser.h"
15db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/AutoUpgrade.h"
16db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/CallingConv.h"
17db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/Constants.h"
18db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/DerivedTypes.h"
19db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/InlineAsm.h"
20db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/Instructions.h"
21db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/Module.h"
22db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/ValueSymbolTable.h"
23db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/ADT/SmallPtrSet.h"
24db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/ADT/StringExtras.h"
25db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block#include "llvm/Support/raw_ostream.h"
262fc2651226baac27029e38c9d6ef883fa32084dbSteve Blockusing namespace llvm;
2765f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch
28dd8bb3de4f353a81954234999f1fea748aee2ea9Ben Murdochnamespace llvm {
2965f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch  /// ValID - Represents a reference of a definition of some sort with no type.
3065f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch  /// There are several cases where we have to parse the value but where the
3165f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch  /// type can depend on later context.  This may either be a numeric reference
3265f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch  /// or a symbolic (%var) reference.  This is just a discriminated union.
3365f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch  struct ValID {
3465f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    enum {
3565f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch      t_LocalID, t_GlobalID,      // ID in UIntVal.
3665f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch      t_LocalName, t_GlobalName,  // Name in StrVal.
3765f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
3865f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch      t_Null, t_Undef, t_Zero,    // No value.
3965f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch      t_Constant,                 // Value in ConstantVal.
4065f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
4165f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    } Kind;
4265f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch
4365f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    LLParser::LocTy Loc;
4465f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    unsigned UIntVal;
4565f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    std::string StrVal, StrVal2;
4665f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    APSInt APSIntVal;
4765f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    APFloat APFloatVal;
4865f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch    Constant *ConstantVal;
49dd8bb3de4f353a81954234999f1fea748aee2ea9Ben Murdoch    ValID() : APFloatVal(0.0) {}
50db14019a23d96bc8a444b6576a5da8bd1cfbc8b0Steve Block  };
512bde8e466a4451c7319e3a072d118917957d6554Steve Block}
522bde8e466a4451c7319e3a072d118917957d6554Steve Block
532bde8e466a4451c7319e3a072d118917957d6554Steve Block/// Run: module ::= toplevelentity*
542bde8e466a4451c7319e3a072d118917957d6554Steve Blockbool LLParser::Run() {
552bde8e466a4451c7319e3a072d118917957d6554Steve Block  // Prime the lexer.
5665f03d4f644ce73618e5f4f50dd694b26f55ae12Ben Murdoch  Lex.Lex();
57
58  return ParseTopLevelEntities() ||
59         ValidateEndOfModule();
60}
61
62/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
63/// module.
64bool LLParser::ValidateEndOfModule() {
65  if (!ForwardRefTypes.empty())
66    return Error(ForwardRefTypes.begin()->second.second,
67                 "use of undefined type named '" +
68                 ForwardRefTypes.begin()->first + "'");
69  if (!ForwardRefTypeIDs.empty())
70    return Error(ForwardRefTypeIDs.begin()->second.second,
71                 "use of undefined type '%" +
72                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
73
74  if (!ForwardRefVals.empty())
75    return Error(ForwardRefVals.begin()->second.second,
76                 "use of undefined value '@" + ForwardRefVals.begin()->first +
77                 "'");
78
79  if (!ForwardRefValIDs.empty())
80    return Error(ForwardRefValIDs.begin()->second.second,
81                 "use of undefined value '@" +
82                 utostr(ForwardRefValIDs.begin()->first) + "'");
83
84  // Look for intrinsic functions and CallInst that need to be upgraded
85  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
86    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
87
88  return false;
89}
90
91//===----------------------------------------------------------------------===//
92// Top-Level Entities
93//===----------------------------------------------------------------------===//
94
95bool LLParser::ParseTopLevelEntities() {
96  while (1) {
97    switch (Lex.getKind()) {
98    default:         return TokError("expected top-level entity");
99    case lltok::Eof: return false;
100    //case lltok::kw_define:
101    case lltok::kw_declare: if (ParseDeclare()) return true; break;
102    case lltok::kw_define:  if (ParseDefine()) return true; break;
103    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
104    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
105    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
106    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
107    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
108    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
109    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
110
111    // The Global variable production with no name can have many different
112    // optional leading prefixes, the production is:
113    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
114    //               OptionalAddrSpace ('constant'|'global') ...
115    case lltok::kw_internal:      // OptionalLinkage
116    case lltok::kw_weak:          // OptionalLinkage
117    case lltok::kw_linkonce:      // OptionalLinkage
118    case lltok::kw_appending:     // OptionalLinkage
119    case lltok::kw_dllexport:     // OptionalLinkage
120    case lltok::kw_common:        // OptionalLinkage
121    case lltok::kw_dllimport:     // OptionalLinkage
122    case lltok::kw_extern_weak:   // OptionalLinkage
123    case lltok::kw_external: {    // OptionalLinkage
124      unsigned Linkage, Visibility;
125      if (ParseOptionalLinkage(Linkage) ||
126          ParseOptionalVisibility(Visibility) ||
127          ParseGlobal("", 0, Linkage, true, Visibility))
128        return true;
129      break;
130    }
131    case lltok::kw_default:       // OptionalVisibility
132    case lltok::kw_hidden:        // OptionalVisibility
133    case lltok::kw_protected: {   // OptionalVisibility
134      unsigned Visibility;
135      if (ParseOptionalVisibility(Visibility) ||
136          ParseGlobal("", 0, 0, false, Visibility))
137        return true;
138      break;
139    }
140
141    case lltok::kw_thread_local:  // OptionalThreadLocal
142    case lltok::kw_addrspace:     // OptionalAddrSpace
143    case lltok::kw_constant:      // GlobalType
144    case lltok::kw_global:        // GlobalType
145      if (ParseGlobal("", 0, 0, false, 0)) return true;
146      break;
147    }
148  }
149}
150
151
152/// toplevelentity
153///   ::= 'module' 'asm' STRINGCONSTANT
154bool LLParser::ParseModuleAsm() {
155  assert(Lex.getKind() == lltok::kw_module);
156  Lex.Lex();
157
158  std::string AsmStr;
159  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
160      ParseStringConstant(AsmStr)) return true;
161
162  const std::string &AsmSoFar = M->getModuleInlineAsm();
163  if (AsmSoFar.empty())
164    M->setModuleInlineAsm(AsmStr);
165  else
166    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
167  return false;
168}
169
170/// toplevelentity
171///   ::= 'target' 'triple' '=' STRINGCONSTANT
172///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
173bool LLParser::ParseTargetDefinition() {
174  assert(Lex.getKind() == lltok::kw_target);
175  std::string Str;
176  switch (Lex.Lex()) {
177  default: return TokError("unknown target property");
178  case lltok::kw_triple:
179    Lex.Lex();
180    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
181        ParseStringConstant(Str))
182      return true;
183    M->setTargetTriple(Str);
184    return false;
185  case lltok::kw_datalayout:
186    Lex.Lex();
187    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
188        ParseStringConstant(Str))
189      return true;
190    M->setDataLayout(Str);
191    return false;
192  }
193}
194
195/// toplevelentity
196///   ::= 'deplibs' '=' '[' ']'
197///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
198bool LLParser::ParseDepLibs() {
199  assert(Lex.getKind() == lltok::kw_deplibs);
200  Lex.Lex();
201  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
202      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
203    return true;
204
205  if (EatIfPresent(lltok::rsquare))
206    return false;
207
208  std::string Str;
209  if (ParseStringConstant(Str)) return true;
210  M->addLibrary(Str);
211
212  while (EatIfPresent(lltok::comma)) {
213    if (ParseStringConstant(Str)) return true;
214    M->addLibrary(Str);
215  }
216
217  return ParseToken(lltok::rsquare, "expected ']' at end of list");
218}
219
220/// toplevelentity
221///   ::= 'type' type
222bool LLParser::ParseUnnamedType() {
223  assert(Lex.getKind() == lltok::kw_type);
224  LocTy TypeLoc = Lex.getLoc();
225  Lex.Lex(); // eat kw_type
226
227  PATypeHolder Ty(Type::VoidTy);
228  if (ParseType(Ty)) return true;
229
230  unsigned TypeID = NumberedTypes.size();
231
232  // We don't allow assigning names to void type
233  if (Ty == Type::VoidTy)
234    return Error(TypeLoc, "can't assign name to the void type");
235
236  // See if this type was previously referenced.
237  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
238    FI = ForwardRefTypeIDs.find(TypeID);
239  if (FI != ForwardRefTypeIDs.end()) {
240    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
241    Ty = FI->second.first.get();
242    ForwardRefTypeIDs.erase(FI);
243  }
244
245  NumberedTypes.push_back(Ty);
246
247  return false;
248}
249
250/// toplevelentity
251///   ::= LocalVar '=' 'type' type
252bool LLParser::ParseNamedType() {
253  std::string Name = Lex.getStrVal();
254  LocTy NameLoc = Lex.getLoc();
255  Lex.Lex();  // eat LocalVar.
256
257  PATypeHolder Ty(Type::VoidTy);
258
259  if (ParseToken(lltok::equal, "expected '=' after name") ||
260      ParseToken(lltok::kw_type, "expected 'type' after name") ||
261      ParseType(Ty))
262    return true;
263
264  // We don't allow assigning names to void type
265  if (Ty == Type::VoidTy)
266    return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
267
268  // Set the type name, checking for conflicts as we do so.
269  bool AlreadyExists = M->addTypeName(Name, Ty);
270  if (!AlreadyExists) return false;
271
272  // See if this type is a forward reference.  We need to eagerly resolve
273  // types to allow recursive type redefinitions below.
274  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
275  FI = ForwardRefTypes.find(Name);
276  if (FI != ForwardRefTypes.end()) {
277    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
278    Ty = FI->second.first.get();
279    ForwardRefTypes.erase(FI);
280  }
281
282  // Inserting a name that is already defined, get the existing name.
283  const Type *Existing = M->getTypeByName(Name);
284  assert(Existing && "Conflict but no matching type?!");
285
286  // Otherwise, this is an attempt to redefine a type. That's okay if
287  // the redefinition is identical to the original.
288  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
289  if (Existing == Ty) return false;
290
291  // Any other kind of (non-equivalent) redefinition is an error.
292  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
293               Ty->getDescription() + "'");
294}
295
296
297/// toplevelentity
298///   ::= 'declare' FunctionHeader
299bool LLParser::ParseDeclare() {
300  assert(Lex.getKind() == lltok::kw_declare);
301  Lex.Lex();
302
303  Function *F;
304  return ParseFunctionHeader(F, false);
305}
306
307/// toplevelentity
308///   ::= 'define' FunctionHeader '{' ...
309bool LLParser::ParseDefine() {
310  assert(Lex.getKind() == lltok::kw_define);
311  Lex.Lex();
312
313  Function *F;
314  return ParseFunctionHeader(F, true) ||
315         ParseFunctionBody(*F);
316}
317
318/// ParseGlobalType
319///   ::= 'constant'
320///   ::= 'global'
321bool LLParser::ParseGlobalType(bool &IsConstant) {
322  if (Lex.getKind() == lltok::kw_constant)
323    IsConstant = true;
324  else if (Lex.getKind() == lltok::kw_global)
325    IsConstant = false;
326  else
327    return TokError("expected 'global' or 'constant'");
328  Lex.Lex();
329  return false;
330}
331
332/// ParseNamedGlobal:
333///   GlobalVar '=' OptionalVisibility ALIAS ...
334///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
335bool LLParser::ParseNamedGlobal() {
336  assert(Lex.getKind() == lltok::GlobalVar);
337  LocTy NameLoc = Lex.getLoc();
338  std::string Name = Lex.getStrVal();
339  Lex.Lex();
340
341  bool HasLinkage;
342  unsigned Linkage, Visibility;
343  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
344      ParseOptionalLinkage(Linkage, HasLinkage) ||
345      ParseOptionalVisibility(Visibility))
346    return true;
347
348  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
349    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
350  return ParseAlias(Name, NameLoc, Visibility);
351}
352
353/// ParseAlias:
354///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
355/// Aliasee
356///   ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
357///
358/// Everything through visibility has already been parsed.
