LLParser.cpp revision 4360298d2bf3c1ba8595a415cfa235df0bc76335
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32namespace llvm {
33  /// ValID - Represents a reference of a definition of some sort with no type.
34  /// There are several cases where we have to parse the value but where the
35  /// type can depend on later context.  This may either be a numeric reference
36  /// or a symbolic (%var) reference.  This is just a discriminated union.
37  struct ValID {
38    enum {
39      t_LocalID, t_GlobalID,      // ID in UIntVal.
40      t_LocalName, t_GlobalName,  // Name in StrVal.
41      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
42      t_Null, t_Undef, t_Zero,    // No value.
43      t_EmptyArray,               // No value:  []
44      t_Constant,                 // Value in ConstantVal.
45      t_InlineAsm,                // Value in StrVal/StrVal2/UIntVal.
46      t_Metadata                  // Value in MetadataVal.
47    } Kind;
48
49    LLParser::LocTy Loc;
50    unsigned UIntVal;
51    std::string StrVal, StrVal2;
52    APSInt APSIntVal;
53    APFloat APFloatVal;
54    Constant *ConstantVal;
55    MetadataBase *MetadataVal;
56    ValID() : APFloatVal(0.0) {}
57  };
58}
59
60/// Run: module ::= toplevelentity*
61bool LLParser::Run() {
62  // Prime the lexer.
63  Lex.Lex();
64
65  return ParseTopLevelEntities() ||
66         ValidateEndOfModule();
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72  if (!ForwardRefTypes.empty())
73    return Error(ForwardRefTypes.begin()->second.second,
74                 "use of undefined type named '" +
75                 ForwardRefTypes.begin()->first + "'");
76  if (!ForwardRefTypeIDs.empty())
77    return Error(ForwardRefTypeIDs.begin()->second.second,
78                 "use of undefined type '%" +
79                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
80
81  if (!ForwardRefVals.empty())
82    return Error(ForwardRefVals.begin()->second.second,
83                 "use of undefined value '@" + ForwardRefVals.begin()->first +
84                 "'");
85
86  if (!ForwardRefValIDs.empty())
87    return Error(ForwardRefValIDs.begin()->second.second,
88                 "use of undefined value '@" +
89                 utostr(ForwardRefValIDs.begin()->first) + "'");
90
91  if (!ForwardRefMDNodes.empty())
92    return Error(ForwardRefMDNodes.begin()->second.second,
93                 "use of undefined metadata '!" +
94                 utostr(ForwardRefMDNodes.begin()->first) + "'");
95
96
97  // Look for intrinsic functions and CallInst that need to be upgraded
98  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
99    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
100
101  // Check debug info intrinsics.
102  CheckDebugInfoIntrinsics(M);
103  return false;
104}
105
106//===----------------------------------------------------------------------===//
107// Top-Level Entities
108//===----------------------------------------------------------------------===//
109
110bool LLParser::ParseTopLevelEntities() {
111  while (1) {
112    switch (Lex.getKind()) {
113    default:         return TokError("expected top-level entity");
114    case lltok::Eof: return false;
115    //case lltok::kw_define:
116    case lltok::kw_declare: if (ParseDeclare()) return true; break;
117    case lltok::kw_define:  if (ParseDefine()) return true; break;
118    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
119    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
120    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
121    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
122    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
123    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
124    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
125    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
126    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
127    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
128    case lltok::NamedOrCustomMD: if (ParseNamedMetadata()) return true; break;
129
130    // The Global variable production with no name can have many different
131    // optional leading prefixes, the production is:
132    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
133    //               OptionalAddrSpace ('constant'|'global') ...
134    case lltok::kw_private :       // OptionalLinkage
135    case lltok::kw_linker_private: // OptionalLinkage
136    case lltok::kw_internal:       // OptionalLinkage
137    case lltok::kw_weak:           // OptionalLinkage
138    case lltok::kw_weak_odr:       // OptionalLinkage
139    case lltok::kw_linkonce:       // OptionalLinkage
140    case lltok::kw_linkonce_odr:   // OptionalLinkage
141    case lltok::kw_appending:      // OptionalLinkage
142    case lltok::kw_dllexport:      // OptionalLinkage
143    case lltok::kw_common:         // OptionalLinkage
144    case lltok::kw_dllimport:      // OptionalLinkage
145    case lltok::kw_extern_weak:    // OptionalLinkage
146    case lltok::kw_external: {     // OptionalLinkage
147      unsigned Linkage, Visibility;
148      if (ParseOptionalLinkage(Linkage) ||
149          ParseOptionalVisibility(Visibility) ||
150          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
151        return true;
152      break;
153    }
154    case lltok::kw_default:       // OptionalVisibility
155    case lltok::kw_hidden:        // OptionalVisibility
156    case lltok::kw_protected: {   // OptionalVisibility
157      unsigned Visibility;
158      if (ParseOptionalVisibility(Visibility) ||
159          ParseGlobal("", SMLoc(), 0, false, Visibility))
160        return true;
161      break;
162    }
163
164    case lltok::kw_thread_local:  // OptionalThreadLocal
165    case lltok::kw_addrspace:     // OptionalAddrSpace
166    case lltok::kw_constant:      // GlobalType
167    case lltok::kw_global:        // GlobalType
168      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
169      break;
170    }
171  }
172}
173
174
175/// toplevelentity
176///   ::= 'module' 'asm' STRINGCONSTANT
177bool LLParser::ParseModuleAsm() {
178  assert(Lex.getKind() == lltok::kw_module);
179  Lex.Lex();
180
181  std::string AsmStr;
182  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
183      ParseStringConstant(AsmStr)) return true;
184
185  const std::string &AsmSoFar = M->getModuleInlineAsm();
186  if (AsmSoFar.empty())
187    M->setModuleInlineAsm(AsmStr);
188  else
189    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
190  return false;
191}
192
193/// toplevelentity
194///   ::= 'target' 'triple' '=' STRINGCONSTANT
195///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
196bool LLParser::ParseTargetDefinition() {
197  assert(Lex.getKind() == lltok::kw_target);
198  std::string Str;
199  switch (Lex.Lex()) {
200  default: return TokError("unknown target property");
201  case lltok::kw_triple:
202    Lex.Lex();
203    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
204        ParseStringConstant(Str))
205      return true;
206    M->setTargetTriple(Str);
207    return false;
208  case lltok::kw_datalayout:
209    Lex.Lex();
210    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
211        ParseStringConstant(Str))
212      return true;
213    M->setDataLayout(Str);
214    return false;
215  }
216}
217
218/// toplevelentity
219///   ::= 'deplibs' '=' '[' ']'
220///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
221bool LLParser::ParseDepLibs() {
222  assert(Lex.getKind() == lltok::kw_deplibs);
223  Lex.Lex();
224  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
225      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
226    return true;
227
228  if (EatIfPresent(lltok::rsquare))
229    return false;
230
231  std::string Str;
232  if (ParseStringConstant(Str)) return true;
233  M->addLibrary(Str);
234
235  while (EatIfPresent(lltok::comma)) {
236    if (ParseStringConstant(Str)) return true;
237    M->addLibrary(Str);
238  }
239
240  return ParseToken(lltok::rsquare, "expected ']' at end of list");
241}
242
243/// ParseUnnamedType:
244///   ::= 'type' type
245///   ::= LocalVarID '=' 'type' type
246bool LLParser::ParseUnnamedType() {
247  unsigned TypeID = NumberedTypes.size();
248
249  // Handle the LocalVarID form.
250  if (Lex.getKind() == lltok::LocalVarID) {
251    if (Lex.getUIntVal() != TypeID)
252      return Error(Lex.getLoc(), "type expected to be numbered '%" +
253                   utostr(TypeID) + "'");
254    Lex.Lex(); // eat LocalVarID;
255
256    if (ParseToken(lltok::equal, "expected '=' after name"))
257      return true;
258  }
259
260  assert(Lex.getKind() == lltok::kw_type);
261  LocTy TypeLoc = Lex.getLoc();
262  Lex.Lex(); // eat kw_type
263
264  PATypeHolder Ty(Type::getVoidTy(Context));
265  if (ParseType(Ty)) return true;
266
267  // See if this type was previously referenced.
268  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
269    FI = ForwardRefTypeIDs.find(TypeID);
270  if (FI != ForwardRefTypeIDs.end()) {
271    if (FI->second.first.get() == Ty)
272      return Error(TypeLoc, "self referential type is invalid");
273
274    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
275    Ty = FI->second.first.get();
276    ForwardRefTypeIDs.erase(FI);
277  }
278
279  NumberedTypes.push_back(Ty);
280
281  return false;
282}
283
284/// toplevelentity
285///   ::= LocalVar '=' 'type' type
286bool LLParser::ParseNamedType() {
287  std::string Name = Lex.getStrVal();
288  LocTy NameLoc = Lex.getLoc();
289  Lex.Lex();  // eat LocalVar.
290
291  PATypeHolder Ty(Type::getVoidTy(Context));
292
293  if (ParseToken(lltok::equal, "expected '=' after name") ||
294      ParseToken(lltok::kw_type, "expected 'type' after name") ||
295      ParseType(Ty))
296    return true;
297
298  // Set the type name, checking for conflicts as we do so.
299  bool AlreadyExists = M->addTypeName(Name, Ty);
300  if (!AlreadyExists) return false;
301
302  // See if this type is a forward reference.  We need to eagerly resolve
303  // types to allow recursive type redefinitions below.
304  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
305  FI = ForwardRefTypes.find(Name);
306  if (FI != ForwardRefTypes.end()) {
307    if (FI->second.first.get() == Ty)
308      return Error(NameLoc, "self referential type is invalid");
309
310    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
311    Ty = FI->second.first.get();
312    ForwardRefTypes.erase(FI);
313  }
314
315  // Inserting a name that is already defined, get the existing name.
316  const Type *Existing = M->getTypeByName(Name);
317  assert(Existing && "Conflict but no matching type?!");
318
319  // Otherwise, this is an attempt to redefine a type. That's okay if
320  // the redefinition is identical to the original.
321  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
322  if (Existing == Ty) return false;
323
324  // Any other kind of (non-equivalent) redefinition is an error.
325  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
326               Ty->getDescription() + "'");
327}
328
329
330/// toplevelentity
331///   ::= 'declare' FunctionHeader
332bool LLParser::ParseDeclare() {
333  assert(Lex.getKind() == lltok::kw_declare);
334  Lex.Lex();
335
336  Function *F;
337  return ParseFunctionHeader(F, false);
338}
339
340/// toplevelentity
341///   ::= 'define' FunctionHeader '{' ...
342bool LLParser::ParseDefine() {
343  assert(Lex.getKind() == lltok::kw_define);
344  Lex.Lex();
345
346  Function *F;
347  return ParseFunctionHeader(F, true) ||
348         ParseFunctionBody(*F);
349}
350
351/// ParseGlobalType
352///   ::= 'constant'
353///   ::= 'global'
354bool LLParser::ParseGlobalType(bool &IsConstant) {
355  if (Lex.getKind() == lltok::kw_constant)
356    IsConstant = true;
357  else if (Lex.getKind() == lltok::kw_global)
358    IsConstant = false;
359  else {
360    IsConstant = false;
361    return TokError("expected 'global' or 'constant'");
362  }
363  Lex.Lex();
364  return false;
365}
366
367/// ParseUnnamedGlobal:
368///   OptionalVisibility ALIAS ...
369///   OptionalLinkage OptionalVisibility ...   -> global variable
370///   GlobalID '=' OptionalVisibility ALIAS ...
371///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
372bool LLParser::ParseUnnamedGlobal() {
373  unsigned VarID = NumberedVals.size();
374  std::string Name;
375  LocTy NameLoc = Lex.getLoc();
376
377  // Handle the GlobalID form.
378  if (Lex.getKind() == lltok::GlobalID) {
379    if (Lex.getUIntVal() != VarID)
380      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
381                   utostr(VarID) + "'");
382    Lex.Lex(); // eat GlobalID;
383
384    if (ParseToken(lltok::equal, "expected '=' after name"))
385      return true;
386  }
387
388  bool HasLinkage;
389  unsigned Linkage, Visibility;
390  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
391      ParseOptionalVisibility(Visibility))
392    return true;
393
394  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
395    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
396  return ParseAlias(Name, NameLoc, Visibility);
397}
398
399/// ParseNamedGlobal:
400///   GlobalVar '=' OptionalVisibility ALIAS ...
401///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
402bool LLParser::ParseNamedGlobal() {
403  assert(Lex.getKind() == lltok::GlobalVar);
404  LocTy NameLoc = Lex.getLoc();
405  std::string Name = Lex.getStrVal();
406  Lex.Lex();
407
408  bool HasLinkage;
409  unsigned Linkage, Visibility;
410  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
411      ParseOptionalLinkage(Linkage, HasLinkage) ||
412      ParseOptionalVisibility(Visibility))
413    return true;
414
415  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
416    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
417  return ParseAlias(Name, NameLoc, Visibility);
418}
419
420// MDString:
421//   ::= '!' STRINGCONSTANT
422bool LLParser::ParseMDString(MetadataBase *&MDS) {
423  std::string Str;
424  if (ParseStringConstant(Str)) return true;
425  MDS = MDString::get(Context, Str);
426  return false;
427}
428
429// MDNode:
430//   ::= '!' MDNodeNumber
431bool LLParser::ParseMDNode(MetadataBase *&Node) {
432  // !{ ..., !42, ... }
433  unsigned MID = 0;
434  if (ParseUInt32(MID))  return true;
435
436  // Check existing MDNode.
437  std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
438  if (I != MetadataCache.end()) {
439    Node = I->second;
440    return false;
441  }
442
443  // Check known forward references.
