LLParser.cpp revision 4d452de1506344bf1d28bb4a8c4ddb78c51a28c8
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/raw_ostream.h"
26using namespace llvm;
27
28namespace llvm {
29  /// ValID - Represents a reference of a definition of some sort with no type.
30  /// There are several cases where we have to parse the value but where the
31  /// type can depend on later context.  This may either be a numeric reference
32  /// or a symbolic (%var) reference.  This is just a discriminated union.
33  struct ValID {
34    enum {
35      t_LocalID, t_GlobalID,      // ID in UIntVal.
36      t_LocalName, t_GlobalName,  // Name in StrVal.
37      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
38      t_Null, t_Undef, t_Zero,    // No value.
39      t_EmptyArray,               // No value:  []
40      t_Constant,                 // Value in ConstantVal.
41      t_InlineAsm                 // Value in StrVal/StrVal2/UIntVal.
42    } Kind;
43
44    LLParser::LocTy Loc;
45    unsigned UIntVal;
46    std::string StrVal, StrVal2;
47    APSInt APSIntVal;
48    APFloat APFloatVal;
49    Constant *ConstantVal;
50    ValID() : APFloatVal(0.0) {}
51  };
52}
53
54/// Run: module ::= toplevelentity*
55bool LLParser::Run() {
56  // Prime the lexer.
57  Lex.Lex();
58
59  return ParseTopLevelEntities() ||
60         ValidateEndOfModule();
61}
62
63/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
64/// module.
65bool LLParser::ValidateEndOfModule() {
66  if (!ForwardRefTypes.empty())
67    return Error(ForwardRefTypes.begin()->second.second,
68                 "use of undefined type named '" +
69                 ForwardRefTypes.begin()->first + "'");
70  if (!ForwardRefTypeIDs.empty())
71    return Error(ForwardRefTypeIDs.begin()->second.second,
72                 "use of undefined type '%" +
73                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
74
75  if (!ForwardRefVals.empty())
76    return Error(ForwardRefVals.begin()->second.second,
77                 "use of undefined value '@" + ForwardRefVals.begin()->first +
78                 "'");
79
80  if (!ForwardRefValIDs.empty())
81    return Error(ForwardRefValIDs.begin()->second.second,
82                 "use of undefined value '@" +
83                 utostr(ForwardRefValIDs.begin()->first) + "'");
84
85  // Look for intrinsic functions and CallInst that need to be upgraded
86  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
87    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
88
89  return false;
90}
91
92//===----------------------------------------------------------------------===//
93// Top-Level Entities
94//===----------------------------------------------------------------------===//
95
96bool LLParser::ParseTopLevelEntities() {
97  while (1) {
98    switch (Lex.getKind()) {
99    default:         return TokError("expected top-level entity");
100    case lltok::Eof: return false;
101    //case lltok::kw_define:
102    case lltok::kw_declare: if (ParseDeclare()) return true; break;
103    case lltok::kw_define:  if (ParseDefine()) return true; break;
104    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
105    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
106    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
107    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
108    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
109    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
110    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
111
112    // The Global variable production with no name can have many different
113    // optional leading prefixes, the production is:
114    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
115    //               OptionalAddrSpace ('constant'|'global') ...
116    case lltok::kw_private:       // OptionalLinkage
117    case lltok::kw_internal:      // OptionalLinkage
118    case lltok::kw_weak:          // OptionalLinkage
119    case lltok::kw_linkonce:      // OptionalLinkage
120    case lltok::kw_appending:     // OptionalLinkage
121    case lltok::kw_dllexport:     // OptionalLinkage
122    case lltok::kw_common:        // OptionalLinkage
123    case lltok::kw_dllimport:     // OptionalLinkage
124    case lltok::kw_extern_weak:   // OptionalLinkage
125    case lltok::kw_external: {    // OptionalLinkage
126      unsigned Linkage, Visibility;
127      if (ParseOptionalLinkage(Linkage) ||
128          ParseOptionalVisibility(Visibility) ||
129          ParseGlobal("", 0, Linkage, true, Visibility))
130        return true;
131      break;
132    }
133    case lltok::kw_default:       // OptionalVisibility
134    case lltok::kw_hidden:        // OptionalVisibility
135    case lltok::kw_protected: {   // OptionalVisibility
136      unsigned Visibility;
137      if (ParseOptionalVisibility(Visibility) ||
138          ParseGlobal("", 0, 0, false, Visibility))
139        return true;
140      break;
141    }
142
143    case lltok::kw_thread_local:  // OptionalThreadLocal
144    case lltok::kw_addrspace:     // OptionalAddrSpace
145    case lltok::kw_constant:      // GlobalType
146    case lltok::kw_global:        // GlobalType
147      if (ParseGlobal("", 0, 0, false, 0)) return true;
148      break;
149    }
150  }
151}
152
153
154/// toplevelentity
155///   ::= 'module' 'asm' STRINGCONSTANT
156bool LLParser::ParseModuleAsm() {
157  assert(Lex.getKind() == lltok::kw_module);
158  Lex.Lex();
159
160  std::string AsmStr;
161  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
162      ParseStringConstant(AsmStr)) return true;
163
164  const std::string &AsmSoFar = M->getModuleInlineAsm();
165  if (AsmSoFar.empty())
166    M->setModuleInlineAsm(AsmStr);
167  else
168    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
169  return false;
170}
171
172/// toplevelentity
173///   ::= 'target' 'triple' '=' STRINGCONSTANT
174///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
175bool LLParser::ParseTargetDefinition() {
176  assert(Lex.getKind() == lltok::kw_target);
177  std::string Str;
178  switch (Lex.Lex()) {
179  default: return TokError("unknown target property");
180  case lltok::kw_triple:
181    Lex.Lex();
182    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
183        ParseStringConstant(Str))
184      return true;
185    M->setTargetTriple(Str);
186    return false;
187  case lltok::kw_datalayout:
188    Lex.Lex();
189    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
190        ParseStringConstant(Str))
191      return true;
192    M->setDataLayout(Str);
193    return false;
194  }
195}
196
197/// toplevelentity
198///   ::= 'deplibs' '=' '[' ']'
199///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
200bool LLParser::ParseDepLibs() {
201  assert(Lex.getKind() == lltok::kw_deplibs);
202  Lex.Lex();
203  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
204      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
205    return true;
206
207  if (EatIfPresent(lltok::rsquare))
208    return false;
209
210  std::string Str;
211  if (ParseStringConstant(Str)) return true;
212  M->addLibrary(Str);
213
214  while (EatIfPresent(lltok::comma)) {
215    if (ParseStringConstant(Str)) return true;
216    M->addLibrary(Str);
217  }
218
219  return ParseToken(lltok::rsquare, "expected ']' at end of list");
220}
221
222/// toplevelentity
223///   ::= 'type' type
224bool LLParser::ParseUnnamedType() {
225  assert(Lex.getKind() == lltok::kw_type);
226  LocTy TypeLoc = Lex.getLoc();
227  Lex.Lex(); // eat kw_type
228
229  PATypeHolder Ty(Type::VoidTy);
230  if (ParseType(Ty)) return true;
231
232  unsigned TypeID = NumberedTypes.size();
233
234  // We don't allow assigning names to void type
235  if (Ty == Type::VoidTy)
236    return Error(TypeLoc, "can't assign name to the void type");
237
238  // See if this type was previously referenced.
239  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
240    FI = ForwardRefTypeIDs.find(TypeID);
241  if (FI != ForwardRefTypeIDs.end()) {
242    if (FI->second.first.get() == Ty)
243      return Error(TypeLoc, "self referential type is invalid");
244
245    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
246    Ty = FI->second.first.get();
247    ForwardRefTypeIDs.erase(FI);
248  }
249
250  NumberedTypes.push_back(Ty);
251
252  return false;
253}
254
255/// toplevelentity
256///   ::= LocalVar '=' 'type' type
257bool LLParser::ParseNamedType() {
258  std::string Name = Lex.getStrVal();
259  LocTy NameLoc = Lex.getLoc();
260  Lex.Lex();  // eat LocalVar.
261
262  PATypeHolder Ty(Type::VoidTy);
263
264  if (ParseToken(lltok::equal, "expected '=' after name") ||
265      ParseToken(lltok::kw_type, "expected 'type' after name") ||
266      ParseType(Ty))
267    return true;
268
269  // We don't allow assigning names to void type
270  if (Ty == Type::VoidTy)
271    return Error(NameLoc, "can't assign name '" + Name + "' to the void type");
272
273  // Set the type name, checking for conflicts as we do so.
274  bool AlreadyExists = M->addTypeName(Name, Ty);
275  if (!AlreadyExists) return false;
276
277  // See if this type is a forward reference.  We need to eagerly resolve
278  // types to allow recursive type redefinitions below.
279  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
280  FI = ForwardRefTypes.find(Name);
281  if (FI != ForwardRefTypes.end()) {
282    if (FI->second.first.get() == Ty)
283      return Error(NameLoc, "self referential type is invalid");
284
285    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
286    Ty = FI->second.first.get();
287    ForwardRefTypes.erase(FI);
288  }
289
290  // Inserting a name that is already defined, get the existing name.
291  const Type *Existing = M->getTypeByName(Name);
292  assert(Existing && "Conflict but no matching type?!");
293
294  // Otherwise, this is an attempt to redefine a type. That's okay if
295  // the redefinition is identical to the original.
296  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
297  if (Existing == Ty) return false;
298
299  // Any other kind of (non-equivalent) redefinition is an error.
300  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
301               Ty->getDescription() + "'");
302}
303
304
305/// toplevelentity
306///   ::= 'declare' FunctionHeader
307bool LLParser::ParseDeclare() {
308  assert(Lex.getKind() == lltok::kw_declare);
309  Lex.Lex();
310
311  Function *F;
312  return ParseFunctionHeader(F, false);
313}
314
315/// toplevelentity
316///   ::= 'define' FunctionHeader '{' ...
317bool LLParser::ParseDefine() {
318  assert(Lex.getKind() == lltok::kw_define);
319  Lex.Lex();
320
321  Function *F;
322  return ParseFunctionHeader(F, true) ||
323         ParseFunctionBody(*F);
324}
325
326/// ParseGlobalType
327///   ::= 'constant'
328///   ::= 'global'
329bool LLParser::ParseGlobalType(bool &IsConstant) {
330  if (Lex.getKind() == lltok::kw_constant)
331    IsConstant = true;
332  else if (Lex.getKind() == lltok::kw_global)
333    IsConstant = false;
334  else
335    return TokError("expected 'global' or 'constant'");
336  Lex.Lex();
337  return false;
338}
339
340/// ParseNamedGlobal:
341///   GlobalVar '=' OptionalVisibility ALIAS ...
342///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
343bool LLParser::ParseNamedGlobal() {
344  assert(Lex.getKind() == lltok::GlobalVar);
345  LocTy NameLoc = Lex.getLoc();
346  std::string Name = Lex.getStrVal();
347  Lex.Lex();
348
349  bool HasLinkage;
350  unsigned Linkage, Visibility;
351  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
352      ParseOptionalLinkage(Linkage, HasLinkage) ||
353      ParseOptionalVisibility(Visibility))
354    return true;
355
356  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
357    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
358  return ParseAlias(Name, NameLoc, Visibility);
359}
360
361/// ParseAlias:
362///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
363/// Aliasee
364///   ::= TypeAndValue | 'bitcast' '(' TypeAndValue 'to' Type ')'
365///
366/// Everything through visibility has already been parsed.
367///
368bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
369                          unsigned Visibility) {
370  assert(Lex.getKind() == lltok::kw_alias);
371  Lex.Lex();
372  unsigned Linkage;
373  LocTy LinkageLoc = Lex.getLoc();
374  if (ParseOptionalLinkage(Linkage))
375    return true;
376
377  if (Linkage != GlobalValue::ExternalLinkage &&
378      Linkage != GlobalValue::WeakLinkage &&
379      Linkage != GlobalValue::InternalLinkage &&
380      Linkage != GlobalValue::PrivateLinkage)
381    return Error(LinkageLoc, "invalid linkage type for alias");
382
383  Constant *Aliasee;
384  LocTy AliaseeLoc = Lex.getLoc();
385  if (Lex.getKind() != lltok::kw_bitcast) {
386    if (ParseGlobalTypeAndValue(Aliasee)) return true;
387  } else {
388    // The bitcast dest type is not present, it is implied by the dest type.
389    ValID ID;
390    if (ParseValID(ID)) return true;
391    if (ID.Kind != ValID::t_Constant)
392      return Error(AliaseeLoc, "invalid aliasee");
393    Aliasee = ID.ConstantVal;
394  }
395
396  if (!isa<PointerType>(Aliasee->getType()))
397    return Error(AliaseeLoc, "alias must have pointer type");
398
399  // Okay, create the alias but do not insert it into the module yet.
400  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
401                                    (GlobalValue::LinkageTypes)Linkage, Name,
402                                    Aliasee);
403  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
404
405  // See if this value already exists in the symbol table.  If so, it is either
406  // a redefinition or a definition of a forward reference.
407  if (GlobalValue *Val =
408        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
409    // See if this was a redefinition.  If so, there is no entry in
410    // ForwardRefVals.