359///
360bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
361                          unsigned Visibility) {
362  assert(Lex.getKind() == lltok::kw_alias);
363  Lex.Lex();
364  unsigned Linkage;
365  LocTy LinkageLoc = Lex.getLoc();
366  if (ParseOptionalLinkage(Linkage))
367    return true;
368
369  if (Linkage != GlobalValue::ExternalLinkage &&
370      Linkage != GlobalValue::WeakLinkage &&
371      Linkage != GlobalValue::InternalLinkage)
372    return Error(LinkageLoc, "invalid linkage type for alias");
373
374  Constant *Aliasee;
375  LocTy AliaseeLoc = Lex.getLoc();
376  if (Lex.getKind() != lltok::kw_bitcast) {
377    if (ParseGlobalTypeAndValue(Aliasee)) return true;
378  } else {
379    // The bitcast dest type is not present, it is implied by the dest type.
380    ValID ID;
381    if (ParseValID(ID)) return true;
382    if (ID.Kind != ValID::t_Constant)
383      return Error(AliaseeLoc, "invalid aliasee");
384    Aliasee = ID.ConstantVal;
385  }
386
387  if (!isa<PointerType>(Aliasee->getType()))
388    return Error(AliaseeLoc, "alias must have pointer type");
389
390  // Okay, create the alias but do not insert it into the module yet.
391  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
392                                    (GlobalValue::LinkageTypes)Linkage, Name,
393                                    Aliasee);
394  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
395
396  // See if this value already exists in the symbol table.  If so, it is either
397  // a redefinition or a definition of a forward reference.
398  if (GlobalValue *Val =
399        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
400    // See if this was a redefinition.  If so, there is no entry in
401    // ForwardRefVals.
402    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
403      I = ForwardRefVals.find(Name);
404    if (I == ForwardRefVals.end())
405      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
406
407    // Otherwise, this was a definition of forward ref.  Verify that types
408    // agree.
409    if (Val->getType() != GA->getType())
410      return Error(NameLoc,
411              "forward reference and definition of alias have different types");
412
413    // If they agree, just RAUW the old value with the alias and remove the
414    // forward ref info.
415    Val->replaceAllUsesWith(GA);
416    Val->eraseFromParent();
417    ForwardRefVals.erase(I);
418  }
419
420  // Insert into the module, we know its name won't collide now.
421  M->getAliasList().push_back(GA);
422  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
423
424  return false;
425}
426
427/// ParseGlobal
428///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
429///       OptionalAddrSpace GlobalType Type Const
430///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
431///       OptionalAddrSpace GlobalType Type Const
432///
433/// Everything through visibility has been parsed already.
434///
435bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
436                           unsigned Linkage, bool HasLinkage,
437                           unsigned Visibility) {
438  unsigned AddrSpace;
439  bool ThreadLocal, IsConstant;
440  LocTy TyLoc;
441
442  PATypeHolder Ty(Type::VoidTy);
443  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
444      ParseOptionalAddrSpace(AddrSpace) ||
445      ParseGlobalType(IsConstant) ||
446      ParseType(Ty, TyLoc))
447    return true;
448
449  // If the linkage is specified and is external, then no initializer is
450  // present.
451  Constant *Init = 0;
452  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
453                      Linkage != GlobalValue::ExternalWeakLinkage &&
454                      Linkage != GlobalValue::ExternalLinkage)) {
455    if (ParseGlobalValue(Ty, Init))
456      return true;
457  }
458
459  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
460    return Error(TyLoc, "invald type for global variable");
461
462  GlobalVariable *GV = 0;
463
464  // See if the global was forward referenced, if so, use the global.
465  if (!Name.empty() && (GV = M->getGlobalVariable(Name, true))) {
466    if (!ForwardRefVals.erase(Name))
467      return Error(NameLoc, "redefinition of global '@" + Name + "'");
468  } else {
469    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
470      I = ForwardRefValIDs.find(NumberedVals.size());
471    if (I != ForwardRefValIDs.end()) {
472      GV = cast<GlobalVariable>(I->second.first);
473      ForwardRefValIDs.erase(I);
474    }
475  }
476
477  if (GV == 0) {
478    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
479                            M, false, AddrSpace);
480  } else {
481    if (GV->getType()->getElementType() != Ty)
482      return Error(TyLoc,
483            "forward reference and definition of global have different types");
484
485    // Move the forward-reference to the correct spot in the module.
486    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
487  }
488
489  if (Name.empty())
490    NumberedVals.push_back(GV);
491
492  // Set the parsed properties on the global.
493  if (Init)
494    GV->setInitializer(Init);
495  GV->setConstant(IsConstant);
496  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
497  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
498  GV->setThreadLocal(ThreadLocal);
499
500  // Parse attributes on the global.
501  while (Lex.getKind() == lltok::comma) {
502    Lex.Lex();
503
504    if (Lex.getKind() == lltok::kw_section) {
505      Lex.Lex();
506      GV->setSection(Lex.getStrVal());
507      if (ParseToken(lltok::StringConstant, "expected global section string"))
508        return true;
509    } else if (Lex.getKind() == lltok::kw_align) {
510      unsigned Alignment;
511      if (ParseOptionalAlignment(Alignment)) return true;
512      GV->setAlignment(Alignment);
513    } else {
514      TokError("unknown global variable property!");
515    }
516  }
517
518  return false;
519}
520
521
522//===----------------------------------------------------------------------===//
523// GlobalValue Reference/Resolution Routines.
524//===----------------------------------------------------------------------===//
525
526/// GetGlobalVal - Get a value with the specified name or ID, creating a
527/// forward reference record if needed.  This can return null if the value
528/// exists but does not have the right type.
529GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
530                                    LocTy Loc) {
531  const PointerType *PTy = dyn_cast<PointerType>(Ty);
532  if (PTy == 0) {
533    Error(Loc, "global variable reference must have pointer type");
534    return 0;
535  }
536
537  // Look this name up in the normal function symbol table.
538  GlobalValue *Val =
539    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
540
541  // If this is a forward reference for the value, see if we already created a
542  // forward ref record.
543  if (Val == 0) {
544    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
545      I = ForwardRefVals.find(Name);
546    if (I != ForwardRefVals.end())
547      Val = I->second.first;
548  }
549
550  // If we have the value in the symbol table or fwd-ref table, return it.
551  if (Val) {
552    if (Val->getType() == Ty) return Val;
553    Error(Loc, "'@" + Name + "' defined with type '" +
554          Val->getType()->getDescription() + "'");
555    return 0;
556  }
557
558  // Otherwise, create a new forward reference for this value and remember it.
559  GlobalValue *FwdVal;
560  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
561    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
562  else
563    FwdVal = new GlobalVariable(PTy->getElementType(), false,
564                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
565
566  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
567  return FwdVal;
568}
569
570GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
571  const PointerType *PTy = dyn_cast<PointerType>(Ty);
572  if (PTy == 0) {
573    Error(Loc, "global variable reference must have pointer type");
574    return 0;
575  }
576
577  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
578
579  // If this is a forward reference for the value, see if we already created a
580  // forward ref record.
581  if (Val == 0) {
582    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
583      I = ForwardRefValIDs.find(ID);
584    if (I != ForwardRefValIDs.end())
585      Val = I->second.first;
586  }
587
588  // If we have the value in the symbol table or fwd-ref table, return it.
589  if (Val) {
590    if (Val->getType() == Ty) return Val;
591    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
592          Val->getType()->getDescription() + "'");
593    return 0;
594  }
595
596  // Otherwise, create a new forward reference for this value and remember it.
597  GlobalValue *FwdVal;
598  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
599    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
600  else
601    FwdVal = new GlobalVariable(PTy->getElementType(), false,
602                                GlobalValue::ExternalWeakLinkage, 0, "", M);
603
604  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
605  return FwdVal;
606}
607
608
609//===----------------------------------------------------------------------===//
610// Helper Routines.
611//===----------------------------------------------------------------------===//
612
613/// ParseToken - If the current token has the specified kind, eat it and return
614/// success.  Otherwise, emit the specified error and return failure.
615bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
616  if (Lex.getKind() != T)
617    return TokError(ErrMsg);
618  Lex.Lex();
619  return false;
620}
621
622/// ParseStringConstant
623///   ::= StringConstant
624bool LLParser::ParseStringConstant(std::string &Result) {
625  if (Lex.getKind() != lltok::StringConstant)
626    return TokError("expected string constant");
627  Result = Lex.getStrVal();
628  Lex.Lex();
629  return false;
630}
631
632/// ParseUInt32
633///   ::= uint32
634bool LLParser::ParseUInt32(unsigned &Val) {
635  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
636    return TokError("expected integer");
637  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
638  if (Val64 != unsigned(Val64))
639    return TokError("expected 32-bit integer (too large)");
640  Val = Val64;
641  Lex.Lex();
642  return false;
643}
644
645
646/// ParseOptionalAddrSpace
647///   := /*empty*/
648///   := 'addrspace' '(' uint32 ')'
649bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
650  AddrSpace = 0;
651  if (!EatIfPresent(lltok::kw_addrspace))
652    return false;
653  return ParseToken(lltok::lparen, "expected '(' in address space") ||
654         ParseUInt32(AddrSpace) ||
655         ParseToken(lltok::rparen, "expected ')' in address space");
656}
657
658/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
659/// indicates what kind of attribute list this is: 0: function arg, 1: result,
660/// 2: function attr.
661bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
662  Attrs = Attribute::None;
663  LocTy AttrLoc = Lex.getLoc();
664
665  while (1) {
666    switch (Lex.getKind()) {
667    case lltok::kw_sext:
668    case lltok::kw_zext:
669      // Treat these as signext/zeroext unless they are function attrs.
670      // FIXME: REMOVE THIS IN LLVM 3.0
671      if (AttrKind != 2) {
672        if (Lex.getKind() == lltok::kw_sext)
673          Attrs |= Attribute::SExt;
674        else
675          Attrs |= Attribute::ZExt;
676        break;
677      }
678      // FALL THROUGH.
679    default:  // End of attributes.
680      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
681        return Error(AttrLoc, "invalid use of function-only attribute");
682
683      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
684        return Error(AttrLoc, "invalid use of parameter-only attribute");
685
686      return false;
687    case lltok::kw_zeroext:      Attrs |= Attribute::ZExt; break;
688    case lltok::kw_signext:      Attrs |= Attribute::SExt; break;
689    case lltok::kw_inreg:        Attrs |= Attribute::InReg; break;
690    case lltok::kw_sret:         Attrs |= Attribute::StructRet; break;
691    case lltok::kw_noalias:      Attrs |= Attribute::NoAlias; break;
692    case lltok::kw_nocapture:    Attrs |= Attribute::NoCapture; break;
693    case lltok::kw_byval:        Attrs |= Attribute::ByVal; break;
694    case lltok::kw_nest:         Attrs |= Attribute::Nest; break;
695
696    case lltok::kw_noreturn:     Attrs |= Attribute::NoReturn; break;
697    case lltok::kw_nounwind:     Attrs |= Attribute::NoUnwind; break;
698    case lltok::kw_noinline:     Attrs |= Attribute::NoInline; break;
699    case lltok::kw_readnone:     Attrs |= Attribute::ReadNone; break;
700    case lltok::kw_readonly:     Attrs |= Attribute::ReadOnly; break;
701    case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
702    case lltok::kw_optsize:      Attrs |= Attribute::OptimizeForSize; break;
703    case lltok::kw_ssp:          Attrs |= Attribute::StackProtect; break;
704    case lltok::kw_sspreq:       Attrs |= Attribute::StackProtectReq; break;
705
706
707    case lltok::kw_align: {
708      unsigned Alignment;
709      if (ParseOptionalAlignment(Alignment))
710        return true;
711      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
712      continue;
713    }
714    }
715    Lex.Lex();
716  }
717}
718
719/// ParseOptionalLinkage
720///   ::= /*empty*/
721///   ::= 'internal'
722///   ::= 'weak'
723///   ::= 'linkonce'
724///   ::= 'appending'
725///   ::= 'dllexport'
726///   ::= 'common'
727///   ::= 'dllimport'
728///   ::= 'extern_weak'
729///   ::= 'external'
730bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
731  HasLinkage = false;
732  switch (Lex.getKind()) {
733  default:                    Res = GlobalValue::ExternalLinkage; return false;
734  case lltok::kw_internal:    Res = GlobalValue::InternalLinkage; break;
735  case lltok::kw_weak:        Res = GlobalValue::WeakLinkage; break;
736  case lltok::kw_linkonce:    Res = GlobalValue::LinkOnceLinkage; break;
737  case lltok::kw_appending:   Res = GlobalValue::AppendingLinkage; break;
738  case lltok::kw_dllexport:   Res = GlobalValue::DLLExportLinkage; break;
739  case lltok::kw_common:      Res = GlobalValue::CommonLinkage; break;
740  case lltok::kw_dllimport:   Res = GlobalValue::DLLImportLinkage; break;
741  case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
742  case lltok::kw_external:    Res = GlobalValue::ExternalLinkage; break;
743  }
744  Lex.Lex();
745  HasLinkage = true;
746  return false;
747}
748
749/// ParseOptionalVisibility
750///   ::= /*empty*/
751///   ::= 'default'
752///   ::= 'hidden'
753///   ::= 'protected'
754///
755bool LLParser::ParseOptionalVisibility(unsigned &Res) {
756  switch (Lex.getKind()) {
757  default:                  Res = GlobalValue::DefaultVisibility; return false;
758  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
759  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
760  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
761  }
762  Lex.Lex();
763  return false;
764}
765
766/// ParseOptionalCallingConv
767///   ::= /*empty*/
768///   ::= 'ccc'
769///   ::= 'fastcc'
770///   ::= 'coldcc'
771///   ::= 'x86_stdcallcc'
772///   ::= 'x86_fastcallcc'
773///   ::= 'cc' UINT
774///
775bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
776  switch (Lex.getKind()) {
777  default:                       CC = CallingConv::C; return false;
778  case lltok::kw_ccc:            CC = CallingConv::C; break;
779  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
780  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
781  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
782  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
783  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
784  }
785  Lex.Lex();
786  return false;
787}
788
789/// ParseOptionalAlignment
790///   ::= /* empty */
791///   ::= 'align' 4
792bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
793  Alignment = 0;
794  if (!EatIfPresent(lltok::kw_align))
795    return false;
796  LocTy AlignLoc = Lex.getLoc();
797  if (ParseUInt32(Alignment)) return true;
798  if (!isPowerOf2_32(Alignment))
799    return Error(AlignLoc, "alignment is not a power of two");
800  return false;
801}
802
803/// ParseOptionalCommaAlignment
804///   ::= /* empty */
805///   ::= ',' 'align' 4
806bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
807  Alignment = 0;
808  if (!EatIfPresent(lltok::comma))
809    return false;
810  return ParseToken(lltok::kw_align, "expected 'align'") ||
811         ParseUInt32(Alignment);
812}
813
814/// ParseIndexList
815///    ::=  (',' uint32)+
816bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
817  if (Lex.getKind() != lltok::comma)
818    return TokError("expected ',' as start of index list");
819
820  while (EatIfPresent(lltok::comma)) {
821    unsigned Idx;
822    if (ParseUInt32(Idx)) return true;
823    Indices.push_back(Idx);
824  }
825
826  return false;
827}
828
829//===----------------------------------------------------------------------===//
830// Type Parsing.
