LLParser.cpp revision 599d2d4c25d3aee63a21d9c67a88cd43bd971b7e
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Target/TargetData.h"
28using namespace llvm;
29
30static std::string getTypeString(Type *T) {
31  std::string Result;
32  raw_string_ostream Tmp(Result);
33  Tmp << *T;
34  return Tmp.str();
35}
36
37/// Run: module ::= toplevelentity*
38bool LLParser::Run() {
39  // Prime the lexer.
40  Lex.Lex();
41
42  return ParseTopLevelEntities() ||
43         ValidateEndOfModule();
44}
45
46/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
47/// module.
48bool LLParser::ValidateEndOfModule() {
49  // Handle any instruction metadata forward references.
50  if (!ForwardRefInstMetadata.empty()) {
51    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
52         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
53         I != E; ++I) {
54      Instruction *Inst = I->first;
55      const std::vector<MDRef> &MDList = I->second;
56
57      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
58        unsigned SlotNo = MDList[i].MDSlot;
59
60        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
61          return Error(MDList[i].Loc, "use of undefined metadata '!" +
62                       Twine(SlotNo) + "'");
63        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
64      }
65    }
66    ForwardRefInstMetadata.clear();
67  }
68
69
70  // If there are entries in ForwardRefBlockAddresses at this point, they are
71  // references after the function was defined.  Resolve those now.
72  while (!ForwardRefBlockAddresses.empty()) {
73    // Okay, we are referencing an already-parsed function, resolve them now.
74    Function *TheFn = 0;
75    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
76    if (Fn.Kind == ValID::t_GlobalName)
77      TheFn = M->getFunction(Fn.StrVal);
78    else if (Fn.UIntVal < NumberedVals.size())
79      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
80
81    if (TheFn == 0)
82      return Error(Fn.Loc, "unknown function referenced by blockaddress");
83
84    // Resolve all these references.
85    if (ResolveForwardRefBlockAddresses(TheFn,
86                                      ForwardRefBlockAddresses.begin()->second,
87                                        0))
88      return true;
89
90    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
91  }
92
93  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
94    if (NumberedTypes[i].second.isValid())
95      return Error(NumberedTypes[i].second,
96                   "use of undefined type '%" + Twine(i) + "'");
97
98  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
99       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
100    if (I->second.second.isValid())
101      return Error(I->second.second,
102                   "use of undefined type named '" + I->getKey() + "'");
103
104  if (!ForwardRefVals.empty())
105    return Error(ForwardRefVals.begin()->second.second,
106                 "use of undefined value '@" + ForwardRefVals.begin()->first +
107                 "'");
108
109  if (!ForwardRefValIDs.empty())
110    return Error(ForwardRefValIDs.begin()->second.second,
111                 "use of undefined value '@" +
112                 Twine(ForwardRefValIDs.begin()->first) + "'");
113
114  if (!ForwardRefMDNodes.empty())
115    return Error(ForwardRefMDNodes.begin()->second.second,
116                 "use of undefined metadata '!" +
117                 Twine(ForwardRefMDNodes.begin()->first) + "'");
118
119
120  // Look for intrinsic functions and CallInst that need to be upgraded
121  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
122    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
123
124  // Upgrade to new EH scheme. N.B. This will go away in 3.1.
125  UpgradeExceptionHandling(M);
126
127  // Check debug info intrinsics.
128  CheckDebugInfoIntrinsics(M);
129  return false;
130}
131
132bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
133                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
134                                               PerFunctionState *PFS) {
135  // Loop over all the references, resolving them.
136  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
137    BasicBlock *Res;
138    if (PFS) {
139      if (Refs[i].first.Kind == ValID::t_LocalName)
140        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
141      else
142        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
143    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
144      return Error(Refs[i].first.Loc,
145       "cannot take address of numeric label after the function is defined");
146    } else {
147      Res = dyn_cast_or_null<BasicBlock>(
148                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
149    }
150
151    if (Res == 0)
152      return Error(Refs[i].first.Loc,
153                   "referenced value is not a basic block");
154
155    // Get the BlockAddress for this and update references to use it.
156    BlockAddress *BA = BlockAddress::get(TheFn, Res);
157    Refs[i].second->replaceAllUsesWith(BA);
158    Refs[i].second->eraseFromParent();
159  }
160  return false;
161}
162
163
164//===----------------------------------------------------------------------===//
165// Top-Level Entities
166//===----------------------------------------------------------------------===//
167
168bool LLParser::ParseTopLevelEntities() {
169  while (1) {
170    switch (Lex.getKind()) {
171    default:         return TokError("expected top-level entity");
172    case lltok::Eof: return false;
173    case lltok::kw_declare: if (ParseDeclare()) return true; break;
174    case lltok::kw_define:  if (ParseDefine()) return true; break;
175    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
176    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
177    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
178    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
179    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
180    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
181    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
182    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
183    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
184
185    // The Global variable production with no name can have many different
186    // optional leading prefixes, the production is:
187    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
188    //               OptionalAddrSpace OptionalUnNammedAddr
189    //               ('constant'|'global') ...
190    case lltok::kw_private:             // OptionalLinkage
191    case lltok::kw_linker_private:      // OptionalLinkage
192    case lltok::kw_linker_private_weak: // OptionalLinkage
193    case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
194    case lltok::kw_internal:            // OptionalLinkage
195    case lltok::kw_weak:                // OptionalLinkage
196    case lltok::kw_weak_odr:            // OptionalLinkage
197    case lltok::kw_linkonce:            // OptionalLinkage
198    case lltok::kw_linkonce_odr:        // OptionalLinkage
199    case lltok::kw_appending:           // OptionalLinkage
200    case lltok::kw_dllexport:           // OptionalLinkage
201    case lltok::kw_common:              // OptionalLinkage
202    case lltok::kw_dllimport:           // OptionalLinkage
203    case lltok::kw_extern_weak:         // OptionalLinkage
204    case lltok::kw_external: {          // OptionalLinkage
205      unsigned Linkage, Visibility;
206      if (ParseOptionalLinkage(Linkage) ||
207          ParseOptionalVisibility(Visibility) ||
208          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
209        return true;
210      break;
211    }
212    case lltok::kw_default:       // OptionalVisibility
213    case lltok::kw_hidden:        // OptionalVisibility
214    case lltok::kw_protected: {   // OptionalVisibility
215      unsigned Visibility;
216      if (ParseOptionalVisibility(Visibility) ||
217          ParseGlobal("", SMLoc(), 0, false, Visibility))
218        return true;
219      break;
220    }
221
222    case lltok::kw_thread_local:  // OptionalThreadLocal
223    case lltok::kw_addrspace:     // OptionalAddrSpace
224    case lltok::kw_constant:      // GlobalType
225    case lltok::kw_global:        // GlobalType
226      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
227      break;
228    }
229  }
230}
231
232
233/// toplevelentity
234///   ::= 'module' 'asm' STRINGCONSTANT
235bool LLParser::ParseModuleAsm() {
236  assert(Lex.getKind() == lltok::kw_module);
237  Lex.Lex();
238
239  std::string AsmStr;
240  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
241      ParseStringConstant(AsmStr)) return true;
242
243  M->appendModuleInlineAsm(AsmStr);
244  return false;
245}
246
247/// toplevelentity
248///   ::= 'target' 'triple' '=' STRINGCONSTANT
249///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
250bool LLParser::ParseTargetDefinition() {
251  assert(Lex.getKind() == lltok::kw_target);
252  std::string Str;
253  switch (Lex.Lex()) {
254  default: return TokError("unknown target property");
255  case lltok::kw_triple:
256    Lex.Lex();
257    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
258        ParseStringConstant(Str))
259      return true;
260    M->setTargetTriple(Str);
261    return false;
262  case lltok::kw_datalayout:
263    Lex.Lex();
264    LocTy SpecifierLoc = Lex.getLoc();
265    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
266        ParseStringConstant(Str))
267      return true;
268    std::string errMsg = TargetData::parseSpecifier(Str);
269    if (errMsg != "") {
270      return Error(SpecifierLoc, errMsg);
271    }
272    M->setDataLayout(Str);
273    return false;
274  }
275}
276
277/// toplevelentity
278///   ::= 'deplibs' '=' '[' ']'
279///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
280bool LLParser::ParseDepLibs() {
281  assert(Lex.getKind() == lltok::kw_deplibs);
282  Lex.Lex();
283  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
284      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
285    return true;
286
287  if (EatIfPresent(lltok::rsquare))
288    return false;
289
290  std::string Str;
291  if (ParseStringConstant(Str)) return true;
292  M->addLibrary(Str);
293
294  while (EatIfPresent(lltok::comma)) {
295    if (ParseStringConstant(Str)) return true;
296    M->addLibrary(Str);
297  }
298
299  return ParseToken(lltok::rsquare, "expected ']' at end of list");
300}
301
302/// ParseUnnamedType:
303///   ::= LocalVarID '=' 'type' type
304bool LLParser::ParseUnnamedType() {
305  LocTy TypeLoc = Lex.getLoc();
306  unsigned TypeID = Lex.getUIntVal();
307  Lex.Lex(); // eat LocalVarID;
308
309  if (ParseToken(lltok::equal, "expected '=' after name") ||
310      ParseToken(lltok::kw_type, "expected 'type' after '='"))
311    return true;
312
313  if (TypeID >= NumberedTypes.size())
314    NumberedTypes.resize(TypeID+1);
315
316  Type *Result = 0;
317  if (ParseStructDefinition(TypeLoc, "",
318                            NumberedTypes[TypeID], Result)) return true;
319
320  if (!isa<StructType>(Result)) {
321    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
322    if (Entry.first)
323      return Error(TypeLoc, "non-struct types may not be recursive");
324    Entry.first = Result;
325    Entry.second = SMLoc();
326  }
327
328  return false;
329}
330
331
332/// toplevelentity
333///   ::= LocalVar '=' 'type' type
334bool LLParser::ParseNamedType() {
335  std::string Name = Lex.getStrVal();