411    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
412      I = ForwardRefVals.find(Name);
413    if (I == ForwardRefVals.end())
414      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
415
416    // Otherwise, this was a definition of forward ref.  Verify that types
417    // agree.
418    if (Val->getType() != GA->getType())
419      return Error(NameLoc,
420              "forward reference and definition of alias have different types");
421
422    // If they agree, just RAUW the old value with the alias and remove the
423    // forward ref info.
424    Val->replaceAllUsesWith(GA);
425    Val->eraseFromParent();
426    ForwardRefVals.erase(I);
427  }
428
429  // Insert into the module, we know its name won't collide now.
430  M->getAliasList().push_back(GA);
431  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
432
433  return false;
434}
435
436/// ParseGlobal
437///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
438///       OptionalAddrSpace GlobalType Type Const
439///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
440///       OptionalAddrSpace GlobalType Type Const
441///
442/// Everything through visibility has been parsed already.
443///
444bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
445                           unsigned Linkage, bool HasLinkage,
446                           unsigned Visibility) {
447  unsigned AddrSpace;
448  bool ThreadLocal, IsConstant;
449  LocTy TyLoc;
450
451  PATypeHolder Ty(Type::VoidTy);
452  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
453      ParseOptionalAddrSpace(AddrSpace) ||
454      ParseGlobalType(IsConstant) ||
455      ParseType(Ty, TyLoc))
456    return true;
457
458  // If the linkage is specified and is external, then no initializer is
459  // present.
460  Constant *Init = 0;
461  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
462                      Linkage != GlobalValue::ExternalWeakLinkage &&
463                      Linkage != GlobalValue::ExternalLinkage)) {
464    if (ParseGlobalValue(Ty, Init))
465      return true;
466  }
467
468  if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
469    return Error(TyLoc, "invald type for global variable");
470
471  GlobalVariable *GV = 0;
472
473  // See if the global was forward referenced, if so, use the global.
474  if (!Name.empty()) {
475    if ((GV = M->getGlobalVariable(Name, true)) &&
476        !ForwardRefVals.erase(Name))
477      return Error(NameLoc, "redefinition of global '@" + Name + "'");
478  } else {
479    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
480      I = ForwardRefValIDs.find(NumberedVals.size());
481    if (I != ForwardRefValIDs.end()) {
482      GV = cast<GlobalVariable>(I->second.first);
483      ForwardRefValIDs.erase(I);
484    }
485  }
486
487  if (GV == 0) {
488    GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
489                            M, false, AddrSpace);
490  } else {
491    if (GV->getType()->getElementType() != Ty)
492      return Error(TyLoc,
493            "forward reference and definition of global have different types");
494
495    // Move the forward-reference to the correct spot in the module.
496    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
497  }
498
499  if (Name.empty())
500    NumberedVals.push_back(GV);
501
502  // Set the parsed properties on the global.
503  if (Init)
504    GV->setInitializer(Init);
505  GV->setConstant(IsConstant);
506  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
507  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
508  GV->setThreadLocal(ThreadLocal);
509
510  // Parse attributes on the global.
511  while (Lex.getKind() == lltok::comma) {
512    Lex.Lex();
513
514    if (Lex.getKind() == lltok::kw_section) {
515      Lex.Lex();
516      GV->setSection(Lex.getStrVal());
517      if (ParseToken(lltok::StringConstant, "expected global section string"))
518        return true;
519    } else if (Lex.getKind() == lltok::kw_align) {
520      unsigned Alignment;
521      if (ParseOptionalAlignment(Alignment)) return true;
522      GV->setAlignment(Alignment);
523    } else {
524      TokError("unknown global variable property!");
525    }
526  }
527
528  return false;
529}
530
531
532//===----------------------------------------------------------------------===//
533// GlobalValue Reference/Resolution Routines.
534//===----------------------------------------------------------------------===//
535
536/// GetGlobalVal - Get a value with the specified name or ID, creating a
537/// forward reference record if needed.  This can return null if the value
538/// exists but does not have the right type.
539GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
540                                    LocTy Loc) {
541  const PointerType *PTy = dyn_cast<PointerType>(Ty);
542  if (PTy == 0) {
543    Error(Loc, "global variable reference must have pointer type");
544    return 0;
545  }
546
547  // Look this name up in the normal function symbol table.
548  GlobalValue *Val =
549    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
550
551  // If this is a forward reference for the value, see if we already created a
552  // forward ref record.
553  if (Val == 0) {
554    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
555      I = ForwardRefVals.find(Name);
556    if (I != ForwardRefVals.end())
557      Val = I->second.first;
558  }
559
560  // If we have the value in the symbol table or fwd-ref table, return it.
561  if (Val) {
562    if (Val->getType() == Ty) return Val;
563    Error(Loc, "'@" + Name + "' defined with type '" +
564          Val->getType()->getDescription() + "'");
565    return 0;
566  }
567
568  // Otherwise, create a new forward reference for this value and remember it.
569  GlobalValue *FwdVal;
570  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
571    // Function types can return opaque but functions can't.
572    if (isa<OpaqueType>(FT->getReturnType())) {
573      Error(Loc, "function may not return opaque type");
574      return 0;
575    }
576
577    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
578  } else {
579    FwdVal = new GlobalVariable(PTy->getElementType(), false,
580                                GlobalValue::ExternalWeakLinkage, 0, Name, M);
581  }
582
583  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
584  return FwdVal;
585}
586
587GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
588  const PointerType *PTy = dyn_cast<PointerType>(Ty);
589  if (PTy == 0) {
590    Error(Loc, "global variable reference must have pointer type");
591    return 0;
592  }
593
594  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
595
596  // If this is a forward reference for the value, see if we already created a
597  // forward ref record.
598  if (Val == 0) {
599    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
600      I = ForwardRefValIDs.find(ID);
601    if (I != ForwardRefValIDs.end())
602      Val = I->second.first;
603  }
604
605  // If we have the value in the symbol table or fwd-ref table, return it.
606  if (Val) {
607    if (Val->getType() == Ty) return Val;
608    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
609          Val->getType()->getDescription() + "'");
610    return 0;
611  }
612
613  // Otherwise, create a new forward reference for this value and remember it.
614  GlobalValue *FwdVal;
615  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
616    // Function types can return opaque but functions can't.
617    if (isa<OpaqueType>(FT->getReturnType())) {
618      Error(Loc, "function may not return opaque type");
619      return 0;
620    }
621    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
622  } else {
623    FwdVal = new GlobalVariable(PTy->getElementType(), false,
624                                GlobalValue::ExternalWeakLinkage, 0, "", M);
625  }
626
627  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
628  return FwdVal;
629}
630
631
632//===----------------------------------------------------------------------===//
633// Helper Routines.
634//===----------------------------------------------------------------------===//
635
636/// ParseToken - If the current token has the specified kind, eat it and return
637/// success.  Otherwise, emit the specified error and return failure.
638bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
639  if (Lex.getKind() != T)
640    return TokError(ErrMsg);
641  Lex.Lex();
642  return false;
643}
644
645/// ParseStringConstant
646///   ::= StringConstant
647bool LLParser::ParseStringConstant(std::string &Result) {
648  if (Lex.getKind() != lltok::StringConstant)
649    return TokError("expected string constant");
650  Result = Lex.getStrVal();
651  Lex.Lex();
652  return false;
653}
654
655/// ParseUInt32
656///   ::= uint32
657bool LLParser::ParseUInt32(unsigned &Val) {
658  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
659    return TokError("expected integer");
660  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
661  if (Val64 != unsigned(Val64))
662    return TokError("expected 32-bit integer (too large)");
663  Val = Val64;
664  Lex.Lex();
665  return false;
666}
667
668
669/// ParseOptionalAddrSpace
670///   := /*empty*/
671///   := 'addrspace' '(' uint32 ')'
672bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
673  AddrSpace = 0;
674  if (!EatIfPresent(lltok::kw_addrspace))
675    return false;
676  return ParseToken(lltok::lparen, "expected '(' in address space") ||
677         ParseUInt32(AddrSpace) ||
678         ParseToken(lltok::rparen, "expected ')' in address space");
679}
680
681/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
682/// indicates what kind of attribute list this is: 0: function arg, 1: result,
683/// 2: function attr.
684bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
685  Attrs = Attribute::None;
686  LocTy AttrLoc = Lex.getLoc();
687
688  while (1) {
689    switch (Lex.getKind()) {
690    case lltok::kw_sext:
691    case lltok::kw_zext:
692      // Treat these as signext/zeroext unless they are function attrs.
693      // FIXME: REMOVE THIS IN LLVM 3.0
694      if (AttrKind != 2) {
695        if (Lex.getKind() == lltok::kw_sext)
696          Attrs |= Attribute::SExt;
697        else
698          Attrs |= Attribute::ZExt;
699        break;
700      }
701      // FALL THROUGH.
702    default:  // End of attributes.
703      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
704        return Error(AttrLoc, "invalid use of function-only attribute");
705
706      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
707        return Error(AttrLoc, "invalid use of parameter-only attribute");
708
709      return false;
710    case lltok::kw_zeroext:      Attrs |= Attribute::ZExt; break;
711    case lltok::kw_signext:      Attrs |= Attribute::SExt; break;
712    case lltok::kw_inreg:        Attrs |= Attribute::InReg; break;
713    case lltok::kw_sret:         Attrs |= Attribute::StructRet; break;
714    case lltok::kw_noalias:      Attrs |= Attribute::NoAlias; break;
715    case lltok::kw_nocapture:    Attrs |= Attribute::NoCapture; break;
716    case lltok::kw_byval:        Attrs |= Attribute::ByVal; break;
717    case lltok::kw_nest:         Attrs |= Attribute::Nest; break;
718
719    case lltok::kw_noreturn:     Attrs |= Attribute::NoReturn; break;
720    case lltok::kw_nounwind:     Attrs |= Attribute::NoUnwind; break;
721    case lltok::kw_noinline:     Attrs |= Attribute::NoInline; break;
722    case lltok::kw_readnone:     Attrs |= Attribute::ReadNone; break;
723    case lltok::kw_readonly:     Attrs |= Attribute::ReadOnly; break;
724    case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
725    case lltok::kw_optsize:      Attrs |= Attribute::OptimizeForSize; break;
726    case lltok::kw_ssp:          Attrs |= Attribute::StackProtect; break;
727    case lltok::kw_sspreq:       Attrs |= Attribute::StackProtectReq; break;
728
729
730    case lltok::kw_align: {
731      unsigned Alignment;
732      if (ParseOptionalAlignment(Alignment))
733        return true;
734      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
735      continue;
736    }
737    }
738    Lex.Lex();
739  }
740}
741
742/// ParseOptionalLinkage
743///   ::= /*empty*/
744///   ::= 'private'
745///   ::= 'internal'
746///   ::= 'weak'
747///   ::= 'linkonce'
748///   ::= 'appending'
749///   ::= 'dllexport'
750///   ::= 'common'
751///   ::= 'dllimport'
752///   ::= 'extern_weak'
753///   ::= 'external'
754bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
755  HasLinkage = false;
756  switch (Lex.getKind()) {
757  default:                    Res = GlobalValue::ExternalLinkage; return false;
758  case lltok::kw_private:     Res = GlobalValue::PrivateLinkage; break;
759  case lltok::kw_internal:    Res = GlobalValue::InternalLinkage; break;
760  case lltok::kw_weak:        Res = GlobalValue::WeakLinkage; break;
761  case lltok::kw_linkonce:    Res = GlobalValue::LinkOnceLinkage; break;
762  case lltok::kw_appending:   Res = GlobalValue::AppendingLinkage; break;
763  case lltok::kw_dllexport:   Res = GlobalValue::DLLExportLinkage; break;
764  case lltok::kw_common:      Res = GlobalValue::CommonLinkage; break;
765  case lltok::kw_dllimport:   Res = GlobalValue::DLLImportLinkage; break;
766  case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
767  case lltok::kw_external:    Res = GlobalValue::ExternalLinkage; break;
768  }
769  Lex.Lex();
770  HasLinkage = true;
771  return false;
772}
773
774/// ParseOptionalVisibility
775///   ::= /*empty*/
776///   ::= 'default'
777///   ::= 'hidden'
778///   ::= 'protected'
779///
780bool LLParser::ParseOptionalVisibility(unsigned &Res) {
781  switch (Lex.getKind()) {
782  default:                  Res = GlobalValue::DefaultVisibility; return false;
783  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
784  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
785  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
786  }
787  Lex.Lex();
788  return false;
789}
790
791/// ParseOptionalCallingConv
792///   ::= /*empty*/
793///   ::= 'ccc'
794///   ::= 'fastcc'
795///   ::= 'coldcc'
796///   ::= 'x86_stdcallcc'
797///   ::= 'x86_fastcallcc'
798///   ::= 'cc' UINT
799///
800bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
801  switch (Lex.getKind()) {
802  default:                       CC = CallingConv::C; return false;
803  case lltok::kw_ccc:            CC = CallingConv::C; break;
804  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
805  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
806  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
807  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
808  case lltok::kw_cc:             Lex.Lex(); return ParseUInt32(CC);
809  }
810  Lex.Lex();
811  return false;
812}
813
814/// ParseOptionalAlignment
815///   ::= /* empty */
816///   ::= 'align' 4
817bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
818  Alignment = 0;
819  if (!EatIfPresent(lltok::kw_align))
820    return false;
821  LocTy AlignLoc = Lex.getLoc();
822  if (ParseUInt32(Alignment)) return true;
823  if (!isPowerOf2_32(Alignment))
824    return Error(AlignLoc, "alignment is not a power of two");
825  return false;
826}
827
828/// ParseOptionalCommaAlignment
829///   ::= /* empty */
830///   ::= ',' 'align' 4
831bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
832  Alignment = 0;
833  if (!EatIfPresent(lltok::comma))
834    return false;
835  return ParseToken(lltok::kw_align, "expected 'align'") ||
836         ParseUInt32(Alignment);
837}
838
839/// ParseIndexList
840///    ::=  (',' uint32)+
841bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
842  if (Lex.getKind() != lltok::comma)
843    return TokError("expected ',' as start of index list");
844
845  while (EatIfPresent(lltok::comma)) {
846    unsigned Idx;
847    if (ParseUInt32(Idx)) return true;
848    Indices.push_back(Idx);
849  }
850
851  return false;
852}
853
854//===----------------------------------------------------------------------===//
855// Type Parsing.