831//===----------------------------------------------------------------------===//
832
833/// ParseType - Parse and resolve a full type.
834bool LLParser::ParseType(PATypeHolder &Result) {
835  if (ParseTypeRec(Result)) return true;
836
837  // Verify no unresolved uprefs.
838  if (!UpRefs.empty())
839    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
840
841  return false;
842}
843
844/// HandleUpRefs - Every time we finish a new layer of types, this function is
845/// called.  It loops through the UpRefs vector, which is a list of the
846/// currently active types.  For each type, if the up-reference is contained in
847/// the newly completed type, we decrement the level count.  When the level
848/// count reaches zero, the up-referenced type is the type that is passed in:
849/// thus we can complete the cycle.
850///
851PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
852  // If Ty isn't abstract, or if there are no up-references in it, then there is
853  // nothing to resolve here.
854  if (!ty->isAbstract() || UpRefs.empty()) return ty;
855
856  PATypeHolder Ty(ty);
857#if 0
858  errs() << "Type '" << Ty->getDescription()
859         << "' newly formed.  Resolving upreferences.\n"
860         << UpRefs.size() << " upreferences active!\n";
861#endif
862
863  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
864  // to zero), we resolve them all together before we resolve them to Ty.  At
865  // the end of the loop, if there is anything to resolve to Ty, it will be in
866  // this variable.
867  OpaqueType *TypeToResolve = 0;
868
869  for (unsigned i = 0; i != UpRefs.size(); ++i) {
870    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
871    bool ContainsType =
872      std::find(Ty->subtype_begin(), Ty->subtype_end(),
873                UpRefs[i].LastContainedTy) != Ty->subtype_end();
874
875#if 0
876    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
877           << UpRefs[i].LastContainedTy->getDescription() << ") = "
878           << (ContainsType ? "true" : "false")
879           << " level=" << UpRefs[i].NestingLevel << "\n";
880#endif
881    if (!ContainsType)
882      continue;
883
884    // Decrement level of upreference
885    unsigned Level = --UpRefs[i].NestingLevel;
886    UpRefs[i].LastContainedTy = Ty;
887
888    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
889    if (Level != 0)
890      continue;
891
892#if 0
893    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
894#endif
895    if (!TypeToResolve)
896      TypeToResolve = UpRefs[i].UpRefTy;
897    else
898      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
899    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
900    --i;                                // Do not skip the next element.
901  }
902
903  if (TypeToResolve)
904    TypeToResolve->refineAbstractTypeTo(Ty);
905
906  return Ty;
907}
908
909
910/// ParseTypeRec - The recursive function used to process the internal
911/// implementation details of types.
912bool LLParser::ParseTypeRec(PATypeHolder &Result) {
913  switch (Lex.getKind()) {
914  default:
915    return TokError("expected type");
916  case lltok::Type:
917    // TypeRec ::= 'float' | 'void' (etc)
918    Result = Lex.getTyVal();
919    Lex.Lex();
920    break;
921  case lltok::kw_opaque:
922    // TypeRec ::= 'opaque'
923    Result = OpaqueType::get();
924    Lex.Lex();
925    break;
926  case lltok::lbrace:
927    // TypeRec ::= '{' ... '}'
928    if (ParseStructType(Result, false))
929      return true;
930    break;
931  case lltok::lsquare:
932    // TypeRec ::= '[' ... ']'
933    Lex.Lex(); // eat the lsquare.
934    if (ParseArrayVectorType(Result, false))
935      return true;
936    break;
937  case lltok::less: // Either vector or packed struct.
938    // TypeRec ::= '<' ... '>'
939    Lex.Lex();
940    if (Lex.getKind() == lltok::lbrace) {
941      if (ParseStructType(Result, true) ||
942          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
943        return true;
944    } else if (ParseArrayVectorType(Result, true))
945      return true;
946    break;
947  case lltok::LocalVar:
948  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
949    // TypeRec ::= %foo
950    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
951      Result = T;
952    } else {
953      Result = OpaqueType::get();
954      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
955                                            std::make_pair(Result,
956                                                           Lex.getLoc())));
957      M->addTypeName(Lex.getStrVal(), Result.get());
958    }
959    Lex.Lex();
960    break;
961
962  case lltok::LocalVarID:
963    // TypeRec ::= %4
964    if (Lex.getUIntVal() < NumberedTypes.size())
965      Result = NumberedTypes[Lex.getUIntVal()];
966    else {
967      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
968        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
969      if (I != ForwardRefTypeIDs.end())
970        Result = I->second.first;
971      else {
972        Result = OpaqueType::get();
973        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
974                                                std::make_pair(Result,
975                                                               Lex.getLoc())));
976      }
977    }
978    Lex.Lex();
979    break;
980  case lltok::backslash: {
981    // TypeRec ::= '\' 4
982    Lex.Lex();
983    unsigned Val;
984    if (ParseUInt32(Val)) return true;
985    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
986    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
987    Result = OT;
988    break;
989  }
990  }
991
992  // Parse the type suffixes.
993  while (1) {
994    switch (Lex.getKind()) {
995    // End of type.
996    default: return false;
997
998    // TypeRec ::= TypeRec '*'
999    case lltok::star:
1000      if (Result.get() == Type::LabelTy)
1001        return TokError("basic block pointers are invalid");
1002      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1003      Lex.Lex();
1004      break;
1005
1006    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1007    case lltok::kw_addrspace: {
1008      if (Result.get() == Type::LabelTy)
1009        return TokError("basic block pointers are invalid");
1010      unsigned AddrSpace;
1011      if (ParseOptionalAddrSpace(AddrSpace) ||
1012          ParseToken(lltok::star, "expected '*' in address space"))
1013        return true;
1014
1015      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1016      break;
1017    }
1018
1019    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1020    case lltok::lparen:
1021      if (ParseFunctionType(Result))
1022        return true;
1023      break;
1024    }
1025  }
1026}
1027
1028/// ParseParameterList
1029///    ::= '(' ')'
1030///    ::= '(' Arg (',' Arg)* ')'
1031///  Arg
1032///    ::= Type OptionalAttributes Value OptionalAttributes
1033bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1034                                  PerFunctionState &PFS) {
1035  if (ParseToken(lltok::lparen, "expected '(' in call"))
1036    return true;
1037
1038  while (Lex.getKind() != lltok::rparen) {
1039    // If this isn't the first argument, we need a comma.
1040    if (!ArgList.empty() &&
1041        ParseToken(lltok::comma, "expected ',' in argument list"))
1042      return true;
1043
1044    // Parse the argument.
1045    LocTy ArgLoc;
1046    PATypeHolder ArgTy(Type::VoidTy);
1047    unsigned ArgAttrs1, ArgAttrs2;
1048    Value *V;
1049    if (ParseType(ArgTy, ArgLoc) ||
1050        ParseOptionalAttrs(ArgAttrs1, 0) ||
1051        ParseValue(ArgTy, V, PFS) ||
1052        // FIXME: Should not allow attributes after the argument, remove this in
1053        // LLVM 3.0.
1054        ParseOptionalAttrs(ArgAttrs2, 0))
1055      return true;
1056    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1057  }
1058
1059  Lex.Lex();  // Lex the ')'.
1060  return false;
1061}
1062
1063
1064
1065/// ParseArgumentList
1066///   ::= '(' ArgTypeListI ')'
1067/// ArgTypeListI
1068///   ::= /*empty*/
1069///   ::= '...'
1070///   ::= ArgTypeList ',' '...'
1071///   ::= ArgType (',' ArgType)*
1072bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1073                                 bool &isVarArg) {
1074  isVarArg = false;
1075  assert(Lex.getKind() == lltok::lparen);
1076  Lex.Lex(); // eat the (.
1077
1078  if (Lex.getKind() == lltok::rparen) {
1079    // empty
1080  } else if (Lex.getKind() == lltok::dotdotdot) {
1081    isVarArg = true;
1082    Lex.Lex();
1083  } else {
1084    LocTy TypeLoc = Lex.getLoc();
1085    PATypeHolder ArgTy(Type::VoidTy);
1086    unsigned Attrs;
1087    std::string Name;
1088
1089    if (ParseTypeRec(ArgTy) ||
1090        ParseOptionalAttrs(Attrs, 0)) return true;
1091
1092    if (Lex.getKind() == lltok::LocalVar ||
1093        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1094      Name = Lex.getStrVal();
1095      Lex.Lex();
1096    }
1097
1098    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1099      return Error(TypeLoc, "invalid type for function argument");
1100
1101    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1102
1103    while (EatIfPresent(lltok::comma)) {
1104      // Handle ... at end of arg list.
1105      if (EatIfPresent(lltok::dotdotdot)) {
1106        isVarArg = true;
1107        break;
1108      }
1109
1110      // Otherwise must be an argument type.
1111      TypeLoc = Lex.getLoc();
1112      if (ParseTypeRec(ArgTy) ||
1113          ParseOptionalAttrs(Attrs, 0)) return true;
1114
1115      if (Lex.getKind() == lltok::LocalVar ||
1116          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1117        Name = Lex.getStrVal();
1118        Lex.Lex();
1119      } else {
1120        Name = "";
1121      }
1122
1123      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1124        return Error(TypeLoc, "invalid type for function argument");
1125
1126      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1127    }
1128  }
1129
1130  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1131}
1132
1133/// ParseFunctionType
1134///  ::= Type ArgumentList OptionalAttrs
1135bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1136  assert(Lex.getKind() == lltok::lparen);
1137
1138  std::vector<ArgInfo> ArgList;
1139  bool isVarArg;
1140  unsigned Attrs;
1141  if (ParseArgumentList(ArgList, isVarArg) ||
1142      // FIXME: Allow, but ignore attributes on function types!
1143      // FIXME: Remove in LLVM 3.0
1144      ParseOptionalAttrs(Attrs, 2))
1145    return true;
1146
1147  // Reject names on the arguments lists.
1148  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1149    if (!ArgList[i].Name.empty())
1150      return Error(ArgList[i].Loc, "argument name invalid in function type");
1151    if (!ArgList[i].Attrs != 0) {
1152      // Allow but ignore attributes on function types; this permits
1153      // auto-upgrade.