336  LocTy NameLoc = Lex.getLoc();
337  Lex.Lex();  // eat LocalVar.
338
339  if (ParseToken(lltok::equal, "expected '=' after name") ||
340      ParseToken(lltok::kw_type, "expected 'type' after name"))
341    return true;
342
343  Type *Result = 0;
344  if (ParseStructDefinition(NameLoc, Name,
345                            NamedTypes[Name], Result)) return true;
346
347  if (!isa<StructType>(Result)) {
348    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
349    if (Entry.first)
350      return Error(NameLoc, "non-struct types may not be recursive");
351    Entry.first = Result;
352    Entry.second = SMLoc();
353  }
354
355  return false;
356}
357
358
359/// toplevelentity
360///   ::= 'declare' FunctionHeader
361bool LLParser::ParseDeclare() {
362  assert(Lex.getKind() == lltok::kw_declare);
363  Lex.Lex();
364
365  Function *F;
366  return ParseFunctionHeader(F, false);
367}
368
369/// toplevelentity
370///   ::= 'define' FunctionHeader '{' ...
371bool LLParser::ParseDefine() {
372  assert(Lex.getKind() == lltok::kw_define);
373  Lex.Lex();
374
375  Function *F;
376  return ParseFunctionHeader(F, true) ||
377         ParseFunctionBody(*F);
378}
379
380/// ParseGlobalType
381///   ::= 'constant'
382///   ::= 'global'
383bool LLParser::ParseGlobalType(bool &IsConstant) {
384  if (Lex.getKind() == lltok::kw_constant)
385    IsConstant = true;
386  else if (Lex.getKind() == lltok::kw_global)
387    IsConstant = false;
388  else {
389    IsConstant = false;
390    return TokError("expected 'global' or 'constant'");
391  }
392  Lex.Lex();
393  return false;
394}
395
396/// ParseUnnamedGlobal:
397///   OptionalVisibility ALIAS ...
398///   OptionalLinkage OptionalVisibility ...   -> global variable
399///   GlobalID '=' OptionalVisibility ALIAS ...
400///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
401bool LLParser::ParseUnnamedGlobal() {
402  unsigned VarID = NumberedVals.size();
403  std::string Name;
404  LocTy NameLoc = Lex.getLoc();
405
406  // Handle the GlobalID form.
407  if (Lex.getKind() == lltok::GlobalID) {
408    if (Lex.getUIntVal() != VarID)
409      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
410                   Twine(VarID) + "'");
411    Lex.Lex(); // eat GlobalID;
412
413    if (ParseToken(lltok::equal, "expected '=' after name"))
414      return true;
415  }
416
417  bool HasLinkage;
418  unsigned Linkage, Visibility;
419  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
420      ParseOptionalVisibility(Visibility))
421    return true;
422
423  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
424    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
425  return ParseAlias(Name, NameLoc, Visibility);
426}
427
428/// ParseNamedGlobal:
429///   GlobalVar '=' OptionalVisibility ALIAS ...
430///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
431bool LLParser::ParseNamedGlobal() {
432  assert(Lex.getKind() == lltok::GlobalVar);
433  LocTy NameLoc = Lex.getLoc();
434  std::string Name = Lex.getStrVal();
435  Lex.Lex();
436
437  bool HasLinkage;
438  unsigned Linkage, Visibility;
439  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
440      ParseOptionalLinkage(Linkage, HasLinkage) ||
441      ParseOptionalVisibility(Visibility))
442    return true;
443
444  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
445    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
446  return ParseAlias(Name, NameLoc, Visibility);
447}
448
449// MDString:
450//   ::= '!' STRINGCONSTANT
451bool LLParser::ParseMDString(MDString *&Result) {
452  std::string Str;
453  if (ParseStringConstant(Str)) return true;
454  Result = MDString::get(Context, Str);
455  return false;
456}
457
458// MDNode:
459//   ::= '!' MDNodeNumber
460//
461/// This version of ParseMDNodeID returns the slot number and null in the case
462/// of a forward reference.
463bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
464  // !{ ..., !42, ... }
465  if (ParseUInt32(SlotNo)) return true;
466
467  // Check existing MDNode.
468  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
469    Result = NumberedMetadata[SlotNo];
470  else
471    Result = 0;
472  return false;
473}
474
475bool LLParser::ParseMDNodeID(MDNode *&Result) {
476  // !{ ..., !42, ... }
477  unsigned MID = 0;
478  if (ParseMDNodeID(Result, MID)) return true;
479
480  // If not a forward reference, just return it now.
481  if (Result) return false;
482
483  // Otherwise, create MDNode forward reference.
484  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
485  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
486
487  if (NumberedMetadata.size() <= MID)
488    NumberedMetadata.resize(MID+1);
489  NumberedMetadata[MID] = FwdNode;
490  Result = FwdNode;
491  return false;
492}
493
494/// ParseNamedMetadata:
495///   !foo = !{ !1, !2 }
496bool LLParser::ParseNamedMetadata() {
497  assert(Lex.getKind() == lltok::MetadataVar);
498  std::string Name = Lex.getStrVal();
499  Lex.Lex();
500
501  if (ParseToken(lltok::equal, "expected '=' here") ||
502      ParseToken(lltok::exclaim, "Expected '!' here") ||
503      ParseToken(lltok::lbrace, "Expected '{' here"))
504    return true;
505
506  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
507  if (Lex.getKind() != lltok::rbrace)
508    do {
509      if (ParseToken(lltok::exclaim, "Expected '!' here"))
510        return true;
511
512      MDNode *N = 0;
513      if (ParseMDNodeID(N)) return true;
514      NMD->addOperand(N);
515    } while (EatIfPresent(lltok::comma));
516
517  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
518    return true;
519
520  return false;
521}
522
523/// ParseStandaloneMetadata:
524///   !42 = !{...}
525bool LLParser::ParseStandaloneMetadata() {
526  assert(Lex.getKind() == lltok::exclaim);
527  Lex.Lex();
528  unsigned MetadataID = 0;
529
530  LocTy TyLoc;
531  Type *Ty = 0;
532  SmallVector<Value *, 16> Elts;
533  if (ParseUInt32(MetadataID) ||
534      ParseToken(lltok::equal, "expected '=' here") ||
535      ParseType(Ty, TyLoc) ||
536      ParseToken(lltok::exclaim, "Expected '!' here") ||
537      ParseToken(lltok::lbrace, "Expected '{' here") ||
538      ParseMDNodeVector(Elts, NULL) ||
539      ParseToken(lltok::rbrace, "expected end of metadata node"))
540    return true;
541
542  MDNode *Init = MDNode::get(Context, Elts);
543
544  // See if this was forward referenced, if so, handle it.
545  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
546    FI = ForwardRefMDNodes.find(MetadataID);
547  if (FI != ForwardRefMDNodes.end()) {
548    MDNode *Temp = FI->second.first;
549    Temp->replaceAllUsesWith(Init);
550    MDNode::deleteTemporary(Temp);
551    ForwardRefMDNodes.erase(FI);
552
553    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
554  } else {
555    if (MetadataID >= NumberedMetadata.size())
556      NumberedMetadata.resize(MetadataID+1);
557
558    if (NumberedMetadata[MetadataID] != 0)
559      return TokError("Metadata id is already used");
560    NumberedMetadata[MetadataID] = Init;
561  }
562
563  return false;
564}
565
566/// ParseAlias:
567///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
568/// Aliasee
569///   ::= TypeAndValue
570///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
571///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
572///
573/// Everything through visibility has already been parsed.
574///
575bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
576                          unsigned Visibility) {
577  assert(Lex.getKind() == lltok::kw_alias);
578  Lex.Lex();
579  unsigned Linkage;
580  LocTy LinkageLoc = Lex.getLoc();
581  if (ParseOptionalLinkage(Linkage))
582    return true;
583
584  if (Linkage != GlobalValue::ExternalLinkage &&
585      Linkage != GlobalValue::WeakAnyLinkage &&
586      Linkage != GlobalValue::WeakODRLinkage &&
587      Linkage != GlobalValue::InternalLinkage &&
588      Linkage != GlobalValue::PrivateLinkage &&
589      Linkage != GlobalValue::LinkerPrivateLinkage &&
590      Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
591      Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
592    return Error(LinkageLoc, "invalid linkage type for alias");
593
594  Constant *Aliasee;
595  LocTy AliaseeLoc = Lex.getLoc();
596  if (Lex.getKind() != lltok::kw_bitcast &&
597      Lex.getKind() != lltok::kw_getelementptr) {
598    if (ParseGlobalTypeAndValue(Aliasee)) return true;
599  } else {
600    // The bitcast dest type is not present, it is implied by the dest type.