856//===----------------------------------------------------------------------===//
857
858/// ParseType - Parse and resolve a full type.
859bool LLParser::ParseType(PATypeHolder &Result) {
860  if (ParseTypeRec(Result)) return true;
861
862  // Verify no unresolved uprefs.
863  if (!UpRefs.empty())
864    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
865
866  return false;
867}
868
869/// HandleUpRefs - Every time we finish a new layer of types, this function is
870/// called.  It loops through the UpRefs vector, which is a list of the
871/// currently active types.  For each type, if the up-reference is contained in
872/// the newly completed type, we decrement the level count.  When the level
873/// count reaches zero, the up-referenced type is the type that is passed in:
874/// thus we can complete the cycle.
875///
876PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
877  // If Ty isn't abstract, or if there are no up-references in it, then there is
878  // nothing to resolve here.
879  if (!ty->isAbstract() || UpRefs.empty()) return ty;
880
881  PATypeHolder Ty(ty);
882#if 0
883  errs() << "Type '" << Ty->getDescription()
884         << "' newly formed.  Resolving upreferences.\n"
885         << UpRefs.size() << " upreferences active!\n";
886#endif
887
888  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
889  // to zero), we resolve them all together before we resolve them to Ty.  At
890  // the end of the loop, if there is anything to resolve to Ty, it will be in
891  // this variable.
892  OpaqueType *TypeToResolve = 0;
893
894  for (unsigned i = 0; i != UpRefs.size(); ++i) {
895    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
896    bool ContainsType =
897      std::find(Ty->subtype_begin(), Ty->subtype_end(),
898                UpRefs[i].LastContainedTy) != Ty->subtype_end();
899
900#if 0
901    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
902           << UpRefs[i].LastContainedTy->getDescription() << ") = "
903           << (ContainsType ? "true" : "false")
904           << " level=" << UpRefs[i].NestingLevel << "\n";
905#endif
906    if (!ContainsType)
907      continue;
908
909    // Decrement level of upreference
910    unsigned Level = --UpRefs[i].NestingLevel;
911    UpRefs[i].LastContainedTy = Ty;
912
913    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
914    if (Level != 0)
915      continue;
916
917#if 0
918    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
919#endif
920    if (!TypeToResolve)
921      TypeToResolve = UpRefs[i].UpRefTy;
922    else
923      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
924    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
925    --i;                                // Do not skip the next element.
926  }
927
928  if (TypeToResolve)
929    TypeToResolve->refineAbstractTypeTo(Ty);
930
931  return Ty;
932}
933
934
935/// ParseTypeRec - The recursive function used to process the internal
936/// implementation details of types.
937bool LLParser::ParseTypeRec(PATypeHolder &Result) {
938  switch (Lex.getKind()) {
939  default:
940    return TokError("expected type");
941  case lltok::Type:
942    // TypeRec ::= 'float' | 'void' (etc)
943    Result = Lex.getTyVal();
944    Lex.Lex();
945    break;
946  case lltok::kw_opaque:
947    // TypeRec ::= 'opaque'
948    Result = OpaqueType::get();
949    Lex.Lex();
950    break;
951  case lltok::lbrace:
952    // TypeRec ::= '{' ... '}'
953    if (ParseStructType(Result, false))
954      return true;
955    break;
956  case lltok::lsquare:
957    // TypeRec ::= '[' ... ']'
958    Lex.Lex(); // eat the lsquare.
959    if (ParseArrayVectorType(Result, false))
960      return true;
961    break;
962  case lltok::less: // Either vector or packed struct.
963    // TypeRec ::= '<' ... '>'
964    Lex.Lex();
965    if (Lex.getKind() == lltok::lbrace) {
966      if (ParseStructType(Result, true) ||
967          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
968        return true;
969    } else if (ParseArrayVectorType(Result, true))
970      return true;
971    break;
972  case lltok::LocalVar:
973  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
974    // TypeRec ::= %foo
975    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
976      Result = T;
977    } else {
978      Result = OpaqueType::get();
979      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
980                                            std::make_pair(Result,
981                                                           Lex.getLoc())));
982      M->addTypeName(Lex.getStrVal(), Result.get());
983    }
984    Lex.Lex();
985    break;
986
987  case lltok::LocalVarID:
988    // TypeRec ::= %4
989    if (Lex.getUIntVal() < NumberedTypes.size())
990      Result = NumberedTypes[Lex.getUIntVal()];
991    else {
992      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
993        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
994      if (I != ForwardRefTypeIDs.end())
995        Result = I->second.first;
996      else {
997        Result = OpaqueType::get();
998        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
999                                                std::make_pair(Result,
1000                                                               Lex.getLoc())));
1001      }
1002    }
1003    Lex.Lex();
1004    break;
1005  case lltok::backslash: {
1006    // TypeRec ::= '\' 4
1007    Lex.Lex();
1008    unsigned Val;
1009    if (ParseUInt32(Val)) return true;
1010    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder.
1011    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1012    Result = OT;
1013    break;
1014  }
1015  }
1016
1017  // Parse the type suffixes.
1018  while (1) {
1019    switch (Lex.getKind()) {
1020    // End of type.
1021    default: return false;
1022
1023    // TypeRec ::= TypeRec '*'
1024    case lltok::star:
1025      if (Result.get() == Type::LabelTy)
1026        return TokError("basic block pointers are invalid");
1027      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1028      Lex.Lex();
1029      break;
1030
1031    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1032    case lltok::kw_addrspace: {
1033      if (Result.get() == Type::LabelTy)
1034        return TokError("basic block pointers are invalid");
1035      unsigned AddrSpace;
1036      if (ParseOptionalAddrSpace(AddrSpace) ||
1037          ParseToken(lltok::star, "expected '*' in address space"))
1038        return true;
1039
1040      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1041      break;
1042    }
1043
1044    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1045    case lltok::lparen:
1046      if (ParseFunctionType(Result))
1047        return true;
1048      break;
1049    }
1050  }
1051}
1052
1053/// ParseParameterList
1054///    ::= '(' ')'
1055///    ::= '(' Arg (',' Arg)* ')'
1056///  Arg
1057///    ::= Type OptionalAttributes Value OptionalAttributes
1058bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1059                                  PerFunctionState &PFS) {
1060  if (ParseToken(lltok::lparen, "expected '(' in call"))
1061    return true;
1062
1063  while (Lex.getKind() != lltok::rparen) {
1064    // If this isn't the first argument, we need a comma.
1065    if (!ArgList.empty() &&
1066        ParseToken(lltok::comma, "expected ',' in argument list"))
1067      return true;
1068
1069    // Parse the argument.
1070    LocTy ArgLoc;
1071    PATypeHolder ArgTy(Type::VoidTy);
1072    unsigned ArgAttrs1, ArgAttrs2;
1073    Value *V;
1074    if (ParseType(ArgTy, ArgLoc) ||
1075        ParseOptionalAttrs(ArgAttrs1, 0) ||
1076        ParseValue(ArgTy, V, PFS) ||
1077        // FIXME: Should not allow attributes after the argument, remove this in
1078        // LLVM 3.0.
1079        ParseOptionalAttrs(ArgAttrs2, 0))
1080      return true;
1081    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1082  }
1083
1084  Lex.Lex();  // Lex the ')'.
1085  return false;
1086}
1087
1088
1089
1090/// ParseArgumentList - Parse the argument list for a function type or function
1091/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1092///   ::= '(' ArgTypeListI ')'
1093/// ArgTypeListI
1094///   ::= /*empty*/
1095///   ::= '...'
1096///   ::= ArgTypeList ',' '...'
1097///   ::= ArgType (',' ArgType)*
1098///
1099bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1100                                 bool &isVarArg, bool inType) {
1101  isVarArg = false;
1102  assert(Lex.getKind() == lltok::lparen);
1103  Lex.Lex(); // eat the (.
1104
1105  if (Lex.getKind() == lltok::rparen) {
1106    // empty
1107  } else if (Lex.getKind() == lltok::dotdotdot) {
1108    isVarArg = true;
1109    Lex.Lex();
1110  } else {
1111    LocTy TypeLoc = Lex.getLoc();
1112    PATypeHolder ArgTy(Type::VoidTy);
1113    unsigned Attrs;
1114    std::string Name;
1115
1116    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1117    // types (such as a function returning a pointer to itself).  If parsing a
1118    // function prototype, we require fully resolved types.
1119    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1120        ParseOptionalAttrs(Attrs, 0)) return true;
1121
1122    if (Lex.getKind() == lltok::LocalVar ||
1123        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1124      Name = Lex.getStrVal();
1125      Lex.Lex();
1126    }
1127
1128    if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1129      return Error(TypeLoc, "invalid type for function argument");
1130
1131    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1132
1133    while (EatIfPresent(lltok::comma)) {
1134      // Handle ... at end of arg list.
1135      if (EatIfPresent(lltok::dotdotdot)) {
1136        isVarArg = true;
1137        break;
1138      }
1139
1140      // Otherwise must be an argument type.
1141      TypeLoc = Lex.getLoc();
1142      if (ParseTypeRec(ArgTy) ||
1143          ParseOptionalAttrs(Attrs, 0)) return true;
1144
1145      if (Lex.getKind() == lltok::LocalVar ||
1146          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1147        Name = Lex.getStrVal();
1148        Lex.Lex();
1149      } else {
1150        Name = "";
1151      }
1152
1153      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1154        return Error(TypeLoc, "invalid type for function argument");
1155
1156      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1157    }
1158  }
1159
1160  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1161}
1162
1163/// ParseFunctionType
1164///  ::= Type ArgumentList OptionalAttrs
1165bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1166  assert(Lex.getKind() == lltok::lparen);
1167
1168  if (!FunctionType::isValidReturnType(Result))
1169    return TokError("invalid function return type");
1170
1171  std::vector<ArgInfo> ArgList;
1172  bool isVarArg;
1173  unsigned Attrs;
1174  if (ParseArgumentList(ArgList, isVarArg, true) ||
1175      // FIXME: Allow, but ignore attributes on function types!
1176      // FIXME: Remove in LLVM 3.0
1177      ParseOptionalAttrs(Attrs, 2))
1178    return true;
1179
1180  // Reject names on the arguments lists.
1181  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1182    if (!ArgList[i].Name.empty())
1183      return Error(ArgList[i].Loc, "argument name invalid in function type");
1184    if (!ArgList[i].Attrs != 0) {
1185      // Allow but ignore attributes on function types; this permits
1186      // auto-upgrade.
1187      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1188    }
1189  }
1190
1191  std::vector<const Type*> ArgListTy;
1192  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1193    ArgListTy.push_back(ArgList[i].Type);
1194
1195  Result = HandleUpRefs(FunctionType::get(Result.get(), ArgListTy, isVarArg));
1196  return false;
1197}
1198
1199/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1200///   TypeRec
1201///     ::= '{' '}'
1202///     ::= '{' TypeRec (',' TypeRec)* '}'
1203///     ::= '<' '{' '}' '>'
1204///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1205bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1206  assert(Lex.getKind() == lltok::lbrace);
1207  Lex.Lex(); // Consume the '{'
1208
1209  if (EatIfPresent(lltok::rbrace)) {
1210    Result = StructType::get(std::vector<const Type*>(), Packed);
1211    return false;
1212  }
1213
1214  std::vector<PATypeHolder> ParamsList;
1215  if (ParseTypeRec(Result)) return true;
1216  ParamsList.push_back(Result);
1217
1218  while (EatIfPresent(lltok::comma)) {
1219    if (ParseTypeRec(Result)) return true;
1220    ParamsList.push_back(Result);
1221  }
1222
1223  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1224    return true;
1225
1226  std::vector<const Type*> ParamsListTy;
1227  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1228    ParamsListTy.push_back(ParamsList[i].get());
1229  Result = HandleUpRefs(StructType::get(ParamsListTy, Packed));
1230  return false;
1231}
1232
1233/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1234/// token has already been consumed.