444  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
445    FI = ForwardRefMDNodes.find(MID);
446  if (FI != ForwardRefMDNodes.end()) {
447    Node = FI->second.first;
448    return false;
449  }
450
451  // Create MDNode forward reference
452  SmallVector<Value *, 1> Elts;
453  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
454  Elts.push_back(MDString::get(Context, FwdRefName));
455  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
456  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
457  Node = FwdNode;
458  return false;
459}
460
461///ParseNamedMetadata:
462///   !foo = !{ !1, !2 }
463bool LLParser::ParseNamedMetadata() {
464  assert(Lex.getKind() == lltok::NamedOrCustomMD);
465  Lex.Lex();
466  std::string Name = Lex.getStrVal();
467
468  if (ParseToken(lltok::equal, "expected '=' here"))
469    return true;
470
471  if (Lex.getKind() != lltok::Metadata)
472    return TokError("Expected '!' here");
473  Lex.Lex();
474
475  if (Lex.getKind() != lltok::lbrace)
476    return TokError("Expected '{' here");
477  Lex.Lex();
478  SmallVector<MetadataBase *, 8> Elts;
479  do {
480    if (Lex.getKind() != lltok::Metadata)
481      return TokError("Expected '!' here");
482    Lex.Lex();
483    MetadataBase *N = 0;
484    if (ParseMDNode(N)) return true;
485    Elts.push_back(N);
486  } while (EatIfPresent(lltok::comma));
487
488  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
489    return true;
490
491  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
492  return false;
493}
494
495/// ParseStandaloneMetadata:
496///   !42 = !{...}
497bool LLParser::ParseStandaloneMetadata() {
498  assert(Lex.getKind() == lltok::Metadata);
499  Lex.Lex();
500  unsigned MetadataID = 0;
501  if (ParseUInt32(MetadataID))
502    return true;
503  if (MetadataCache.find(MetadataID) != MetadataCache.end())
504    return TokError("Metadata id is already used");
505  if (ParseToken(lltok::equal, "expected '=' here"))
506    return true;
507
508  LocTy TyLoc;
509  PATypeHolder Ty(Type::getVoidTy(Context));
510  if (ParseType(Ty, TyLoc))
511    return true;
512
513  if (Lex.getKind() != lltok::Metadata)
514    return TokError("Expected metadata here");
515
516  Lex.Lex();
517  if (Lex.getKind() != lltok::lbrace)
518    return TokError("Expected '{' here");
519
520  SmallVector<Value *, 16> Elts;
521  if (ParseMDNodeVector(Elts)
522      || ParseToken(lltok::rbrace, "expected end of metadata node"))
523    return true;
524
525  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
526  MetadataCache[MetadataID] = Init;
527  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
528    FI = ForwardRefMDNodes.find(MetadataID);
529  if (FI != ForwardRefMDNodes.end()) {
530    MDNode *FwdNode = cast<MDNode>(FI->second.first);
531    FwdNode->replaceAllUsesWith(Init);
532    ForwardRefMDNodes.erase(FI);
533  }
534
535  return false;
536}
537
538/// ParseAlias:
539///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
540/// Aliasee
541///   ::= TypeAndValue
542///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
543///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
544///
545/// Everything through visibility has already been parsed.
546///
547bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
548                          unsigned Visibility) {
549  assert(Lex.getKind() == lltok::kw_alias);
550  Lex.Lex();
551  unsigned Linkage;
552  LocTy LinkageLoc = Lex.getLoc();
553  if (ParseOptionalLinkage(Linkage))
554    return true;
555
556  if (Linkage != GlobalValue::ExternalLinkage &&
557      Linkage != GlobalValue::WeakAnyLinkage &&
558      Linkage != GlobalValue::WeakODRLinkage &&
559      Linkage != GlobalValue::InternalLinkage &&
560      Linkage != GlobalValue::PrivateLinkage &&
561      Linkage != GlobalValue::LinkerPrivateLinkage)
562    return Error(LinkageLoc, "invalid linkage type for alias");
563
564  Constant *Aliasee;
565  LocTy AliaseeLoc = Lex.getLoc();
566  if (Lex.getKind() != lltok::kw_bitcast &&
567      Lex.getKind() != lltok::kw_getelementptr) {
568    if (ParseGlobalTypeAndValue(Aliasee)) return true;
569  } else {
570    // The bitcast dest type is not present, it is implied by the dest type.
571    ValID ID;
572    if (ParseValID(ID)) return true;
573    if (ID.Kind != ValID::t_Constant)
574      return Error(AliaseeLoc, "invalid aliasee");
575    Aliasee = ID.ConstantVal;
576  }
577
578  if (!isa<PointerType>(Aliasee->getType()))
579    return Error(AliaseeLoc, "alias must have pointer type");
580
581  // Okay, create the alias but do not insert it into the module yet.
582  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
583                                    (GlobalValue::LinkageTypes)Linkage, Name,
584                                    Aliasee);
585  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
586
587  // See if this value already exists in the symbol table.  If so, it is either
588  // a redefinition or a definition of a forward reference.
589  if (GlobalValue *Val =
590        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
591    // See if this was a redefinition.  If so, there is no entry in
592    // ForwardRefVals.
593    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
594      I = ForwardRefVals.find(Name);
595    if (I == ForwardRefVals.end())
596      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
597
598    // Otherwise, this was a definition of forward ref.  Verify that types
599    // agree.
600    if (Val->getType() != GA->getType())
601      return Error(NameLoc,
602              "forward reference and definition of alias have different types");
603
604    // If they agree, just RAUW the old value with the alias and remove the
605    // forward ref info.
606    Val->replaceAllUsesWith(GA);
607    Val->eraseFromParent();
608    ForwardRefVals.erase(I);
609  }
610
611  // Insert into the module, we know its name won't collide now.
612  M->getAliasList().push_back(GA);
613  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
614
615  return false;
616}
617
618/// ParseGlobal
619///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
620///       OptionalAddrSpace GlobalType Type Const
621///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
622///       OptionalAddrSpace GlobalType Type Const
623///
624/// Everything through visibility has been parsed already.
625///
626bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
627                           unsigned Linkage, bool HasLinkage,
628                           unsigned Visibility) {
629  unsigned AddrSpace;
630  bool ThreadLocal, IsConstant;
631  LocTy TyLoc;
632
633  PATypeHolder Ty(Type::getVoidTy(Context));
634  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
635      ParseOptionalAddrSpace(AddrSpace) ||
636      ParseGlobalType(IsConstant) ||
637      ParseType(Ty, TyLoc))
638    return true;
639
640  // If the linkage is specified and is external, then no initializer is
641  // present.
642  Constant *Init = 0;
643  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
644                      Linkage != GlobalValue::ExternalWeakLinkage &&
645                      Linkage != GlobalValue::ExternalLinkage)) {
646    if (ParseGlobalValue(Ty, Init))
647      return true;
648  }
649
650  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
651    return Error(TyLoc, "invalid type for global variable");
652
653  GlobalVariable *GV = 0;
654
655  // See if the global was forward referenced, if so, use the global.
656  if (!Name.empty()) {
657    if ((GV = M->getGlobalVariable(Name, true)) &&
658        !ForwardRefVals.erase(Name))
659      return Error(NameLoc, "redefinition of global '@" + Name + "'");
660  } else {
661    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
662      I = ForwardRefValIDs.find(NumberedVals.size());
663    if (I != ForwardRefValIDs.end()) {
664      GV = cast<GlobalVariable>(I->second.first);
665      ForwardRefValIDs.erase(I);
666    }
667  }
668
669  if (GV == 0) {
670    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
671                            Name, 0, false, AddrSpace);
672  } else {
673    if (GV->getType()->getElementType() != Ty)
674      return Error(TyLoc,
675            "forward reference and definition of global have different types");
676
677    // Move the forward-reference to the correct spot in the module.
678    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
679  }
680
681  if (Name.empty())
682    NumberedVals.push_back(GV);
683
684  // Set the parsed properties on the global.
685  if (Init)
686    GV->setInitializer(Init);
687  GV->setConstant(IsConstant);
688  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
689  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
690  GV->setThreadLocal(ThreadLocal);
691
692  // Parse attributes on the global.
693  while (Lex.getKind() == lltok::comma) {
694    Lex.Lex();
695
696    if (Lex.getKind() == lltok::kw_section) {
697      Lex.Lex();
698      GV->setSection(Lex.getStrVal());
699      if (ParseToken(lltok::StringConstant, "expected global section string"))
700        return true;
701    } else if (Lex.getKind() == lltok::kw_align) {
702      unsigned Alignment;
703      if (ParseOptionalAlignment(Alignment)) return true;
704      GV->setAlignment(Alignment);
705    } else {
706      TokError("unknown global variable property!");
707    }
708  }
709
710  return false;
711}
712
713
714//===----------------------------------------------------------------------===//
715// GlobalValue Reference/Resolution Routines.
716//===----------------------------------------------------------------------===//
717
718/// GetGlobalVal - Get a value with the specified name or ID, creating a
719/// forward reference record if needed.  This can return null if the value
720/// exists but does not have the right type.
721GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
722                                    LocTy Loc) {
723  const PointerType *PTy = dyn_cast<PointerType>(Ty);
724  if (PTy == 0) {
725    Error(Loc, "global variable reference must have pointer type");
726    return 0;
727  }
728
729  // Look this name up in the normal function symbol table.
730  GlobalValue *Val =
731    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
732
733  // If this is a forward reference for the value, see if we already created a
734  // forward ref record.
735  if (Val == 0) {
736    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
737      I = ForwardRefVals.find(Name);
738    if (I != ForwardRefVals.end())
739      Val = I->second.first;
740  }
741
742  // If we have the value in the symbol table or fwd-ref table, return it.
743  if (Val) {
744    if (Val->getType() == Ty) return Val;
745    Error(Loc, "'@" + Name + "' defined with type '" +
746          Val->getType()->getDescription() + "'");
747    return 0;
748  }
749
750  // Otherwise, create a new forward reference for this value and remember it.
751  GlobalValue *FwdVal;
752  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
753    // Function types can return opaque but functions can't.
754    if (isa<OpaqueType>(FT->getReturnType())) {
755      Error(Loc, "function may not return opaque type");
756      return 0;
757    }
758
759    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
760  } else {
761    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
762                                GlobalValue::ExternalWeakLinkage, 0, Name);
763  }
764
765  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
766  return FwdVal;
767}
768
769GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
770  const PointerType *PTy = dyn_cast<PointerType>(Ty);
771  if (PTy == 0) {
772    Error(Loc, "global variable reference must have pointer type");
773    return 0;
774  }
775
776  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
777
778  // If this is a forward reference for the value, see if we already created a
779  // forward ref record.
780  if (Val == 0) {
781    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
782      I = ForwardRefValIDs.find(ID);
783    if (I != ForwardRefValIDs.end())
784      Val = I->second.first;
785  }
786
787  // If we have the value in the symbol table or fwd-ref table, return it.
788  if (Val) {
789    if (Val->getType() == Ty) return Val;
790    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
791          Val->getType()->getDescription() + "'");
792    return 0;
793  }
794
795  // Otherwise, create a new forward reference for this value and remember it.
796  GlobalValue *FwdVal;
797  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
798    // Function types can return opaque but functions can't.
799    if (isa<OpaqueType>(FT->getReturnType())) {
800      Error(Loc, "function may not return opaque type");
801      return 0;
802    }
803    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
804  } else {
805    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
806                                GlobalValue::ExternalWeakLinkage, 0, "");
807  }
808
809  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
810  return FwdVal;
811}
812
813
814//===----------------------------------------------------------------------===//
815// Helper Routines.
816//===----------------------------------------------------------------------===//
817
818/// ParseToken - If the current token has the specified kind, eat it and return
819/// success.  Otherwise, emit the specified error and return failure.
820bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
821  if (Lex.getKind() != T)
822    return TokError(ErrMsg);
823  Lex.Lex();
824  return false;
825}
826
827/// ParseStringConstant
828///   ::= StringConstant
829bool LLParser::ParseStringConstant(std::string &Result) {
830  if (Lex.getKind() != lltok::StringConstant)
831    return TokError("expected string constant");
832  Result = Lex.getStrVal();
833  Lex.Lex();
834  return false;
835}
836
837/// ParseUInt32
838///   ::= uint32
839bool LLParser::ParseUInt32(unsigned &Val) {
840  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
841    return TokError("expected integer");
842  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
843  if (Val64 != unsigned(Val64))
844    return TokError("expected 32-bit integer (too large)");
845  Val = Val64;
846  Lex.Lex();
847  return false;
848}
849
850
851/// ParseOptionalAddrSpace
852///   := /*empty*/
853///   := 'addrspace' '(' uint32 ')'
854bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
855  AddrSpace = 0;
856  if (!EatIfPresent(lltok::kw_addrspace))
857    return false;
858  return ParseToken(lltok::lparen, "expected '(' in address space") ||
859         ParseUInt32(AddrSpace) ||
860         ParseToken(lltok::rparen, "expected ')' in address space");
861}
862
863/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
864/// indicates what kind of attribute list this is: 0: function arg, 1: result,
865/// 2: function attr.
866/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
867bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
868  Attrs = Attribute::None;
869  LocTy AttrLoc = Lex.getLoc();
870
871  while (1) {
872    switch (Lex.getKind()) {
873    case lltok::kw_sext:
874    case lltok::kw_zext:
875      // Treat these as signext/zeroext if they occur in the argument list after
876      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
877      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
878      // expr.
879      // FIXME: REMOVE THIS IN LLVM 3.0
880      if (AttrKind == 3) {
881        if (Lex.getKind() == lltok::kw_sext)
882          Attrs |= Attribute::SExt;
883        else
884          Attrs |= Attribute::ZExt;
885        break;
886      }
887      // FALL THROUGH.
888    default:  // End of attributes.