601    ValID ID;
602    if (ParseValID(ID)) return true;
603    if (ID.Kind != ValID::t_Constant)
604      return Error(AliaseeLoc, "invalid aliasee");
605    Aliasee = ID.ConstantVal;
606  }
607
608  if (!Aliasee->getType()->isPointerTy())
609    return Error(AliaseeLoc, "alias must have pointer type");
610
611  // Okay, create the alias but do not insert it into the module yet.
612  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
613                                    (GlobalValue::LinkageTypes)Linkage, Name,
614                                    Aliasee);
615  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
616
617  // See if this value already exists in the symbol table.  If so, it is either
618  // a redefinition or a definition of a forward reference.
619  if (GlobalValue *Val = M->getNamedValue(Name)) {
620    // See if this was a redefinition.  If so, there is no entry in
621    // ForwardRefVals.
622    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
623      I = ForwardRefVals.find(Name);
624    if (I == ForwardRefVals.end())
625      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
626
627    // Otherwise, this was a definition of forward ref.  Verify that types
628    // agree.
629    if (Val->getType() != GA->getType())
630      return Error(NameLoc,
631              "forward reference and definition of alias have different types");
632
633    // If they agree, just RAUW the old value with the alias and remove the
634    // forward ref info.
635    Val->replaceAllUsesWith(GA);
636    Val->eraseFromParent();
637    ForwardRefVals.erase(I);
638  }
639
640  // Insert into the module, we know its name won't collide now.
641  M->getAliasList().push_back(GA);
642  assert(GA->getName() == Name && "Should not be a name conflict!");
643
644  return false;
645}
646
647/// ParseGlobal
648///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
649///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
650///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
651///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
652///
653/// Everything through visibility has been parsed already.
654///
655bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
656                           unsigned Linkage, bool HasLinkage,
657                           unsigned Visibility) {
658  unsigned AddrSpace;
659  bool ThreadLocal, IsConstant, UnnamedAddr;
660  LocTy UnnamedAddrLoc;
661  LocTy TyLoc;
662
663  Type *Ty = 0;
664  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
665      ParseOptionalAddrSpace(AddrSpace) ||
666      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
667                         &UnnamedAddrLoc) ||
668      ParseGlobalType(IsConstant) ||
669      ParseType(Ty, TyLoc))
670    return true;
671
672  // If the linkage is specified and is external, then no initializer is
673  // present.
674  Constant *Init = 0;
675  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
676                      Linkage != GlobalValue::ExternalWeakLinkage &&
677                      Linkage != GlobalValue::ExternalLinkage)) {
678    if (ParseGlobalValue(Ty, Init))
679      return true;
680  }
681
682  if (Ty->isFunctionTy() || Ty->isLabelTy())
683    return Error(TyLoc, "invalid type for global variable");
684
685  GlobalVariable *GV = 0;
686
687  // See if the global was forward referenced, if so, use the global.
688  if (!Name.empty()) {
689    if (GlobalValue *GVal = M->getNamedValue(Name)) {
690      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
691        return Error(NameLoc, "redefinition of global '@" + Name + "'");
692      GV = cast<GlobalVariable>(GVal);
693    }
694  } else {
695    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
696      I = ForwardRefValIDs.find(NumberedVals.size());
697    if (I != ForwardRefValIDs.end()) {
698      GV = cast<GlobalVariable>(I->second.first);
699      ForwardRefValIDs.erase(I);
700    }
701  }
702
703  if (GV == 0) {
704    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
705                            Name, 0, false, AddrSpace);
706  } else {
707    if (GV->getType()->getElementType() != Ty)
708      return Error(TyLoc,
709            "forward reference and definition of global have different types");
710
711    // Move the forward-reference to the correct spot in the module.
712    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
713  }
714
715  if (Name.empty())
716    NumberedVals.push_back(GV);
717
718  // Set the parsed properties on the global.
719  if (Init)
720    GV->setInitializer(Init);
721  GV->setConstant(IsConstant);
722  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
723  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
724  GV->setThreadLocal(ThreadLocal);
725  GV->setUnnamedAddr(UnnamedAddr);
726
727  // Parse attributes on the global.
728  while (Lex.getKind() == lltok::comma) {
729    Lex.Lex();
730
731    if (Lex.getKind() == lltok::kw_section) {
732      Lex.Lex();
733      GV->setSection(Lex.getStrVal());
734      if (ParseToken(lltok::StringConstant, "expected global section string"))
735        return true;
736    } else if (Lex.getKind() == lltok::kw_align) {
737      unsigned Alignment;
738      if (ParseOptionalAlignment(Alignment)) return true;
739      GV->setAlignment(Alignment);
740    } else {
741      TokError("unknown global variable property!");
742    }
743  }
744
745  return false;
746}
747
748
749//===----------------------------------------------------------------------===//
750// GlobalValue Reference/Resolution Routines.
751//===----------------------------------------------------------------------===//
752
753/// GetGlobalVal - Get a value with the specified name or ID, creating a
754/// forward reference record if needed.  This can return null if the value
755/// exists but does not have the right type.
756GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
757                                    LocTy Loc) {
758  PointerType *PTy = dyn_cast<PointerType>(Ty);
759  if (PTy == 0) {
760    Error(Loc, "global variable reference must have pointer type");
761    return 0;
762  }
763
764  // Look this name up in the normal function symbol table.
765  GlobalValue *Val =
766    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
767
768  // If this is a forward reference for the value, see if we already created a
769  // forward ref record.
770  if (Val == 0) {
771    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
772      I = ForwardRefVals.find(Name);
773    if (I != ForwardRefVals.end())
774      Val = I->second.first;
775  }
776
777  // If we have the value in the symbol table or fwd-ref table, return it.
778  if (Val) {
779    if (Val->getType() == Ty) return Val;
780    Error(Loc, "'@" + Name + "' defined with type '" +
781          getTypeString(Val->getType()) + "'");
782    return 0;
783  }
784
785  // Otherwise, create a new forward reference for this value and remember it.
786  GlobalValue *FwdVal;
787  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
788    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
789  else
790    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
791                                GlobalValue::ExternalWeakLinkage, 0, Name);
792
793  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
794  return FwdVal;
795}
796
797GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
798  PointerType *PTy = dyn_cast<PointerType>(Ty);
799  if (PTy == 0) {
800    Error(Loc, "global variable reference must have pointer type");
801    return 0;
802  }
803
804  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
805
806  // If this is a forward reference for the value, see if we already created a
807  // forward ref record.
808  if (Val == 0) {
809    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
810      I = ForwardRefValIDs.find(ID);
811    if (I != ForwardRefValIDs.end())
812      Val = I->second.first;
813  }
814
815  // If we have the value in the symbol table or fwd-ref table, return it.
816  if (Val) {
817    if (Val->getType() == Ty) return Val;
818    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
819          getTypeString(Val->getType()) + "'");
820    return 0;
821  }
822
823  // Otherwise, create a new forward reference for this value and remember it.
824  GlobalValue *FwdVal;
825  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
826    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
827  else
828    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
829                                GlobalValue::ExternalWeakLinkage, 0, "");
830
831  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
832  return FwdVal;
833}
834
835
836//===----------------------------------------------------------------------===//
837// Helper Routines.
838//===----------------------------------------------------------------------===//
839
840/// ParseToken - If the current token has the specified kind, eat it and return
841/// success.  Otherwise, emit the specified error and return failure.
842bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
843  if (Lex.getKind() != T)
844    return TokError(ErrMsg);
845  Lex.Lex();
846  return false;
847}
848
849/// ParseStringConstant
850///   ::= StringConstant
851bool LLParser::ParseStringConstant(std::string &Result) {
852  if (Lex.getKind() != lltok::StringConstant)
853    return TokError("expected string constant");
854  Result = Lex.getStrVal();
855  Lex.Lex();
856  return false;
857}
858
859/// ParseUInt32
860///   ::= uint32
861bool LLParser::ParseUInt32(unsigned &Val) {
862  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
863    return TokError("expected integer");
864  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
865  if (Val64 != unsigned(Val64))
866    return TokError("expected 32-bit integer (too large)");
867  Val = Val64;
868  Lex.Lex();
869  return false;
870}
871
872
873/// ParseOptionalAddrSpace
874///   := /*empty*/
875///   := 'addrspace' '(' uint32 ')'
876bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
877  AddrSpace = 0;
878  if (!EatIfPresent(lltok::kw_addrspace))
879    return false;
880  return ParseToken(lltok::lparen, "expected '(' in address space") ||
881         ParseUInt32(AddrSpace) ||
882         ParseToken(lltok::rparen, "expected ')' in address space");
883}
884
885/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
886/// indicates what kind of attribute list this is: 0: function arg, 1: result,
887/// 2: function attr.
888bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
889  Attrs = Attribute::None;
890  LocTy AttrLoc = Lex.getLoc();
891
892  while (1) {
893    switch (Lex.getKind()) {
894    default:  // End of attributes.
895      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
896        return Error(AttrLoc, "invalid use of function-only attribute");
897
898      // As a hack, we allow "align 2" on functions as a synonym for
899      // "alignstack 2".