1235///   TypeRec
1236///     ::= '[' APSINTVAL 'x' Types ']'
1237///     ::= '<' APSINTVAL 'x' Types '>'
1238bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1239  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1240      Lex.getAPSIntVal().getBitWidth() > 64)
1241    return TokError("expected number in address space");
1242
1243  LocTy SizeLoc = Lex.getLoc();
1244  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1245  Lex.Lex();
1246
1247  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1248      return true;
1249
1250  LocTy TypeLoc = Lex.getLoc();
1251  PATypeHolder EltTy(Type::VoidTy);
1252  if (ParseTypeRec(EltTy)) return true;
1253
1254  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1255                 "expected end of sequential type"))
1256    return true;
1257
1258  if (isVector) {
1259    if ((unsigned)Size != Size)
1260      return Error(SizeLoc, "size too large for vector");
1261    if (!EltTy->isFloatingPoint() && !EltTy->isInteger())
1262      return Error(TypeLoc, "vector element type must be fp or integer");
1263    Result = VectorType::get(EltTy, unsigned(Size));
1264  } else {
1265    if (!EltTy->isFirstClassType() && !isa<OpaqueType>(EltTy))
1266      return Error(TypeLoc, "invalid array element type");
1267    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1268  }
1269  return false;
1270}
1271
1272//===----------------------------------------------------------------------===//
1273// Function Semantic Analysis.
1274//===----------------------------------------------------------------------===//
1275
1276LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1277  : P(p), F(f) {
1278
1279  // Insert unnamed arguments into the NumberedVals list.
1280  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1281       AI != E; ++AI)
1282    if (!AI->hasName())
1283      NumberedVals.push_back(AI);
1284}
1285
1286LLParser::PerFunctionState::~PerFunctionState() {
1287  // If there were any forward referenced non-basicblock values, delete them.
1288  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1289       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1290    if (!isa<BasicBlock>(I->second.first)) {
1291      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1292                                                          ->getType()));
1293      delete I->second.first;
1294      I->second.first = 0;
1295    }
1296
1297  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1298       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1299    if (!isa<BasicBlock>(I->second.first)) {
1300      I->second.first->replaceAllUsesWith(UndefValue::get(I->second.first
1301                                                          ->getType()));
1302      delete I->second.first;
1303      I->second.first = 0;
1304    }
1305}
1306
1307bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1308  if (!ForwardRefVals.empty())
1309    return P.Error(ForwardRefVals.begin()->second.second,
1310                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1311                   "'");
1312  if (!ForwardRefValIDs.empty())
1313    return P.Error(ForwardRefValIDs.begin()->second.second,
1314                   "use of undefined value '%" +
1315                   utostr(ForwardRefValIDs.begin()->first) + "'");
1316  return false;
1317}
1318
1319
1320/// GetVal - Get a value with the specified name or ID, creating a
1321/// forward reference record if needed.  This can return null if the value
1322/// exists but does not have the right type.
1323Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1324                                          const Type *Ty, LocTy Loc) {
1325  // Look this name up in the normal function symbol table.
1326  Value *Val = F.getValueSymbolTable().lookup(Name);
1327
1328  // If this is a forward reference for the value, see if we already created a
1329  // forward ref record.
1330  if (Val == 0) {
1331    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1332      I = ForwardRefVals.find(Name);
1333    if (I != ForwardRefVals.end())
1334      Val = I->second.first;
1335  }
1336
1337  // If we have the value in the symbol table or fwd-ref table, return it.
1338  if (Val) {
1339    if (Val->getType() == Ty) return Val;
1340    if (Ty == Type::LabelTy)
1341      P.Error(Loc, "'%" + Name + "' is not a basic block");
1342    else
1343      P.Error(Loc, "'%" + Name + "' defined with type '" +
1344              Val->getType()->getDescription() + "'");
1345    return 0;
1346  }
1347
1348  // Don't make placeholders with invalid type.
1349  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1350    P.Error(Loc, "invalid use of a non-first-class type");
1351    return 0;
1352  }
1353
1354  // Otherwise, create a new forward reference for this value and remember it.
1355  Value *FwdVal;
1356  if (Ty == Type::LabelTy)
1357    FwdVal = BasicBlock::Create(Name, &F);
1358  else
1359    FwdVal = new Argument(Ty, Name);
1360
1361  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1362  return FwdVal;
1363}
1364
1365Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1366                                          LocTy Loc) {
1367  // Look this name up in the normal function symbol table.
1368  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1369
1370  // If this is a forward reference for the value, see if we already created a
1371  // forward ref record.
1372  if (Val == 0) {
1373    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1374      I = ForwardRefValIDs.find(ID);
1375    if (I != ForwardRefValIDs.end())
1376      Val = I->second.first;
1377  }
1378
1379  // If we have the value in the symbol table or fwd-ref table, return it.
1380  if (Val) {
1381    if (Val->getType() == Ty) return Val;
1382    if (Ty == Type::LabelTy)
1383      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1384    else
1385      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1386              Val->getType()->getDescription() + "'");
1387    return 0;
1388  }
1389
1390  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
1391    P.Error(Loc, "invalid use of a non-first-class type");
1392    return 0;
1393  }
1394
1395  // Otherwise, create a new forward reference for this value and remember it.
1396  Value *FwdVal;
1397  if (Ty == Type::LabelTy)
1398    FwdVal = BasicBlock::Create("", &F);
1399  else
1400    FwdVal = new Argument(Ty);
1401
1402  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1403  return FwdVal;
1404}
1405
1406/// SetInstName - After an instruction is parsed and inserted into its
1407/// basic block, this installs its name.
1408bool LLParser::PerFunctionState::SetInstName(int NameID,
1409                                             const std::string &NameStr,
1410                                             LocTy NameLoc, Instruction *Inst) {
1411  // If this instruction has void type, it cannot have a name or ID specified.
1412  if (Inst->getType() == Type::VoidTy) {
1413    if (NameID != -1 || !NameStr.empty())
1414      return P.Error(NameLoc, "instructions returning void cannot have a name");
1415    return false;
1416  }
1417
1418  // If this was a numbered instruction, verify that the instruction is the
1419  // expected value and resolve any forward references.
1420  if (NameStr.empty()) {
1421    // If neither a name nor an ID was specified, just use the next ID.
1422    if (NameID == -1)
1423      NameID = NumberedVals.size();
1424
1425    if (unsigned(NameID) != NumberedVals.size())
1426      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1427                     utostr(NumberedVals.size()) + "'");
1428
1429    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1430      ForwardRefValIDs.find(NameID);
1431    if (FI != ForwardRefValIDs.end()) {
1432      if (FI->second.first->getType() != Inst->getType())
1433        return P.Error(NameLoc, "instruction forward referenced with type '" +
1434                       FI->second.first->getType()->getDescription() + "'");
1435      FI->second.first->replaceAllUsesWith(Inst);
1436      ForwardRefValIDs.erase(FI);
1437    }
1438
1439    NumberedVals.push_back(Inst);
1440    return false;
1441  }
1442
1443  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1444  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1445    FI = ForwardRefVals.find(NameStr);
1446  if (FI != ForwardRefVals.end()) {
1447    if (FI->second.first->getType() != Inst->getType())
1448      return P.Error(NameLoc, "instruction forward referenced with type '" +
1449                     FI->second.first->getType()->getDescription() + "'");
1450    FI->second.first->replaceAllUsesWith(Inst);
1451    ForwardRefVals.erase(FI);
1452  }
1453
1454  // Set the name on the instruction.
1455  Inst->setName(NameStr);
1456
1457  if (Inst->getNameStr() != NameStr)
1458    return P.Error(NameLoc, "multiple definition of local value named '" +
1459                   NameStr + "'");
1460  return false;
1461}
1462
1463/// GetBB - Get a basic block with the specified name or ID, creating a
1464/// forward reference record if needed.
1465BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1466                                              LocTy Loc) {
1467  return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
1468}
1469
1470BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1471  return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
1472}
1473
1474/// DefineBB - Define the specified basic block, which is either named or
1475/// unnamed.  If there is an error, this returns null otherwise it returns
1476/// the block being defined.
1477BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1478                                                 LocTy Loc) {
1479  BasicBlock *BB;
1480  if (Name.empty())
1481    BB = GetBB(NumberedVals.size(), Loc);
1482  else
1483    BB = GetBB(Name, Loc);
1484  if (BB == 0) return 0; // Already diagnosed error.
1485
1486  // Move the block to the end of the function.  Forward ref'd blocks are
1487  // inserted wherever they happen to be referenced.
1488  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1489
1490  // Remove the block from forward ref sets.
1491  if (Name.empty()) {
1492    ForwardRefValIDs.erase(NumberedVals.size());
1493    NumberedVals.push_back(BB);
1494  } else {
1495    // BB forward references are already in the function symbol table.
1496    ForwardRefVals.erase(Name);
1497  }
1498
1499  return BB;
1500}
1501
1502//===----------------------------------------------------------------------===//
1503// Constants.
1504//===----------------------------------------------------------------------===//
1505
1506/// ParseValID - Parse an abstract value that doesn't necessarily have a
1507/// type implied.  For example, if we parse "4" we don't know what integer type
1508/// it has.  The value will later be combined with its type and checked for
1509/// sanity.
1510bool LLParser::ParseValID(ValID &ID) {
1511  ID.Loc = Lex.getLoc();
1512  switch (Lex.getKind()) {
1513  default: return TokError("expected value token");
1514  case lltok::GlobalID:  // @42
1515    ID.UIntVal = Lex.getUIntVal();
1516    ID.Kind = ValID::t_GlobalID;
1517    break;
1518  case lltok::GlobalVar:  // @foo
1519    ID.StrVal = Lex.getStrVal();
1520    ID.Kind = ValID::t_GlobalName;
1521    break;
1522  case lltok::LocalVarID:  // %42
1523    ID.UIntVal = Lex.getUIntVal();
1524    ID.Kind = ValID::t_LocalID;
1525    break;
1526  case lltok::LocalVar:  // %foo
1527  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1528    ID.StrVal = Lex.getStrVal();
1529    ID.Kind = ValID::t_LocalName;
1530    break;
1531  case lltok::APSInt:
1532    ID.APSIntVal = Lex.getAPSIntVal();
1533    ID.Kind = ValID::t_APSInt;
1534    break;
1535  case lltok::APFloat:
1536    ID.APFloatVal = Lex.getAPFloatVal();
1537    ID.Kind = ValID::t_APFloat;
1538    break;
1539  case lltok::kw_true:
1540    ID.ConstantVal = ConstantInt::getTrue();
1541    ID.Kind = ValID::t_Constant;
1542    break;
1543  case lltok::kw_false:
1544    ID.ConstantVal = ConstantInt::getFalse();
1545    ID.Kind = ValID::t_Constant;
1546    break;
1547  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1548  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1549  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1550
1551  case lltok::lbrace: {
1552    // ValID ::= '{' ConstVector '}'
1553    Lex.Lex();
1554    SmallVector<Constant*, 16> Elts;
1555    if (ParseGlobalValueVector(Elts) ||
1556        ParseToken(lltok::rbrace, "expected end of struct constant"))
1557      return true;
1558
1559    ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), false);
1560    ID.Kind = ValID::t_Constant;
1561    return false;
1562  }
1563  case lltok::less: {
1564    // ValID ::= '<' ConstVector '>'         --> Vector.
1565    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1566    Lex.Lex();
1567    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1568
1569    SmallVector<Constant*, 16> Elts;
1570    LocTy FirstEltLoc = Lex.getLoc();
1571    if (ParseGlobalValueVector(Elts) ||
1572        (isPackedStruct &&
1573         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1574        ParseToken(lltok::greater, "expected end of constant"))
1575      return true;
1576
1577    if (isPackedStruct) {
1578      ID.ConstantVal = ConstantStruct::get(&Elts[0], Elts.size(), true);
1579      ID.Kind = ValID::t_Constant;
1580      return false;
1581    }
1582
1583    if (Elts.empty())
1584      return Error(ID.Loc, "constant vector must not be empty");
1585
1586    if (!Elts[0]->getType()->isInteger() &&
1587        !Elts[0]->getType()->isFloatingPoint())
1588      return Error(FirstEltLoc,
1589                   "vector elements must have integer or floating point type");
1590
1591    // Verify that all the vector elements have the same type.
1592    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1593      if (Elts[i]->getType() != Elts[0]->getType())
1594        return Error(FirstEltLoc,
1595                     "vector element #" + utostr(i) +
1596                    " is not of type '" + Elts[0]->getType()->getDescription());
1597
1598    ID.ConstantVal = ConstantVector::get(&Elts[0], Elts.size());
1599    ID.Kind = ValID::t_Constant;
1600    return false;
1601  }
1602  case lltok::lsquare: {   // Array Constant
1603    Lex.Lex();
1604    SmallVector<Constant*, 16> Elts;
1605    LocTy FirstEltLoc = Lex.getLoc();
1606    if (ParseGlobalValueVector(Elts) ||
1607        ParseToken(lltok::rsquare, "expected end of array constant"))
1608      return true;
1609
1610    // Handle empty element.