889      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
890        return Error(AttrLoc, "invalid use of function-only attribute");
891
892      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
893        return Error(AttrLoc, "invalid use of parameter-only attribute");
894
895      return false;
896    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
897    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
898    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
899    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
900    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
901    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
902    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
903    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
904
905    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
906    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
907    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
908    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
909    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
910    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
911    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
912    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
913    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
914    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
915    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
916    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
917    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
918
919    case lltok::kw_align: {
920      unsigned Alignment;
921      if (ParseOptionalAlignment(Alignment))
922        return true;
923      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
924      continue;
925    }
926    }
927    Lex.Lex();
928  }
929}
930
931/// ParseOptionalLinkage
932///   ::= /*empty*/
933///   ::= 'private'
934///   ::= 'linker_private'
935///   ::= 'internal'
936///   ::= 'weak'
937///   ::= 'weak_odr'
938///   ::= 'linkonce'
939///   ::= 'linkonce_odr'
940///   ::= 'appending'
941///   ::= 'dllexport'
942///   ::= 'common'
943///   ::= 'dllimport'
944///   ::= 'extern_weak'
945///   ::= 'external'
946bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
947  HasLinkage = false;
948  switch (Lex.getKind()) {
949  default:                       Res=GlobalValue::ExternalLinkage; return false;
950  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
951  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
952  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
953  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
954  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
955  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
956  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
957  case lltok::kw_available_externally:
958    Res = GlobalValue::AvailableExternallyLinkage;
959    break;
960  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
961  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
962  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
963  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
964  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
965  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
966  }
967  Lex.Lex();
968  HasLinkage = true;
969  return false;
970}
971
972/// ParseOptionalVisibility
973///   ::= /*empty*/
974///   ::= 'default'
975///   ::= 'hidden'
976///   ::= 'protected'
977///
978bool LLParser::ParseOptionalVisibility(unsigned &Res) {
979  switch (Lex.getKind()) {
980  default:                  Res = GlobalValue::DefaultVisibility; return false;
981  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
982  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
983  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
984  }
985  Lex.Lex();
986  return false;
987}
988
989/// ParseOptionalCallingConv
990///   ::= /*empty*/
991///   ::= 'ccc'
992///   ::= 'fastcc'
993///   ::= 'coldcc'
994///   ::= 'x86_stdcallcc'
995///   ::= 'x86_fastcallcc'
996///   ::= 'arm_apcscc'
997///   ::= 'arm_aapcscc'
998///   ::= 'arm_aapcs_vfpcc'
999///   ::= 'cc' UINT
1000///
1001bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1002  switch (Lex.getKind()) {
1003  default:                       CC = CallingConv::C; return false;
1004  case lltok::kw_ccc:            CC = CallingConv::C; break;
1005  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1006  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1007  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1008  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1009  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1010  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1011  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1012  case lltok::kw_cc: {
1013      unsigned ArbitraryCC;
1014      Lex.Lex();
1015      if (ParseUInt32(ArbitraryCC)) {
1016        return true;
1017      } else
1018        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1019        return false;
1020    }
1021    break;
1022  }
1023
1024  Lex.Lex();
1025  return false;
1026}
1027
1028/// ParseOptionalCustomMetadata
1029///   ::= /* empty */
1030///   ::= !dbg !42
1031bool LLParser::ParseOptionalCustomMetadata() {
1032
1033  std::string Name;
1034  if (Lex.getKind() == lltok::NamedOrCustomMD) {
1035    Name = Lex.getStrVal();
1036    Lex.Lex();
1037  } else
1038    return false;
1039
1040  if (Lex.getKind() != lltok::Metadata)
1041    return TokError("Expected '!' here");
1042  Lex.Lex();
1043
1044  MetadataBase *Node;
1045  if (ParseMDNode(Node)) return true;
1046
1047  MetadataContext &TheMetadata = M->getContext().getMetadata();
1048  unsigned MDK = TheMetadata.getMDKind(Name.c_str());
1049  if (!MDK)
1050    MDK = TheMetadata.RegisterMDKind(Name.c_str());
1051  MDsOnInst.push_back(std::make_pair(MDK, cast<MDNode>(Node)));
1052
1053  return false;
1054}
1055
1056/// ParseOptionalAlignment
1057///   ::= /* empty */
1058///   ::= 'align' 4
1059bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1060  Alignment = 0;
1061  if (!EatIfPresent(lltok::kw_align))
1062    return false;
1063  LocTy AlignLoc = Lex.getLoc();
1064  if (ParseUInt32(Alignment)) return true;
1065  if (!isPowerOf2_32(Alignment))
1066    return Error(AlignLoc, "alignment is not a power of two");
1067  return false;
1068}
1069
1070/// ParseOptionalInfo
1071///   ::= OptionalInfo (',' OptionalInfo)+
1072bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1073
1074  // FIXME: Handle customized metadata info attached with an instruction.
1075  do {
1076      if (Lex.getKind() == lltok::NamedOrCustomMD) {
1077      if (ParseOptionalCustomMetadata()) return true;
1078    } else if (Lex.getKind() == lltok::kw_align) {
1079      if (ParseOptionalAlignment(Alignment)) return true;
1080    } else
1081      return true;
1082  } while (EatIfPresent(lltok::comma));
1083
1084  return false;
1085}
1086
1087
1088/// ParseIndexList
1089///    ::=  (',' uint32)+
1090bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1091  if (Lex.getKind() != lltok::comma)
1092    return TokError("expected ',' as start of index list");
1093
1094  while (EatIfPresent(lltok::comma)) {
1095    unsigned Idx;
1096    if (ParseUInt32(Idx)) return true;
1097    Indices.push_back(Idx);
1098  }
1099
1100  return false;
1101}
1102
1103//===----------------------------------------------------------------------===//
1104// Type Parsing.
1105//===----------------------------------------------------------------------===//
1106
1107/// ParseType - Parse and resolve a full type.
1108bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1109  LocTy TypeLoc = Lex.getLoc();
1110  if (ParseTypeRec(Result)) return true;
1111
1112  // Verify no unresolved uprefs.
1113  if (!UpRefs.empty())
1114    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1115
1116  if (!AllowVoid && Result.get()->isVoidTy())
1117    return Error(TypeLoc, "void type only allowed for function results");
1118
1119  return false;
1120}
1121
1122/// HandleUpRefs - Every time we finish a new layer of types, this function is
1123/// called.  It loops through the UpRefs vector, which is a list of the
1124/// currently active types.  For each type, if the up-reference is contained in
1125/// the newly completed type, we decrement the level count.  When the level
1126/// count reaches zero, the up-referenced type is the type that is passed in:
1127/// thus we can complete the cycle.
1128///
1129PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1130  // If Ty isn't abstract, or if there are no up-references in it, then there is
1131  // nothing to resolve here.
1132  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1133
1134  PATypeHolder Ty(ty);
1135#if 0
1136  errs() << "Type '" << Ty->getDescription()
1137         << "' newly formed.  Resolving upreferences.\n"
1138         << UpRefs.size() << " upreferences active!\n";
1139#endif
1140
1141  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1142  // to zero), we resolve them all together before we resolve them to Ty.  At
1143  // the end of the loop, if there is anything to resolve to Ty, it will be in
1144  // this variable.
1145  OpaqueType *TypeToResolve = 0;
1146
1147  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1148    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1149    bool ContainsType =
1150      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1151                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1152
1153#if 0
1154    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1155           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1156           << (ContainsType ? "true" : "false")
1157           << " level=" << UpRefs[i].NestingLevel << "\n";
1158#endif
1159    if (!ContainsType)
1160      continue;
1161
1162    // Decrement level of upreference
1163    unsigned Level = --UpRefs[i].NestingLevel;
1164    UpRefs[i].LastContainedTy = Ty;
1165
1166    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1167    if (Level != 0)
1168      continue;
1169
1170#if 0
1171    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1172#endif
1173    if (!TypeToResolve)
1174      TypeToResolve = UpRefs[i].UpRefTy;
1175    else
1176      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1177    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1178    --i;                                // Do not skip the next element.
1179  }
1180
1181  if (TypeToResolve)
1182    TypeToResolve->refineAbstractTypeTo(Ty);
1183
1184  return Ty;
1185}
1186
1187
1188/// ParseTypeRec - The recursive function used to process the internal
1189/// implementation details of types.
1190bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1191  switch (Lex.getKind()) {
1192  default:
1193    return TokError("expected type");
1194  case lltok::Type:
1195    // TypeRec ::= 'float' | 'void' (etc)
1196    Result = Lex.getTyVal();
1197    Lex.Lex();
1198    break;
1199  case lltok::kw_opaque:
1200    // TypeRec ::= 'opaque'
1201    Result = OpaqueType::get(Context);
1202    Lex.Lex();
1203    break;
1204  case lltok::lbrace:
1205    // TypeRec ::= '{' ... '}'
1206    if (ParseStructType(Result, false))
1207      return true;
1208    break;
1209  case lltok::lsquare:
1210    // TypeRec ::= '[' ... ']'
1211    Lex.Lex(); // eat the lsquare.
1212    if (ParseArrayVectorType(Result, false))
1213      return true;
1214    break;
1215  case lltok::less: // Either vector or packed struct.
1216    // TypeRec ::= '<' ... '>'
1217    Lex.Lex();
1218    if (Lex.getKind() == lltok::lbrace) {
1219      if (ParseStructType(Result, true) ||
1220          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1221        return true;
1222    } else if (ParseArrayVectorType(Result, true))
1223      return true;
1224    break;
1225  case lltok::LocalVar:
1226  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1227    // TypeRec ::= %foo
1228    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1229      Result = T;
1230    } else {
1231      Result = OpaqueType::get(Context);
1232      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1233                                            std::make_pair(Result,
1234                                                           Lex.getLoc())));
1235      M->addTypeName(Lex.getStrVal(), Result.get());
1236    }
1237    Lex.Lex();
1238    break;
1239
1240  case lltok::LocalVarID:
1241    // TypeRec ::= %4
1242    if (Lex.getUIntVal() < NumberedTypes.size())
1243      Result = NumberedTypes[Lex.getUIntVal()];
1244    else {
1245      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1246        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1247      if (I != ForwardRefTypeIDs.end())
1248        Result = I->second.first;
1249      else {
1250        Result = OpaqueType::get(Context);
1251        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1252                                                std::make_pair(Result,
1253                                                               Lex.getLoc())));
1254      }
1255    }
1256    Lex.Lex();
1257    break;
1258  case lltok::backslash: {
1259    // TypeRec ::= '\' 4
1260    Lex.Lex();
1261    unsigned Val;
1262    if (ParseUInt32(Val)) return true;
1263    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1264    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1265    Result = OT;
1266    break;
1267  }
1268  }
1269
1270  // Parse the type suffixes.
1271  while (1) {
1272    switch (Lex.getKind()) {
1273    // End of type.
1274    default: return false;
1275
1276    // TypeRec ::= TypeRec '*'
1277    case lltok::star:
1278      if (Result.get()->isLabelTy())
1279        return TokError("basic block pointers are invalid");
1280      if (Result.get()->isVoidTy())
1281        return TokError("pointers to void are invalid; use i8* instead");
1282      if (!PointerType::isValidElementType(Result.get()))
1283        return TokError("pointer to this type is invalid");
1284      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1285      Lex.Lex();
1286      break;
1287
1288    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1289    case lltok::kw_addrspace: {
1290      if (Result.get()->isLabelTy())
1291        return TokError("basic block pointers are invalid");
1292      if (Result.get()->isVoidTy())
1293        return TokError("pointers to void are invalid; use i8* instead");
1294      if (!PointerType::isValidElementType(Result.get()))
1295        return TokError("pointer to this type is invalid");
1296      unsigned AddrSpace;
1297      if (ParseOptionalAddrSpace(AddrSpace) ||
1298          ParseToken(lltok::star, "expected '*' in address space"))
1299        return true;
1300
1301      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1302      break;
1303    }
1304
1305    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1306    case lltok::lparen:
1307      if (ParseFunctionType(Result))
1308        return true;
1309      break;
1310    }
1311  }
1312}
1313
1314/// ParseParameterList
1315///    ::= '(' ')'
1316///    ::= '(' Arg (',' Arg)* ')'
1317///  Arg
1318///    ::= Type OptionalAttributes Value OptionalAttributes
1319bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1320                                  PerFunctionState &PFS) {
1321  if (ParseToken(lltok::lparen, "expected '(' in call"))
1322    return true;
1323
1324  while (Lex.getKind() != lltok::rparen) {
1325    // If this isn't the first argument, we need a comma.
1326    if (!ArgList.empty() &&
1327        ParseToken(lltok::comma, "expected ',' in argument list"))
1328      return true;
1329
1330    // Parse the argument.
1331    LocTy ArgLoc;
1332    PATypeHolder ArgTy(Type::getVoidTy(Context));
1333    unsigned ArgAttrs1, ArgAttrs2;
1334    Value *V;
1335    if (ParseType(ArgTy, ArgLoc) ||
1336        ParseOptionalAttrs(ArgAttrs1, 0) ||
1337        ParseValue(ArgTy, V, PFS) ||
1338        // FIXME: Should not allow attributes after the argument, remove this in
1339        // LLVM 3.0.
1340        ParseOptionalAttrs(ArgAttrs2, 3))
1341      return true;
1342    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1343  }
1344
1345  Lex.Lex();  // Lex the ')'.
1346  return false;
1347}
1348
1349
1350
1351/// ParseArgumentList - Parse the argument list for a function type or function
1352/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1353///   ::= '(' ArgTypeListI ')'
1354/// ArgTypeListI
1355///   ::= /*empty*/
1356///   ::= '...'
1357///   ::= ArgTypeList ',' '...'
1358///   ::= ArgType (',' ArgType)*
1359///
1360bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1361                                 bool &isVarArg, bool inType) {
1362  isVarArg = false;
1363  assert(Lex.getKind() == lltok::lparen);
1364  Lex.Lex(); // eat the (.
1365
1366  if (Lex.getKind() == lltok::rparen) {
1367    // empty
1368  } else if (Lex.getKind() == lltok::dotdotdot) {
1369    isVarArg = true;
1370    Lex.Lex();
1371  } else {
1372    LocTy TypeLoc = Lex.getLoc();
1373    PATypeHolder ArgTy(Type::getVoidTy(Context));
1374    unsigned Attrs;
1375    std::string Name;
1376
1377    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1378    // types (such as a function returning a pointer to itself).  If parsing a
1379    // function prototype, we require fully resolved types.
1380    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1381        ParseOptionalAttrs(Attrs, 0)) return true;
1382
1383    if (ArgTy->isVoidTy())
1384      return Error(TypeLoc, "argument can not have void type");
1385
1386    if (Lex.getKind() == lltok::LocalVar ||
1387        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1388      Name = Lex.getStrVal();
1389      Lex.Lex();
1390    }
1391
1392    if (!FunctionType::isValidArgumentType(ArgTy))
1393      return Error(TypeLoc, "invalid type for function argument");
1394
1395    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1396
1397    while (EatIfPresent(lltok::comma)) {
1398      // Handle ... at end of arg list.
1399      if (EatIfPresent(lltok::dotdotdot)) {
1400        isVarArg = true;
1401        break;
1402      }
1403
1404      // Otherwise must be an argument type.
1405      TypeLoc = Lex.getLoc();
1406      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1407          ParseOptionalAttrs(Attrs, 0)) return true;
1408
1409      if (ArgTy->isVoidTy())
1410        return Error(TypeLoc, "argument can not have void type");
1411
1412      if (Lex.getKind() == lltok::LocalVar ||
1413          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1414        Name = Lex.getStrVal();
1415        Lex.Lex();
1416      } else {
1417        Name = "";
1418      }
1419
1420      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1421        return Error(TypeLoc, "invalid type for function argument");
1422
1423      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1424    }
1425  }
1426
1427  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1428}
1429
1430/// ParseFunctionType
1431///  ::= Type ArgumentList OptionalAttrs
1432bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1433  assert(Lex.getKind() == lltok::lparen);
1434
1435  if (!FunctionType::isValidReturnType(Result))
1436    return TokError("invalid function return type");
1437
1438  std::vector<ArgInfo> ArgList;
1439  bool isVarArg;
1440  unsigned Attrs;
1441  if (ParseArgumentList(ArgList, isVarArg, true) ||
1442      // FIXME: Allow, but ignore attributes on function types!