900      if (AttrKind == 2 &&
901          (Attrs & ~(Attribute::FunctionOnly | Attribute::Alignment)))
902        return Error(AttrLoc, "invalid use of attribute on a function");
903
904      if (AttrKind != 0 && (Attrs & Attribute::ParameterOnly))
905        return Error(AttrLoc, "invalid use of parameter-only attribute");
906
907      return false;
908    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
909    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
910    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
911    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
912    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
913    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
914    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
915    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
916
917    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
918    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
919    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
920    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
921    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
922    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
923    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
924    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
925    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
926    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
927    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
928    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
929    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
930    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
931    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
932    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
933
934    case lltok::kw_alignstack: {
935      unsigned Alignment;
936      if (ParseOptionalStackAlignment(Alignment))
937        return true;
938      Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
939      continue;
940    }
941
942    case lltok::kw_align: {
943      unsigned Alignment;
944      if (ParseOptionalAlignment(Alignment))
945        return true;
946      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
947      continue;
948    }
949
950    }
951    Lex.Lex();
952  }
953}
954
955/// ParseOptionalLinkage
956///   ::= /*empty*/
957///   ::= 'private'
958///   ::= 'linker_private'
959///   ::= 'linker_private_weak'
960///   ::= 'linker_private_weak_def_auto'
961///   ::= 'internal'
962///   ::= 'weak'
963///   ::= 'weak_odr'
964///   ::= 'linkonce'
965///   ::= 'linkonce_odr'
966///   ::= 'available_externally'
967///   ::= 'appending'
968///   ::= 'dllexport'
969///   ::= 'common'
970///   ::= 'dllimport'
971///   ::= 'extern_weak'
972///   ::= 'external'
973bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
974  HasLinkage = false;
975  switch (Lex.getKind()) {
976  default:                       Res=GlobalValue::ExternalLinkage; return false;
977  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
978  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
979  case lltok::kw_linker_private_weak:
980    Res = GlobalValue::LinkerPrivateWeakLinkage;
981    break;
982  case lltok::kw_linker_private_weak_def_auto:
983    Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
984    break;
985  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
986  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
987  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
988  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
989  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
990  case lltok::kw_available_externally:
991    Res = GlobalValue::AvailableExternallyLinkage;
992    break;
993  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
994  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
995  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
996  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
997  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
998  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
999  }
1000  Lex.Lex();
1001  HasLinkage = true;
1002  return false;
1003}
1004
1005/// ParseOptionalVisibility
1006///   ::= /*empty*/
1007///   ::= 'default'
1008///   ::= 'hidden'
1009///   ::= 'protected'
1010///
1011bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1012  switch (Lex.getKind()) {
1013  default:                  Res = GlobalValue::DefaultVisibility; return false;
1014  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1015  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1016  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1017  }
1018  Lex.Lex();
1019  return false;
1020}
1021
1022/// ParseOptionalCallingConv
1023///   ::= /*empty*/
1024///   ::= 'ccc'
1025///   ::= 'fastcc'
1026///   ::= 'coldcc'
1027///   ::= 'x86_stdcallcc'
1028///   ::= 'x86_fastcallcc'
1029///   ::= 'x86_thiscallcc'
1030///   ::= 'arm_apcscc'
1031///   ::= 'arm_aapcscc'
1032///   ::= 'arm_aapcs_vfpcc'
1033///   ::= 'msp430_intrcc'
1034///   ::= 'ptx_kernel'
1035///   ::= 'ptx_device'
1036///   ::= 'cc' UINT
1037///
1038bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1039  switch (Lex.getKind()) {
1040  default:                       CC = CallingConv::C; return false;
1041  case lltok::kw_ccc:            CC = CallingConv::C; break;
1042  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1043  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1044  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1045  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1046  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1047  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1048  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1049  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1050  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1051  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1052  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1053  case lltok::kw_cc: {
1054      unsigned ArbitraryCC;
1055      Lex.Lex();
1056      if (ParseUInt32(ArbitraryCC)) {
1057        return true;
1058      } else
1059        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1060        return false;
1061    }
1062    break;
1063  }
1064
1065  Lex.Lex();
1066  return false;
1067}
1068
1069/// ParseInstructionMetadata
1070///   ::= !dbg !42 (',' !dbg !57)*
1071bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1072                                        PerFunctionState *PFS) {
1073  do {
1074    if (Lex.getKind() != lltok::MetadataVar)
1075      return TokError("expected metadata after comma");
1076
1077    std::string Name = Lex.getStrVal();
1078    unsigned MDK = M->getMDKindID(Name.c_str());
1079    Lex.Lex();
1080
1081    MDNode *Node;
1082    SMLoc Loc = Lex.getLoc();
1083
1084    if (ParseToken(lltok::exclaim, "expected '!' here"))
1085      return true;
1086
1087    // This code is similar to that of ParseMetadataValue, however it needs to
1088    // have special-case code for a forward reference; see the comments on
1089    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1090    // at the top level here.
1091    if (Lex.getKind() == lltok::lbrace) {
1092      ValID ID;
1093      if (ParseMetadataListValue(ID, PFS))
1094        return true;
1095      assert(ID.Kind == ValID::t_MDNode);
1096      Inst->setMetadata(MDK, ID.MDNodeVal);
1097    } else {
1098      unsigned NodeID = 0;
1099      if (ParseMDNodeID(Node, NodeID))
1100        return true;
1101      if (Node) {
1102        // If we got the node, add it to the instruction.
1103        Inst->setMetadata(MDK, Node);
1104      } else {
1105        MDRef R = { Loc, MDK, NodeID };
1106        // Otherwise, remember that this should be resolved later.
1107        ForwardRefInstMetadata[Inst].push_back(R);
1108      }
1109    }
1110
1111    // If this is the end of the list, we're done.
1112  } while (EatIfPresent(lltok::comma));
1113  return false;
1114}
1115
1116/// ParseOptionalAlignment
1117///   ::= /* empty */
1118///   ::= 'align' 4
1119bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1120  Alignment = 0;
1121  if (!EatIfPresent(lltok::kw_align))
1122    return false;
1123  LocTy AlignLoc = Lex.getLoc();
1124  if (ParseUInt32(Alignment)) return true;
1125  if (!isPowerOf2_32(Alignment))
1126    return Error(AlignLoc, "alignment is not a power of two");
1127  if (Alignment > Value::MaximumAlignment)
1128    return Error(AlignLoc, "huge alignments are not supported yet");
1129  return false;
1130}
1131
1132/// ParseOptionalCommaAlign
1133///   ::=
1134///   ::= ',' align 4
1135///
1136/// This returns with AteExtraComma set to true if it ate an excess comma at the
1137/// end.
1138bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1139                                       bool &AteExtraComma) {
1140  AteExtraComma = false;
1141  while (EatIfPresent(lltok::comma)) {
1142    // Metadata at the end is an early exit.
1143    if (Lex.getKind() == lltok::MetadataVar) {
1144      AteExtraComma = true;
1145      return false;
1146    }
1147
1148    if (Lex.getKind() != lltok::kw_align)
1149      return Error(Lex.getLoc(), "expected metadata or 'align'");
1150
1151    if (ParseOptionalAlignment(Alignment)) return true;
1152  }
1153
1154  return false;
1155}
1156
1157/// ParseScopeAndOrdering
1158///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1159///   else: ::=
1160///
1161/// This sets Scope and Ordering to the parsed values.
1162bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1163                                     AtomicOrdering &Ordering) {
1164  if (!isAtomic)
1165    return false;
1166
1167  Scope = CrossThread;
1168  if (EatIfPresent(lltok::kw_singlethread))
1169    Scope = SingleThread;
1170  switch (Lex.getKind()) {
1171  default: return TokError("Expected ordering on atomic instruction");
1172  case lltok::kw_unordered: Ordering = Unordered; break;
1173  case lltok::kw_monotonic: Ordering = Monotonic; break;
1174  case lltok::kw_acquire: Ordering = Acquire; break;
1175  case lltok::kw_release: Ordering = Release; break;
1176  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1177  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1178  }
1179  Lex.Lex();
1180  return false;
1181}
1182
1183/// ParseOptionalStackAlignment
1184///   ::= /* empty */
1185///   ::= 'alignstack' '(' 4 ')'
1186bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1187  Alignment = 0;
1188  if (!EatIfPresent(lltok::kw_alignstack))
1189    return false;
1190  LocTy ParenLoc = Lex.getLoc();
1191  if (!EatIfPresent(lltok::lparen))
1192    return Error(ParenLoc, "expected '('");
1193  LocTy AlignLoc = Lex.getLoc();
1194  if (ParseUInt32(Alignment)) return true;
1195  ParenLoc = Lex.getLoc();
1196  if (!EatIfPresent(lltok::rparen))
1197    return Error(ParenLoc, "expected ')'");
1198  if (!isPowerOf2_32(Alignment))
1199    return Error(AlignLoc, "stack alignment is not a power of two");
1200  return false;
1201}
1202
1203/// ParseIndexList - This parses the index list for an insert/extractvalue
1204/// instruction.  This sets AteExtraComma in the case where we eat an extra
1205/// comma at the end of the line and find that it is followed by metadata.
1206/// Clients that don't allow metadata can call the version of this function that
1207/// only takes one argument.