1611    if (Elts.empty()) {
1612      // Use undef instead of an array because it's inconvenient to determine
1613      // the element type at this point, there being no elements to examine.
1614      ID.Kind = ValID::t_EmptyArray;
1615      return false;
1616    }
1617
1618    if (!Elts[0]->getType()->isFirstClassType())
1619      return Error(FirstEltLoc, "invalid array element type: " +
1620                   Elts[0]->getType()->getDescription());
1621
1622    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1623
1624    // Verify all elements are correct type!
1625    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1626      if (Elts[i]->getType() != Elts[0]->getType())
1627        return Error(FirstEltLoc,
1628                     "array element #" + utostr(i) +
1629                     " is not of type '" +Elts[0]->getType()->getDescription());
1630    }
1631
1632    ID.ConstantVal = ConstantArray::get(ATy, &Elts[0], Elts.size());
1633    ID.Kind = ValID::t_Constant;
1634    return false;
1635  }
1636  case lltok::kw_c:  // c "foo"
1637    Lex.Lex();
1638    ID.ConstantVal = ConstantArray::get(Lex.getStrVal(), false);
1639    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1640    ID.Kind = ValID::t_Constant;
1641    return false;
1642
1643  case lltok::kw_asm: {
1644    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1645    bool HasSideEffect;
1646    Lex.Lex();
1647    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1648        ParseStringConstant(ID.StrVal) ||
1649        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1650        ParseToken(lltok::StringConstant, "expected constraint string"))
1651      return true;
1652    ID.StrVal2 = Lex.getStrVal();
1653    ID.UIntVal = HasSideEffect;
1654    ID.Kind = ValID::t_InlineAsm;
1655    return false;
1656  }
1657
1658  case lltok::kw_trunc:
1659  case lltok::kw_zext:
1660  case lltok::kw_sext:
1661  case lltok::kw_fptrunc:
1662  case lltok::kw_fpext:
1663  case lltok::kw_bitcast:
1664  case lltok::kw_uitofp:
1665  case lltok::kw_sitofp:
1666  case lltok::kw_fptoui:
1667  case lltok::kw_fptosi:
1668  case lltok::kw_inttoptr:
1669  case lltok::kw_ptrtoint: {
1670    unsigned Opc = Lex.getUIntVal();
1671    PATypeHolder DestTy(Type::VoidTy);
1672    Constant *SrcVal;
1673    Lex.Lex();
1674    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1675        ParseGlobalTypeAndValue(SrcVal) ||
1676        ParseToken(lltok::kw_to, "expected 'to' int constantexpr cast") ||
1677        ParseType(DestTy) ||
1678        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1679      return true;
1680    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1681      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1682                   SrcVal->getType()->getDescription() + "' to '" +
1683                   DestTy->getDescription() + "'");
1684    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, SrcVal,
1685                                           DestTy);
1686    ID.Kind = ValID::t_Constant;
1687    return false;
1688  }
1689  case lltok::kw_extractvalue: {
1690    Lex.Lex();
1691    Constant *Val;
1692    SmallVector<unsigned, 4> Indices;
1693    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
1694        ParseGlobalTypeAndValue(Val) ||
1695        ParseIndexList(Indices) ||
1696        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
1697      return true;
1698    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
1699      return Error(ID.Loc, "extractvalue operand must be array or struct");
1700    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
1701                                          Indices.end()))
1702      return Error(ID.Loc, "invalid indices for extractvalue");
1703    ID.ConstantVal = ConstantExpr::getExtractValue(Val,
1704                                                   &Indices[0], Indices.size());
1705    ID.Kind = ValID::t_Constant;
1706    return false;
1707  }
1708  case lltok::kw_insertvalue: {
1709    Lex.Lex();
1710    Constant *Val0, *Val1;
1711    SmallVector<unsigned, 4> Indices;
1712    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
1713        ParseGlobalTypeAndValue(Val0) ||
1714        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
1715        ParseGlobalTypeAndValue(Val1) ||
1716        ParseIndexList(Indices) ||
1717        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
1718      return true;
1719    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
1720      return Error(ID.Loc, "extractvalue operand must be array or struct");
1721    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
1722                                          Indices.end()))
1723      return Error(ID.Loc, "invalid indices for insertvalue");
1724    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
1725                                                  &Indices[0], Indices.size());
1726    ID.Kind = ValID::t_Constant;
1727    return false;
1728  }
1729  case lltok::kw_icmp:
1730  case lltok::kw_fcmp:
1731  case lltok::kw_vicmp:
1732  case lltok::kw_vfcmp: {
1733    unsigned PredVal, Opc = Lex.getUIntVal();
1734    Constant *Val0, *Val1;
1735    Lex.Lex();
1736    if (ParseCmpPredicate(PredVal, Opc) ||
1737        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
1738        ParseGlobalTypeAndValue(Val0) ||
1739        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
1740        ParseGlobalTypeAndValue(Val1) ||
1741        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
1742      return true;
1743
1744    if (Val0->getType() != Val1->getType())
1745      return Error(ID.Loc, "compare operands must have the same type");
1746
1747    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
1748
1749    if (Opc == Instruction::FCmp) {
1750      if (!Val0->getType()->isFPOrFPVector())
1751        return Error(ID.Loc, "fcmp requires floating point operands");
1752      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
1753    } else if (Opc == Instruction::ICmp) {
1754      if (!Val0->getType()->isIntOrIntVector() &&
1755          !isa<PointerType>(Val0->getType()))
1756        return Error(ID.Loc, "icmp requires pointer or integer operands");
1757      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
1758    } else if (Opc == Instruction::VFCmp) {
1759      // FIXME: REMOVE VFCMP Support
1760      if (!Val0->getType()->isFPOrFPVector() ||
1761          !isa<VectorType>(Val0->getType()))
1762        return Error(ID.Loc, "vfcmp requires vector floating point operands");
1763      ID.ConstantVal = ConstantExpr::getVFCmp(Pred, Val0, Val1);
1764    } else if (Opc == Instruction::VICmp) {
1765      // FIXME: REMOVE VICMP Support
1766      if (!Val0->getType()->isIntOrIntVector() ||
1767          !isa<VectorType>(Val0->getType()))
1768        return Error(ID.Loc, "vicmp requires vector floating point operands");
1769      ID.ConstantVal = ConstantExpr::getVICmp(Pred, Val0, Val1);
1770    }
1771    ID.Kind = ValID::t_Constant;
1772    return false;
1773  }
1774
1775  // Binary Operators.
1776  case lltok::kw_add:
1777  case lltok::kw_sub:
1778  case lltok::kw_mul:
1779  case lltok::kw_udiv:
1780  case lltok::kw_sdiv:
1781  case lltok::kw_fdiv:
1782  case lltok::kw_urem:
1783  case lltok::kw_srem:
1784  case lltok::kw_frem: {
1785    unsigned Opc = Lex.getUIntVal();
1786    Constant *Val0, *Val1;
1787    Lex.Lex();
1788    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
1789        ParseGlobalTypeAndValue(Val0) ||
1790        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
1791        ParseGlobalTypeAndValue(Val1) ||
1792        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
1793      return true;
1794    if (Val0->getType() != Val1->getType())
1795      return Error(ID.Loc, "operands of constexpr must have same type");
1796    if (!Val0->getType()->isIntOrIntVector() &&
1797        !Val0->getType()->isFPOrFPVector())
1798      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
1799    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1800    ID.Kind = ValID::t_Constant;
1801    return false;
1802  }
1803
1804  // Logical Operations
1805  case lltok::kw_shl:
1806  case lltok::kw_lshr:
1807  case lltok::kw_ashr:
1808  case lltok::kw_and:
1809  case lltok::kw_or:
1810  case lltok::kw_xor: {
1811    unsigned Opc = Lex.getUIntVal();
1812    Constant *Val0, *Val1;
1813    Lex.Lex();
1814    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
1815        ParseGlobalTypeAndValue(Val0) ||
1816        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
1817        ParseGlobalTypeAndValue(Val1) ||
1818        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
1819      return true;
1820    if (Val0->getType() != Val1->getType())
1821      return Error(ID.Loc, "operands of constexpr must have same type");
1822    if (!Val0->getType()->isIntOrIntVector())
1823      return Error(ID.Loc,
1824                   "constexpr requires integer or integer vector operands");
1825    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
1826    ID.Kind = ValID::t_Constant;
1827    return false;
1828  }
1829
1830  case lltok::kw_getelementptr:
1831  case lltok::kw_shufflevector:
1832  case lltok::kw_insertelement:
1833  case lltok::kw_extractelement:
1834  case lltok::kw_select: {
1835    unsigned Opc = Lex.getUIntVal();
1836    SmallVector<Constant*, 16> Elts;
1837    Lex.Lex();
1838    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
1839        ParseGlobalValueVector(Elts) ||
1840        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
1841      return true;
1842
1843    if (Opc == Instruction::GetElementPtr) {
1844      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
1845        return Error(ID.Loc, "getelementptr requires pointer operand");
1846
1847      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
1848                                             (Value**)&Elts[1], Elts.size()-1))
1849        return Error(ID.Loc, "invalid indices for getelementptr");
1850      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0],
1851                                                      &Elts[1], Elts.size()-1);
1852    } else if (Opc == Instruction::Select) {
1853      if (Elts.size() != 3)
1854        return Error(ID.Loc, "expected three operands to select");
1855      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
1856                                                              Elts[2]))
1857        return Error(ID.Loc, Reason);
1858      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
1859    } else if (Opc == Instruction::ShuffleVector) {
1860      if (Elts.size() != 3)
1861        return Error(ID.Loc, "expected three operands to shufflevector");
1862      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1863        return Error(ID.Loc, "invalid operands to shufflevector");
1864      ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
1865    } else if (Opc == Instruction::ExtractElement) {
1866      if (Elts.size() != 2)
1867        return Error(ID.Loc, "expected two operands to extractelement");
1868      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
1869        return Error(ID.Loc, "invalid extractelement operands");
1870      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
1871    } else {
1872      assert(Opc == Instruction::InsertElement && "Unknown opcode");
1873      if (Elts.size() != 3)
1874      return Error(ID.Loc, "expected three operands to insertelement");
1875      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
1876        return Error(ID.Loc, "invalid insertelement operands");
1877      ID.ConstantVal = ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
1878    }
1879
1880    ID.Kind = ValID::t_Constant;
1881    return false;
1882  }
1883  }
1884
1885  Lex.Lex();
1886  return false;
1887}
1888
1889/// ParseGlobalValue - Parse a global value with the specified type.
1890bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
1891  V = 0;
1892  ValID ID;
1893  return ParseValID(ID) ||
1894         ConvertGlobalValIDToValue(Ty, ID, V);
1895}
1896
1897/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
1898/// constant.
1899bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
1900                                         Constant *&V) {
1901  if (isa<FunctionType>(Ty))
1902    return Error(ID.Loc, "functions are not values, refer to them as pointers");
1903
1904  switch (ID.Kind) {
1905  default: assert(0 && "Unknown ValID!");
1906  case ValID::t_LocalID:
1907  case ValID::t_LocalName:
1908    return Error(ID.Loc, "invalid use of function-local name");
1909  case ValID::t_InlineAsm:
1910    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
1911  case ValID::t_GlobalName:
1912    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
1913    return V == 0;
1914  case ValID::t_GlobalID:
1915    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
1916    return V == 0;
1917  case ValID::t_APSInt:
1918    if (!isa<IntegerType>(Ty))
1919      return Error(ID.Loc, "integer constant must have integer type");
1920    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
1921    V = ConstantInt::get(ID.APSIntVal);
1922    return false;
1923  case ValID::t_APFloat:
1924    if (!Ty->isFloatingPoint() ||
1925        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
1926      return Error(ID.Loc, "floating point constant invalid for type");
1927
1928    // The lexer has no type info, so builds all float and double FP constants
1929    // as double.  Fix this here.  Long double does not need this.
1930    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
1931        Ty == Type::FloatTy) {
1932      bool Ignored;
1933      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
1934                            &Ignored);
1935    }
1936    V = ConstantFP::get(ID.APFloatVal);
1937
1938    if (V->getType() != Ty)
1939      return Error(ID.Loc, "floating point constant does not have type '" +
1940                   Ty->getDescription() + "'");
1941
1942    return false;
1943  case ValID::t_Null:
1944    if (!isa<PointerType>(Ty))
1945      return Error(ID.Loc, "null must be a pointer type");
1946    V = ConstantPointerNull::get(cast<PointerType>(Ty));
1947    return false;
1948  case ValID::t_Undef:
1949    // FIXME: LabelTy should not be a first-class type.
1950    if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
1951        !isa<OpaqueType>(Ty))
1952      return Error(ID.Loc, "invalid type for undef constant");
1953    V = UndefValue::get(Ty);
1954    return false;
1955  case ValID::t_EmptyArray:
1956    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
1957      return Error(ID.Loc, "invalid empty array initializer");
1958    V = UndefValue::get(Ty);
1959    return false;
1960  case ValID::t_Zero:
1961    // FIXME: LabelTy should not be a first-class type.