1443      // FIXME: Remove in LLVM 3.0
1444      ParseOptionalAttrs(Attrs, 2))
1445    return true;
1446
1447  // Reject names on the arguments lists.
1448  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1449    if (!ArgList[i].Name.empty())
1450      return Error(ArgList[i].Loc, "argument name invalid in function type");
1451    if (!ArgList[i].Attrs != 0) {
1452      // Allow but ignore attributes on function types; this permits
1453      // auto-upgrade.
1454      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1455    }
1456  }
1457
1458  std::vector<const Type*> ArgListTy;
1459  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1460    ArgListTy.push_back(ArgList[i].Type);
1461
1462  Result = HandleUpRefs(FunctionType::get(Result.get(),
1463                                                ArgListTy, isVarArg));
1464  return false;
1465}
1466
1467/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1468///   TypeRec
1469///     ::= '{' '}'
1470///     ::= '{' TypeRec (',' TypeRec)* '}'
1471///     ::= '<' '{' '}' '>'
1472///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1473bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1474  assert(Lex.getKind() == lltok::lbrace);
1475  Lex.Lex(); // Consume the '{'
1476
1477  if (EatIfPresent(lltok::rbrace)) {
1478    Result = StructType::get(Context, Packed);
1479    return false;
1480  }
1481
1482  std::vector<PATypeHolder> ParamsList;
1483  LocTy EltTyLoc = Lex.getLoc();
1484  if (ParseTypeRec(Result)) return true;
1485  ParamsList.push_back(Result);
1486
1487  if (Result->isVoidTy())
1488    return Error(EltTyLoc, "struct element can not have void type");
1489  if (!StructType::isValidElementType(Result))
1490    return Error(EltTyLoc, "invalid element type for struct");
1491
1492  while (EatIfPresent(lltok::comma)) {
1493    EltTyLoc = Lex.getLoc();
1494    if (ParseTypeRec(Result)) return true;
1495
1496    if (Result->isVoidTy())
1497      return Error(EltTyLoc, "struct element can not have void type");
1498    if (!StructType::isValidElementType(Result))
1499      return Error(EltTyLoc, "invalid element type for struct");
1500
1501    ParamsList.push_back(Result);
1502  }
1503
1504  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1505    return true;
1506
1507  std::vector<const Type*> ParamsListTy;
1508  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1509    ParamsListTy.push_back(ParamsList[i].get());
1510  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1511  return false;
1512}
1513
1514/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1515/// token has already been consumed.
1516///   TypeRec
1517///     ::= '[' APSINTVAL 'x' Types ']'
1518///     ::= '<' APSINTVAL 'x' Types '>'
1519bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1520  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1521      Lex.getAPSIntVal().getBitWidth() > 64)
1522    return TokError("expected number in address space");
1523
1524  LocTy SizeLoc = Lex.getLoc();
1525  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1526  Lex.Lex();
1527
1528  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1529      return true;
1530
1531  LocTy TypeLoc = Lex.getLoc();
1532  PATypeHolder EltTy(Type::getVoidTy(Context));
1533  if (ParseTypeRec(EltTy)) return true;
1534
1535  if (EltTy->isVoidTy())
1536    return Error(TypeLoc, "array and vector element type cannot be void");
1537
1538  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1539                 "expected end of sequential type"))
1540    return true;
1541
1542  if (isVector) {
1543    if (Size == 0)
1544      return Error(SizeLoc, "zero element vector is illegal");
1545    if ((unsigned)Size != Size)
1546      return Error(SizeLoc, "size too large for vector");
1547    if (!VectorType::isValidElementType(EltTy))
1548      return Error(TypeLoc, "vector element type must be fp or integer");
1549    Result = VectorType::get(EltTy, unsigned(Size));
1550  } else {
1551    if (!ArrayType::isValidElementType(EltTy))
1552      return Error(TypeLoc, "invalid array element type");
1553    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1554  }
1555  return false;
1556}
1557
1558//===----------------------------------------------------------------------===//
1559// Function Semantic Analysis.
1560//===----------------------------------------------------------------------===//
1561
1562LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1563  : P(p), F(f) {
1564
1565  // Insert unnamed arguments into the NumberedVals list.
1566  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1567       AI != E; ++AI)
1568    if (!AI->hasName())
1569      NumberedVals.push_back(AI);
1570}
1571
1572LLParser::PerFunctionState::~PerFunctionState() {
1573  // If there were any forward referenced non-basicblock values, delete them.
1574  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1575       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1576    if (!isa<BasicBlock>(I->second.first)) {
1577      I->second.first->replaceAllUsesWith(
1578                           UndefValue::get(I->second.first->getType()));
1579      delete I->second.first;
1580      I->second.first = 0;
1581    }
1582
1583  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1584       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1585    if (!isa<BasicBlock>(I->second.first)) {
1586      I->second.first->replaceAllUsesWith(
1587                           UndefValue::get(I->second.first->getType()));
1588      delete I->second.first;
1589      I->second.first = 0;
1590    }
1591}
1592
1593bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1594  if (!ForwardRefVals.empty())
1595    return P.Error(ForwardRefVals.begin()->second.second,
1596                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1597                   "'");
1598  if (!ForwardRefValIDs.empty())
1599    return P.Error(ForwardRefValIDs.begin()->second.second,
1600                   "use of undefined value '%" +
1601                   utostr(ForwardRefValIDs.begin()->first) + "'");
1602  return false;
1603}
1604
1605
1606/// GetVal - Get a value with the specified name or ID, creating a
1607/// forward reference record if needed.  This can return null if the value
1608/// exists but does not have the right type.
1609Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1610                                          const Type *Ty, LocTy Loc) {
1611  // Look this name up in the normal function symbol table.
1612  Value *Val = F.getValueSymbolTable().lookup(Name);
1613
1614  // If this is a forward reference for the value, see if we already created a
1615  // forward ref record.
1616  if (Val == 0) {
1617    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1618      I = ForwardRefVals.find(Name);
1619    if (I != ForwardRefVals.end())
1620      Val = I->second.first;
1621  }
1622
1623  // If we have the value in the symbol table or fwd-ref table, return it.
1624  if (Val) {
1625    if (Val->getType() == Ty) return Val;
1626    if (Ty->isLabelTy())
1627      P.Error(Loc, "'%" + Name + "' is not a basic block");
1628    else
1629      P.Error(Loc, "'%" + Name + "' defined with type '" +
1630              Val->getType()->getDescription() + "'");
1631    return 0;
1632  }
1633
1634  // Don't make placeholders with invalid type.
1635  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1636      Ty != Type::getLabelTy(F.getContext())) {
1637    P.Error(Loc, "invalid use of a non-first-class type");
1638    return 0;
1639  }
1640
1641  // Otherwise, create a new forward reference for this value and remember it.
1642  Value *FwdVal;
1643  if (Ty->isLabelTy())
1644    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1645  else
1646    FwdVal = new Argument(Ty, Name);
1647
1648  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1649  return FwdVal;
1650}
1651
1652Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1653                                          LocTy Loc) {
1654  // Look this name up in the normal function symbol table.
1655  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1656
1657  // If this is a forward reference for the value, see if we already created a
1658  // forward ref record.
1659  if (Val == 0) {
1660    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1661      I = ForwardRefValIDs.find(ID);
1662    if (I != ForwardRefValIDs.end())
1663      Val = I->second.first;
1664  }
1665
1666  // If we have the value in the symbol table or fwd-ref table, return it.
1667  if (Val) {
1668    if (Val->getType() == Ty) return Val;
1669    if (Ty->isLabelTy())
1670      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1671    else
1672      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1673              Val->getType()->getDescription() + "'");
1674    return 0;
1675  }
1676
1677  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1678      Ty != Type::getLabelTy(F.getContext())) {
1679    P.Error(Loc, "invalid use of a non-first-class type");
1680    return 0;
1681  }
1682
1683  // Otherwise, create a new forward reference for this value and remember it.
1684  Value *FwdVal;
1685  if (Ty->isLabelTy())
1686    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1687  else
1688    FwdVal = new Argument(Ty);
1689
1690  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1691  return FwdVal;
1692}
1693
1694/// SetInstName - After an instruction is parsed and inserted into its
1695/// basic block, this installs its name.
1696bool LLParser::PerFunctionState::SetInstName(int NameID,
1697                                             const std::string &NameStr,
1698                                             LocTy NameLoc, Instruction *Inst) {
1699  // If this instruction has void type, it cannot have a name or ID specified.
1700  if (Inst->getType()->isVoidTy()) {
1701    if (NameID != -1 || !NameStr.empty())
1702      return P.Error(NameLoc, "instructions returning void cannot have a name");
1703    return false;
1704  }
1705
1706  // If this was a numbered instruction, verify that the instruction is the
1707  // expected value and resolve any forward references.
1708  if (NameStr.empty()) {
1709    // If neither a name nor an ID was specified, just use the next ID.
1710    if (NameID == -1)
1711      NameID = NumberedVals.size();
1712
1713    if (unsigned(NameID) != NumberedVals.size())
1714      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1715                     utostr(NumberedVals.size()) + "'");
1716
1717    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1718      ForwardRefValIDs.find(NameID);
1719    if (FI != ForwardRefValIDs.end()) {
1720      if (FI->second.first->getType() != Inst->getType())
1721        return P.Error(NameLoc, "instruction forward referenced with type '" +
1722                       FI->second.first->getType()->getDescription() + "'");
1723      FI->second.first->replaceAllUsesWith(Inst);
1724      delete FI->second.first;
1725      ForwardRefValIDs.erase(FI);
1726    }
1727
1728    NumberedVals.push_back(Inst);
1729    return false;
1730  }
1731
1732  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1733  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1734    FI = ForwardRefVals.find(NameStr);
1735  if (FI != ForwardRefVals.end()) {
1736    if (FI->second.first->getType() != Inst->getType())
1737      return P.Error(NameLoc, "instruction forward referenced with type '" +
1738                     FI->second.first->getType()->getDescription() + "'");
1739    FI->second.first->replaceAllUsesWith(Inst);
1740    delete FI->second.first;
1741    ForwardRefVals.erase(FI);
1742  }
1743
1744  // Set the name on the instruction.
1745  Inst->setName(NameStr);
1746
1747  if (Inst->getNameStr() != NameStr)
1748    return P.Error(NameLoc, "multiple definition of local value named '" +
1749                   NameStr + "'");
1750  return false;
1751}
1752
1753/// GetBB - Get a basic block with the specified name or ID, creating a
1754/// forward reference record if needed.
1755BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1756                                              LocTy Loc) {
1757  return cast_or_null<BasicBlock>(GetVal(Name,
1758                                        Type::getLabelTy(F.getContext()), Loc));
1759}
1760
1761BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1762  return cast_or_null<BasicBlock>(GetVal(ID,
1763                                        Type::getLabelTy(F.getContext()), Loc));
1764}
1765
1766/// DefineBB - Define the specified basic block, which is either named or
1767/// unnamed.  If there is an error, this returns null otherwise it returns
1768/// the block being defined.
1769BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1770                                                 LocTy Loc) {
1771  BasicBlock *BB;
1772  if (Name.empty())
1773    BB = GetBB(NumberedVals.size(), Loc);
1774  else
1775    BB = GetBB(Name, Loc);
1776  if (BB == 0) return 0; // Already diagnosed error.
1777
1778  // Move the block to the end of the function.  Forward ref'd blocks are
1779  // inserted wherever they happen to be referenced.
1780  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1781
1782  // Remove the block from forward ref sets.
1783  if (Name.empty()) {
1784    ForwardRefValIDs.erase(NumberedVals.size());
1785    NumberedVals.push_back(BB);
1786  } else {
1787    // BB forward references are already in the function symbol table.
1788    ForwardRefVals.erase(Name);
1789  }
1790
1791  return BB;
1792}
1793
1794//===----------------------------------------------------------------------===//
1795// Constants.
1796//===----------------------------------------------------------------------===//
1797
1798/// ParseValID - Parse an abstract value that doesn't necessarily have a
1799/// type implied.  For example, if we parse "4" we don't know what integer type
1800/// it has.  The value will later be combined with its type and checked for
1801/// sanity.
1802bool LLParser::ParseValID(ValID &ID) {
1803  ID.Loc = Lex.getLoc();
1804  switch (Lex.getKind()) {
1805  default: return TokError("expected value token");
1806  case lltok::GlobalID:  // @42
1807    ID.UIntVal = Lex.getUIntVal();
1808    ID.Kind = ValID::t_GlobalID;
1809    break;
1810  case lltok::GlobalVar:  // @foo
1811    ID.StrVal = Lex.getStrVal();
1812    ID.Kind = ValID::t_GlobalName;
1813    break;
1814  case lltok::LocalVarID:  // %42
1815    ID.UIntVal = Lex.getUIntVal();
1816    ID.Kind = ValID::t_LocalID;
1817    break;
1818  case lltok::LocalVar:  // %foo
1819  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1820    ID.StrVal = Lex.getStrVal();
1821    ID.Kind = ValID::t_LocalName;
1822    break;
1823  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1824    ID.Kind = ValID::t_Metadata;
1825    Lex.Lex();
1826    if (Lex.getKind() == lltok::lbrace) {
1827      SmallVector<Value*, 16> Elts;
1828      if (ParseMDNodeVector(Elts) ||
1829          ParseToken(lltok::rbrace, "expected end of metadata node"))
1830        return true;
1831
1832      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1833      return false;
1834    }
1835
1836    // Standalone metadata reference
1837    // !{ ..., !42, ... }
1838    if (!ParseMDNode(ID.MetadataVal))
1839      return false;
1840
1841    // MDString:
1842    //   ::= '!' STRINGCONSTANT
1843    if (ParseMDString(ID.MetadataVal)) return true;
1844    ID.Kind = ValID::t_Metadata;
1845    return false;
1846  }
1847  case lltok::APSInt:
1848    ID.APSIntVal = Lex.getAPSIntVal();
1849    ID.Kind = ValID::t_APSInt;
1850    break;
1851  case lltok::APFloat:
1852    ID.APFloatVal = Lex.getAPFloatVal();
1853    ID.Kind = ValID::t_APFloat;
1854    break;
1855  case lltok::kw_true:
1856    ID.ConstantVal = ConstantInt::getTrue(Context);
1857    ID.Kind = ValID::t_Constant;
1858    break;
1859  case lltok::kw_false:
1860    ID.ConstantVal = ConstantInt::getFalse(Context);
1861    ID.Kind = ValID::t_Constant;
1862    break;
1863  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1864  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1865  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1866
1867  case lltok::lbrace: {
1868    // ValID ::= '{' ConstVector '}'
1869    Lex.Lex();
1870    SmallVector<Constant*, 16> Elts;
1871    if (ParseGlobalValueVector(Elts) ||
1872        ParseToken(lltok::rbrace, "expected end of struct constant"))
1873      return true;
1874
1875    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1876                                         Elts.size(), false);
1877    ID.Kind = ValID::t_Constant;
1878    return false;
1879  }
1880  case lltok::less: {
1881    // ValID ::= '<' ConstVector '>'         --> Vector.