1154      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1155    }
1156  }
1157
1158  std::vector<const Type*> ArgListTy;
1159  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1160    ArgListTy.push_back(ArgList[i].Type);
1161
1162  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1163  return false;
1164}
1165
1166/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1167///   TypeRec
1168///     ::= '{' '}'
1169///     ::= '{' TypeRec (',' TypeRec)* '}'
1170///     ::= '<' '{' '}' '>'
1171///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1172bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1173  assert(Lex.getKind() == lltok::lbrace);
1174  Lex.Lex(); // Consume the '{'
1175
1176  if (EatIfPresent(lltok::rbrace)) {
1177    Result = StructType::get(std::vector<const Type*>(), Packed);
1178    return false;
1179  }
1180
1181  std::vector<PATypeHolder> ParamsList;
1182  if (ParseTypeRec(Result)) return true;
1183  ParamsList.push_back(Result);
1184
1185  while (EatIfPresent(lltok::comma)) {
1186    if (ParseTypeRec(Result)) return true;
1187    ParamsList.push_back(Result);
1188  }
1189
1190  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1191    return true;
1192
1193  std::vector<const Type*> ParamsListTy;
1194  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1195    ParamsListTy.push_back(ParamsList[i].get());
1196  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1197  return false;
1198}
1199
1200/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1201/// token has already been consumed.
1202///   TypeRec
1203///     ::= '[' APSINTVAL 'x' Types ']'
1204///     ::= '<' APSINTVAL 'x' Types '>'
1205bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1206  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1207      Lex.getAPSIntVal().getBitWidth() > 64)
1208    return TokError("expected number in address space");
1209
1210  LocTy SizeLoc = Lex.getLoc();
1211  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1212  Lex.Lex();
1213
1214  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1215      return true;
1216
1217  LocTy TypeLoc = Lex.getLoc();
1218  PATypeHolder EltTy(Type::VoidTy);
1219  if (ParseTypeRec(EltTy)) return true;
1220
1221  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1222                 "expected end of sequential type"))
1223    return true;
1224
1225  if (isVector) {
1226    if ((unsigned)Size != Size)
1227      return Error(SizeLoc, "size too large for vector");
1228    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1229      return Error(TypeLoc, "vector element type must be fp or integer");
1230    Result = VectorType::get(EltTy, unsigned(Size));
1231  } else {
1232    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1233      return Error(TypeLoc, "invalid array element type");
1234    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1235  }
1236  return false;
1237}
1238
1239//===----------------------------------------------------------------------===//
1240// Function Semantic Analysis.
1241//===----------------------------------------------------------------------===//
1242
1243LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1244  : P(p), F(f) {
1245
1246  // Insert unnamed arguments into the NumberedVals list.
1247  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1248       AI != E; ++AI)
1249    if (!AI->hasName())
1250      NumberedVals.push_back(AI);
1251}
1252
1253LLParser::PerFunctionState::~PerFunctionState() {
1254  // If there were any forward referenced non-basicblock values, delete them.
1255  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1256       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1257    if (!isa<BasicBlock>(I->second.first)) {
1258      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1259                                                          ->getType()));
1260      delete I->second.first;
1261      I->second.first = 0;
1262    }
1263
1264  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1265       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1266    if (!isa<BasicBlock>(I->second.first)) {
1267      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1268                                                          ->getType()));
1269      delete I->second.first;
1270      I->second.first = 0;
1271    }
1272}
1273
1274bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1275  if (!ForwardRefVals.empty())
1276    return P.Error(ForwardRefVals.begin()->second.second,
1277                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1278                   "'");
1279  if (!ForwardRefValIDs.empty())
1280    return P.Error(ForwardRefValIDs.begin()->second.second,
1281                   "use of undefined value '%" +
1282                   utostr(ForwardRefValIDs.begin()->first) + "'");
1283  return false;
1284}
1285
1286
1287/// GetVal - Get a value with the specified name or ID, creating a
1288/// forward reference record if needed.  This can return null if the value
1289/// exists but does not have the right type.
1290Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1291                                          const Type *Ty, LocTy Loc) {
1292  // Look this name up in the normal function symbol table.
1293  Value *Val = F.getValueSymbolTable().lookup(Name);
1294
1295  // If this is a forward reference for the value, see if we already created a
1296  // forward ref record.
1297  if (Val == 0) {
1298    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1299      I = ForwardRefVals.find(Name);
1300    if (I != ForwardRefVals.end())
1301      Val = I->second.first;
1302  }
1303
1304  // If we have the value in the symbol table or fwd-ref table, return it.
1305  if (Val) {
1306    if (Val->getType() == Ty) return Val;
1307    if (Ty == Type::LabelTy)
1308      P.Error(Loc, "'%" + Name + "' is not a basic block");
1309    else
1310      P.Error(Loc, "'%" + Name + "' defined with type '" +
1311              Val->getType()->getDescription() + "'");
1312    return 0;
1313  }
1314
1315  // Don't make placeholders with invalid type.
1316  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1317    P.Error(Loc, "invalid use of a non-first-class type");
1318    return 0;
1319  }
1320
1321  // Otherwise, create a new forward reference for this value and remember it.
1322  Value *FwdVal;
1323  if (Ty == Type::LabelTy)
1324    FwdVal = BasicBlock::Create(Name, &F);
1325  else
1326    FwdVal = new Argument(Ty, Name);
1327
1328  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1329  return FwdVal;
1330}
1331
1332Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1333                                          LocTy Loc) {
1334  // Look this name up in the normal function symbol table.
1335  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1336
1337  // If this is a forward reference for the value, see if we already created a
1338  // forward ref record.
1339  if (Val == 0) {
1340    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1341      I = ForwardRefValIDs.find(ID);
1342    if (I != ForwardRefValIDs.end())
1343      Val = I->second.first;
1344  }
1345
1346  // If we have the value in the symbol table or fwd-ref table, return it.
1347  if (Val) {
1348    if (Val->getType() == Ty) return Val;
1349    if (Ty == Type::LabelTy)
1350      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1351    else
1352      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1353              Val->getType()->getDescription() + "'");
1354    return 0;
1355  }
1356
1357  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1358    P.Error(Loc, "invalid use of a non-first-class type");
1359    return 0;
1360  }
1361
1362  // Otherwise, create a new forward reference for this value and remember it.
1363  Value *FwdVal;
1364  if (Ty == Type::LabelTy)
1365    FwdVal = BasicBlock::Create("", &F);
1366  else
1367    FwdVal = new Argument(Ty);
1368
1369  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1370  return FwdVal;
1371}
1372
1373/// SetInstName - After an instruction is parsed and inserted into its
1374/// basic block, this installs its name.
1375bool LLParser::PerFunctionState::SetInstName(int NameID,
1376                                             const std::string &NameStr,
1377                                             LocTy NameLoc, Instruction *Inst) {
1378  // If this instruction has void type, it cannot have a name or ID specified.
1379  if (Inst->getType() == Type::VoidTy) {
1380    if (NameID != -1 || !NameStr.empty())
1381      return P.Error(NameLoc, "instructions returning void cannot have a name");
1382    return false;
1383  }
1384
1385  // If this was a numbered instruction, verify that the instruction is the
1386  // expected value and resolve any forward references.
1387  if (NameStr.empty()) {
1388    // If neither a name nor an ID was specified, just use the next ID.
1389    if (NameID == -1)
1390      NameID = NumberedVals.size();
1391
1392    if (unsigned(NameID) != NumberedVals.size())
1393      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1394                     utostr(NumberedVals.size()) + "'");
1395
1396    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1397      ForwardRefValIDs.find(NameID);
1398    if (FI != ForwardRefValIDs.end()) {
1399      if (FI->second.first->getType() != Inst->getType())
1400        return P.Error(NameLoc, "instruction forward referenced with type '" +
1401                       FI->second.first->getType()->getDescription() + "'");
1402      FI->second.first->replaceAllUsesWith(Inst);
1403      ForwardRefValIDs.erase(FI);
1404    }
1405
1406    NumberedVals.push_back(Inst);
1407    return false;
1408  }
1409
1410  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1411  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1412    FI = ForwardRefVals.find(NameStr);
1413  if (FI != ForwardRefVals.end()) {
1414    if (FI->second.first->getType() != Inst->getType())
1415      return P.Error(NameLoc, "instruction forward referenced with type '" +
1416                     FI->second.first->getType()->getDescription() + "'");
1417    FI->second.first->replaceAllUsesWith(Inst);
1418    ForwardRefVals.erase(FI);
1419  }
1420
1421  // Set the name on the instruction.
1422  Inst->setName(NameStr);
1423
1424  if (Inst->getNameStr() != NameStr)
1425    return P.Error(NameLoc, "multiple definition of local value named '" +
1426                   NameStr + "'");
1427  return false;
1428}
1429
1430/// GetBB - Get a basic block with the specified name or ID, creating a
1431/// forward reference record if needed.
1432BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1433                                              LocTy Loc) {
1434  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1435}
1436
1437BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1438  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1439}
1440
1441/// DefineBB - Define the specified basic block, which is either named or
1442/// unnamed.  If there is an error, this returns null otherwise it returns
1443/// the block being defined.
1444BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1445                                                 LocTy Loc) {
1446  BasicBlock *BB;
1447  if (Name.empty())
1448    BB = GetBB(NumberedVals.size(), Loc);
1449  else
1450    BB = GetBB(Name, Loc);
1451  if (BB == 0) return 0; // Already diagnosed error.
1452
1453  // Move the block to the end of the function.  Forward ref'd blocks are
1454  // inserted wherever they happen to be referenced.
1455  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1456
1457  // Remove the block from forward ref sets.
1458  if (Name.empty()) {
1459    ForwardRefValIDs.erase(NumberedVals.size());
1460    NumberedVals.push_back(BB);
1461  } else {
1462    // BB forward references are already in the function symbol table.
1463    ForwardRefVals.erase(Name);
1464  }
1465
1466  return BB;
1467}
1468
1469//===----------------------------------------------------------------------===//
1470// Constants.
1471//===----------------------------------------------------------------------===//
1472
1473/// ParseValID - Parse an abstract value that doesn't necessarily have a
1474/// type implied.  For example, if we parse "4" we don't know what integer type
1475/// it has.  The value will later be combined with its type and checked for
1476/// sanity.
1477bool LLParser::ParseValID(ValID &ID) {
1478  ID.Loc = Lex.getLoc();
1479  switch (Lex.getKind()) {
1480  default: return TokError("expected value token");
1481  case lltok::GlobalID:  // @42
1482    ID.UIntVal = Lex.getUIntVal();
1483    ID.Kind = ValID::t_GlobalID;
1484    break;
1485  case lltok::GlobalVar:  // @foo
1486    ID.StrVal = Lex.getStrVal();
1487    ID.Kind = ValID::t_GlobalName;
1488    break;
1489  case lltok::LocalVarID:  // %42
1490    ID.UIntVal = Lex.getUIntVal();
1491    ID.Kind = ValID::t_LocalID;
1492    break;
1493  case lltok::LocalVar:  // %foo
1494  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1495    ID.StrVal = Lex.getStrVal();
1496    ID.Kind = ValID::t_LocalName;
1497    break;
1498  case lltok::APSInt:
1499    ID.APSIntVal = Lex.getAPSIntVal();
1500    ID.Kind = ValID::t_APSInt;
1501    break;
1502  case lltok::APFloat:
1503    ID.APFloatVal = Lex.getAPFloatVal();
1504    ID.Kind = ValID::t_APFloat;
1505    break;
1506  case lltok::kw_true:
1507    ID.ConstantVal = ConstantInt::getTrue();
1508    ID.Kind = ValID::t_Constant;
1509    break;
1510  case lltok::kw_false:
1511    ID.ConstantVal = ConstantInt::getFalse();
1512    ID.Kind = ValID::t_Constant;
1513    break;
1514  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1515  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1516  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1517
1518  case lltok::lbrace: {
1519    // ValID ::= '{' ConstVector '}'
1520    Lex.Lex();
1521    SmallVector<Constant*, 16> Elts;
1522    if (ParseGlobalValueVector(Elts) ||
1523        ParseToken(lltok::rbrace, "expected end of struct constant"))
1524      return true;
1525
1526    ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1527    ID.Kind = ValID::t_Constant;
1528    return false;
1529  }
1530  case lltok::less: {
1531    // ValID ::= '<' ConstVector '>'         --> Vector.