1962    if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
1963      return Error(ID.Loc, "invalid type for null constant");
1964    V = Constant::getNullValue(Ty);
1965    return false;
1966  case ValID::t_Constant:
1967    if (ID.ConstantVal->getType() != Ty)
1968      return Error(ID.Loc, "constant expression type mismatch");
1969    V = ID.ConstantVal;
1970    return false;
1971  }
1972}
1973
1974bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
1975  PATypeHolder Type(Type::VoidTy);
1976  return ParseType(Type) ||
1977         ParseGlobalValue(Type, V);
1978}
1979
1980/// ParseGlobalValueVector
1981///   ::= /*empty*/
1982///   ::= TypeAndValue (',' TypeAndValue)*
1983bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
1984  // Empty list.
1985  if (Lex.getKind() == lltok::rbrace ||
1986      Lex.getKind() == lltok::rsquare ||
1987      Lex.getKind() == lltok::greater ||
1988      Lex.getKind() == lltok::rparen)
1989    return false;
1990
1991  Constant *C;
1992  if (ParseGlobalTypeAndValue(C)) return true;
1993  Elts.push_back(C);
1994
1995  while (EatIfPresent(lltok::comma)) {
1996    if (ParseGlobalTypeAndValue(C)) return true;
1997    Elts.push_back(C);
1998  }
1999
2000  return false;
2001}
2002
2003
2004//===----------------------------------------------------------------------===//
2005// Function Parsing.
2006//===----------------------------------------------------------------------===//
2007
2008bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2009                                   PerFunctionState &PFS) {
2010  if (ID.Kind == ValID::t_LocalID)
2011    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2012  else if (ID.Kind == ValID::t_LocalName)
2013    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2014  else if (ID.Kind == ValID::t_InlineAsm) {
2015    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2016    const FunctionType *FTy =
2017      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2018    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2019      return Error(ID.Loc, "invalid type for inline asm constraint string");
2020    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2021    return false;
2022  } else {
2023    Constant *C;
2024    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2025    V = C;
2026    return false;
2027  }
2028
2029  return V == 0;
2030}
2031
2032bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2033  V = 0;
2034  ValID ID;
2035  return ParseValID(ID) ||
2036         ConvertValIDToValue(Ty, ID, V, PFS);
2037}
2038
2039bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2040  PATypeHolder T(Type::VoidTy);
2041  return ParseType(T) ||
2042         ParseValue(T, V, PFS);
2043}
2044
2045/// FunctionHeader
2046///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2047///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2048///       OptionalAlign OptGC
2049bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2050  // Parse the linkage.
2051  LocTy LinkageLoc = Lex.getLoc();
2052  unsigned Linkage;
2053
2054  unsigned Visibility, CC, RetAttrs;
2055  PATypeHolder RetType(Type::VoidTy);
2056  LocTy RetTypeLoc = Lex.getLoc();
2057  if (ParseOptionalLinkage(Linkage) ||
2058      ParseOptionalVisibility(Visibility) ||
2059      ParseOptionalCallingConv(CC) ||
2060      ParseOptionalAttrs(RetAttrs, 1) ||
2061      ParseType(RetType, RetTypeLoc))
2062    return true;
2063
2064  // Verify that the linkage is ok.
2065  switch ((GlobalValue::LinkageTypes)Linkage) {
2066  case GlobalValue::ExternalLinkage:
2067    break; // always ok.
2068  case GlobalValue::DLLImportLinkage:
2069  case GlobalValue::ExternalWeakLinkage:
2070    if (isDefine)
2071      return Error(LinkageLoc, "invalid linkage for function definition");
2072    break;
2073  case GlobalValue::PrivateLinkage:
2074  case GlobalValue::InternalLinkage:
2075  case GlobalValue::LinkOnceLinkage:
2076  case GlobalValue::WeakLinkage:
2077  case GlobalValue::DLLExportLinkage:
2078    if (!isDefine)
2079      return Error(LinkageLoc, "invalid linkage for function declaration");
2080    break;
2081  case GlobalValue::AppendingLinkage:
2082  case GlobalValue::GhostLinkage:
2083  case GlobalValue::CommonLinkage:
2084    return Error(LinkageLoc, "invalid function linkage type");
2085  }
2086
2087  if (!FunctionType::isValidReturnType(RetType) ||
2088      isa<OpaqueType>(RetType))
2089    return Error(RetTypeLoc, "invalid function return type");
2090
2091  if (Lex.getKind() != lltok::GlobalVar)
2092    return TokError("expected function name");
2093
2094  LocTy NameLoc = Lex.getLoc();
2095  std::string FunctionName = Lex.getStrVal();
2096  Lex.Lex();
2097
2098  if (Lex.getKind() != lltok::lparen)
2099    return TokError("expected '(' in function argument list");
2100
2101  std::vector<ArgInfo> ArgList;
2102  bool isVarArg;
2103  unsigned FuncAttrs;
2104  std::string Section;
2105  unsigned Alignment;
2106  std::string GC;
2107
2108  if (ParseArgumentList(ArgList, isVarArg, false) ||
2109      ParseOptionalAttrs(FuncAttrs, 2) ||
2110      (EatIfPresent(lltok::kw_section) &&
2111       ParseStringConstant(Section)) ||
2112      ParseOptionalAlignment(Alignment) ||
2113      (EatIfPresent(lltok::kw_gc) &&
2114       ParseStringConstant(GC)))
2115    return true;
2116
2117  // If the alignment was parsed as an attribute, move to the alignment field.
2118  if (FuncAttrs & Attribute::Alignment) {
2119    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2120    FuncAttrs &= ~Attribute::Alignment;
2121  }
2122
2123  // Okay, if we got here, the function is syntactically valid.  Convert types
2124  // and do semantic checks.
2125  std::vector<const Type*> ParamTypeList;
2126  SmallVector<AttributeWithIndex, 8> Attrs;
2127  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2128  // attributes.
2129  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2130  if (FuncAttrs & ObsoleteFuncAttrs) {
2131    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2132    FuncAttrs &= ~ObsoleteFuncAttrs;
2133  }
2134
2135  if (RetAttrs != Attribute::None)
2136    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2137
2138  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2139    ParamTypeList.push_back(ArgList[i].Type);
2140    if (ArgList[i].Attrs != Attribute::None)
2141      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2142  }
2143
2144  if (FuncAttrs != Attribute::None)
2145    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2146
2147  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2148
2149  const FunctionType *FT = FunctionType::get(RetType, ParamTypeList, isVarArg);
2150  const PointerType *PFT = PointerType::getUnqual(FT);
2151
2152  Fn = 0;
2153  if (!FunctionName.empty()) {
2154    // If this was a definition of a forward reference, remove the definition
2155    // from the forward reference table and fill in the forward ref.
2156    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2157      ForwardRefVals.find(FunctionName);
2158    if (FRVI != ForwardRefVals.end()) {
2159      Fn = M->getFunction(FunctionName);
2160      ForwardRefVals.erase(FRVI);
2161    } else if ((Fn = M->getFunction(FunctionName))) {
2162      // If this function already exists in the symbol table, then it is
2163      // multiply defined.  We accept a few cases for old backwards compat.
2164      // FIXME: Remove this stuff for LLVM 3.0.
2165      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2166          (!Fn->isDeclaration() && isDefine)) {
2167        // If the redefinition has different type or different attributes,
2168        // reject it.  If both have bodies, reject it.
2169        return Error(NameLoc, "invalid redefinition of function '" +
2170                     FunctionName + "'");
2171      } else if (Fn->isDeclaration()) {
2172        // Make sure to strip off any argument names so we can't get conflicts.
2173        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2174             AI != AE; ++AI)
2175          AI->setName("");
2176      }
2177    }
2178
2179  } else if (FunctionName.empty()) {
2180    // If this is a definition of a forward referenced function, make sure the
2181    // types agree.
2182    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2183      = ForwardRefValIDs.find(NumberedVals.size());
2184    if (I != ForwardRefValIDs.end()) {
2185      Fn = cast<Function>(I->second.first);
2186      if (Fn->getType() != PFT)
2187        return Error(NameLoc, "type of definition and forward reference of '@" +
2188                     utostr(NumberedVals.size()) +"' disagree");
2189      ForwardRefValIDs.erase(I);
2190    }
2191  }
2192
2193  if (Fn == 0)
2194    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2195  else // Move the forward-reference to the correct spot in the module.
2196    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2197
2198  if (FunctionName.empty())
2199    NumberedVals.push_back(Fn);
2200
2201  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2202  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2203  Fn->setCallingConv(CC);
2204  Fn->setAttributes(PAL);
2205  Fn->setAlignment(Alignment);
2206  Fn->setSection(Section);
2207  if (!GC.empty()) Fn->setGC(GC.c_str());
2208
2209  // Add all of the arguments we parsed to the function.
2210  Function::arg_iterator ArgIt = Fn->arg_begin();
2211  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2212    // If the argument has a name, insert it into the argument symbol table.
2213    if (ArgList[i].Name.empty()) continue;
2214
2215    // Set the name, if it conflicted, it will be auto-renamed.
2216    ArgIt->setName(ArgList[i].Name);
2217
2218    if (ArgIt->getNameStr() != ArgList[i].Name)
2219      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2220                   ArgList[i].Name + "'");
2221  }
2222
2223  return false;
2224}
2225
2226
2227/// ParseFunctionBody
2228///   ::= '{' BasicBlock+ '}'
2229///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2230///
2231bool LLParser::ParseFunctionBody(Function &Fn) {
2232  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2233    return TokError("expected '{' in function body");
2234  Lex.Lex();  // eat the {.
2235
2236  PerFunctionState PFS(*this, Fn);
2237
2238  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2239    if (ParseBasicBlock(PFS)) return true;
2240
2241  // Eat the }.
2242  Lex.Lex();
2243
2244  // Verify function is ok.
2245  return PFS.VerifyFunctionComplete();
2246}
2247
2248/// ParseBasicBlock
2249///   ::= LabelStr? Instruction*
2250bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2251  // If this basic block starts out with a name, remember it.
2252  std::string Name;
2253  LocTy NameLoc = Lex.getLoc();
2254  if (Lex.getKind() == lltok::LabelStr) {
2255    Name = Lex.getStrVal();
2256    Lex.Lex();
2257  }
2258
2259  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2260  if (BB == 0) return true;
2261
2262  std::string NameStr;
2263
2264  // Parse the instructions in this block until we get a terminator.
2265  Instruction *Inst;
2266  do {
2267    // This instruction may have three possibilities for a name: a) none
2268    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2269    LocTy NameLoc = Lex.getLoc();
2270    int NameID = -1;
2271    NameStr = "";
2272
2273    if (Lex.getKind() == lltok::LocalVarID) {
2274      NameID = Lex.getUIntVal();
2275      Lex.Lex();
2276      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2277        return true;
2278    } else if (Lex.getKind() == lltok::LocalVar ||
2279               // FIXME: REMOVE IN LLVM 3.0
2280               Lex.getKind() == lltok::StringConstant) {
2281      NameStr = Lex.getStrVal();
2282      Lex.Lex();
2283      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2284        return true;
2285    }
2286
2287    if (ParseInstruction(Inst, BB, PFS)) return true;
2288
2289    BB->getInstList().push_back(Inst);
2290
2291    // Set the name on the instruction.
2292    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2293  } while (!isa<TerminatorInst>(Inst));
2294
2295  return false;
2296}
2297
2298//===----------------------------------------------------------------------===//
2299// Instruction Parsing.
2300//===----------------------------------------------------------------------===//
2301
2302/// ParseInstruction - Parse one of the many different instructions.
2303///
2304bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2305                                PerFunctionState &PFS) {
2306  lltok::Kind Token = Lex.getKind();
2307  if (Token == lltok::Eof)
2308    return TokError("found end of file when expecting more instructions");
2309  LocTy Loc = Lex.getLoc();
2310  Lex.Lex();  // Eat the keyword.
2311
2312  switch (Token) {
2313  default:                    return Error(Loc, "expected instruction opcode");
2314  // Terminator Instructions.
2315  case lltok::kw_unwind:      Inst = new UnwindInst(); return false;
2316  case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
2317  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2318  case lltok::kw_br:          return ParseBr(Inst, PFS);
2319  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2320  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2321  // Binary Operators.
2322  case lltok::kw_add:
2323  case lltok::kw_sub:
2324  case lltok::kw_mul:    return ParseArithmetic(Inst, PFS, Lex.getUIntVal(), 0);
2325
2326  case lltok::kw_udiv:
2327  case lltok::kw_sdiv:
2328  case lltok::kw_urem:
2329  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, Lex.getUIntVal(), 1);
2330  case lltok::kw_fdiv:
2331  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, Lex.getUIntVal(), 2);
2332  case lltok::kw_shl:
2333  case lltok::kw_lshr:
2334  case lltok::kw_ashr:
2335  case lltok::kw_and:
2336  case lltok::kw_or:
2337  case lltok::kw_xor:    return ParseLogical(Inst, PFS, Lex.getUIntVal());
2338  case lltok::kw_icmp:
2339  case lltok::kw_fcmp:
2340  case lltok::kw_vicmp:
2341  case lltok::kw_vfcmp:  return ParseCompare(Inst, PFS, Lex.getUIntVal());
2342  // Casts.