1882    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1883    Lex.Lex();
1884    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1885
1886    SmallVector<Constant*, 16> Elts;
1887    LocTy FirstEltLoc = Lex.getLoc();
1888    if (ParseGlobalValueVector(Elts) ||
1889        (isPackedStruct &&
1890         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1891        ParseToken(lltok::greater, "expected end of constant"))
1892      return true;
1893
1894    if (isPackedStruct) {
1895      ID.ConstantVal =
1896        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1897      ID.Kind = ValID::t_Constant;
1898      return false;
1899    }
1900
1901    if (Elts.empty())
1902      return Error(ID.Loc, "constant vector must not be empty");
1903
1904    if (!Elts[0]->getType()->isInteger() &&
1905        !Elts[0]->getType()->isFloatingPoint())
1906      return Error(FirstEltLoc,
1907                   "vector elements must have integer or floating point type");
1908
1909    // Verify that all the vector elements have the same type.
1910    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1911      if (Elts[i]->getType() != Elts[0]->getType())
1912        return Error(FirstEltLoc,
1913                     "vector element #" + utostr(i) +
1914                    " is not of type '" + Elts[0]->getType()->getDescription());
1915
1916    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1917    ID.Kind = ValID::t_Constant;
1918    return false;
1919  }
1920  case lltok::lsquare: {   // Array Constant
1921    Lex.Lex();
1922    SmallVector<Constant*, 16> Elts;
1923    LocTy FirstEltLoc = Lex.getLoc();
1924    if (ParseGlobalValueVector(Elts) ||
1925        ParseToken(lltok::rsquare, "expected end of array constant"))
1926      return true;
1927
1928    // Handle empty element.
1929    if (Elts.empty()) {
1930      // Use undef instead of an array because it's inconvenient to determine
1931      // the element type at this point, there being no elements to examine.
1932      ID.Kind = ValID::t_EmptyArray;
1933      return false;
1934    }
1935
1936    if (!Elts[0]->getType()->isFirstClassType())
1937      return Error(FirstEltLoc, "invalid array element type: " +
1938                   Elts[0]->getType()->getDescription());
1939
1940    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1941
1942    // Verify all elements are correct type!
1943    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1944      if (Elts[i]->getType() != Elts[0]->getType())
1945        return Error(FirstEltLoc,
1946                     "array element #" + utostr(i) +
1947                     " is not of type '" +Elts[0]->getType()->getDescription());
1948    }
1949
1950    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1951    ID.Kind = ValID::t_Constant;
1952    return false;
1953  }
1954  case lltok::kw_c:  // c "foo"
1955    Lex.Lex();
1956    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
1957    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1958    ID.Kind = ValID::t_Constant;
1959    return false;
1960
1961  case lltok::kw_asm: {
1962    // ValID ::= 'asm' SideEffect? MsAsm? STRINGCONSTANT ',' STRINGCONSTANT
1963    bool HasSideEffect, MsAsm;
1964    Lex.Lex();
1965    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1966        ParseOptionalToken(lltok::kw_msasm, MsAsm) ||
1967        ParseStringConstant(ID.StrVal) ||
1968        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1969        ParseToken(lltok::StringConstant, "expected constraint string"))
1970      return true;
1971    ID.StrVal2 = Lex.getStrVal();
1972    ID.UIntVal = HasSideEffect | ((unsigned)MsAsm<<1);
1973    ID.Kind = ValID::t_InlineAsm;
1974    return false;
1975  }
1976
1977  case lltok::kw_trunc:
1978  case lltok::kw_zext:
1979  case lltok::kw_sext:
1980  case lltok::kw_fptrunc:
1981  case lltok::kw_fpext:
1982  case lltok::kw_bitcast:
1983  case lltok::kw_uitofp:
1984  case lltok::kw_sitofp:
1985  case lltok::kw_fptoui:
1986  case lltok::kw_fptosi:
1987  case lltok::kw_inttoptr:
1988  case lltok::kw_ptrtoint: {
1989    unsigned Opc = Lex.getUIntVal();
1990    PATypeHolder DestTy(Type::getVoidTy(Context));
1991    Constant *SrcVal;
1992    Lex.Lex();
1993    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1994        ParseGlobalTypeAndValue(SrcVal) ||
1995        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1996        ParseType(DestTy) ||
1997        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1998      return true;
1999    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2000      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2001                   SrcVal->getType()->getDescription() + "' to '" +
2002                   DestTy->getDescription() + "'");
2003    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2004                                                 SrcVal, DestTy);
2005    ID.Kind = ValID::t_Constant;
2006    return false;
2007  }
2008  case lltok::kw_extractvalue: {
2009    Lex.Lex();
2010    Constant *Val;
2011    SmallVector<unsigned, 4> Indices;
2012    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2013        ParseGlobalTypeAndValue(Val) ||
2014        ParseIndexList(Indices) ||
2015        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2016      return true;
2017    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2018      return Error(ID.Loc, "extractvalue operand must be array or struct");
2019    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2020                                          Indices.end()))
2021      return Error(ID.Loc, "invalid indices for extractvalue");
2022    ID.ConstantVal =
2023      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2024    ID.Kind = ValID::t_Constant;
2025    return false;
2026  }
2027  case lltok::kw_insertvalue: {
2028    Lex.Lex();
2029    Constant *Val0, *Val1;
2030    SmallVector<unsigned, 4> Indices;
2031    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2032        ParseGlobalTypeAndValue(Val0) ||
2033        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2034        ParseGlobalTypeAndValue(Val1) ||
2035        ParseIndexList(Indices) ||
2036        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2037      return true;
2038    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2039      return Error(ID.Loc, "extractvalue operand must be array or struct");
2040    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2041                                          Indices.end()))
2042      return Error(ID.Loc, "invalid indices for insertvalue");
2043    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2044                       Indices.data(), Indices.size());
2045    ID.Kind = ValID::t_Constant;
2046    return false;
2047  }
2048  case lltok::kw_icmp:
2049  case lltok::kw_fcmp: {
2050    unsigned PredVal, Opc = Lex.getUIntVal();
2051    Constant *Val0, *Val1;
2052    Lex.Lex();
2053    if (ParseCmpPredicate(PredVal, Opc) ||
2054        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2055        ParseGlobalTypeAndValue(Val0) ||
2056        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2057        ParseGlobalTypeAndValue(Val1) ||
2058        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2059      return true;
2060
2061    if (Val0->getType() != Val1->getType())
2062      return Error(ID.Loc, "compare operands must have the same type");
2063
2064    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2065
2066    if (Opc == Instruction::FCmp) {
2067      if (!Val0->getType()->isFPOrFPVector())
2068        return Error(ID.Loc, "fcmp requires floating point operands");
2069      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2070    } else {
2071      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2072      if (!Val0->getType()->isIntOrIntVector() &&
2073          !isa<PointerType>(Val0->getType()))
2074        return Error(ID.Loc, "icmp requires pointer or integer operands");
2075      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2076    }
2077    ID.Kind = ValID::t_Constant;
2078    return false;
2079  }
2080
2081  // Binary Operators.
2082  case lltok::kw_add:
2083  case lltok::kw_fadd:
2084  case lltok::kw_sub:
2085  case lltok::kw_fsub:
2086  case lltok::kw_mul:
2087  case lltok::kw_fmul:
2088  case lltok::kw_udiv:
2089  case lltok::kw_sdiv:
2090  case lltok::kw_fdiv:
2091  case lltok::kw_urem:
2092  case lltok::kw_srem:
2093  case lltok::kw_frem: {
2094    bool NUW = false;
2095    bool NSW = false;
2096    bool Exact = false;
2097    unsigned Opc = Lex.getUIntVal();
2098    Constant *Val0, *Val1;
2099    Lex.Lex();
2100    LocTy ModifierLoc = Lex.getLoc();
2101    if (Opc == Instruction::Add ||
2102        Opc == Instruction::Sub ||
2103        Opc == Instruction::Mul) {
2104      if (EatIfPresent(lltok::kw_nuw))
2105        NUW = true;
2106      if (EatIfPresent(lltok::kw_nsw)) {
2107        NSW = true;
2108        if (EatIfPresent(lltok::kw_nuw))
2109          NUW = true;
2110      }
2111    } else if (Opc == Instruction::SDiv) {
2112      if (EatIfPresent(lltok::kw_exact))
2113        Exact = true;
2114    }
2115    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2116        ParseGlobalTypeAndValue(Val0) ||
2117        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2118        ParseGlobalTypeAndValue(Val1) ||
2119        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2120      return true;
2121    if (Val0->getType() != Val1->getType())
2122      return Error(ID.Loc, "operands of constexpr must have same type");
2123    if (!Val0->getType()->isIntOrIntVector()) {
2124      if (NUW)
2125        return Error(ModifierLoc, "nuw only applies to integer operations");
2126      if (NSW)
2127        return Error(ModifierLoc, "nsw only applies to integer operations");
2128    }
2129    // API compatibility: Accept either integer or floating-point types with
2130    // add, sub, and mul.
2131    if (!Val0->getType()->isIntOrIntVector() &&
2132        !Val0->getType()->isFPOrFPVector())
2133      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2134    unsigned Flags = 0;
2135    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2136    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2137    if (Exact) Flags |= SDivOperator::IsExact;
2138    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2139    ID.ConstantVal = C;
2140    ID.Kind = ValID::t_Constant;
2141    return false;
2142  }
2143
2144  // Logical Operations
2145  case lltok::kw_shl:
2146  case lltok::kw_lshr:
2147  case lltok::kw_ashr:
2148  case lltok::kw_and:
2149  case lltok::kw_or:
2150  case lltok::kw_xor: {
2151    unsigned Opc = Lex.getUIntVal();
2152    Constant *Val0, *Val1;
2153    Lex.Lex();
2154    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2155        ParseGlobalTypeAndValue(Val0) ||
2156        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2157        ParseGlobalTypeAndValue(Val1) ||
2158        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2159      return true;
2160    if (Val0->getType() != Val1->getType())
2161      return Error(ID.Loc, "operands of constexpr must have same type");
2162    if (!Val0->getType()->isIntOrIntVector())
2163      return Error(ID.Loc,
2164                   "constexpr requires integer or integer vector operands");
2165    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2166    ID.Kind = ValID::t_Constant;
2167    return false;
2168  }
2169
2170  case lltok::kw_getelementptr:
2171  case lltok::kw_shufflevector:
2172  case lltok::kw_insertelement:
2173  case lltok::kw_extractelement:
2174  case lltok::kw_select: {
2175    unsigned Opc = Lex.getUIntVal();
2176    SmallVector<Constant*, 16> Elts;
2177    bool InBounds = false;
2178    Lex.Lex();
2179    if (Opc == Instruction::GetElementPtr)
2180      InBounds = EatIfPresent(lltok::kw_inbounds);
2181    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2182        ParseGlobalValueVector(Elts) ||
2183        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2184      return true;
2185
2186    if (Opc == Instruction::GetElementPtr) {
2187      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2188        return Error(ID.Loc, "getelementptr requires pointer operand");
2189
2190      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2191                                             (Value**)(Elts.data() + 1),
2192                                             Elts.size() - 1))
2193        return Error(ID.Loc, "invalid indices for getelementptr");
2194      ID.ConstantVal = InBounds ?
2195        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2196                                               Elts.data() + 1,
2197                                               Elts.size() - 1) :
2198        ConstantExpr::getGetElementPtr(Elts[0],
2199                                       Elts.data() + 1, Elts.size() - 1);
2200    } else if (Opc == Instruction::Select) {
2201      if (Elts.size() != 3)
2202        return Error(ID.Loc, "expected three operands to select");
2203      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2204                                                              Elts[2]))
2205        return Error(ID.Loc, Reason);
2206      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2207    } else if (Opc == Instruction::ShuffleVector) {
2208      if (Elts.size() != 3)
2209        return Error(ID.Loc, "expected three operands to shufflevector");
2210      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2211        return Error(ID.Loc, "invalid operands to shufflevector");
2212      ID.ConstantVal =
2213                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2214    } else if (Opc == Instruction::ExtractElement) {
2215      if (Elts.size() != 2)
2216        return Error(ID.Loc, "expected two operands to extractelement");
2217      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2218        return Error(ID.Loc, "invalid extractelement operands");
2219      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2220    } else {
2221      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2222      if (Elts.size() != 3)
2223      return Error(ID.Loc, "expected three operands to insertelement");
2224      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2225        return Error(ID.Loc, "invalid insertelement operands");
2226      ID.ConstantVal =
2227                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2228    }
2229
2230    ID.Kind = ValID::t_Constant;
2231    return false;
2232  }
2233  }
2234
2235  Lex.Lex();
2236  return false;
2237}
2238
2239/// ParseGlobalValue - Parse a global value with the specified type.
2240bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2241  V = 0;
2242  ValID ID;
2243  return ParseValID(ID) ||
2244         ConvertGlobalValIDToValue(Ty, ID, V);
2245}
2246
2247/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2248/// constant.
2249bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2250                                         Constant *&V) {
2251  if (isa<FunctionType>(Ty))
2252    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2253
2254  switch (ID.Kind) {
2255  default: llvm_unreachable("Unknown ValID!");
2256  case ValID::t_Metadata:
2257    return Error(ID.Loc, "invalid use of metadata");
2258  case ValID::t_LocalID:
2259  case ValID::t_LocalName:
2260    return Error(ID.Loc, "invalid use of function-local name");
2261  case ValID::t_InlineAsm:
2262    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2263  case ValID::t_GlobalName:
2264    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2265    return V == 0;
2266  case ValID::t_GlobalID:
2267    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2268    return V == 0;
2269  case ValID::t_APSInt:
2270    if (!isa<IntegerType>(Ty))
2271      return Error(ID.Loc, "integer constant must have integer type");
2272    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2273    V = ConstantInt::get(Context, ID.APSIntVal);
2274    return false;
2275  case ValID::t_APFloat:
2276    if (!Ty->isFloatingPoint() ||
2277        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2278      return Error(ID.Loc, "floating point constant invalid for type");
2279
2280    // The lexer has no type info, so builds all float and double FP constants
2281    // as double.  Fix this here.  Long double does not need this.