1532    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1533    Lex.Lex();
1534    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1535
1536    SmallVector<Constant*, 16> Elts;
1537    LocTy FirstEltLoc = Lex.getLoc();
1538    if (ParseGlobalValueVector(Elts) ||
1539        (isPackedStruct &&
1540         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1541        ParseToken(lltok::greater, "expected end of constant"))
1542      return true;
1543
1544    if (isPackedStruct) {
1545      ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1546      ID.Kind = ValID::t_Constant;
1547      return false;
1548    }
1549
1550    if (Elts.empty())
1551      return Error(ID.Loc, "constant vector must not be empty");
1552
1553    if (!Elts[0]->getType()->isInteger() &&
1554        !Elts[0]->getType()->isFloatingPoint())
1555      return Error(FirstEltLoc,
1556                   "vector elements must have integer or floating point type");
1557
1558    // Verify that all the vector elements have the same type.
1559    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1560      if (Elts[i]->getType() != Elts[0]->getType())
1561        return Error(FirstEltLoc,
1562                     "vector element #" + utostr(i) +
1563                    " is not of type '" + Elts[0]->getType()->getDescription());
1564
1565    ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1566    ID.Kind = ValID::t_Constant;
1567    return false;
1568  }
1569  case lltok::lsquare: {   // Array Constant
1570    Lex.Lex();
1571    SmallVector<Constant*, 16> Elts;
1572    LocTy FirstEltLoc = Lex.getLoc();
1573    if (ParseGlobalValueVector(Elts) ||
1574        ParseToken(lltok::rsquare, "expected end of array constant"))
1575      return true;
1576
1577    // Handle empty element.
1578    if (Elts.empty()) {
1579      // Use undef instead of an array because it's inconvenient to determine
1580      // the element type at this point, there being no elements to examine.
1581      ID.Kind = ValID::t_Undef;
1582      return false;
1583    }
1584
1585    if (!Elts[0]->getType()->isFirstClassType())
1586      return Error(FirstEltLoc, "invalid array element type: " +
1587                   Elts[0]->getType()->getDescription());
1588
1589    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1590
1591    // Verify all elements are correct type!
1592    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1593      if (Elts[i]->getType() != Elts[0]->getType())
1594        return Error(FirstEltLoc,
1595                     "array element #" + utostr(i) +
1596                     " is not of type '" +Elts[0]->getType()->getDescription());
1597    }
1598
1599    ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1600    ID.Kind = ValID::t_Constant;
1601    return false;
1602  }
1603  case lltok::kw_c:  // c "foo"
1604    Lex.Lex();
1605    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1606    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1607    ID.Kind = ValID::t_Constant;
1608    return false;
1609
1610  case lltok::kw_asm: {
1611    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1612    bool HasSideEffect;
1613    Lex.Lex();
1614    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1615        ParseStringConstant(ID.StrVal) ||
1616        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1617        ParseToken(lltok::StringConstant, "expected constraint string"))
1618      return true;
1619    ID.StrVal2 = Lex.getStrVal();
1620    ID.UIntVal = HasSideEffect;
1621    ID.Kind = ValID::t_InlineAsm;
1622    return false;
1623  }
1624
1625  case lltok::kw_trunc:
1626  case lltok::kw_zext:
1627  case lltok::kw_sext:
1628  case lltok::kw_fptrunc:
1629  case lltok::kw_fpext:
1630  case lltok::kw_bitcast:
1631  case lltok::kw_uitofp:
1632  case lltok::kw_sitofp:
1633  case lltok::kw_fptoui:
1634  case lltok::kw_fptosi:
1635  case lltok::kw_inttoptr:
1636  case lltok::kw_ptrtoint: {
1637    unsigned Opc = Lex.getUIntVal();
1638    PATypeHolder DestTy(Type::VoidTy);
1639    Constant *SrcVal;
1640    Lex.Lex();
1641    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1642        ParseGlobalTypeAndValue(SrcVal) ||
1643        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1644        ParseType(DestTy) ||
1645        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1646      return true;
1647    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1648      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1649                   SrcVal->getType()->getDescription() + "' to '" +
1650                   DestTy->getDescription() + "'");
1651    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1652                                           DestTy);
1653    ID.Kind = ValID::t_Constant;
1654    return false;
1655  }
1656  case lltok::kw_extractvalue: {
1657    Lex.Lex();
1658    Constant *Val;
1659    SmallVector<unsigned, 4> Indices;
1660    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1661        ParseGlobalTypeAndValue(Val) ||
1662        ParseIndexList(Indices) ||
1663        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1664      return true;
1665    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1666      return Error(ID.Loc, "extractvalue operand must be array or struct");
1667    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1668                                          Indices.end()))
1669      return Error(ID.Loc, "invalid indices for extractvalue");
1670    ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1671                                                   &Indices[0], Indices.size());
1672    ID.Kind = ValID::t_Constant;
1673    return false;
1674  }
1675  case lltok::kw_insertvalue: {
1676    Lex.Lex();
1677    Constant *Val0, *Val1;
1678    SmallVector<unsigned, 4> Indices;
1679    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1680        ParseGlobalTypeAndValue(Val0) ||
1681        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1682        ParseGlobalTypeAndValue(Val1) ||
1683        ParseIndexList(Indices) ||
1684        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1685      return true;
1686    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1687      return Error(ID.Loc, "extractvalue operand must be array or struct");
1688    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1689                                          Indices.end()))
1690      return Error(ID.Loc, "invalid indices for insertvalue");
1691    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1692                                                  &Indices[0], Indices.size());
1693    ID.Kind = ValID::t_Constant;
1694    return false;
1695  }
1696  case lltok::kw_icmp:
1697  case lltok::kw_fcmp:
1698  case lltok::kw_vicmp:
1699  case lltok::kw_vfcmp: {
1700    unsigned PredVal, Opc = Lex.getUIntVal();
1701    Constant *Val0, *Val1;
1702    Lex.Lex();
1703    if (ParseCmpPredicate(PredVal, Opc) ||
1704        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1705        ParseGlobalTypeAndValue(Val0) ||
1706        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1707        ParseGlobalTypeAndValue(Val1) ||
1708        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1709      return true;
1710
1711    if (Val0->getType() != Val1->getType())
1712      return Error(ID.Loc, "compare operands must have the same type");
1713
1714    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1715
1716    if (Opc == Instruction::FCmp) {
1717      if (!Val0->getType()->isFPOrFPVector())
1718        return Error(ID.Loc, "fcmp requires floating point operands");
1719      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1720    } else if (Opc == Instruction::ICmp) {
1721      if (!Val0->getType()->isIntOrIntVector() &&
1722          !isa<PointerType>(Val0->getType()))
1723        return Error(ID.Loc, "icmp requires pointer or integer operands");
1724      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1725    } else if (Opc == Instruction::VFCmp) {
1726      // FIXME: REMOVE VFCMP Support
1727      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1728    } else if (Opc == Instruction::VICmp) {
1729      // FIXME: REMOVE VFCMP Support
1730      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1731    }
1732    ID.Kind = ValID::t_Constant;
1733    return false;
1734  }
1735
1736  // Binary Operators.
1737  case lltok::kw_add:
1738  case lltok::kw_sub:
1739  case lltok::kw_mul:
1740  case lltok::kw_udiv:
1741  case lltok::kw_sdiv:
1742  case lltok::kw_fdiv:
1743  case lltok::kw_urem:
1744  case lltok::kw_srem:
1745  case lltok::kw_frem: {
1746    unsigned Opc = Lex.getUIntVal();
1747    Constant *Val0, *Val1;
1748    Lex.Lex();
1749    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1750        ParseGlobalTypeAndValue(Val0) ||
1751        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1752        ParseGlobalTypeAndValue(Val1) ||
1753        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1754      return true;
1755    if (Val0->getType() != Val1->getType())
1756      return Error(ID.Loc, "operands of constexpr must have same type");
1757    if (!Val0->getType()->isIntOrIntVector() &&
1758        !Val0->getType()->isFPOrFPVector())
1759      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1760    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1761    ID.Kind = ValID::t_Constant;
1762    return false;
1763  }
1764
1765  // Logical Operations
1766  case lltok::kw_shl:
1767  case lltok::kw_lshr:
1768  case lltok::kw_ashr:
1769  case lltok::kw_and:
1770  case lltok::kw_or:
1771  case lltok::kw_xor: {
1772    unsigned Opc = Lex.getUIntVal();
1773    Constant *Val0, *Val1;
1774    Lex.Lex();
1775    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1776        ParseGlobalTypeAndValue(Val0) ||
1777        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1778        ParseGlobalTypeAndValue(Val1) ||
1779        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1780      return true;
1781    if (Val0->getType() != Val1->getType())
1782      return Error(ID.Loc, "operands of constexpr must have same type");
1783    if (!Val0->getType()->isIntOrIntVector())
1784      return Error(ID.Loc,
1785                   "constexpr requires integer or integer vector operands");
1786    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1787    ID.Kind = ValID::t_Constant;
1788    return false;
1789  }
1790
1791  case lltok::kw_getelementptr:
1792  case lltok::kw_shufflevector:
1793  case lltok::kw_insertelement:
1794  case lltok::kw_extractelement:
1795  case lltok::kw_select: {
1796    unsigned Opc = Lex.getUIntVal();
1797    SmallVector<Constant*, 16> Elts;
1798    Lex.Lex();
1799    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1800        ParseGlobalValueVector(Elts) ||
1801        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1802      return true;
1803
1804    if (Opc == Instruction::GetElementPtr) {
1805      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1806        return Error(ID.Loc, "getelementptr requires pointer operand");
1807
1808      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1809                                             (Value**)&Elts[1], Elts.size()-1))
1810        return Error(ID.Loc, "invalid indices for getelementptr");
1811      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1812                                                      &Elts[1], Elts.size()-1);
1813    } else if (Opc == Instruction::Select) {
1814      if (Elts.size() != 3)
1815        return Error(ID.Loc, "expected three operands to select");
1816      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1817                                                              Elts[2]))
1818        return Error(ID.Loc, Reason);
1819      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1820    } else if (Opc == Instruction::ShuffleVector) {
1821      if (Elts.size() != 3)
1822        return Error(ID.Loc, "expected three operands to shufflevector");
1823      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1824        return Error(ID.Loc, "invalid operands to shufflevector");
1825      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1826    } else if (Opc == Instruction::ExtractElement) {
1827      if (Elts.size() != 2)
1828        return Error(ID.Loc, "expected two operands to extractelement");
1829      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1830        return Error(ID.Loc, "invalid extractelement operands");
1831      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1832    } else {
1833      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1834      if (Elts.size() != 3)
1835      return Error(ID.Loc, "expected three operands to insertelement");
1836      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1837        return Error(ID.Loc, "invalid insertelement operands");
1838      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1839    }
1840
1841    ID.Kind = ValID::t_Constant;
1842    return false;
1843  }
1844  }
1845
1846  Lex.Lex();
1847  return false;
1848}
1849
1850/// ParseGlobalValue - Parse a global value with the specified type.
1851bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1852  V = 0;
1853  ValID ID;
1854  return ParseValID(ID) ||
1855         ConvertGlobalValIDToValue(Ty, ID, V);
1856}
1857
1858/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1859/// constant.
1860bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1861                                         Constant *&V) {
1862  if (isa<FunctionType>(Ty))
1863    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1864
1865  switch (ID.Kind) {
1866  default: assert(0 && "Unknown ValID!");
1867  case ValID::t_LocalID:
1868  case ValID::t_LocalName:
1869    return Error(ID.Loc, "invalid use of function-local name");
1870  case ValID::t_InlineAsm:
1871    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1872  case ValID::t_GlobalName:
1873    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1874    return V == 0;
1875  case ValID::t_GlobalID:
1876    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1877    return V == 0;
1878  case ValID::t_APSInt:
1879    if (!isa<IntegerType>(Ty))
1880      return Error(ID.Loc, "integer constant must have integer type");
1881    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1882    V = ConstantInt::get(ID.APSIntVal);
1883    return false;
1884  case ValID::t_APFloat:
1885    if (!Ty->isFloatingPoint() ||
1886        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1887      return Error(ID.Loc, "floating point constant invalid for type");
1888
1889    // The lexer has no type info, so builds all float and double FP constants
1890    // as double.  Fix this here.  Long double does not need this.