2343  case lltok::kw_trunc:
2344  case lltok::kw_zext:
2345  case lltok::kw_sext:
2346  case lltok::kw_fptrunc:
2347  case lltok::kw_fpext:
2348  case lltok::kw_bitcast:
2349  case lltok::kw_uitofp:
2350  case lltok::kw_sitofp:
2351  case lltok::kw_fptoui:
2352  case lltok::kw_fptosi:
2353  case lltok::kw_inttoptr:
2354  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, Lex.getUIntVal());
2355  // Other.
2356  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2357  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2358  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2359  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2360  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2361  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2362  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2363  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2364  // Memory.
2365  case lltok::kw_alloca:
2366  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, Lex.getUIntVal());
2367  case lltok::kw_free:           return ParseFree(Inst, PFS);
2368  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2369  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2370  case lltok::kw_volatile:
2371    if (EatIfPresent(lltok::kw_load))
2372      return ParseLoad(Inst, PFS, true);
2373    else if (EatIfPresent(lltok::kw_store))
2374      return ParseStore(Inst, PFS, true);
2375    else
2376      return TokError("expected 'load' or 'store'");
2377  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2378  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2379  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2380  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2381  }
2382}
2383
2384/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2385bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2386  // FIXME: REMOVE vicmp/vfcmp!
2387  if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
2388    switch (Lex.getKind()) {
2389    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2390    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2391    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2392    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2393    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2394    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2395    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2396    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2397    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2398    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2399    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2400    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2401    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2402    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2403    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2404    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2405    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2406    }
2407  } else {
2408    switch (Lex.getKind()) {
2409    default: TokError("expected icmp predicate (e.g. 'eq')");
2410    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2411    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2412    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2413    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2414    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2415    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2416    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2417    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2418    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2419    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2420    }
2421  }
2422  Lex.Lex();
2423  return false;
2424}
2425
2426//===----------------------------------------------------------------------===//
2427// Terminator Instructions.
2428//===----------------------------------------------------------------------===//
2429
2430/// ParseRet - Parse a return instruction.
2431///   ::= 'ret' void
2432///   ::= 'ret' TypeAndValue
2433///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  [[obsolete: LLVM 3.0]]
2434bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2435                        PerFunctionState &PFS) {
2436  PATypeHolder Ty(Type::VoidTy);
2437  if (ParseType(Ty)) return true;
2438
2439  if (Ty == Type::VoidTy) {
2440    Inst = ReturnInst::Create();
2441    return false;
2442  }
2443
2444  Value *RV;
2445  if (ParseValue(Ty, RV, PFS)) return true;
2446
2447  // The normal case is one return value.
2448  if (Lex.getKind() == lltok::comma) {
2449    // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2450    // of 'ret {i32,i32} {i32 1, i32 2}'
2451    SmallVector<Value*, 8> RVs;
2452    RVs.push_back(RV);
2453
2454    while (EatIfPresent(lltok::comma)) {
2455      if (ParseTypeAndValue(RV, PFS)) return true;
2456      RVs.push_back(RV);
2457    }
2458
2459    RV = UndefValue::get(PFS.getFunction().getReturnType());
2460    for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2461      Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2462      BB->getInstList().push_back(I);
2463      RV = I;
2464    }
2465  }
2466  Inst = ReturnInst::Create(RV);
2467  return false;
2468}
2469
2470
2471/// ParseBr
2472///   ::= 'br' TypeAndValue
2473///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2474bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2475  LocTy Loc, Loc2;
2476  Value *Op0, *Op1, *Op2;
2477  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2478
2479  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2480    Inst = BranchInst::Create(BB);
2481    return false;
2482  }
2483
2484  if (Op0->getType() != Type::Int1Ty)
2485    return Error(Loc, "branch condition must have 'i1' type");
2486
2487  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2488      ParseTypeAndValue(Op1, Loc, PFS) ||
2489      ParseToken(lltok::comma, "expected ',' after true destination") ||
2490      ParseTypeAndValue(Op2, Loc2, PFS))
2491    return true;
2492
2493  if (!isa<BasicBlock>(Op1))
2494    return Error(Loc, "true destination of branch must be a basic block");
2495  if (!isa<BasicBlock>(Op2))
2496    return Error(Loc2, "true destination of branch must be a basic block");
2497
2498  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2499  return false;
2500}
2501
2502/// ParseSwitch
2503///  Instruction
2504///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2505///  JumpTable
2506///    ::= (TypeAndValue ',' TypeAndValue)*
2507bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2508  LocTy CondLoc, BBLoc;
2509  Value *Cond, *DefaultBB;
2510  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2511      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2512      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2513      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2514    return true;
2515
2516  if (!isa<IntegerType>(Cond->getType()))
2517    return Error(CondLoc, "switch condition must have integer type");
2518  if (!isa<BasicBlock>(DefaultBB))
2519    return Error(BBLoc, "default destination must be a basic block");
2520
2521  // Parse the jump table pairs.
2522  SmallPtrSet<Value*, 32> SeenCases;
2523  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2524  while (Lex.getKind() != lltok::rsquare) {
2525    Value *Constant, *DestBB;
2526
2527    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2528        ParseToken(lltok::comma, "expected ',' after case value") ||
2529        ParseTypeAndValue(DestBB, BBLoc, PFS))
2530      return true;
2531
2532    if (!SeenCases.insert(Constant))
2533      return Error(CondLoc, "duplicate case value in switch");
2534    if (!isa<ConstantInt>(Constant))
2535      return Error(CondLoc, "case value is not a constant integer");
2536    if (!isa<BasicBlock>(DestBB))
2537      return Error(BBLoc, "case destination is not a basic block");
2538
2539    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2540                                   cast<BasicBlock>(DestBB)));
2541  }
2542
2543  Lex.Lex();  // Eat the ']'.
2544
2545  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2546                                      Table.size());
2547  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2548    SI->addCase(Table[i].first, Table[i].second);
2549  Inst = SI;
2550  return false;
2551}
2552
2553/// ParseInvoke
2554///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2555///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2556bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2557  LocTy CallLoc = Lex.getLoc();
2558  unsigned CC, RetAttrs, FnAttrs;
2559  PATypeHolder RetType(Type::VoidTy);
2560  LocTy RetTypeLoc;
2561  ValID CalleeID;
2562  SmallVector<ParamInfo, 16> ArgList;
2563
2564  Value *NormalBB, *UnwindBB;
2565  if (ParseOptionalCallingConv(CC) ||
2566      ParseOptionalAttrs(RetAttrs, 1) ||
2567      ParseType(RetType, RetTypeLoc) ||
2568      ParseValID(CalleeID) ||
2569      ParseParameterList(ArgList, PFS) ||
2570      ParseOptionalAttrs(FnAttrs, 2) ||
2571      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
2572      ParseTypeAndValue(NormalBB, PFS) ||
2573      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
2574      ParseTypeAndValue(UnwindBB, PFS))
2575    return true;
2576
2577  if (!isa<BasicBlock>(NormalBB))
2578    return Error(CallLoc, "normal destination is not a basic block");
2579  if (!isa<BasicBlock>(UnwindBB))
2580    return Error(CallLoc, "unwind destination is not a basic block");
2581
2582  // If RetType is a non-function pointer type, then this is the short syntax
2583  // for the call, which means that RetType is just the return type.  Infer the
2584  // rest of the function argument types from the arguments that are present.
2585  const PointerType *PFTy = 0;
2586  const FunctionType *Ty = 0;
2587  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2588      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2589    // Pull out the types of all of the arguments...
2590    std::vector<const Type*> ParamTypes;
2591    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2592      ParamTypes.push_back(ArgList[i].V->getType());
2593
2594    if (!FunctionType::isValidReturnType(RetType))
2595      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2596
2597    Ty = FunctionType::get(RetType, ParamTypes, false);
2598    PFTy = PointerType::getUnqual(Ty);
2599  }
2600
2601  // Look up the callee.
2602  Value *Callee;
2603  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2604
2605  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2606  // function attributes.
2607  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2608  if (FnAttrs & ObsoleteFuncAttrs) {
2609    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2610    FnAttrs &= ~ObsoleteFuncAttrs;
2611  }
2612
2613  // Set up the Attributes for the function.
2614  SmallVector<AttributeWithIndex, 8> Attrs;
2615  if (RetAttrs != Attribute::None)
2616    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2617
2618  SmallVector<Value*, 8> Args;
2619
2620  // Loop through FunctionType's arguments and ensure they are specified
2621  // correctly.  Also, gather any parameter attributes.
2622  FunctionType::param_iterator I = Ty->param_begin();
2623  FunctionType::param_iterator E = Ty->param_end();
2624  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2625    const Type *ExpectedTy = 0;
2626    if (I != E) {
2627      ExpectedTy = *I++;
2628    } else if (!Ty->isVarArg()) {
2629      return Error(ArgList[i].Loc, "too many arguments specified");
2630    }
2631
2632    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2633      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2634                   ExpectedTy->getDescription() + "'");
2635    Args.push_back(ArgList[i].V);
2636    if (ArgList[i].Attrs != Attribute::None)
2637      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2638  }
2639
2640  if (I != E)
2641    return Error(CallLoc, "not enough parameters specified for call");
2642
2643  if (FnAttrs != Attribute::None)
2644    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
2645
2646  // Finish off the Attributes and check them
2647  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2648
2649  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
2650                                      cast<BasicBlock>(UnwindBB),
2651                                      Args.begin(), Args.end());
2652  II->setCallingConv(CC);
2653  II->setAttributes(PAL);
2654  Inst = II;
2655  return false;
2656}
2657
2658
2659
2660//===----------------------------------------------------------------------===//
2661// Binary Operators.
2662//===----------------------------------------------------------------------===//
2663
2664/// ParseArithmetic
2665///  ::= ArithmeticOps TypeAndValue ',' Value
2666///
2667/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
2668/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
2669bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
2670                               unsigned Opc, unsigned OperandType) {
2671  LocTy Loc; Value *LHS, *RHS;
2672  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2673      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
2674      ParseValue(LHS->getType(), RHS, PFS))
2675    return true;
2676
2677  bool Valid;
2678  switch (OperandType) {
2679  default: assert(0 && "Unknown operand type!");
2680  case 0: // int or FP.
2681    Valid = LHS->getType()->isIntOrIntVector() ||
2682            LHS->getType()->isFPOrFPVector();
2683    break;
2684  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
2685  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
2686  }
2687
2688  if (!Valid)
2689    return Error(Loc, "invalid operand type for instruction");
2690
2691  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2692  return false;
2693}
2694
2695/// ParseLogical
2696///  ::= ArithmeticOps TypeAndValue ',' Value {
2697bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
2698                            unsigned Opc) {
2699  LocTy Loc; Value *LHS, *RHS;
2700  if (ParseTypeAndValue(LHS, Loc, PFS) ||
2701      ParseToken(lltok::comma, "expected ',' in logical operation") ||
2702      ParseValue(LHS->getType(), RHS, PFS))
2703    return true;
2704
2705  if (!LHS->getType()->isIntOrIntVector())
2706    return Error(Loc,"instruction requires integer or integer vector operands");
2707
2708  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2709  return false;
2710}
2711
2712
2713/// ParseCompare
2714///  ::= 'icmp' IPredicates TypeAndValue ',' Value
2715///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
2716///  ::= 'vicmp' IPredicates TypeAndValue ',' Value
2717///  ::= 'vfcmp' FPredicates TypeAndValue ',' Value
2718bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
2719                            unsigned Opc) {
2720  // Parse the integer/fp comparison predicate.
2721  LocTy Loc;
2722  unsigned Pred;
2723  Value *LHS, *RHS;
2724  if (ParseCmpPredicate(Pred, Opc) ||
2725      ParseTypeAndValue(LHS, Loc, PFS) ||
2726      ParseToken(lltok::comma, "expected ',' after compare value") ||
2727      ParseValue(LHS->getType(), RHS, PFS))
2728    return true;
2729
2730  if (Opc == Instruction::FCmp) {
2731    if (!LHS->getType()->isFPOrFPVector())
2732      return Error(Loc, "fcmp requires floating point operands");
2733    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2734  } else if (Opc == Instruction::ICmp) {
2735    if (!LHS->getType()->isIntOrIntVector() &&
2736        !isa<PointerType>(LHS->getType()))
2737      return Error(Loc, "icmp requires integer operands");
2738    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2739  } else if (Opc == Instruction::VFCmp) {
2740    if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
2741      return Error(Loc, "vfcmp requires vector floating point operands");
2742    Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2743  } else if (Opc == Instruction::VICmp) {
2744    if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
2745      return Error(Loc, "vicmp requires vector floating point operands");
2746    Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
2747  }
2748  return false;
2749}
2750
2751//===----------------------------------------------------------------------===//
2752// Other Instructions.