1208///
1209/// ParseIndexList
1210///    ::=  (',' uint32)+
1211///
1212bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1213                              bool &AteExtraComma) {
1214  AteExtraComma = false;
1215
1216  if (Lex.getKind() != lltok::comma)
1217    return TokError("expected ',' as start of index list");
1218
1219  while (EatIfPresent(lltok::comma)) {
1220    if (Lex.getKind() == lltok::MetadataVar) {
1221      AteExtraComma = true;
1222      return false;
1223    }
1224    unsigned Idx = 0;
1225    if (ParseUInt32(Idx)) return true;
1226    Indices.push_back(Idx);
1227  }
1228
1229  return false;
1230}
1231
1232//===----------------------------------------------------------------------===//
1233// Type Parsing.
1234//===----------------------------------------------------------------------===//
1235
1236/// ParseType - Parse a type.
1237bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1238  SMLoc TypeLoc = Lex.getLoc();
1239  switch (Lex.getKind()) {
1240  default:
1241    return TokError("expected type");
1242  case lltok::Type:
1243    // Type ::= 'float' | 'void' (etc)
1244    Result = Lex.getTyVal();
1245    Lex.Lex();
1246    break;
1247  case lltok::lbrace:
1248    // Type ::= StructType
1249    if (ParseAnonStructType(Result, false))
1250      return true;
1251    break;
1252  case lltok::lsquare:
1253    // Type ::= '[' ... ']'
1254    Lex.Lex(); // eat the lsquare.
1255    if (ParseArrayVectorType(Result, false))
1256      return true;
1257    break;
1258  case lltok::less: // Either vector or packed struct.
1259    // Type ::= '<' ... '>'
1260    Lex.Lex();
1261    if (Lex.getKind() == lltok::lbrace) {
1262      if (ParseAnonStructType(Result, true) ||
1263          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1264        return true;
1265    } else if (ParseArrayVectorType(Result, true))
1266      return true;
1267    break;
1268  case lltok::LocalVar: {
1269    // Type ::= %foo
1270    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1271
1272    // If the type hasn't been defined yet, create a forward definition and
1273    // remember where that forward def'n was seen (in case it never is defined).
1274    if (Entry.first == 0) {
1275      Entry.first = StructType::create(Context, Lex.getStrVal());
1276      Entry.second = Lex.getLoc();
1277    }
1278    Result = Entry.first;
1279    Lex.Lex();
1280    break;
1281  }
1282
1283  case lltok::LocalVarID: {
1284    // Type ::= %4
1285    if (Lex.getUIntVal() >= NumberedTypes.size())
1286      NumberedTypes.resize(Lex.getUIntVal()+1);
1287    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1288
1289    // If the type hasn't been defined yet, create a forward definition and
1290    // remember where that forward def'n was seen (in case it never is defined).
1291    if (Entry.first == 0) {
1292      Entry.first = StructType::create(Context);
1293      Entry.second = Lex.getLoc();
1294    }
1295    Result = Entry.first;
1296    Lex.Lex();
1297    break;
1298  }
1299  }
1300
1301  // Parse the type suffixes.
1302  while (1) {
1303    switch (Lex.getKind()) {
1304    // End of type.
1305    default:
1306      if (!AllowVoid && Result->isVoidTy())
1307        return Error(TypeLoc, "void type only allowed for function results");
1308      return false;
1309
1310    // Type ::= Type '*'
1311    case lltok::star:
1312      if (Result->isLabelTy())
1313        return TokError("basic block pointers are invalid");
1314      if (Result->isVoidTy())
1315        return TokError("pointers to void are invalid - use i8* instead");
1316      if (!PointerType::isValidElementType(Result))
1317        return TokError("pointer to this type is invalid");
1318      Result = PointerType::getUnqual(Result);
1319      Lex.Lex();
1320      break;
1321
1322    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1323    case lltok::kw_addrspace: {
1324      if (Result->isLabelTy())
1325        return TokError("basic block pointers are invalid");
1326      if (Result->isVoidTy())
1327        return TokError("pointers to void are invalid; use i8* instead");
1328      if (!PointerType::isValidElementType(Result))
1329        return TokError("pointer to this type is invalid");
1330      unsigned AddrSpace;
1331      if (ParseOptionalAddrSpace(AddrSpace) ||
1332          ParseToken(lltok::star, "expected '*' in address space"))
1333        return true;
1334
1335      Result = PointerType::get(Result, AddrSpace);
1336      break;
1337    }
1338
1339    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1340    case lltok::lparen:
1341      if (ParseFunctionType(Result))
1342        return true;
1343      break;
1344    }
1345  }
1346}
1347
1348/// ParseParameterList
1349///    ::= '(' ')'
1350///    ::= '(' Arg (',' Arg)* ')'
1351///  Arg
1352///    ::= Type OptionalAttributes Value OptionalAttributes
1353bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1354                                  PerFunctionState &PFS) {
1355  if (ParseToken(lltok::lparen, "expected '(' in call"))
1356    return true;
1357
1358  while (Lex.getKind() != lltok::rparen) {
1359    // If this isn't the first argument, we need a comma.
1360    if (!ArgList.empty() &&
1361        ParseToken(lltok::comma, "expected ',' in argument list"))
1362      return true;
1363
1364    // Parse the argument.
1365    LocTy ArgLoc;
1366    Type *ArgTy = 0;
1367    unsigned ArgAttrs1 = Attribute::None;
1368    unsigned ArgAttrs2 = Attribute::None;
1369    Value *V;
1370    if (ParseType(ArgTy, ArgLoc))
1371      return true;
1372
1373    // Otherwise, handle normal operands.
1374    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1375      return true;
1376    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1377  }
1378
1379  Lex.Lex();  // Lex the ')'.
1380  return false;
1381}
1382
1383
1384
1385/// ParseArgumentList - Parse the argument list for a function type or function
1386/// prototype.
1387///   ::= '(' ArgTypeListI ')'
1388/// ArgTypeListI
1389///   ::= /*empty*/
1390///   ::= '...'
1391///   ::= ArgTypeList ',' '...'
1392///   ::= ArgType (',' ArgType)*
1393///
1394bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1395                                 bool &isVarArg){
1396  isVarArg = false;
1397  assert(Lex.getKind() == lltok::lparen);
1398  Lex.Lex(); // eat the (.
1399
1400  if (Lex.getKind() == lltok::rparen) {
1401    // empty
1402  } else if (Lex.getKind() == lltok::dotdotdot) {
1403    isVarArg = true;
1404    Lex.Lex();
1405  } else {
1406    LocTy TypeLoc = Lex.getLoc();
1407    Type *ArgTy = 0;
1408    unsigned Attrs;
1409    std::string Name;
1410
1411    if (ParseType(ArgTy) ||
1412        ParseOptionalAttrs(Attrs, 0)) return true;
1413
1414    if (ArgTy->isVoidTy())
1415      return Error(TypeLoc, "argument can not have void type");
1416
1417    if (Lex.getKind() == lltok::LocalVar) {
1418      Name = Lex.getStrVal();
1419      Lex.Lex();
1420    }
1421
1422    if (!FunctionType::isValidArgumentType(ArgTy))
1423      return Error(TypeLoc, "invalid type for function argument");
1424
1425    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1426
1427    while (EatIfPresent(lltok::comma)) {
1428      // Handle ... at end of arg list.
1429      if (EatIfPresent(lltok::dotdotdot)) {
1430        isVarArg = true;
1431        break;
1432      }
1433
1434      // Otherwise must be an argument type.
1435      TypeLoc = Lex.getLoc();
1436      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1437
1438      if (ArgTy->isVoidTy())
1439        return Error(TypeLoc, "argument can not have void type");
1440
1441      if (Lex.getKind() == lltok::LocalVar) {
1442        Name = Lex.getStrVal();
1443        Lex.Lex();
1444      } else {
1445        Name = "";
1446      }
1447
1448      if (!ArgTy->isFirstClassType())
1449        return Error(TypeLoc, "invalid type for function argument");
1450
1451      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1452    }
1453  }
1454
1455  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1456}
1457
1458/// ParseFunctionType
1459///  ::= Type ArgumentList OptionalAttrs
1460bool LLParser::ParseFunctionType(Type *&Result) {
1461  assert(Lex.getKind() == lltok::lparen);
1462
1463  if (!FunctionType::isValidReturnType(Result))
1464    return TokError("invalid function return type");
1465
1466  SmallVector<ArgInfo, 8> ArgList;
1467  bool isVarArg;
1468  if (ParseArgumentList(ArgList, isVarArg))
1469    return true;
1470
1471  // Reject names on the arguments lists.
1472  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1473    if (!ArgList[i].Name.empty())
1474      return Error(ArgList[i].Loc, "argument name invalid in function type");
1475    if (ArgList[i].Attrs != 0)
1476      return Error(ArgList[i].Loc,
1477                   "argument attributes invalid in function type");
1478  }
1479
1480  SmallVector<Type*, 16> ArgListTy;
1481  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1482    ArgListTy.push_back(ArgList[i].Ty);
1483
1484  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1485  return false;
1486}
1487
1488/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1489/// other structs.
1490bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1491  SmallVector<Type*, 8> Elts;
1492  if (ParseStructBody(Elts)) return true;
1493
1494  Result = StructType::get(Context, Elts, Packed);
1495  return false;
1496}
1497
1498/// ParseStructDefinition - Parse a struct in a 'type' definition.
1499bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1500                                     std::pair<Type*, LocTy> &Entry,
1501                                     Type *&ResultTy) {
1502  // If the type was already defined, diagnose the redefinition.