2282    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2283        Ty->isFloatTy()) {
2284      bool Ignored;
2285      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2286                            &Ignored);
2287    }
2288    V = ConstantFP::get(Context, ID.APFloatVal);
2289
2290    if (V->getType() != Ty)
2291      return Error(ID.Loc, "floating point constant does not have type '" +
2292                   Ty->getDescription() + "'");
2293
2294    return false;
2295  case ValID::t_Null:
2296    if (!isa<PointerType>(Ty))
2297      return Error(ID.Loc, "null must be a pointer type");
2298    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2299    return false;
2300  case ValID::t_Undef:
2301    // FIXME: LabelTy should not be a first-class type.
2302    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2303        !isa<OpaqueType>(Ty))
2304      return Error(ID.Loc, "invalid type for undef constant");
2305    V = UndefValue::get(Ty);
2306    return false;
2307  case ValID::t_EmptyArray:
2308    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2309      return Error(ID.Loc, "invalid empty array initializer");
2310    V = UndefValue::get(Ty);
2311    return false;
2312  case ValID::t_Zero:
2313    // FIXME: LabelTy should not be a first-class type.
2314    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2315      return Error(ID.Loc, "invalid type for null constant");
2316    V = Constant::getNullValue(Ty);
2317    return false;
2318  case ValID::t_Constant:
2319    if (ID.ConstantVal->getType() != Ty)
2320      return Error(ID.Loc, "constant expression type mismatch");
2321    V = ID.ConstantVal;
2322    return false;
2323  }
2324}
2325
2326bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2327  PATypeHolder Type(Type::getVoidTy(Context));
2328  return ParseType(Type) ||
2329         ParseGlobalValue(Type, V);
2330}
2331
2332/// ParseGlobalValueVector
2333///   ::= /*empty*/
2334///   ::= TypeAndValue (',' TypeAndValue)*
2335bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2336  // Empty list.
2337  if (Lex.getKind() == lltok::rbrace ||
2338      Lex.getKind() == lltok::rsquare ||
2339      Lex.getKind() == lltok::greater ||
2340      Lex.getKind() == lltok::rparen)
2341    return false;
2342
2343  Constant *C;
2344  if (ParseGlobalTypeAndValue(C)) return true;
2345  Elts.push_back(C);
2346
2347  while (EatIfPresent(lltok::comma)) {
2348    if (ParseGlobalTypeAndValue(C)) return true;
2349    Elts.push_back(C);
2350  }
2351
2352  return false;
2353}
2354
2355
2356//===----------------------------------------------------------------------===//
2357// Function Parsing.
2358//===----------------------------------------------------------------------===//
2359
2360bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2361                                   PerFunctionState &PFS) {
2362  if (ID.Kind == ValID::t_LocalID)
2363    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2364  else if (ID.Kind == ValID::t_LocalName)
2365    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2366  else if (ID.Kind == ValID::t_InlineAsm) {
2367    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2368    const FunctionType *FTy =
2369      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2370    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2371      return Error(ID.Loc, "invalid type for inline asm constraint string");
2372    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2373    return false;
2374  } else if (ID.Kind == ValID::t_Metadata) {
2375    V = ID.MetadataVal;
2376  } else {
2377    Constant *C;
2378    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2379    V = C;
2380    return false;
2381  }
2382
2383  return V == 0;
2384}
2385
2386bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2387  V = 0;
2388  ValID ID;
2389  return ParseValID(ID) ||
2390         ConvertValIDToValue(Ty, ID, V, PFS);
2391}
2392
2393bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2394  PATypeHolder T(Type::getVoidTy(Context));
2395  return ParseType(T) ||
2396         ParseValue(T, V, PFS);
2397}
2398
2399/// FunctionHeader
2400///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2401///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2402///       OptionalAlign OptGC
2403bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2404  // Parse the linkage.
2405  LocTy LinkageLoc = Lex.getLoc();
2406  unsigned Linkage;
2407
2408  unsigned Visibility, RetAttrs;
2409  CallingConv::ID CC;
2410  PATypeHolder RetType(Type::getVoidTy(Context));
2411  LocTy RetTypeLoc = Lex.getLoc();
2412  if (ParseOptionalLinkage(Linkage) ||
2413      ParseOptionalVisibility(Visibility) ||
2414      ParseOptionalCallingConv(CC) ||
2415      ParseOptionalAttrs(RetAttrs, 1) ||
2416      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2417    return true;
2418
2419  // Verify that the linkage is ok.
2420  switch ((GlobalValue::LinkageTypes)Linkage) {
2421  case GlobalValue::ExternalLinkage:
2422    break; // always ok.
2423  case GlobalValue::DLLImportLinkage:
2424  case GlobalValue::ExternalWeakLinkage:
2425    if (isDefine)
2426      return Error(LinkageLoc, "invalid linkage for function definition");
2427    break;
2428  case GlobalValue::PrivateLinkage:
2429  case GlobalValue::LinkerPrivateLinkage:
2430  case GlobalValue::InternalLinkage:
2431  case GlobalValue::AvailableExternallyLinkage:
2432  case GlobalValue::LinkOnceAnyLinkage:
2433  case GlobalValue::LinkOnceODRLinkage:
2434  case GlobalValue::WeakAnyLinkage:
2435  case GlobalValue::WeakODRLinkage:
2436  case GlobalValue::DLLExportLinkage:
2437    if (!isDefine)
2438      return Error(LinkageLoc, "invalid linkage for function declaration");
2439    break;
2440  case GlobalValue::AppendingLinkage:
2441  case GlobalValue::GhostLinkage:
2442  case GlobalValue::CommonLinkage:
2443    return Error(LinkageLoc, "invalid function linkage type");
2444  }
2445
2446  if (!FunctionType::isValidReturnType(RetType) ||
2447      isa<OpaqueType>(RetType))
2448    return Error(RetTypeLoc, "invalid function return type");
2449
2450  LocTy NameLoc = Lex.getLoc();
2451
2452  std::string FunctionName;
2453  if (Lex.getKind() == lltok::GlobalVar) {
2454    FunctionName = Lex.getStrVal();
2455  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2456    unsigned NameID = Lex.getUIntVal();
2457
2458    if (NameID != NumberedVals.size())
2459      return TokError("function expected to be numbered '%" +
2460                      utostr(NumberedVals.size()) + "'");
2461  } else {
2462    return TokError("expected function name");
2463  }
2464
2465  Lex.Lex();
2466
2467  if (Lex.getKind() != lltok::lparen)
2468    return TokError("expected '(' in function argument list");
2469
2470  std::vector<ArgInfo> ArgList;
2471  bool isVarArg;
2472  unsigned FuncAttrs;
2473  std::string Section;
2474  unsigned Alignment;
2475  std::string GC;
2476
2477  if (ParseArgumentList(ArgList, isVarArg, false) ||
2478      ParseOptionalAttrs(FuncAttrs, 2) ||
2479      (EatIfPresent(lltok::kw_section) &&
2480       ParseStringConstant(Section)) ||
2481      ParseOptionalAlignment(Alignment) ||
2482      (EatIfPresent(lltok::kw_gc) &&
2483       ParseStringConstant(GC)))
2484    return true;
2485
2486  // If the alignment was parsed as an attribute, move to the alignment field.
2487  if (FuncAttrs & Attribute::Alignment) {
2488    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2489    FuncAttrs &= ~Attribute::Alignment;
2490  }
2491
2492  // Okay, if we got here, the function is syntactically valid.  Convert types
2493  // and do semantic checks.
2494  std::vector<const Type*> ParamTypeList;
2495  SmallVector<AttributeWithIndex, 8> Attrs;
2496  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2497  // attributes.
2498  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2499  if (FuncAttrs & ObsoleteFuncAttrs) {
2500    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2501    FuncAttrs &= ~ObsoleteFuncAttrs;
2502  }
2503
2504  if (RetAttrs != Attribute::None)
2505    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2506
2507  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2508    ParamTypeList.push_back(ArgList[i].Type);
2509    if (ArgList[i].Attrs != Attribute::None)
2510      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2511  }
2512
2513  if (FuncAttrs != Attribute::None)
2514    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2515
2516  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2517
2518  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2519      RetType != Type::getVoidTy(Context))
2520    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2521
2522  const FunctionType *FT =
2523    FunctionType::get(RetType, ParamTypeList, isVarArg);
2524  const PointerType *PFT = PointerType::getUnqual(FT);
2525
2526  Fn = 0;
2527  if (!FunctionName.empty()) {
2528    // If this was a definition of a forward reference, remove the definition
2529    // from the forward reference table and fill in the forward ref.
2530    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2531      ForwardRefVals.find(FunctionName);
2532    if (FRVI != ForwardRefVals.end()) {
2533      Fn = M->getFunction(FunctionName);
2534      ForwardRefVals.erase(FRVI);
2535    } else if ((Fn = M->getFunction(FunctionName))) {
2536      // If this function already exists in the symbol table, then it is
2537      // multiply defined.  We accept a few cases for old backwards compat.
2538      // FIXME: Remove this stuff for LLVM 3.0.
2539      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2540          (!Fn->isDeclaration() && isDefine)) {
2541        // If the redefinition has different type or different attributes,
2542        // reject it.  If both have bodies, reject it.
2543        return Error(NameLoc, "invalid redefinition of function '" +
2544                     FunctionName + "'");
2545      } else if (Fn->isDeclaration()) {
2546        // Make sure to strip off any argument names so we can't get conflicts.
2547        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2548             AI != AE; ++AI)
2549          AI->setName("");
2550      }
2551    }
2552
2553  } else {
2554    // If this is a definition of a forward referenced function, make sure the
2555    // types agree.
2556    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2557      = ForwardRefValIDs.find(NumberedVals.size());
2558    if (I != ForwardRefValIDs.end()) {
2559      Fn = cast<Function>(I->second.first);
2560      if (Fn->getType() != PFT)
2561        return Error(NameLoc, "type of definition and forward reference of '@" +
2562                     utostr(NumberedVals.size()) +"' disagree");
2563      ForwardRefValIDs.erase(I);
2564    }
2565  }
2566
2567  if (Fn == 0)
2568    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2569  else // Move the forward-reference to the correct spot in the module.
2570    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2571
2572  if (FunctionName.empty())
2573    NumberedVals.push_back(Fn);
2574
2575  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2576  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2577  Fn->setCallingConv(CC);
2578  Fn->setAttributes(PAL);
2579  Fn->setAlignment(Alignment);
2580  Fn->setSection(Section);
2581  if (!GC.empty()) Fn->setGC(GC.c_str());
2582
2583  // Add all of the arguments we parsed to the function.
2584  Function::arg_iterator ArgIt = Fn->arg_begin();
2585  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2586    // If the argument has a name, insert it into the argument symbol table.
2587    if (ArgList[i].Name.empty()) continue;
2588
2589    // Set the name, if it conflicted, it will be auto-renamed.
2590    ArgIt->setName(ArgList[i].Name);
2591
2592    if (ArgIt->getNameStr() != ArgList[i].Name)
2593      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2594                   ArgList[i].Name + "'");
2595  }
2596
2597  return false;
2598}
2599
2600
2601/// ParseFunctionBody
2602///   ::= '{' BasicBlock+ '}'
2603///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2604///
2605bool LLParser::ParseFunctionBody(Function &Fn) {
2606  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2607    return TokError("expected '{' in function body");
2608  Lex.Lex();  // eat the {.
2609
2610  PerFunctionState PFS(*this, Fn);
2611
2612  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2613    if (ParseBasicBlock(PFS)) return true;
2614
2615  // Eat the }.
2616  Lex.Lex();
2617
2618  // Verify function is ok.
2619  return PFS.VerifyFunctionComplete();
2620}
2621
2622/// ParseBasicBlock
2623///   ::= LabelStr? Instruction*
2624bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2625  // If this basic block starts out with a name, remember it.
2626  std::string Name;
2627  LocTy NameLoc = Lex.getLoc();
2628  if (Lex.getKind() == lltok::LabelStr) {
2629    Name = Lex.getStrVal();
2630    Lex.Lex();
2631  }
2632
2633  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2634  if (BB == 0) return true;
2635
2636  std::string NameStr;
2637
2638  // Parse the instructions in this block until we get a terminator.
2639  Instruction *Inst;
2640  do {
2641    // This instruction may have three possibilities for a name: a) none
2642    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2643    LocTy NameLoc = Lex.getLoc();
2644    int NameID = -1;
2645    NameStr = "";
2646
2647    if (Lex.getKind() == lltok::LocalVarID) {
2648      NameID = Lex.getUIntVal();
2649      Lex.Lex();
2650      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2651        return true;
2652    } else if (Lex.getKind() == lltok::LocalVar ||
2653               // FIXME: REMOVE IN LLVM 3.0
2654               Lex.getKind() == lltok::StringConstant) {
2655      NameStr = Lex.getStrVal();
2656      Lex.Lex();
2657      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2658        return true;
2659    }
2660
2661    if (ParseInstruction(Inst, BB, PFS)) return true;
2662    if (EatIfPresent(lltok::comma))
2663      ParseOptionalCustomMetadata();
2664
2665    // Set metadata attached with this instruction.
2666    MetadataContext &TheMetadata = M->getContext().getMetadata();
2667    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2668           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2669      TheMetadata.addMD(MDI->first, MDI->second, Inst);
2670    MDsOnInst.clear();
2671
2672    BB->getInstList().push_back(Inst);
2673
2674    // Set the name on the instruction.
2675    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2676  } while (!isa<TerminatorInst>(Inst));
2677
2678  return false;
2679}
2680
2681//===----------------------------------------------------------------------===//
2682// Instruction Parsing.
2683//===----------------------------------------------------------------------===//
2684
2685/// ParseInstruction - Parse one of the many different instructions.
2686///
2687bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2688                                PerFunctionState &PFS) {
2689  lltok::Kind Token = Lex.getKind();
2690  if (Token == lltok::Eof)
2691    return TokError("found end of file when expecting more instructions");
2692  LocTy Loc = Lex.getLoc();
2693  unsigned KeywordVal = Lex.getUIntVal();
2694  Lex.Lex();  // Eat the keyword.
2695
2696  switch (Token) {
2697  default:                    return Error(Loc, "expected instruction opcode");
2698  // Terminator Instructions.