1891    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1892        Ty == Type::FloatTy) {
1893      bool Ignored;
1894      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1895                            &Ignored);
1896    }
1897    V = ConstantFP::get(ID.APFloatVal);
1898    return false;
1899  case ValID::t_Null:
1900    if (!isa<PointerType>(Ty))
1901      return Error(ID.Loc, "null must be a pointer type");
1902    V = ConstantPointerNull::get(cast<PointerType>(Ty));
1903    return false;
1904  case ValID::t_Undef:
1905    V = UndefValue::get(Ty);
1906    return false;
1907  case ValID::t_Zero:
1908    if (!Ty->isFirstClassType())
1909      return Error(ID.Loc, "invalid type for null constant");
1910    V = Constant::getNullValue(Ty);
1911    return false;
1912  case ValID::t_Constant:
1913    if (ID.ConstantVal->getType() != Ty)
1914      return Error(ID.Loc, "constant expression type mismatch");
1915    V = ID.ConstantVal;
1916    return false;
1917  }
1918}
1919
1920bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1921  PATypeHolder Type(Type::VoidTy);
1922  return ParseType(Type) ||
1923         ParseGlobalValue(Type, V);
1924}
1925
1926/// ParseGlobalValueVector
1927///   ::= /*empty*/
1928///   ::= TypeAndValue (',' TypeAndValue)*
1929bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1930  // Empty list.
1931  if (Lex.getKind() == lltok::rbrace ||
1932      Lex.getKind() == lltok::rsquare ||
1933      Lex.getKind() == lltok::greater ||
1934      Lex.getKind() == lltok::rparen)
1935    return false;
1936
1937  Constant *C;
1938  if (ParseGlobalTypeAndValue(C)) return true;
1939  Elts.push_back(C);
1940
1941  while (EatIfPresent(lltok::comma)) {
1942    if (ParseGlobalTypeAndValue(C)) return true;
1943    Elts.push_back(C);
1944  }
1945
1946  return false;
1947}
1948
1949
1950//===----------------------------------------------------------------------===//
1951// Function Parsing.
1952//===----------------------------------------------------------------------===//
1953
1954bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
1955                                   PerFunctionState &PFS) {
1956  if (ID.Kind == ValID::t_LocalID)
1957    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
1958  else if (ID.Kind == ValID::t_LocalName)
1959    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
1960  else if (ID.Kind == ValID::ValID::t_InlineAsm) {
1961    const PointerType *PTy = dyn_cast<PointerType>(Ty);
1962    const FunctionType *FTy =
1963      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
1964    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
1965      return Error(ID.Loc, "invalid type for inline asm constraint string");
1966    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
1967    return false;
1968  } else {
1969    Constant *C;
1970    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
1971    V = C;
1972    return false;
1973  }
1974
1975  return V == 0;
1976}
1977
1978bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
1979  V = 0;
1980  ValID ID;
1981  return ParseValID(ID) ||
1982         ConvertValIDToValue(Ty, ID, V, PFS);
1983}
1984
1985bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
1986  PATypeHolder T(Type::VoidTy);
1987  return ParseType(T) ||
1988         ParseValue(T, V, PFS);
1989}
1990
1991/// FunctionHeader
1992///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
1993///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
1994///       OptionalAlign OptGC
1995bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
1996  // Parse the linkage.
1997  LocTy LinkageLoc = Lex.getLoc();
1998  unsigned Linkage;
1999
2000  unsigned Visibility, CC, RetAttrs;
2001  PATypeHolder RetType(Type::VoidTy);
2002  LocTy RetTypeLoc = Lex.getLoc();
2003  if (ParseOptionalLinkage(Linkage) ||
2004      ParseOptionalVisibility(Visibility) ||
2005      ParseOptionalCallingConv(CC) ||
2006      ParseOptionalAttrs(RetAttrs, 1) ||
2007      ParseType(RetType, RetTypeLoc))
2008    return true;
2009
2010  // Verify that the linkage is ok.
2011  switch ((GlobalValue::LinkageTypes)Linkage) {
2012  case GlobalValue::ExternalLinkage:
2013    break; // always ok.
2014  case GlobalValue::DLLImportLinkage:
2015  case GlobalValue::ExternalWeakLinkage:
2016    if (isDefine)
2017      return Error(LinkageLoc, "invalid linkage for function definition");
2018    break;
2019  case GlobalValue::InternalLinkage:
2020  case GlobalValue::LinkOnceLinkage:
2021  case GlobalValue::WeakLinkage:
2022  case GlobalValue::DLLExportLinkage:
2023    if (!isDefine)
2024      return Error(LinkageLoc, "invalid linkage for function declaration");
2025    break;
2026  case GlobalValue::AppendingLinkage:
2027  case GlobalValue::GhostLinkage:
2028  case GlobalValue::CommonLinkage:
2029    return Error(LinkageLoc, "invalid function linkage type");
2030  }
2031
2032  if (!FunctionType::isValidReturnType(RetType))
2033    return Error(RetTypeLoc, "invalid function return type");
2034
2035  if (Lex.getKind() != lltok::GlobalVar)
2036    return TokError("expected function name");
2037
2038  LocTy NameLoc = Lex.getLoc();
2039  std::string FunctionName = Lex.getStrVal();
2040  Lex.Lex();
2041
2042  if (Lex.getKind() != lltok::lparen)
2043    return TokError("expected '(' in function argument list");
2044
2045  std::vector<ArgInfo> ArgList;
2046  bool isVarArg;
2047  unsigned FuncAttrs;
2048  std::string Section;
2049  unsigned Alignment;
2050  std::string GC;
2051
2052  if (ParseArgumentList(ArgList, isVarArg) ||
2053      ParseOptionalAttrs(FuncAttrs, 2) ||
2054      (EatIfPresent(lltok::kw_section) &&
2055       ParseStringConstant(Section)) ||
2056      ParseOptionalAlignment(Alignment) ||
2057      (EatIfPresent(lltok::kw_gc) &&
2058       ParseStringConstant(GC)))
2059    return true;
2060
2061  // If the alignment was parsed as an attribute, move to the alignment field.
2062  if (FuncAttrs & Attribute::Alignment) {
2063    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2064    FuncAttrs &= ~Attribute::Alignment;
2065  }
2066
2067  // Okay, if we got here, the function is syntactically valid.  Convert types
2068  // and do semantic checks.
2069  std::vector<const Type*> ParamTypeList;
2070  SmallVector<AttributeWithIndex, 8> Attrs;
2071  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2072  // attributes.
2073  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2074  if (FuncAttrs & ObsoleteFuncAttrs) {
2075    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2076    FuncAttrs &= ~ObsoleteFuncAttrs;
2077  }
2078
2079  if (RetAttrs != Attribute::None)
2080    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2081
2082  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2083    ParamTypeList.push_back(ArgList[i].Type);
2084    if (ArgList[i].Attrs != Attribute::None)
2085      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2086  }
2087
2088  if (FuncAttrs != Attribute::None)
2089    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2090
2091  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2092
2093  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2094  const PointerType *PFT = PointerType::getUnqual(FT);
2095
2096  Fn = 0;
2097  if (!FunctionName.empty()) {
2098    // If this was a definition of a forward reference, remove the definition
2099    // from the forward reference table and fill in the forward ref.
2100    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2101      ForwardRefVals.find(FunctionName);
2102    if (FRVI != ForwardRefVals.end()) {
2103      Fn = M->getFunction(FunctionName);
2104      ForwardRefVals.erase(FRVI);
2105    } else if ((Fn = M->getFunction(FunctionName))) {
2106      // If this function already exists in the symbol table, then it is
2107      // multiply defined.  We accept a few cases for old backwards compat.
2108      // FIXME: Remove this stuff for LLVM 3.0.
2109      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2110          (!Fn->isDeclaration() && isDefine)) {
2111        // If the redefinition has different type or different attributes,
2112        // reject it.  If both have bodies, reject it.
2113        return Error(NameLoc, "invalid redefinition of function '" +
2114                     FunctionName + "'");
2115      } else if (Fn->isDeclaration()) {
2116        // Make sure to strip off any argument names so we can't get conflicts.
2117        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2118             AI != AE; ++AI)
2119          AI->setName("");
2120      }
2121    }
2122
2123  } else if (FunctionName.empty()) {
2124    // If this is a definition of a forward referenced function, make sure the
2125    // types agree.
2126    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2127      = ForwardRefValIDs.find(NumberedVals.size());
2128    if (I != ForwardRefValIDs.end()) {
2129      Fn = cast<Function>(I->second.first);
2130      if (Fn->getType() != PFT)
2131        return Error(NameLoc, "type of definition and forward reference of '@" +
2132                     utostr(NumberedVals.size()) +"' disagree");
2133      ForwardRefValIDs.erase(I);
2134    }
2135  }
2136
2137  if (Fn == 0)
2138    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2139  else // Move the forward-reference to the correct spot in the module.
2140    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2141
2142  if (FunctionName.empty())
2143    NumberedVals.push_back(Fn);
2144
2145  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2146  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2147  Fn->setCallingConv(CC);
2148  Fn->setAttributes(PAL);
2149  Fn->setAlignment(Alignment);
2150  Fn->setSection(Section);
2151  if (!GC.empty()) Fn->setGC(GC.c_str());
2152
2153  // Add all of the arguments we parsed to the function.
2154  Function::arg_iterator ArgIt = Fn->arg_begin();
2155  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2156    // If the argument has a name, insert it into the argument symbol table.
2157    if (ArgList[i].Name.empty()) continue;
2158
2159    // Set the name, if it conflicted, it will be auto-renamed.
2160    ArgIt->setName(ArgList[i].Name);
2161
2162    if (ArgIt->getNameStr() != ArgList[i].Name)
2163      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2164                   ArgList[i].Name + "'");
2165  }
2166
2167  return false;
2168}
2169
2170
2171/// ParseFunctionBody
2172///   ::= '{' BasicBlock+ '}'
2173///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2174///
2175bool LLParser::ParseFunctionBody(Function &Fn) {
2176  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2177    return TokError("expected '{' in function body");
2178  Lex.Lex();  // eat the {.
2179
2180  PerFunctionState PFS(*this, Fn);
2181
2182  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2183    if (ParseBasicBlock(PFS)) return true;
2184
2185  // Eat the }.
2186  Lex.Lex();
2187
2188  // Verify function is ok.
2189  return PFS.VerifyFunctionComplete();
2190}
2191
2192/// ParseBasicBlock
2193///   ::= LabelStr? Instruction*
2194bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2195  // If this basic block starts out with a name, remember it.
2196  std::string Name;
2197  LocTy NameLoc = Lex.getLoc();
2198  if (Lex.getKind() == lltok::LabelStr) {
2199    Name = Lex.getStrVal();
2200    Lex.Lex();
2201  }
2202
2203  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2204  if (BB == 0) return true;
2205
2206  std::string NameStr;
2207
2208  // Parse the instructions in this block until we get a terminator.
2209  Instruction *Inst;
2210  do {
2211    // This instruction may have three possibilities for a name: a) none
2212    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2213    LocTy NameLoc = Lex.getLoc();
2214    int NameID = -1;
2215    NameStr = "";
2216
2217    if (Lex.getKind() == lltok::LocalVarID) {
2218      NameID = Lex.getUIntVal();
2219      Lex.Lex();
2220      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2221        return true;
2222    } else if (Lex.getKind() == lltok::LocalVar ||
2223               // FIXME: REMOVE IN LLVM 3.0
2224               Lex.getKind() == lltok::StringConstant) {
2225      NameStr = Lex.getStrVal();
2226      Lex.Lex();
2227      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2228        return true;
2229    }
2230
2231    if (ParseInstruction(Inst, BB, PFS)) return true;
2232
2233    BB->getInstList().push_back(Inst);
2234
2235    // Set the name on the instruction.
2236    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2237  } while (!isa<TerminatorInst>(Inst));
2238
2239  return false;
2240}
2241
2242//===----------------------------------------------------------------------===//
2243// Instruction Parsing.
2244//===----------------------------------------------------------------------===//
2245
2246/// ParseInstruction - Parse one of the many different instructions.
2247///
2248bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2249                                PerFunctionState &PFS) {
2250  lltok::Kind Token = Lex.getKind();
2251  if (Token == lltok::Eof)
2252    return TokError("found end of file when expecting more instructions");
2253  LocTy Loc = Lex.getLoc();
2254  Lex.Lex();  // Eat the keyword.
2255
2256  switch (Token) {
2257  default:                    return Error(Loc, "expected instruction opcode");
2258  // Terminator Instructions.
2259  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2260  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2261  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2262  case lltok::kw_br:          return ParseBr(Inst, PFS);
2263  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2264  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2265  // Binary Operators.
2266  case lltok::kw_add:
2267  case lltok::kw_sub:
2268  case lltok::kw_mul:
2269  case lltok::kw_udiv:
2270  case lltok::kw_sdiv:
2271  case lltok::kw_fdiv:
2272  case lltok::kw_urem:
2273  case lltok::kw_srem:
2274  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, Lex.getUIntVal());
2275  case lltok::kw_shl:
2276  case lltok::kw_lshr:
2277  case lltok::kw_ashr:
2278  case lltok::kw_and:
2279  case lltok::kw_or:
2280  case lltok::kw_xor:    return ParseLogical(Inst, PFS, Lex.getUIntVal());
2281  case lltok::kw_icmp:
2282  case lltok::kw_fcmp:
2283  case lltok::kw_vicmp:
2284  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, Lex.getUIntVal());
2285  // Casts.