1503  if (Entry.first && !Entry.second.isValid())
1504    return Error(TypeLoc, "redefinition of type");
1505
1506  // If we have opaque, just return without filling in the definition for the
1507  // struct.  This counts as a definition as far as the .ll file goes.
1508  if (EatIfPresent(lltok::kw_opaque)) {
1509    // This type is being defined, so clear the location to indicate this.
1510    Entry.second = SMLoc();
1511
1512    // If this type number has never been uttered, create it.
1513    if (Entry.first == 0)
1514      Entry.first = StructType::create(Context, Name);
1515    ResultTy = Entry.first;
1516    return false;
1517  }
1518
1519  // If the type starts with '<', then it is either a packed struct or a vector.
1520  bool isPacked = EatIfPresent(lltok::less);
1521
1522  // If we don't have a struct, then we have a random type alias, which we
1523  // accept for compatibility with old files.  These types are not allowed to be
1524  // forward referenced and not allowed to be recursive.
1525  if (Lex.getKind() != lltok::lbrace) {
1526    if (Entry.first)
1527      return Error(TypeLoc, "forward references to non-struct type");
1528
1529    ResultTy = 0;
1530    if (isPacked)
1531      return ParseArrayVectorType(ResultTy, true);
1532    return ParseType(ResultTy);
1533  }
1534
1535  // This type is being defined, so clear the location to indicate this.
1536  Entry.second = SMLoc();
1537
1538  // If this type number has never been uttered, create it.
1539  if (Entry.first == 0)
1540    Entry.first = StructType::create(Context, Name);
1541
1542  StructType *STy = cast<StructType>(Entry.first);
1543
1544  SmallVector<Type*, 8> Body;
1545  if (ParseStructBody(Body) ||
1546      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1547    return true;
1548
1549  STy->setBody(Body, isPacked);
1550  ResultTy = STy;
1551  return false;
1552}
1553
1554
1555/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1556///   StructType
1557///     ::= '{' '}'
1558///     ::= '{' Type (',' Type)* '}'
1559///     ::= '<' '{' '}' '>'
1560///     ::= '<' '{' Type (',' Type)* '}' '>'
1561bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1562  assert(Lex.getKind() == lltok::lbrace);
1563  Lex.Lex(); // Consume the '{'
1564
1565  // Handle the empty struct.
1566  if (EatIfPresent(lltok::rbrace))
1567    return false;
1568
1569  LocTy EltTyLoc = Lex.getLoc();
1570  Type *Ty = 0;
1571  if (ParseType(Ty)) return true;
1572  Body.push_back(Ty);
1573
1574  if (!StructType::isValidElementType(Ty))
1575    return Error(EltTyLoc, "invalid element type for struct");
1576
1577  while (EatIfPresent(lltok::comma)) {
1578    EltTyLoc = Lex.getLoc();
1579    if (ParseType(Ty)) return true;
1580
1581    if (!StructType::isValidElementType(Ty))
1582      return Error(EltTyLoc, "invalid element type for struct");
1583
1584    Body.push_back(Ty);
1585  }
1586
1587  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1588}
1589
1590/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1591/// token has already been consumed.
1592///   Type
1593///     ::= '[' APSINTVAL 'x' Types ']'
1594///     ::= '<' APSINTVAL 'x' Types '>'
1595bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1596  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1597      Lex.getAPSIntVal().getBitWidth() > 64)
1598    return TokError("expected number in address space");
1599
1600  LocTy SizeLoc = Lex.getLoc();
1601  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1602  Lex.Lex();
1603
1604  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1605      return true;
1606
1607  LocTy TypeLoc = Lex.getLoc();
1608  Type *EltTy = 0;
1609  if (ParseType(EltTy)) return true;
1610
1611  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1612                 "expected end of sequential type"))
1613    return true;
1614
1615  if (isVector) {
1616    if (Size == 0)
1617      return Error(SizeLoc, "zero element vector is illegal");
1618    if ((unsigned)Size != Size)
1619      return Error(SizeLoc, "size too large for vector");
1620    if (!VectorType::isValidElementType(EltTy))
1621      return Error(TypeLoc, "vector element type must be fp or integer");
1622    Result = VectorType::get(EltTy, unsigned(Size));
1623  } else {
1624    if (!ArrayType::isValidElementType(EltTy))
1625      return Error(TypeLoc, "invalid array element type");
1626    Result = ArrayType::get(EltTy, Size);
1627  }
1628  return false;
1629}
1630
1631//===----------------------------------------------------------------------===//
1632// Function Semantic Analysis.
1633//===----------------------------------------------------------------------===//
1634
1635LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1636                                             int functionNumber)
1637  : P(p), F(f), FunctionNumber(functionNumber) {
1638
1639  // Insert unnamed arguments into the NumberedVals list.
1640  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1641       AI != E; ++AI)
1642    if (!AI->hasName())
1643      NumberedVals.push_back(AI);
1644}
1645
1646LLParser::PerFunctionState::~PerFunctionState() {
1647  // If there were any forward referenced non-basicblock values, delete them.
1648  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1649       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1650    if (!isa<BasicBlock>(I->second.first)) {
1651      I->second.first->replaceAllUsesWith(
1652                           UndefValue::get(I->second.first->getType()));
1653      delete I->second.first;
1654      I->second.first = 0;
1655    }
1656
1657  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1658       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1659    if (!isa<BasicBlock>(I->second.first)) {
1660      I->second.first->replaceAllUsesWith(
1661                           UndefValue::get(I->second.first->getType()));
1662      delete I->second.first;
1663      I->second.first = 0;
1664    }
1665}
1666
1667bool LLParser::PerFunctionState::FinishFunction() {
1668  // Check to see if someone took the address of labels in this block.
1669  if (!P.ForwardRefBlockAddresses.empty()) {
1670    ValID FunctionID;
1671    if (!F.getName().empty()) {
1672      FunctionID.Kind = ValID::t_GlobalName;
1673      FunctionID.StrVal = F.getName();
1674    } else {
1675      FunctionID.Kind = ValID::t_GlobalID;
1676      FunctionID.UIntVal = FunctionNumber;
1677    }
1678
1679    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1680      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1681    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1682      // Resolve all these references.
1683      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1684        return true;
1685
1686      P.ForwardRefBlockAddresses.erase(FRBAI);
1687    }
1688  }
1689
1690  if (!ForwardRefVals.empty())
1691    return P.Error(ForwardRefVals.begin()->second.second,
1692                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1693                   "'");
1694  if (!ForwardRefValIDs.empty())
1695    return P.Error(ForwardRefValIDs.begin()->second.second,
1696                   "use of undefined value '%" +
1697                   Twine(ForwardRefValIDs.begin()->first) + "'");
1698  return false;
1699}
1700
1701
1702/// GetVal - Get a value with the specified name or ID, creating a
1703/// forward reference record if needed.  This can return null if the value
1704/// exists but does not have the right type.
1705Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1706                                          Type *Ty, LocTy Loc) {
1707  // Look this name up in the normal function symbol table.
1708  Value *Val = F.getValueSymbolTable().lookup(Name);
1709
1710  // If this is a forward reference for the value, see if we already created a
1711  // forward ref record.
1712  if (Val == 0) {
1713    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1714      I = ForwardRefVals.find(Name);
1715    if (I != ForwardRefVals.end())
1716      Val = I->second.first;
1717  }
1718
1719  // If we have the value in the symbol table or fwd-ref table, return it.
1720  if (Val) {
1721    if (Val->getType() == Ty) return Val;
1722    if (Ty->isLabelTy())
1723      P.Error(Loc, "'%" + Name + "' is not a basic block");
1724    else
1725      P.Error(Loc, "'%" + Name + "' defined with type '" +
1726              getTypeString(Val->getType()) + "'");
1727    return 0;
1728  }
1729
1730  // Don't make placeholders with invalid type.
1731  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1732    P.Error(Loc, "invalid use of a non-first-class type");
1733    return 0;
1734  }
1735
1736  // Otherwise, create a new forward reference for this value and remember it.
1737  Value *FwdVal;
1738  if (Ty->isLabelTy())
1739    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1740  else
1741    FwdVal = new Argument(Ty, Name);
1742
1743  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1744  return FwdVal;
1745}
1746
1747Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1748                                          LocTy Loc) {
1749  // Look this name up in the normal function symbol table.
1750  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1751
1752  // If this is a forward reference for the value, see if we already created a
1753  // forward ref record.
1754  if (Val == 0) {
1755    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1756      I = ForwardRefValIDs.find(ID);
1757    if (I != ForwardRefValIDs.end())
1758      Val = I->second.first;
1759  }
1760
1761  // If we have the value in the symbol table or fwd-ref table, return it.
1762  if (Val) {
1763    if (Val->getType() == Ty) return Val;
1764    if (Ty->isLabelTy())
1765      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1766    else
1767      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1768              getTypeString(Val->getType()) + "'");
1769    return 0;
1770  }
1771
1772  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1773    P.Error(Loc, "invalid use of a non-first-class type");
1774    return 0;
1775  }
1776
1777  // Otherwise, create a new forward reference for this value and remember it.