2699  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2700  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2701  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2702  case lltok::kw_br:          return ParseBr(Inst, PFS);
2703  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2704  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2705  // Binary Operators.
2706  case lltok::kw_add:
2707  case lltok::kw_sub:
2708  case lltok::kw_mul: {
2709    bool NUW = false;
2710    bool NSW = false;
2711    LocTy ModifierLoc = Lex.getLoc();
2712    if (EatIfPresent(lltok::kw_nuw))
2713      NUW = true;
2714    if (EatIfPresent(lltok::kw_nsw)) {
2715      NSW = true;
2716      if (EatIfPresent(lltok::kw_nuw))
2717        NUW = true;
2718    }
2719    // API compatibility: Accept either integer or floating-point types.
2720    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2721    if (!Result) {
2722      if (!Inst->getType()->isIntOrIntVector()) {
2723        if (NUW)
2724          return Error(ModifierLoc, "nuw only applies to integer operations");
2725        if (NSW)
2726          return Error(ModifierLoc, "nsw only applies to integer operations");
2727      }
2728      if (NUW)
2729        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2730      if (NSW)
2731        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2732    }
2733    return Result;
2734  }
2735  case lltok::kw_fadd:
2736  case lltok::kw_fsub:
2737  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2738
2739  case lltok::kw_sdiv: {
2740    bool Exact = false;
2741    if (EatIfPresent(lltok::kw_exact))
2742      Exact = true;
2743    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2744    if (!Result)
2745      if (Exact)
2746        cast<BinaryOperator>(Inst)->setIsExact(true);
2747    return Result;
2748  }
2749
2750  case lltok::kw_udiv:
2751  case lltok::kw_urem:
2752  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2753  case lltok::kw_fdiv:
2754  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2755  case lltok::kw_shl:
2756  case lltok::kw_lshr:
2757  case lltok::kw_ashr:
2758  case lltok::kw_and:
2759  case lltok::kw_or:
2760  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2761  case lltok::kw_icmp:
2762  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2763  // Casts.
2764  case lltok::kw_trunc:
2765  case lltok::kw_zext:
2766  case lltok::kw_sext:
2767  case lltok::kw_fptrunc:
2768  case lltok::kw_fpext:
2769  case lltok::kw_bitcast:
2770  case lltok::kw_uitofp:
2771  case lltok::kw_sitofp:
2772  case lltok::kw_fptoui:
2773  case lltok::kw_fptosi:
2774  case lltok::kw_inttoptr:
2775  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2776  // Other.
2777  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2778  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2779  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2780  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2781  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2782  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2783  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2784  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2785  // Memory.
2786  case lltok::kw_alloca:
2787  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2788  case lltok::kw_free:           return ParseFree(Inst, PFS);
2789  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2790  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2791  case lltok::kw_volatile:
2792    if (EatIfPresent(lltok::kw_load))
2793      return ParseLoad(Inst, PFS, true);
2794    else if (EatIfPresent(lltok::kw_store))
2795      return ParseStore(Inst, PFS, true);
2796    else
2797      return TokError("expected 'load' or 'store'");
2798  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2799  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2800  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2801  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2802  }
2803}
2804
2805/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2806bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2807  if (Opc == Instruction::FCmp) {
2808    switch (Lex.getKind()) {
2809    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2810    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2811    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2812    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2813    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2814    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2815    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2816    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2817    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2818    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2819    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2820    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2821    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2822    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2823    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2824    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2825    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2826    }
2827  } else {
2828    switch (Lex.getKind()) {
2829    default: TokError("expected icmp predicate (e.g. 'eq')");
2830    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2831    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2832    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2833    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2834    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2835    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2836    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2837    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2838    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2839    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2840    }
2841  }
2842  Lex.Lex();
2843  return false;
2844}
2845
2846//===----------------------------------------------------------------------===//
2847// Terminator Instructions.
2848//===----------------------------------------------------------------------===//
2849
2850/// ParseRet - Parse a return instruction.
2851///   ::= 'ret' void (',' !dbg, !1)
2852///   ::= 'ret' TypeAndValue (',' !dbg, !1)
2853///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)
2854///         [[obsolete: LLVM 3.0]]
2855bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2856                        PerFunctionState &PFS) {
2857  PATypeHolder Ty(Type::getVoidTy(Context));
2858  if (ParseType(Ty, true /*void allowed*/)) return true;
2859
2860  if (Ty->isVoidTy()) {
2861    if (EatIfPresent(lltok::comma))
2862      if (ParseOptionalCustomMetadata()) return true;
2863    Inst = ReturnInst::Create(Context);
2864    return false;
2865  }
2866
2867  Value *RV;
2868  if (ParseValue(Ty, RV, PFS)) return true;
2869
2870  if (EatIfPresent(lltok::comma)) {
2871    // Parse optional custom metadata, e.g. !dbg
2872    if (Lex.getKind() == lltok::NamedOrCustomMD) {
2873      if (ParseOptionalCustomMetadata()) return true;
2874    } else {
2875      // The normal case is one return value.
2876      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2877      // of 'ret {i32,i32} {i32 1, i32 2}'
2878      SmallVector<Value*, 8> RVs;
2879      RVs.push_back(RV);
2880
2881      do {
2882        // If optional custom metadata, e.g. !dbg is seen then this is the
2883        // end of MRV.
2884        if (Lex.getKind() == lltok::NamedOrCustomMD)
2885          break;
2886        if (ParseTypeAndValue(RV, PFS)) return true;
2887        RVs.push_back(RV);
2888      } while (EatIfPresent(lltok::comma));
2889
2890      RV = UndefValue::get(PFS.getFunction().getReturnType());
2891      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2892        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2893        BB->getInstList().push_back(I);
2894        RV = I;
2895      }
2896    }
2897  }
2898  if (EatIfPresent(lltok::comma))
2899    if (ParseOptionalCustomMetadata()) return true;
2900
2901  Inst = ReturnInst::Create(Context, RV);
2902  return false;
2903}
2904
2905
2906/// ParseBr
2907///   ::= 'br' TypeAndValue
2908///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2909bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2910  LocTy Loc, Loc2;
2911  Value *Op0, *Op1, *Op2;
2912  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2913
2914  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2915    Inst = BranchInst::Create(BB);
2916    return false;
2917  }
2918
2919  if (Op0->getType() != Type::getInt1Ty(Context))
2920    return Error(Loc, "branch condition must have 'i1' type");
2921
2922  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2923      ParseTypeAndValue(Op1, Loc, PFS) ||
2924      ParseToken(lltok::comma, "expected ',' after true destination") ||
2925      ParseTypeAndValue(Op2, Loc2, PFS))
2926    return true;
2927
2928  if (!isa<BasicBlock>(Op1))
2929    return Error(Loc, "true destination of branch must be a basic block");
2930  if (!isa<BasicBlock>(Op2))
2931    return Error(Loc2, "true destination of branch must be a basic block");
2932
2933  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2934  return false;
2935}
2936
2937/// ParseSwitch
2938///  Instruction
2939///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2940///  JumpTable
2941///    ::= (TypeAndValue ',' TypeAndValue)*
2942bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2943  LocTy CondLoc, BBLoc;
2944  Value *Cond, *DefaultBB;
2945  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2946      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2947      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2948      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2949    return true;
2950
2951  if (!isa<IntegerType>(Cond->getType()))
2952    return Error(CondLoc, "switch condition must have integer type");
2953  if (!isa<BasicBlock>(DefaultBB))
2954    return Error(BBLoc, "default destination must be a basic block");
2955
2956  // Parse the jump table pairs.
2957  SmallPtrSet<Value*, 32> SeenCases;
2958  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2959  while (Lex.getKind() != lltok::rsquare) {
2960    Value *Constant, *DestBB;
2961
2962    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2963        ParseToken(lltok::comma, "expected ',' after case value") ||
2964        ParseTypeAndValue(DestBB, BBLoc, PFS))
2965      return true;
2966
2967    if (!SeenCases.insert(Constant))
2968      return Error(CondLoc, "duplicate case value in switch");
2969    if (!isa<ConstantInt>(Constant))
2970      return Error(CondLoc, "case value is not a constant integer");
2971    if (!isa<BasicBlock>(DestBB))
2972      return Error(BBLoc, "case destination is not a basic block");
2973
2974    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2975                                   cast<BasicBlock>(DestBB)));
2976  }
2977
2978  Lex.Lex();  // Eat the ']'.
2979
2980  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2981                                      Table.size());
2982  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2983    SI->addCase(Table[i].first, Table[i].second);
2984  Inst = SI;
2985  return false;
2986}
2987
2988/// ParseInvoke
2989///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2990///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2991bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2992  LocTy CallLoc = Lex.getLoc();
2993  unsigned RetAttrs, FnAttrs;
2994  CallingConv::ID CC;
2995  PATypeHolder RetType(Type::getVoidTy(Context));
2996  LocTy RetTypeLoc;
2997  ValID CalleeID;
2998  SmallVector<ParamInfo, 16> ArgList;
2999
3000  Value *NormalBB, *UnwindBB;
3001  if (ParseOptionalCallingConv(CC) ||
3002      ParseOptionalAttrs(RetAttrs, 1) ||
3003      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3004      ParseValID(CalleeID) ||
3005      ParseParameterList(ArgList, PFS) ||
3006      ParseOptionalAttrs(FnAttrs, 2) ||
3007      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3008      ParseTypeAndValue(NormalBB, PFS) ||
3009      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3010      ParseTypeAndValue(UnwindBB, PFS))
3011    return true;
3012
3013  if (!isa<BasicBlock>(NormalBB))
3014    return Error(CallLoc, "normal destination is not a basic block");
3015  if (!isa<BasicBlock>(UnwindBB))
3016    return Error(CallLoc, "unwind destination is not a basic block");
3017
3018  // If RetType is a non-function pointer type, then this is the short syntax
3019  // for the call, which means that RetType is just the return type.  Infer the
3020  // rest of the function argument types from the arguments that are present.
3021  const PointerType *PFTy = 0;
3022  const FunctionType *Ty = 0;
3023  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3024      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3025    // Pull out the types of all of the arguments...
3026    std::vector<const Type*> ParamTypes;
3027    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3028      ParamTypes.push_back(ArgList[i].V->getType());
3029
3030    if (!FunctionType::isValidReturnType(RetType))
3031      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3032
3033    Ty = FunctionType::get(RetType, ParamTypes, false);
3034    PFTy = PointerType::getUnqual(Ty);
3035  }
3036
3037  // Look up the callee.
3038  Value *Callee;
3039  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3040
3041  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3042  // function attributes.
3043  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3044  if (FnAttrs & ObsoleteFuncAttrs) {
3045    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3046    FnAttrs &= ~ObsoleteFuncAttrs;
3047  }
3048
3049  // Set up the Attributes for the function.
3050  SmallVector<AttributeWithIndex, 8> Attrs;
3051  if (RetAttrs != Attribute::None)
3052    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3053
3054  SmallVector<Value*, 8> Args;
3055
3056  // Loop through FunctionType's arguments and ensure they are specified
3057  // correctly.  Also, gather any parameter attributes.
3058  FunctionType::param_iterator I = Ty->param_begin();
3059  FunctionType::param_iterator E = Ty->param_end();
3060  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3061    const Type *ExpectedTy = 0;
3062    if (I != E) {
3063      ExpectedTy = *I++;
3064    } else if (!Ty->isVarArg()) {
3065      return Error(ArgList[i].Loc, "too many arguments specified");
3066    }
3067
3068    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3069      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3070                   ExpectedTy->getDescription() + "'");
3071    Args.push_back(ArgList[i].V);
3072    if (ArgList[i].Attrs != Attribute::None)
3073      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3074  }
3075
3076  if (I != E)
3077    return Error(CallLoc, "not enough parameters specified for call");
3078
3079  if (FnAttrs != Attribute::None)
3080    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3081
3082  // Finish off the Attributes and check them
3083  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3084
3085  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
3086                                      cast<BasicBlock>(UnwindBB),
3087                                      Args.begin(), Args.end());
3088  II->setCallingConv(CC);
3089  II->setAttributes(PAL);
3090  Inst = II;
3091  return false;
3092}
3093
3094
3095
3096//===----------------------------------------------------------------------===//
3097// Binary Operators.
3098//===----------------------------------------------------------------------===//
3099
3100/// ParseArithmetic
3101///  ::= ArithmeticOps TypeAndValue ',' Value
3102///
3103/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3104/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3105bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3106                               unsigned Opc, unsigned OperandType) {
3107  LocTy Loc; Value *LHS, *RHS;
3108  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3109      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3110      ParseValue(LHS->getType(), RHS, PFS))
3111    return true;
3112
3113  bool Valid;
3114  switch (OperandType) {
3115  default: llvm_unreachable("Unknown operand type!");
3116  case 0: // int or FP.
3117    Valid = LHS->getType()->isIntOrIntVector() ||
3118            LHS->getType()->isFPOrFPVector();
3119    break;
3120  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3121  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3122  }
3123
3124  if (!Valid)
3125    return Error(Loc, "invalid operand type for instruction");
3126
3127  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3128  return false;
3129}
3130
3131/// ParseLogical
3132///  ::= ArithmeticOps TypeAndValue ',' Value {
3133bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3134                            unsigned Opc) {
3135  LocTy Loc; Value *LHS, *RHS;
3136  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3137      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3138      ParseValue(LHS->getType(), RHS, PFS))
3139    return true;
3140
3141  if (!LHS->getType()->isIntOrIntVector())
3142    return Error(Loc,"instruction requires integer or integer vector operands");
3143
3144  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3145  return false;
3146}
3147
3148
3149/// ParseCompare
3150///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3151///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3152bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3153                            unsigned Opc) {
3154  // Parse the integer/fp comparison predicate.
3155  LocTy Loc;
3156  unsigned Pred;
3157  Value *LHS, *RHS;
3158  if (ParseCmpPredicate(Pred, Opc) ||
3159      ParseTypeAndValue(LHS, Loc, PFS) ||
3160      ParseToken(lltok::comma, "expected ',' after compare value") ||
3161      ParseValue(LHS->getType(), RHS, PFS))
3162    return true;
3163
3164  if (Opc == Instruction::FCmp) {
3165    if (!LHS->getType()->isFPOrFPVector())
3166      return Error(Loc, "fcmp requires floating point operands");
3167    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3168  } else {
3169    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3170    if (!LHS->getType()->isIntOrIntVector() &&
3171        !isa<PointerType>(LHS->getType()))
3172      return Error(Loc, "icmp requires integer operands");
3173    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3174  }
3175  return false;
3176}
3177
3178//===----------------------------------------------------------------------===//
3179// Other Instructions.