2286  case lltok::kw_trunc:
2287  case lltok::kw_zext:
2288  case lltok::kw_sext:
2289  case lltok::kw_fptrunc:
2290  case lltok::kw_fpext:
2291  case lltok::kw_bitcast:
2292  case lltok::kw_uitofp:
2293  case lltok::kw_sitofp:
2294  case lltok::kw_fptoui:
2295  case lltok::kw_fptosi:
2296  case lltok::kw_inttoptr:
2297  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, Lex.getUIntVal());
2298  // Other.
2299  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2300  case lltok::kw_va_arg:         return ParseVAArg(Inst, PFS);
2301  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2302  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2303  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2304  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2305  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2306  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2307  // Memory.
2308  case lltok::kw_alloca:
2309  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2310  case lltok::kw_free:           return ParseFree(Inst, PFS);
2311  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2312  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2313  case lltok::kw_volatile:
2314    if (EatIfPresent(lltok::kw_load))
2315      return ParseLoad(Inst, PFS, true);
2316    else if (EatIfPresent(lltok::kw_store))
2317      return ParseStore(Inst, PFS, true);
2318    else
2319      return TokError("expected 'load' or 'store'");
2320  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2321  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2322  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2323  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2324  }
2325}
2326
2327/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2328bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2329  // FIXME: REMOVE vicmp/vfcmp!
2330  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2331    switch (Lex.getKind()) {
2332    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2333    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2334    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2335    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2336    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2337    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2338    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2339    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2340    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2341    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2342    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2343    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2344    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2345    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2346    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2347    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2348    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2349    }
2350  } else {
2351    switch (Lex.getKind()) {
2352    default: TokError("expected icmp predicate (e.g. 'eq')");
2353    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2354    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2355    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2356    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2357    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2358    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2359    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2360    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2361    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2362    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2363    }
2364  }
2365  Lex.Lex();
2366  return false;
2367}
2368
2369//===----------------------------------------------------------------------===//
2370// Terminator Instructions.
2371//===----------------------------------------------------------------------===//
2372
2373/// ParseRet - Parse a return instruction.
2374///   ::= 'ret' void
2375///   ::= 'ret' TypeAndValue
2376///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2377bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2378                        PerFunctionState &PFS) {
2379  PATypeHolder Ty(Type::VoidTy);
2380  if (ParseType(Ty)) return true;
2381
2382  if (Ty == Type::VoidTy) {
2383    Inst = ReturnInst::Create();
2384    return false;
2385  }
2386
2387  Value *RV;
2388  if (ParseValue(Ty, RV, PFS)) return true;
2389
2390  // The normal case is one return value.
2391  if (Lex.getKind() == lltok::comma) {
2392    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2393    // of 'ret {i32,i32} {i32 1, i32 2}'
2394    SmallVector<Value*, 8> RVs;
2395    RVs.push_back(RV);
2396
2397    while (EatIfPresent(lltok::comma)) {
2398      if (ParseTypeAndValue(RV, PFS)) return true;
2399      RVs.push_back(RV);
2400    }
2401
2402    RV = UndefValue::get(PFS.getFunction().getReturnType());
2403    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2404      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2405      BB->getInstList().push_back(I);
2406      RV = I;
2407    }
2408  }
2409  Inst = ReturnInst::Create(RV);
2410  return false;
2411}
2412
2413
2414/// ParseBr
2415///   ::= 'br' TypeAndValue
2416///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2417bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2418  LocTy Loc, Loc2;
2419  Value *Op0, *Op1, *Op2;
2420  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2421
2422  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2423    Inst = BranchInst::Create(BB);
2424    return false;
2425  }
2426
2427  if (Op0->getType() != Type::Int1Ty)
2428    return Error(Loc, "branch condition must have 'i1' type");
2429
2430  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2431      ParseTypeAndValue(Op1, Loc, PFS) ||
2432      ParseToken(lltok::comma, "expected ',' after true destination") ||
2433      ParseTypeAndValue(Op2, Loc2, PFS))
2434    return true;
2435
2436  if (!isa<BasicBlock>(Op1))
2437    return Error(Loc, "true destination of branch must be a basic block");
2438  if (!isa<BasicBlock>(Op2))
2439    return Error(Loc2, "true destination of branch must be a basic block");
2440
2441  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2442  return false;
2443}
2444
2445/// ParseSwitch
2446///  Instruction
2447///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2448///  JumpTable
2449///    ::= (TypeAndValue ',' TypeAndValue)*
2450bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2451  LocTy CondLoc, BBLoc;
2452  Value *Cond, *DefaultBB;
2453  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2454      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2455      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2456      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2457    return true;
2458
2459  if (!isa<IntegerType>(Cond->getType()))
2460    return Error(CondLoc, "switch condition must have integer type");
2461  if (!isa<BasicBlock>(DefaultBB))
2462    return Error(BBLoc, "default destination must be a basic block");
2463
2464  // Parse the jump table pairs.
2465  SmallPtrSet<Value*, 32> SeenCases;
2466  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2467  while (Lex.getKind() != lltok::rsquare) {
2468    Value *Constant, *DestBB;
2469
2470    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2471        ParseToken(lltok::comma, "expected ',' after case value") ||
2472        ParseTypeAndValue(DestBB, BBLoc, PFS))
2473      return true;
2474
2475    if (!SeenCases.insert(Constant))
2476      return Error(CondLoc, "duplicate case value in switch");
2477    if (!isa<ConstantInt>(Constant))
2478      return Error(CondLoc, "case value is not a constant integer");
2479    if (!isa<BasicBlock>(DestBB))
2480      return Error(BBLoc, "case destination is not a basic block");
2481
2482    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2483                                   cast<BasicBlock>(DestBB)));
2484  }
2485
2486  Lex.Lex();  // Eat the ']'.
2487
2488  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2489                                      Table.size());
2490  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2491    SI->addCase(Table[i].first, Table[i].second);
2492  Inst = SI;
2493  return false;
2494}
2495
2496/// ParseInvoke
2497///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2498///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2499bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2500  LocTy CallLoc = Lex.getLoc();
2501  unsigned CC, RetAttrs, FnAttrs;
2502  PATypeHolder RetType(Type::VoidTy);
2503  LocTy RetTypeLoc;
2504  ValID CalleeID;
2505  SmallVector<ParamInfo, 16> ArgList;
2506
2507  Value *NormalBB, *UnwindBB;
2508  if (ParseOptionalCallingConv(CC) ||
2509      ParseOptionalAttrs(RetAttrs, 1) ||
2510      ParseType(RetType, RetTypeLoc) ||
2511      ParseValID(CalleeID) ||
2512      ParseParameterList(ArgList, PFS) ||
2513      ParseOptionalAttrs(FnAttrs, 2) ||
2514      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2515      ParseTypeAndValue(NormalBB, PFS) ||
2516      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2517      ParseTypeAndValue(UnwindBB, PFS))
2518    return true;
2519
2520  if (!isa<BasicBlock>(NormalBB))
2521    return Error(CallLoc, "normal destination is not a basic block");
2522  if (!isa<BasicBlock>(UnwindBB))
2523    return Error(CallLoc, "unwind destination is not a basic block");
2524
2525  // If RetType is a non-function pointer type, then this is the short syntax
2526  // for the call, which means that RetType is just the return type.  Infer the
2527  // rest of the function argument types from the arguments that are present.
2528  const PointerType *PFTy = 0;
2529  const FunctionType *Ty = 0;
2530  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2531      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2532    // Pull out the types of all of the arguments...
2533    std::vector<const Type*> ParamTypes;
2534    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2535      ParamTypes.push_back(ArgList[i].V->getType());
2536
2537    if (!FunctionType::isValidReturnType(RetType))
2538      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2539
2540    Ty = FunctionType::get(RetType, ParamTypes, false);
2541    PFTy = PointerType::getUnqual(Ty);
2542  }
2543
2544  // Look up the callee.
2545  Value *Callee;
2546  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2547
2548  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2549  // function attributes.
2550  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2551  if (FnAttrs & ObsoleteFuncAttrs) {
2552    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2553    FnAttrs &= ~ObsoleteFuncAttrs;
2554  }
2555
2556  // Set up the Attributes for the function.
2557  SmallVector<AttributeWithIndex, 8> Attrs;
2558  if (RetAttrs != Attribute::None)
2559    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2560
2561  SmallVector<Value*, 8> Args;
2562
2563  // Loop through FunctionType's arguments and ensure they are specified
2564  // correctly.  Also, gather any parameter attributes.
2565  FunctionType::param_iterator I = Ty->param_begin();
2566  FunctionType::param_iterator E = Ty->param_end();
2567  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2568    const Type *ExpectedTy = 0;
2569    if (I != E) {
2570      ExpectedTy = *I++;
2571    } else if (!Ty->isVarArg()) {
2572      return Error(ArgList[i].Loc, "too many arguments specified");
2573    }
2574
2575    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2576      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2577                   ExpectedTy->getDescription() + "'");
2578    Args.push_back(ArgList[i].V);
2579    if (ArgList[i].Attrs != Attribute::None)
2580      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2581  }
2582
2583  if (I != E)
2584    return Error(CallLoc, "not enough parameters specified for call");
2585
2586  if (FnAttrs != Attribute::None)
2587    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2588
2589  // Finish off the Attributes and check them
2590  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2591
2592  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2593                                      cast<BasicBlock>(UnwindBB),
2594                                      Args.begin(), Args.end());
2595  II->setCallingConv(CC);
2596  II->setAttributes(PAL);
2597  Inst = II;
2598  return false;
2599}
2600
2601
2602
2603//===----------------------------------------------------------------------===//
2604// Binary Operators.
2605//===----------------------------------------------------------------------===//
2606
2607/// ParseArithmetic
2608///  ::= ArithmeticOps TypeAndValue ',' Value {
2609bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2610                               unsigned Opc) {
2611  LocTy Loc; Value *LHS, *RHS;
2612  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2613      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2614      ParseValue(LHS->getType(), RHS, PFS))
2615    return true;
2616
2617  if (!isa<IntegerType>(LHS->getType()) && !LHS->getType()->isFloatingPoint() &&
2618      !isa<VectorType>(LHS->getType()))
2619    return Error(Loc, "instruction requires integer, fp, or vector operands");
2620
2621  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2622  return false;
2623}
2624
2625/// ParseLogical
2626///  ::= ArithmeticOps TypeAndValue ',' Value {
2627bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2628                            unsigned Opc) {
2629  LocTy Loc; Value *LHS, *RHS;
2630  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2631      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2632      ParseValue(LHS->getType(), RHS, PFS))
2633    return true;
2634
2635  if (!LHS->getType()->isIntOrIntVector())
2636    return Error(Loc,"instruction requires integer or integer vector operands");
2637
2638  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2639  return false;
2640}
2641
2642
2643/// ParseCompare
2644///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2645///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2646///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2647///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2648bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2649                            unsigned Opc) {
2650  // Parse the integer/fp comparison predicate.
2651  LocTy Loc;
2652  unsigned Pred;
2653  Value *LHS, *RHS;
2654  if (ParseCmpPredicate(Pred, Opc) ||
2655      ParseTypeAndValue(LHS, Loc, PFS) ||
2656      ParseToken(lltok::comma, "expected ',' after compare value") ||
2657      ParseValue(LHS->getType(), RHS, PFS))
2658    return true;
2659
2660  if (Opc == Instruction::FCmp) {
2661    if (!LHS->getType()->isFPOrFPVector())
2662      return Error(Loc, "fcmp requires floating point operands");
2663    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2664  } else if (Opc == Instruction::ICmp) {
2665    if (!LHS->getType()->isIntOrIntVector() &&
2666        !isa<PointerType>(LHS->getType()))
2667      return Error(Loc, "icmp requires integer operands");
2668    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2669  } else if (Opc == Instruction::VFCmp) {
2670    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2671  } else if (Opc == Instruction::VICmp) {
2672    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2673  }
2674  return false;
2675}
2676
2677//===----------------------------------------------------------------------===//
2678// Other Instructions.