1778  Value *FwdVal;
1779  if (Ty->isLabelTy())
1780    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1781  else
1782    FwdVal = new Argument(Ty);
1783
1784  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1785  return FwdVal;
1786}
1787
1788/// SetInstName - After an instruction is parsed and inserted into its
1789/// basic block, this installs its name.
1790bool LLParser::PerFunctionState::SetInstName(int NameID,
1791                                             const std::string &NameStr,
1792                                             LocTy NameLoc, Instruction *Inst) {
1793  // If this instruction has void type, it cannot have a name or ID specified.
1794  if (Inst->getType()->isVoidTy()) {
1795    if (NameID != -1 || !NameStr.empty())
1796      return P.Error(NameLoc, "instructions returning void cannot have a name");
1797    return false;
1798  }
1799
1800  // If this was a numbered instruction, verify that the instruction is the
1801  // expected value and resolve any forward references.
1802  if (NameStr.empty()) {
1803    // If neither a name nor an ID was specified, just use the next ID.
1804    if (NameID == -1)
1805      NameID = NumberedVals.size();
1806
1807    if (unsigned(NameID) != NumberedVals.size())
1808      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1809                     Twine(NumberedVals.size()) + "'");
1810
1811    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1812      ForwardRefValIDs.find(NameID);
1813    if (FI != ForwardRefValIDs.end()) {
1814      if (FI->second.first->getType() != Inst->getType())
1815        return P.Error(NameLoc, "instruction forward referenced with type '" +
1816                       getTypeString(FI->second.first->getType()) + "'");
1817      FI->second.first->replaceAllUsesWith(Inst);
1818      delete FI->second.first;
1819      ForwardRefValIDs.erase(FI);
1820    }
1821
1822    NumberedVals.push_back(Inst);
1823    return false;
1824  }
1825
1826  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1827  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1828    FI = ForwardRefVals.find(NameStr);
1829  if (FI != ForwardRefVals.end()) {
1830    if (FI->second.first->getType() != Inst->getType())
1831      return P.Error(NameLoc, "instruction forward referenced with type '" +
1832                     getTypeString(FI->second.first->getType()) + "'");
1833    FI->second.first->replaceAllUsesWith(Inst);
1834    delete FI->second.first;
1835    ForwardRefVals.erase(FI);
1836  }
1837
1838  // Set the name on the instruction.
1839  Inst->setName(NameStr);
1840
1841  if (Inst->getName() != NameStr)
1842    return P.Error(NameLoc, "multiple definition of local value named '" +
1843                   NameStr + "'");
1844  return false;
1845}
1846
1847/// GetBB - Get a basic block with the specified name or ID, creating a
1848/// forward reference record if needed.
1849BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1850                                              LocTy Loc) {
1851  return cast_or_null<BasicBlock>(GetVal(Name,
1852                                        Type::getLabelTy(F.getContext()), Loc));
1853}
1854
1855BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1856  return cast_or_null<BasicBlock>(GetVal(ID,
1857                                        Type::getLabelTy(F.getContext()), Loc));
1858}
1859
1860/// DefineBB - Define the specified basic block, which is either named or
1861/// unnamed.  If there is an error, this returns null otherwise it returns
1862/// the block being defined.
1863BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1864                                                 LocTy Loc) {
1865  BasicBlock *BB;
1866  if (Name.empty())
1867    BB = GetBB(NumberedVals.size(), Loc);
1868  else
1869    BB = GetBB(Name, Loc);
1870  if (BB == 0) return 0; // Already diagnosed error.
1871
1872  // Move the block to the end of the function.  Forward ref'd blocks are
1873  // inserted wherever they happen to be referenced.
1874  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1875
1876  // Remove the block from forward ref sets.
1877  if (Name.empty()) {
1878    ForwardRefValIDs.erase(NumberedVals.size());
1879    NumberedVals.push_back(BB);
1880  } else {
1881    // BB forward references are already in the function symbol table.
1882    ForwardRefVals.erase(Name);
1883  }
1884
1885  return BB;
1886}
1887
1888//===----------------------------------------------------------------------===//
1889// Constants.
1890//===----------------------------------------------------------------------===//
1891
1892/// ParseValID - Parse an abstract value that doesn't necessarily have a
1893/// type implied.  For example, if we parse "4" we don't know what integer type
1894/// it has.  The value will later be combined with its type and checked for
1895/// sanity.  PFS is used to convert function-local operands of metadata (since
1896/// metadata operands are not just parsed here but also converted to values).
1897/// PFS can be null when we are not parsing metadata values inside a function.
1898bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1899  ID.Loc = Lex.getLoc();
1900  switch (Lex.getKind()) {
1901  default: return TokError("expected value token");
1902  case lltok::GlobalID:  // @42
1903    ID.UIntVal = Lex.getUIntVal();
1904    ID.Kind = ValID::t_GlobalID;
1905    break;
1906  case lltok::GlobalVar:  // @foo
1907    ID.StrVal = Lex.getStrVal();
1908    ID.Kind = ValID::t_GlobalName;
1909    break;
1910  case lltok::LocalVarID:  // %42
1911    ID.UIntVal = Lex.getUIntVal();
1912    ID.Kind = ValID::t_LocalID;
1913    break;
1914  case lltok::LocalVar:  // %foo
1915    ID.StrVal = Lex.getStrVal();
1916    ID.Kind = ValID::t_LocalName;
1917    break;
1918  case lltok::exclaim:   // !42, !{...}, or !"foo"
1919    return ParseMetadataValue(ID, PFS);
1920  case lltok::APSInt:
1921    ID.APSIntVal = Lex.getAPSIntVal();
1922    ID.Kind = ValID::t_APSInt;
1923    break;
1924  case lltok::APFloat:
1925    ID.APFloatVal = Lex.getAPFloatVal();
1926    ID.Kind = ValID::t_APFloat;
1927    break;
1928  case lltok::kw_true:
1929    ID.ConstantVal = ConstantInt::getTrue(Context);
1930    ID.Kind = ValID::t_Constant;
1931    break;
1932  case lltok::kw_false:
1933    ID.ConstantVal = ConstantInt::getFalse(Context);
1934    ID.Kind = ValID::t_Constant;
1935    break;
1936  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1937  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1938  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1939
1940  case lltok::lbrace: {
1941    // ValID ::= '{' ConstVector '}'
1942    Lex.Lex();
1943    SmallVector<Constant*, 16> Elts;
1944    if (ParseGlobalValueVector(Elts) ||
1945        ParseToken(lltok::rbrace, "expected end of struct constant"))
1946      return true;
1947
1948    ID.ConstantStructElts = new Constant*[Elts.size()];
1949    ID.UIntVal = Elts.size();
1950    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1951    ID.Kind = ValID::t_ConstantStruct;
1952    return false;
1953  }
1954  case lltok::less: {
1955    // ValID ::= '<' ConstVector '>'         --> Vector.
1956    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1957    Lex.Lex();
1958    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1959
1960    SmallVector<Constant*, 16> Elts;
1961    LocTy FirstEltLoc = Lex.getLoc();
1962    if (ParseGlobalValueVector(Elts) ||
1963        (isPackedStruct &&
1964         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1965        ParseToken(lltok::greater, "expected end of constant"))
1966      return true;
1967
1968    if (isPackedStruct) {
1969      ID.ConstantStructElts = new Constant*[Elts.size()];
1970      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
1971      ID.UIntVal = Elts.size();
1972      ID.Kind = ValID::t_PackedConstantStruct;
1973      return false;
1974    }
1975
1976    if (Elts.empty())
1977      return Error(ID.Loc, "constant vector must not be empty");
1978
1979    if (!Elts[0]->getType()->isIntegerTy() &&
1980        !Elts[0]->getType()->isFloatingPointTy())
1981      return Error(FirstEltLoc,
1982                   "vector elements must have integer or floating point type");
1983
1984    // Verify that all the vector elements have the same type.
1985    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1986      if (Elts[i]->getType() != Elts[0]->getType())
1987        return Error(FirstEltLoc,
1988                     "vector element #" + Twine(i) +
1989                    " is not of type '" + getTypeString(Elts[0]->getType()));
1990
1991    ID.ConstantVal = ConstantVector::get(Elts);
1992    ID.Kind = ValID::t_Constant;
1993    return false;
1994  }
1995  case lltok::lsquare: {   // Array Constant
1996    Lex.Lex();
1997    SmallVector<Constant*, 16> Elts;
1998    LocTy FirstEltLoc = Lex.getLoc();
1999    if (ParseGlobalValueVector(Elts) ||
2000        ParseToken(lltok::rsquare, "expected end of array constant"))
2001      return true;
2002
2003    // Handle empty element.
2004    if (Elts.empty()) {
2005      // Use undef instead of an array because it's inconvenient to determine
2006      // the element type at this point, there being no elements to examine.
2007      ID.Kind = ValID::t_EmptyArray;
2008      return false;
2009    }
2010
2011    if (!Elts[0]->getType()->isFirstClassType())
2012      return Error(FirstEltLoc, "invalid array element type: " +
2013                   getTypeString(Elts[0]->getType()));
2014
2015    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2016
2017    // Verify all elements are correct type!