3180//===----------------------------------------------------------------------===//
3181
3182
3183/// ParseCast
3184///   ::= CastOpc TypeAndValue 'to' Type
3185bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3186                         unsigned Opc) {
3187  LocTy Loc;  Value *Op;
3188  PATypeHolder DestTy(Type::getVoidTy(Context));
3189  if (ParseTypeAndValue(Op, Loc, PFS) ||
3190      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3191      ParseType(DestTy))
3192    return true;
3193
3194  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3195    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3196    return Error(Loc, "invalid cast opcode for cast from '" +
3197                 Op->getType()->getDescription() + "' to '" +
3198                 DestTy->getDescription() + "'");
3199  }
3200  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3201  return false;
3202}
3203
3204/// ParseSelect
3205///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3206bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3207  LocTy Loc;
3208  Value *Op0, *Op1, *Op2;
3209  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3210      ParseToken(lltok::comma, "expected ',' after select condition") ||
3211      ParseTypeAndValue(Op1, PFS) ||
3212      ParseToken(lltok::comma, "expected ',' after select value") ||
3213      ParseTypeAndValue(Op2, PFS))
3214    return true;
3215
3216  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3217    return Error(Loc, Reason);
3218
3219  Inst = SelectInst::Create(Op0, Op1, Op2);
3220  return false;
3221}
3222
3223/// ParseVA_Arg
3224///   ::= 'va_arg' TypeAndValue ',' Type
3225bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3226  Value *Op;
3227  PATypeHolder EltTy(Type::getVoidTy(Context));
3228  LocTy TypeLoc;
3229  if (ParseTypeAndValue(Op, PFS) ||
3230      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3231      ParseType(EltTy, TypeLoc))
3232    return true;
3233
3234  if (!EltTy->isFirstClassType())
3235    return Error(TypeLoc, "va_arg requires operand with first class type");
3236
3237  Inst = new VAArgInst(Op, EltTy);
3238  return false;
3239}
3240
3241/// ParseExtractElement
3242///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3243bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3244  LocTy Loc;
3245  Value *Op0, *Op1;
3246  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3247      ParseToken(lltok::comma, "expected ',' after extract value") ||
3248      ParseTypeAndValue(Op1, PFS))
3249    return true;
3250
3251  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3252    return Error(Loc, "invalid extractelement operands");
3253
3254  Inst = ExtractElementInst::Create(Op0, Op1);
3255  return false;
3256}
3257
3258/// ParseInsertElement
3259///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3260bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3261  LocTy Loc;
3262  Value *Op0, *Op1, *Op2;
3263  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3264      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3265      ParseTypeAndValue(Op1, PFS) ||
3266      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3267      ParseTypeAndValue(Op2, PFS))
3268    return true;
3269
3270  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3271    return Error(Loc, "invalid insertelement operands");
3272
3273  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3274  return false;
3275}
3276
3277/// ParseShuffleVector
3278///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3279bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3280  LocTy Loc;
3281  Value *Op0, *Op1, *Op2;
3282  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3283      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3284      ParseTypeAndValue(Op1, PFS) ||
3285      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3286      ParseTypeAndValue(Op2, PFS))
3287    return true;
3288
3289  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3290    return Error(Loc, "invalid extractelement operands");
3291
3292  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3293  return false;
3294}
3295
3296/// ParsePHI
3297///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3298bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3299  PATypeHolder Ty(Type::getVoidTy(Context));
3300  Value *Op0, *Op1;
3301  LocTy TypeLoc = Lex.getLoc();
3302
3303  if (ParseType(Ty) ||
3304      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3305      ParseValue(Ty, Op0, PFS) ||
3306      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3307      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3308      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3309    return true;
3310
3311  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3312  while (1) {
3313    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3314
3315    if (!EatIfPresent(lltok::comma))
3316      break;
3317
3318    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3319        ParseValue(Ty, Op0, PFS) ||
3320        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3321        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3322        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3323      return true;
3324  }
3325
3326  if (!Ty->isFirstClassType())
3327    return Error(TypeLoc, "phi node must have first class type");
3328
3329  PHINode *PN = PHINode::Create(Ty);
3330  PN->reserveOperandSpace(PHIVals.size());
3331  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3332    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3333  Inst = PN;
3334  return false;
3335}
3336
3337/// ParseCall
3338///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3339///       ParameterList OptionalAttrs
3340bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3341                         bool isTail) {
3342  unsigned RetAttrs, FnAttrs;
3343  CallingConv::ID CC;
3344  PATypeHolder RetType(Type::getVoidTy(Context));
3345  LocTy RetTypeLoc;
3346  ValID CalleeID;
3347  SmallVector<ParamInfo, 16> ArgList;
3348  LocTy CallLoc = Lex.getLoc();
3349
3350  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3351      ParseOptionalCallingConv(CC) ||
3352      ParseOptionalAttrs(RetAttrs, 1) ||
3353      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3354      ParseValID(CalleeID) ||
3355      ParseParameterList(ArgList, PFS) ||
3356      ParseOptionalAttrs(FnAttrs, 2))
3357    return true;
3358
3359  // If RetType is a non-function pointer type, then this is the short syntax
3360  // for the call, which means that RetType is just the return type.  Infer the
3361  // rest of the function argument types from the arguments that are present.
3362  const PointerType *PFTy = 0;
3363  const FunctionType *Ty = 0;
3364  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3365      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3366    // Pull out the types of all of the arguments...
3367    std::vector<const Type*> ParamTypes;
3368    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3369      ParamTypes.push_back(ArgList[i].V->getType());
3370
3371    if (!FunctionType::isValidReturnType(RetType))
3372      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3373
3374    Ty = FunctionType::get(RetType, ParamTypes, false);
3375    PFTy = PointerType::getUnqual(Ty);
3376  }
3377
3378  // Look up the callee.
3379  Value *Callee;
3380  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3381
3382  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3383  // function attributes.
3384  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3385  if (FnAttrs & ObsoleteFuncAttrs) {
3386    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3387    FnAttrs &= ~ObsoleteFuncAttrs;
3388  }
3389
3390  // Set up the Attributes for the function.
3391  SmallVector<AttributeWithIndex, 8> Attrs;
3392  if (RetAttrs != Attribute::None)
3393    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3394
3395  SmallVector<Value*, 8> Args;
3396
3397  // Loop through FunctionType's arguments and ensure they are specified
3398  // correctly.  Also, gather any parameter attributes.
3399  FunctionType::param_iterator I = Ty->param_begin();
3400  FunctionType::param_iterator E = Ty->param_end();
3401  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3402    const Type *ExpectedTy = 0;
3403    if (I != E) {
3404      ExpectedTy = *I++;
3405    } else if (!Ty->isVarArg()) {
3406      return Error(ArgList[i].Loc, "too many arguments specified");
3407    }
3408
3409    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3410      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3411                   ExpectedTy->getDescription() + "'");
3412    Args.push_back(ArgList[i].V);
3413    if (ArgList[i].Attrs != Attribute::None)
3414      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3415  }
3416
3417  if (I != E)
3418    return Error(CallLoc, "not enough parameters specified for call");
3419
3420  if (FnAttrs != Attribute::None)
3421    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3422
3423  // Finish off the Attributes and check them
3424  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3425
3426  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3427  CI->setTailCall(isTail);
3428  CI->setCallingConv(CC);
3429  CI->setAttributes(PAL);
3430  Inst = CI;
3431  return false;
3432}
3433
3434//===----------------------------------------------------------------------===//
3435// Memory Instructions.
3436//===----------------------------------------------------------------------===//
3437
3438/// ParseAlloc
3439///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3440///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3441bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3442                          unsigned Opc) {
3443  PATypeHolder Ty(Type::getVoidTy(Context));
3444  Value *Size = 0;
3445  LocTy SizeLoc;
3446  unsigned Alignment = 0;
3447  if (ParseType(Ty)) return true;
3448
3449  if (EatIfPresent(lltok::comma)) {
3450    if (Lex.getKind() == lltok::kw_align
3451        || Lex.getKind() == lltok::NamedOrCustomMD) {
3452      if (ParseOptionalInfo(Alignment)) return true;
3453    } else {
3454      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3455      if (EatIfPresent(lltok::comma))
3456        if (ParseOptionalInfo(Alignment)) return true;
3457    }
3458  }
3459
3460  if (Size && Size->getType() != Type::getInt32Ty(Context))
3461    return Error(SizeLoc, "element count must be i32");
3462
3463  if (Opc == Instruction::Malloc)
3464    Inst = new MallocInst(Ty, Size, Alignment);
3465  else
3466    Inst = new AllocaInst(Ty, Size, Alignment);
3467  return false;
3468}
3469
3470/// ParseFree
3471///   ::= 'free' TypeAndValue
3472bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3473  Value *Val; LocTy Loc;
3474  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3475  if (!isa<PointerType>(Val->getType()))
3476    return Error(Loc, "operand to free must be a pointer");
3477  Inst = new FreeInst(Val);
3478  return false;
3479}
3480
3481/// ParseLoad
3482///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3483bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3484                         bool isVolatile) {
3485  Value *Val; LocTy Loc;
3486  unsigned Alignment = 0;
3487  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3488
3489  if (EatIfPresent(lltok::comma))
3490    if (ParseOptionalInfo(Alignment)) return true;
3491
3492  if (!isa<PointerType>(Val->getType()) ||
3493      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3494    return Error(Loc, "load operand must be a pointer to a first class type");
3495
3496  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3497  return false;
3498}
3499
3500/// ParseStore
3501///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3502bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3503                          bool isVolatile) {
3504  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3505  unsigned Alignment = 0;
3506  if (ParseTypeAndValue(Val, Loc, PFS) ||
3507      ParseToken(lltok::comma, "expected ',' after store operand") ||
3508      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3509    return true;
3510
3511  if (EatIfPresent(lltok::comma))
3512    if (ParseOptionalInfo(Alignment)) return true;
3513
3514  if (!isa<PointerType>(Ptr->getType()))
3515    return Error(PtrLoc, "store operand must be a pointer");
3516  if (!Val->getType()->isFirstClassType())
3517    return Error(Loc, "store operand must be a first class value");
3518  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3519    return Error(Loc, "stored value and pointer type do not match");
3520
3521  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3522  return false;
3523}
3524
3525/// ParseGetResult
3526///   ::= 'getresult' TypeAndValue ',' i32
3527/// FIXME: Remove support for getresult in LLVM 3.0
3528bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3529  Value *Val; LocTy ValLoc, EltLoc;
3530  unsigned Element;
3531  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3532      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3533      ParseUInt32(Element, EltLoc))
3534    return true;
3535
3536  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3537    return Error(ValLoc, "getresult inst requires an aggregate operand");
3538  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3539    return Error(EltLoc, "invalid getresult index for value");
3540  Inst = ExtractValueInst::Create(Val, Element);
3541  return false;
3542}
3543
3544/// ParseGetElementPtr
3545///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3546bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3547  Value *Ptr, *Val; LocTy Loc, EltLoc;
3548
3549  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3550
3551  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3552
3553  if (!isa<PointerType>(Ptr->getType()))
3554    return Error(Loc, "base of getelementptr must be a pointer");
3555
3556  SmallVector<Value*, 16> Indices;
3557  while (EatIfPresent(lltok::comma)) {
3558    if (Lex.getKind() == lltok::NamedOrCustomMD)
3559      break;
3560    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3561    if (!isa<IntegerType>(Val->getType()))
3562      return Error(EltLoc, "getelementptr index must be an integer");
3563    Indices.push_back(Val);
3564  }
3565  if (Lex.getKind() == lltok::NamedOrCustomMD)
3566    if (ParseOptionalCustomMetadata()) return true;
3567
3568  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3569                                         Indices.begin(), Indices.end()))
3570    return Error(Loc, "invalid getelementptr indices");
3571  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3572  if (InBounds)
3573    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3574  return false;
3575}
3576
3577/// ParseExtractValue
3578///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3579bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3580  Value *Val; LocTy Loc;
3581  SmallVector<unsigned, 4> Indices;
3582  if (ParseTypeAndValue(Val, Loc, PFS) ||
3583      ParseIndexList(Indices))
3584    return true;
3585
3586  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3587    return Error(Loc, "extractvalue operand must be array or struct");
3588
3589  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3590                                        Indices.end()))
3591    return Error(Loc, "invalid indices for extractvalue");
3592  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3593  return false;
3594}
3595
3596/// ParseInsertValue
3597///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3598bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3599  Value *Val0, *Val1; LocTy Loc0, Loc1;
3600  SmallVector<unsigned, 4> Indices;
3601  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3602      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3603      ParseTypeAndValue(Val1, Loc1, PFS) ||
3604      ParseIndexList(Indices))
3605    return true;
3606
3607  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3608    return Error(Loc0, "extractvalue operand must be array or struct");
3609
3610  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3611                                        Indices.end()))
3612    return Error(Loc0, "invalid indices for insertvalue");
3613  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3614  return false;
3615}
3616
3617//===----------------------------------------------------------------------===//
3618// Embedded metadata.
3619//===----------------------------------------------------------------------===//
3620
3621/// ParseMDNodeVector
3622///   ::= Element (',' Element)*
3623/// Element
3624///   ::= 'null' | TypeAndValue
3625bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3626  assert(Lex.getKind() == lltok::lbrace);
3627  Lex.Lex();
3628  do {
3629    Value *V = 0;
3630    if (Lex.getKind() == lltok::kw_null) {
3631      Lex.Lex();
3632      V = 0;
3633    } else {
3634      PATypeHolder Ty(Type::getVoidTy(Context));
3635      if (ParseType(Ty)) return true;
3636      if (Lex.getKind() == lltok::Metadata) {
3637        Lex.Lex();
3638        MetadataBase *Node = 0;
3639        if (!ParseMDNode(Node))
3640          V = Node;
3641        else {
3642          MetadataBase *MDS = 0;
3643          if (ParseMDString(MDS)) return true;
3644          V = MDS;
3645        }
3646      } else {
3647        Constant *C;
3648        if (ParseGlobalValue(Ty, C)) return true;
3649        V = C;
3650      }
3651    }
3652    Elts.push_back(V);
3653  } while (EatIfPresent(lltok::comma));
3654
3655  return false;
3656}
3657