2679//===----------------------------------------------------------------------===//
2680
2681
2682/// ParseCast
2683///   ::= CastOpc TypeAndValue 'to' Type
2684bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2685                         unsigned Opc) {
2686  LocTy Loc;  Value *Op;
2687  PATypeHolder DestTy(Type::VoidTy);
2688  if (ParseTypeAndValue(Op, Loc, PFS) ||
2689      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2690      ParseType(DestTy))
2691    return true;
2692
2693  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2694    return Error(Loc, "invalid cast opcode for cast from '" +
2695                 Op->getType()->getDescription() + "' to '" +
2696                 DestTy->getDescription() + "'");
2697  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2698  return false;
2699}
2700
2701/// ParseSelect
2702///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2703bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2704  LocTy Loc;
2705  Value *Op0, *Op1, *Op2;
2706  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2707      ParseToken(lltok::comma, "expected ',' after select condition") ||
2708      ParseTypeAndValue(Op1, PFS) ||
2709      ParseToken(lltok::comma, "expected ',' after select value") ||
2710      ParseTypeAndValue(Op2, PFS))
2711    return true;
2712
2713  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2714    return Error(Loc, Reason);
2715
2716  Inst = SelectInst::Create(Op0, Op1, Op2);
2717  return false;
2718}
2719
2720/// ParseVAArg
2721///   ::= 'vaarg' TypeAndValue ',' Type
2722bool LLParser::ParseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
2723  Value *Op;
2724  PATypeHolder EltTy(Type::VoidTy);
2725  if (ParseTypeAndValue(Op, PFS) ||
2726      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2727      ParseType(EltTy))
2728    return true;
2729
2730  Inst = new VAArgInst(Op, EltTy);
2731  return false;
2732}
2733
2734/// ParseExtractElement
2735///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2736bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2737  LocTy Loc;
2738  Value *Op0, *Op1;
2739  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2740      ParseToken(lltok::comma, "expected ',' after extract value") ||
2741      ParseTypeAndValue(Op1, PFS))
2742    return true;
2743
2744  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2745    return Error(Loc, "invalid extractelement operands");
2746
2747  Inst = new ExtractElementInst(Op0, Op1);
2748  return false;
2749}
2750
2751/// ParseInsertElement
2752///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2753bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2754  LocTy Loc;
2755  Value *Op0, *Op1, *Op2;
2756  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2757      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2758      ParseTypeAndValue(Op1, PFS) ||
2759      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2760      ParseTypeAndValue(Op2, PFS))
2761    return true;
2762
2763  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2764    return Error(Loc, "invalid extractelement operands");
2765
2766  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2767  return false;
2768}
2769
2770/// ParseShuffleVector
2771///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2772bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2773  LocTy Loc;
2774  Value *Op0, *Op1, *Op2;
2775  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2776      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2777      ParseTypeAndValue(Op1, PFS) ||
2778      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2779      ParseTypeAndValue(Op2, PFS))
2780    return true;
2781
2782  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2783    return Error(Loc, "invalid extractelement operands");
2784
2785  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2786  return false;
2787}
2788
2789/// ParsePHI
2790///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2791bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2792  PATypeHolder Ty(Type::VoidTy);
2793  Value *Op0, *Op1;
2794  LocTy TypeLoc = Lex.getLoc();
2795
2796  if (ParseType(Ty) ||
2797      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2798      ParseValue(Ty, Op0, PFS) ||
2799      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2800      ParseValue(Type::LabelTy, Op1, PFS) ||
2801      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2802    return true;
2803
2804  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2805  while (1) {
2806    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2807
2808    if (!EatIfPresent(lltok::comma))
2809      break;
2810
2811    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2812        ParseValue(Ty, Op0, PFS) ||
2813        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2814        ParseValue(Type::LabelTy, Op1, PFS) ||
2815        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2816      return true;
2817  }
2818
2819  if (!Ty->isFirstClassType())
2820    return Error(TypeLoc, "phi node must have first class type");
2821
2822  PHINode *PN = PHINode::Create(Ty);
2823  PN->reserveOperandSpace(PHIVals.size());
2824  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2825    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2826  Inst = PN;
2827  return false;
2828}
2829
2830/// ParseCall
2831///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2832///       ParameterList OptionalAttrs
2833bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2834                         bool isTail) {
2835  unsigned CC, RetAttrs, FnAttrs;
2836  PATypeHolder RetType(Type::VoidTy);
2837  LocTy RetTypeLoc;
2838  ValID CalleeID;
2839  SmallVector<ParamInfo, 16> ArgList;
2840  LocTy CallLoc = Lex.getLoc();
2841
2842  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2843      ParseOptionalCallingConv(CC) ||
2844      ParseOptionalAttrs(RetAttrs, 1) ||
2845      ParseType(RetType, RetTypeLoc) ||
2846      ParseValID(CalleeID) ||
2847      ParseParameterList(ArgList, PFS) ||
2848      ParseOptionalAttrs(FnAttrs, 2))
2849    return true;
2850
2851  // If RetType is a non-function pointer type, then this is the short syntax
2852  // for the call, which means that RetType is just the return type.  Infer the
2853  // rest of the function argument types from the arguments that are present.
2854  const PointerType *PFTy = 0;
2855  const FunctionType *Ty = 0;
2856  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2857      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2858    // Pull out the types of all of the arguments...
2859    std::vector<const Type*> ParamTypes;
2860    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2861      ParamTypes.push_back(ArgList[i].V->getType());
2862
2863    if (!FunctionType::isValidReturnType(RetType))
2864      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2865
2866    Ty = FunctionType::get(RetType, ParamTypes, false);
2867    PFTy = PointerType::getUnqual(Ty);
2868  }
2869
2870  // Look up the callee.
2871  Value *Callee;
2872  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2873
2874  // Check for call to invalid intrinsic to avoid crashing later.
2875  if (Function *F = dyn_cast<Function>(Callee)) {
2876    if (F->hasName() && F->getNameLen() >= 5 &&
2877        !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2878        !F->getIntrinsicID(true))
2879      return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2880                   F->getNameStr() + "'");
2881  }
2882
2883  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2884  // function attributes.
2885  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2886  if (FnAttrs & ObsoleteFuncAttrs) {
2887    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2888    FnAttrs &= ~ObsoleteFuncAttrs;
2889  }
2890
2891  // Set up the Attributes for the function.
2892  SmallVector<AttributeWithIndex, 8> Attrs;
2893  if (RetAttrs != Attribute::None)
2894    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2895
2896  SmallVector<Value*, 8> Args;
2897
2898  // Loop through FunctionType's arguments and ensure they are specified
2899  // correctly.  Also, gather any parameter attributes.
2900  FunctionType::param_iterator I = Ty->param_begin();
2901  FunctionType::param_iterator E = Ty->param_end();
2902  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2903    const Type *ExpectedTy = 0;
2904    if (I != E) {
2905      ExpectedTy = *I++;
2906    } else if (!Ty->isVarArg()) {
2907      return Error(ArgList[i].Loc, "too many arguments specified");
2908    }
2909
2910    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2911      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2912                   ExpectedTy->getDescription() + "'");
2913    Args.push_back(ArgList[i].V);
2914    if (ArgList[i].Attrs != Attribute::None)
2915      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2916  }
2917
2918  if (I != E)
2919    return Error(CallLoc, "not enough parameters specified for call");
2920
2921  if (FnAttrs != Attribute::None)
2922    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2923
2924  // Finish off the Attributes and check them
2925  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2926
2927  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
2928  CI->setTailCall(isTail);
2929  CI->setCallingConv(CC);
2930  CI->setAttributes(PAL);
2931  Inst = CI;
2932  return false;
2933}
2934
2935//===----------------------------------------------------------------------===//
2936// Memory Instructions.
2937//===----------------------------------------------------------------------===//
2938
2939/// ParseAlloc
2940///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2941///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
2942bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
2943                          unsigned Opc) {
2944  PATypeHolder Ty(Type::VoidTy);
2945  Value *Size = 0;
2946  LocTy SizeLoc = 0;
2947  unsigned Alignment = 0;
2948  if (ParseType(Ty)) return true;
2949
2950  if (EatIfPresent(lltok::comma)) {
2951    if (Lex.getKind() == lltok::kw_align) {
2952      if (ParseOptionalAlignment(Alignment)) return true;
2953    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
2954               ParseOptionalCommaAlignment(Alignment)) {
2955      return true;
2956    }
2957  }
2958
2959  if (Size && Size->getType() != Type::Int32Ty)
2960    return Error(SizeLoc, "element count must be i32");
2961
2962  if (Opc == Instruction::Malloc)
2963    Inst = new MallocInst(Ty, Size, Alignment);
2964  else
2965    Inst = new AllocaInst(Ty, Size, Alignment);
2966  return false;
2967}
2968
2969/// ParseFree
2970///   ::= 'free' TypeAndValue
2971bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
2972  Value *Val; LocTy Loc;
2973  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
2974  if (!isa<PointerType>(Val->getType()))
2975    return Error(Loc, "operand to free must be a pointer");
2976  Inst = new FreeInst(Val);
2977  return false;
2978}
2979
2980/// ParseLoad
2981///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
2982bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
2983                         bool isVolatile) {
2984  Value *Val; LocTy Loc;
2985  unsigned Alignment;
2986  if (ParseTypeAndValue(Val, Loc, PFS) ||
2987      ParseOptionalCommaAlignment(Alignment))
2988    return true;
2989
2990  if (!isa<PointerType>(Val->getType()) ||
2991      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
2992    return Error(Loc, "load operand must be a pointer to a first class type");
2993
2994  Inst = new LoadInst(Val, "", isVolatile, Alignment);
2995  return false;
2996}
2997
2998/// ParseStore
2999///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3000bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3001                          bool isVolatile) {
3002  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3003  unsigned Alignment;
3004  if (ParseTypeAndValue(Val, Loc, PFS) ||
3005      ParseToken(lltok::comma, "expected ',' after store operand") ||
3006      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3007      ParseOptionalCommaAlignment(Alignment))
3008    return true;
3009
3010  if (!isa<PointerType>(Ptr->getType()))
3011    return Error(PtrLoc, "store operand must be a pointer");
3012  if (!Val->getType()->isFirstClassType())
3013    return Error(Loc, "store operand must be a first class value");
3014  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3015    return Error(Loc, "stored value and pointer type do not match");
3016
3017  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3018  return false;
3019}
3020
3021/// ParseGetResult
3022///   ::= 'getresult' TypeAndValue ',' uint
3023/// FIXME: Remove support for getresult in LLVM 3.0
3024bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3025  Value *Val; LocTy ValLoc, EltLoc;
3026  unsigned Element;
3027  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3028      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3029      ParseUInt32(Element, EltLoc))
3030    return true;
3031
3032  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3033    return Error(ValLoc, "getresult inst requires an aggregate operand");
3034  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3035    return Error(EltLoc, "invalid getresult index for value");
3036  Inst = ExtractValueInst::Create(Val, Element);
3037  return false;
3038}
3039
3040/// ParseGetElementPtr
3041///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3042bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3043  Value *Ptr, *Val; LocTy Loc, EltLoc;
3044  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3045
3046  if (!isa<PointerType>(Ptr->getType()))
3047    return Error(Loc, "base of getelementptr must be a pointer");
3048
3049  SmallVector<Value*, 16> Indices;
3050  while (EatIfPresent(lltok::comma)) {
3051    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3052    if (!isa<IntegerType>(Val->getType()))
3053      return Error(EltLoc, "getelementptr index must be an integer");
3054    Indices.push_back(Val);
3055  }
3056
3057  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3058                                         Indices.begin(), Indices.end()))
3059    return Error(Loc, "invalid getelementptr indices");
3060  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3061  return false;
3062}
3063
3064/// ParseExtractValue
3065///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3066bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3067  Value *Val; LocTy Loc;
3068  SmallVector<unsigned, 4> Indices;
3069  if (ParseTypeAndValue(Val, Loc, PFS) ||
3070      ParseIndexList(Indices))
3071    return true;
3072
3073  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3074    return Error(Loc, "extractvalue operand must be array or struct");
3075
3076  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3077                                        Indices.end()))
3078    return Error(Loc, "invalid indices for extractvalue");
3079  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3080  return false;
3081}
3082
3083/// ParseInsertValue
3084///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3085bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3086  Value *Val0, *Val1; LocTy Loc0, Loc1;
3087  SmallVector<unsigned, 4> Indices;
3088  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3089      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3090      ParseTypeAndValue(Val1, Loc1, PFS) ||
3091      ParseIndexList(Indices))
3092    return true;
3093
3094  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3095    return Error(Loc0, "extractvalue operand must be array or struct");
3096
3097  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3098                                        Indices.end()))
3099    return Error(Loc0, "invalid indices for insertvalue");
3100  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3101  return false;
3102}
3103