2753//===----------------------------------------------------------------------===//
2754
2755
2756/// ParseCast
2757///   ::= CastOpc TypeAndValue 'to' Type
2758bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
2759                         unsigned Opc) {
2760  LocTy Loc;  Value *Op;
2761  PATypeHolder DestTy(Type::VoidTy);
2762  if (ParseTypeAndValue(Op, Loc, PFS) ||
2763      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
2764      ParseType(DestTy))
2765    return true;
2766
2767  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy))
2768    return Error(Loc, "invalid cast opcode for cast from '" +
2769                 Op->getType()->getDescription() + "' to '" +
2770                 DestTy->getDescription() + "'");
2771  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
2772  return false;
2773}
2774
2775/// ParseSelect
2776///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2777bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
2778  LocTy Loc;
2779  Value *Op0, *Op1, *Op2;
2780  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2781      ParseToken(lltok::comma, "expected ',' after select condition") ||
2782      ParseTypeAndValue(Op1, PFS) ||
2783      ParseToken(lltok::comma, "expected ',' after select value") ||
2784      ParseTypeAndValue(Op2, PFS))
2785    return true;
2786
2787  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
2788    return Error(Loc, Reason);
2789
2790  Inst = SelectInst::Create(Op0, Op1, Op2);
2791  return false;
2792}
2793
2794/// ParseVA_Arg
2795///   ::= 'va_arg' TypeAndValue ',' Type
2796bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
2797  Value *Op;
2798  PATypeHolder EltTy(Type::VoidTy);
2799  LocTy TypeLoc;
2800  if (ParseTypeAndValue(Op, PFS) ||
2801      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
2802      ParseType(EltTy, TypeLoc))
2803    return true;
2804
2805  if (!EltTy->isFirstClassType())
2806    return Error(TypeLoc, "va_arg requires operand with first class type");
2807
2808  Inst = new VAArgInst(Op, EltTy);
2809  return false;
2810}
2811
2812/// ParseExtractElement
2813///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
2814bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
2815  LocTy Loc;
2816  Value *Op0, *Op1;
2817  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2818      ParseToken(lltok::comma, "expected ',' after extract value") ||
2819      ParseTypeAndValue(Op1, PFS))
2820    return true;
2821
2822  if (!ExtractElementInst::isValidOperands(Op0, Op1))
2823    return Error(Loc, "invalid extractelement operands");
2824
2825  Inst = new ExtractElementInst(Op0, Op1);
2826  return false;
2827}
2828
2829/// ParseInsertElement
2830///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2831bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
2832  LocTy Loc;
2833  Value *Op0, *Op1, *Op2;
2834  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2835      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2836      ParseTypeAndValue(Op1, PFS) ||
2837      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2838      ParseTypeAndValue(Op2, PFS))
2839    return true;
2840
2841  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
2842    return Error(Loc, "invalid extractelement operands");
2843
2844  Inst = InsertElementInst::Create(Op0, Op1, Op2);
2845  return false;
2846}
2847
2848/// ParseShuffleVector
2849///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2850bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
2851  LocTy Loc;
2852  Value *Op0, *Op1, *Op2;
2853  if (ParseTypeAndValue(Op0, Loc, PFS) ||
2854      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
2855      ParseTypeAndValue(Op1, PFS) ||
2856      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
2857      ParseTypeAndValue(Op2, PFS))
2858    return true;
2859
2860  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2861    return Error(Loc, "invalid extractelement operands");
2862
2863  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
2864  return false;
2865}
2866
2867/// ParsePHI
2868///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
2869bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
2870  PATypeHolder Ty(Type::VoidTy);
2871  Value *Op0, *Op1;
2872  LocTy TypeLoc = Lex.getLoc();
2873
2874  if (ParseType(Ty) ||
2875      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2876      ParseValue(Ty, Op0, PFS) ||
2877      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2878      ParseValue(Type::LabelTy, Op1, PFS) ||
2879      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2880    return true;
2881
2882  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
2883  while (1) {
2884    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
2885
2886    if (!EatIfPresent(lltok::comma))
2887      break;
2888
2889    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
2890        ParseValue(Ty, Op0, PFS) ||
2891        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
2892        ParseValue(Type::LabelTy, Op1, PFS) ||
2893        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
2894      return true;
2895  }
2896
2897  if (!Ty->isFirstClassType())
2898    return Error(TypeLoc, "phi node must have first class type");
2899
2900  PHINode *PN = PHINode::Create(Ty);
2901  PN->reserveOperandSpace(PHIVals.size());
2902  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
2903    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
2904  Inst = PN;
2905  return false;
2906}
2907
2908/// ParseCall
2909///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
2910///       ParameterList OptionalAttrs
2911bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
2912                         bool isTail) {
2913  unsigned CC, RetAttrs, FnAttrs;
2914  PATypeHolder RetType(Type::VoidTy);
2915  LocTy RetTypeLoc;
2916  ValID CalleeID;
2917  SmallVector<ParamInfo, 16> ArgList;
2918  LocTy CallLoc = Lex.getLoc();
2919
2920  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
2921      ParseOptionalCallingConv(CC) ||
2922      ParseOptionalAttrs(RetAttrs, 1) ||
2923      ParseType(RetType, RetTypeLoc) ||
2924      ParseValID(CalleeID) ||
2925      ParseParameterList(ArgList, PFS) ||
2926      ParseOptionalAttrs(FnAttrs, 2))
2927    return true;
2928
2929  // If RetType is a non-function pointer type, then this is the short syntax
2930  // for the call, which means that RetType is just the return type.  Infer the
2931  // rest of the function argument types from the arguments that are present.
2932  const PointerType *PFTy = 0;
2933  const FunctionType *Ty = 0;
2934  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
2935      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2936    // Pull out the types of all of the arguments...
2937    std::vector<const Type*> ParamTypes;
2938    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2939      ParamTypes.push_back(ArgList[i].V->getType());
2940
2941    if (!FunctionType::isValidReturnType(RetType))
2942      return Error(RetTypeLoc, "Invalid result type for LLVM function");
2943
2944    Ty = FunctionType::get(RetType, ParamTypes, false);
2945    PFTy = PointerType::getUnqual(Ty);
2946  }
2947
2948  // Look up the callee.
2949  Value *Callee;
2950  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
2951
2952  // Check for call to invalid intrinsic to avoid crashing later.
2953  if (Function *F = dyn_cast<Function>(Callee)) {
2954    if (F->hasName() && F->getNameLen() >= 5 &&
2955        !strncmp(F->getValueName()->getKeyData(), "llvm.", 5) &&
2956        !F->getIntrinsicID(true))
2957      return Error(CallLoc, "Call to invalid LLVM intrinsic function '" +
2958                   F->getNameStr() + "'");
2959  }
2960
2961  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
2962  // function attributes.
2963  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2964  if (FnAttrs & ObsoleteFuncAttrs) {
2965    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
2966    FnAttrs &= ~ObsoleteFuncAttrs;
2967  }
2968
2969  // Set up the Attributes for the function.
2970  SmallVector<AttributeWithIndex, 8> Attrs;
2971  if (RetAttrs != Attribute::None)
2972    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2973
2974  SmallVector<Value*, 8> Args;
2975
2976  // Loop through FunctionType's arguments and ensure they are specified
2977  // correctly.  Also, gather any parameter attributes.
2978  FunctionType::param_iterator I = Ty->param_begin();
2979  FunctionType::param_iterator E = Ty->param_end();
2980  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2981    const Type *ExpectedTy = 0;
2982    if (I != E) {
2983      ExpectedTy = *I++;
2984    } else if (!Ty->isVarArg()) {
2985      return Error(ArgList[i].Loc, "too many arguments specified");
2986    }
2987
2988    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
2989      return Error(ArgList[i].Loc, "argument is not of expected type '" +
2990                   ExpectedTy->getDescription() + "'");
2991    Args.push_back(ArgList[i].V);
2992    if (ArgList[i].Attrs != Attribute::None)
2993      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2994  }
2995
2996  if (I != E)
2997    return Error(CallLoc, "not enough parameters specified for call");
2998
2999  if (FnAttrs != Attribute::None)
3000    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3001
3002  // Finish off the Attributes and check them
3003  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3004
3005  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3006  CI->setTailCall(isTail);
3007  CI->setCallingConv(CC);
3008  CI->setAttributes(PAL);
3009  Inst = CI;
3010  return false;
3011}
3012
3013//===----------------------------------------------------------------------===//
3014// Memory Instructions.
3015//===----------------------------------------------------------------------===//
3016
3017/// ParseAlloc
3018///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3019///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
3020bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3021                          unsigned Opc) {
3022  PATypeHolder Ty(Type::VoidTy);
3023  Value *Size = 0;
3024  LocTy SizeLoc = 0;
3025  unsigned Alignment = 0;
3026  if (ParseType(Ty)) return true;
3027
3028  if (EatIfPresent(lltok::comma)) {
3029    if (Lex.getKind() == lltok::kw_align) {
3030      if (ParseOptionalAlignment(Alignment)) return true;
3031    } else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3032               ParseOptionalCommaAlignment(Alignment)) {
3033      return true;
3034    }
3035  }
3036
3037  if (Size && Size->getType() != Type::Int32Ty)
3038    return Error(SizeLoc, "element count must be i32");
3039
3040  if (Opc == Instruction::Malloc)
3041    Inst = new MallocInst(Ty, Size, Alignment);
3042  else
3043    Inst = new AllocaInst(Ty, Size, Alignment);
3044  return false;
3045}
3046
3047/// ParseFree
3048///   ::= 'free' TypeAndValue
3049bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3050  Value *Val; LocTy Loc;
3051  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3052  if (!isa<PointerType>(Val->getType()))
3053    return Error(Loc, "operand to free must be a pointer");
3054  Inst = new FreeInst(Val);
3055  return false;
3056}
3057
3058/// ParseLoad
3059///   ::= 'volatile'? 'load' TypeAndValue (',' 'align' uint)?
3060bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3061                         bool isVolatile) {
3062  Value *Val; LocTy Loc;
3063  unsigned Alignment;
3064  if (ParseTypeAndValue(Val, Loc, PFS) ||
3065      ParseOptionalCommaAlignment(Alignment))
3066    return true;
3067
3068  if (!isa<PointerType>(Val->getType()) ||
3069      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3070    return Error(Loc, "load operand must be a pointer to a first class type");
3071
3072  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3073  return false;
3074}
3075
3076/// ParseStore
3077///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' uint)?
3078bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3079                          bool isVolatile) {
3080  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3081  unsigned Alignment;
3082  if (ParseTypeAndValue(Val, Loc, PFS) ||
3083      ParseToken(lltok::comma, "expected ',' after store operand") ||
3084      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3085      ParseOptionalCommaAlignment(Alignment))
3086    return true;
3087
3088  if (!isa<PointerType>(Ptr->getType()))
3089    return Error(PtrLoc, "store operand must be a pointer");
3090  if (!Val->getType()->isFirstClassType())
3091    return Error(Loc, "store operand must be a first class value");
3092  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3093    return Error(Loc, "stored value and pointer type do not match");
3094
3095  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3096  return false;
3097}
3098
3099/// ParseGetResult
3100///   ::= 'getresult' TypeAndValue ',' uint
3101/// FIXME: Remove support for getresult in LLVM 3.0
3102bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3103  Value *Val; LocTy ValLoc, EltLoc;
3104  unsigned Element;
3105  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3106      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3107      ParseUInt32(Element, EltLoc))
3108    return true;
3109
3110  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3111    return Error(ValLoc, "getresult inst requires an aggregate operand");
3112  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3113    return Error(EltLoc, "invalid getresult index for value");
3114  Inst = ExtractValueInst::Create(Val, Element);
3115  return false;
3116}
3117
3118/// ParseGetElementPtr
3119///   ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
3120bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3121  Value *Ptr, *Val; LocTy Loc, EltLoc;
3122  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3123
3124  if (!isa<PointerType>(Ptr->getType()))
3125    return Error(Loc, "base of getelementptr must be a pointer");
3126
3127  SmallVector<Value*, 16> Indices;
3128  while (EatIfPresent(lltok::comma)) {
3129    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3130    if (!isa<IntegerType>(Val->getType()))
3131      return Error(EltLoc, "getelementptr index must be an integer");
3132    Indices.push_back(Val);
3133  }
3134
3135  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3136                                         Indices.begin(), Indices.end()))
3137    return Error(Loc, "invalid getelementptr indices");
3138  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3139  return false;
3140}
3141
3142/// ParseExtractValue
3143///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3144bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3145  Value *Val; LocTy Loc;
3146  SmallVector<unsigned, 4> Indices;
3147  if (ParseTypeAndValue(Val, Loc, PFS) ||
3148      ParseIndexList(Indices))
3149    return true;
3150
3151  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3152    return Error(Loc, "extractvalue operand must be array or struct");
3153
3154  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3155                                        Indices.end()))
3156    return Error(Loc, "invalid indices for extractvalue");
3157  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3158  return false;
3159}
3160
3161/// ParseInsertValue
3162///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3163bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3164  Value *Val0, *Val1; LocTy Loc0, Loc1;
3165  SmallVector<unsigned, 4> Indices;
3166  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3167      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3168      ParseTypeAndValue(Val1, Loc1, PFS) ||
3169      ParseIndexList(Indices))
3170    return true;
3171
3172  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3173    return Error(Loc0, "extractvalue operand must be array or struct");
3174
3175  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3176                                        Indices.end()))
3177    return Error(Loc0, "invalid indices for insertvalue");
3178  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3179  return false;
3180}
3181