2018    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2019      if (Elts[i]->getType() != Elts[0]->getType())
2020        return Error(FirstEltLoc,
2021                     "array element #" + Twine(i) +
2022                     " is not of type '" + getTypeString(Elts[0]->getType()));
2023    }
2024
2025    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2026    ID.Kind = ValID::t_Constant;
2027    return false;
2028  }
2029  case lltok::kw_c:  // c "foo"
2030    Lex.Lex();
2031    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2032    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2033    ID.Kind = ValID::t_Constant;
2034    return false;
2035
2036  case lltok::kw_asm: {
2037    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2038    bool HasSideEffect, AlignStack;
2039    Lex.Lex();
2040    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2041        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2042        ParseStringConstant(ID.StrVal) ||
2043        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2044        ParseToken(lltok::StringConstant, "expected constraint string"))
2045      return true;
2046    ID.StrVal2 = Lex.getStrVal();
2047    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2048    ID.Kind = ValID::t_InlineAsm;
2049    return false;
2050  }
2051
2052  case lltok::kw_blockaddress: {
2053    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2054    Lex.Lex();
2055
2056    ValID Fn, Label;
2057    LocTy FnLoc, LabelLoc;
2058
2059    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2060        ParseValID(Fn) ||
2061        ParseToken(lltok::comma, "expected comma in block address expression")||
2062        ParseValID(Label) ||
2063        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2064      return true;
2065
2066    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2067      return Error(Fn.Loc, "expected function name in blockaddress");
2068    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2069      return Error(Label.Loc, "expected basic block name in blockaddress");
2070
2071    // Make a global variable as a placeholder for this reference.
2072    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2073                                           false, GlobalValue::InternalLinkage,
2074                                                0, "");
2075    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2076    ID.ConstantVal = FwdRef;
2077    ID.Kind = ValID::t_Constant;
2078    return false;
2079  }
2080
2081  case lltok::kw_trunc:
2082  case lltok::kw_zext:
2083  case lltok::kw_sext:
2084  case lltok::kw_fptrunc:
2085  case lltok::kw_fpext:
2086  case lltok::kw_bitcast:
2087  case lltok::kw_uitofp:
2088  case lltok::kw_sitofp:
2089  case lltok::kw_fptoui:
2090  case lltok::kw_fptosi:
2091  case lltok::kw_inttoptr:
2092  case lltok::kw_ptrtoint: {
2093    unsigned Opc = Lex.getUIntVal();
2094    Type *DestTy = 0;
2095    Constant *SrcVal;
2096    Lex.Lex();
2097    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2098        ParseGlobalTypeAndValue(SrcVal) ||
2099        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2100        ParseType(DestTy) ||
2101        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2102      return true;
2103    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2104      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2105                   getTypeString(SrcVal->getType()) + "' to '" +
2106                   getTypeString(DestTy) + "'");
2107    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2108                                                 SrcVal, DestTy);
2109    ID.Kind = ValID::t_Constant;
2110    return false;
2111  }
2112  case lltok::kw_extractvalue: {
2113    Lex.Lex();
2114    Constant *Val;
2115    SmallVector<unsigned, 4> Indices;
2116    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2117        ParseGlobalTypeAndValue(Val) ||
2118        ParseIndexList(Indices) ||
2119        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2120      return true;
2121
2122    if (!Val->getType()->isAggregateType())
2123      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2124    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2125      return Error(ID.Loc, "invalid indices for extractvalue");
2126    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2127    ID.Kind = ValID::t_Constant;
2128    return false;
2129  }
2130  case lltok::kw_insertvalue: {
2131    Lex.Lex();
2132    Constant *Val0, *Val1;
2133    SmallVector<unsigned, 4> Indices;
2134    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2135        ParseGlobalTypeAndValue(Val0) ||
2136        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2137        ParseGlobalTypeAndValue(Val1) ||
2138        ParseIndexList(Indices) ||
2139        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2140      return true;
2141    if (!Val0->getType()->isAggregateType())
2142      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2143    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2144      return Error(ID.Loc, "invalid indices for insertvalue");
2145    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2146    ID.Kind = ValID::t_Constant;
2147    return false;
2148  }
2149  case lltok::kw_icmp:
2150  case lltok::kw_fcmp: {
2151    unsigned PredVal, Opc = Lex.getUIntVal();
2152    Constant *Val0, *Val1;
2153    Lex.Lex();
2154    if (ParseCmpPredicate(PredVal, Opc) ||
2155        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2156        ParseGlobalTypeAndValue(Val0) ||
2157        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2158        ParseGlobalTypeAndValue(Val1) ||
2159        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2160      return true;
2161
2162    if (Val0->getType() != Val1->getType())
2163      return Error(ID.Loc, "compare operands must have the same type");
2164
2165    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2166
2167    if (Opc == Instruction::FCmp) {
2168      if (!Val0->getType()->isFPOrFPVectorTy())
2169        return Error(ID.Loc, "fcmp requires floating point operands");
2170      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2171    } else {
2172      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2173      if (!Val0->getType()->isIntOrIntVectorTy() &&
2174          !Val0->getType()->isPointerTy())
2175        return Error(ID.Loc, "icmp requires pointer or integer operands");
2176      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2177    }
2178    ID.Kind = ValID::t_Constant;
2179    return false;
2180  }
2181
2182  // Binary Operators.
2183  case lltok::kw_add:
2184  case lltok::kw_fadd:
2185  case lltok::kw_sub:
2186  case lltok::kw_fsub:
2187  case lltok::kw_mul:
2188  case lltok::kw_fmul:
2189  case lltok::kw_udiv:
2190  case lltok::kw_sdiv:
2191  case lltok::kw_fdiv:
2192  case lltok::kw_urem:
2193  case lltok::kw_srem:
2194  case lltok::kw_frem:
2195  case lltok::kw_shl:
2196  case lltok::kw_lshr:
2197  case lltok::kw_ashr: {
2198    bool NUW = false;
2199    bool NSW = false;
2200    bool Exact = false;
2201    unsigned Opc = Lex.getUIntVal();
2202    Constant *Val0, *Val1;
2203    Lex.Lex();
2204    LocTy ModifierLoc = Lex.getLoc();
2205    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2206        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2207      if (EatIfPresent(lltok::kw_nuw))
2208        NUW = true;
2209      if (EatIfPresent(lltok::kw_nsw)) {
2210        NSW = true;
2211        if (EatIfPresent(lltok::kw_nuw))
2212          NUW = true;
2213      }
2214    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2215               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2216      if (EatIfPresent(lltok::kw_exact))
2217        Exact = true;
2218    }
2219    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2220        ParseGlobalTypeAndValue(Val0) ||
2221        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2222        ParseGlobalTypeAndValue(Val1) ||
2223        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2224      return true;
2225    if (Val0->getType() != Val1->getType())
2226      return Error(ID.Loc, "operands of constexpr must have same type");
2227    if (!Val0->getType()->isIntOrIntVectorTy()) {
2228      if (NUW)
2229        return Error(ModifierLoc, "nuw only applies to integer operations");
2230      if (NSW)
2231        return Error(ModifierLoc, "nsw only applies to integer operations");
2232    }
2233    // Check that the type is valid for the operator.
2234    switch (Opc) {
2235    case Instruction::Add:
2236    case Instruction::Sub:
2237    case Instruction::Mul:
2238    case Instruction::UDiv:
2239    case Instruction::SDiv:
2240    case Instruction::URem:
2241    case Instruction::SRem:
2242    case Instruction::Shl:
2243    case Instruction::AShr:
2244    case Instruction::LShr:
2245      if (!Val0->getType()->isIntOrIntVectorTy())
2246        return Error(ID.Loc, "constexpr requires integer operands");
2247      break;
2248    case Instruction::FAdd:
2249    case Instruction::FSub:
2250    case Instruction::FMul:
2251    case Instruction::FDiv:
2252    case Instruction::FRem:
2253      if (!Val0->getType()->isFPOrFPVectorTy())
2254        return Error(ID.Loc, "constexpr requires fp operands");
2255      break;
2256    default: llvm_unreachable("Unknown binary operator!");
2257    }
2258    unsigned Flags = 0;
2259    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2260    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2261    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2262    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2263    ID.ConstantVal = C;
2264    ID.Kind = ValID::t_Constant;
2265    return false;
2266  }
2267
2268  // Logical Operations
2269  case lltok::kw_and:
2270  case lltok::kw_or:
2271  case lltok::kw_xor: {
2272    unsigned Opc = Lex.getUIntVal();
2273    Constant *Val0, *Val1;
2274    Lex.Lex();
2275    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2276        ParseGlobalTypeAndValue(Val0) ||
2277        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2278        ParseGlobalTypeAndValue(Val1) ||
2279        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2280      return true;
2281    if (Val0->getType() != Val1->getType())
2282      return Error(ID.Loc, "operands of constexpr must have same type");
2283    if (!Val0->getType()->isIntOrIntVectorTy())
2284      return Error(ID.Loc,
2285                   "constexpr requires integer or integer vector operands");
2286    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2287    ID.Kind = ValID::t_Constant;
2288    return false;
2289  }
2290
2291  case lltok::kw_getelementptr:
2292  case lltok::kw_shufflevector:
2293  case lltok::kw_insertelement:
2294  case lltok::kw_extractelement:
2295  case lltok::kw_select: {
2296    unsigned Opc = Lex.getUIntVal();
2297    SmallVector<Constant*, 16> Elts;
2298    bool InBounds = false;
2299    Lex.Lex();
2300    if (Opc == Instruction::GetElementPtr)
2301      InBounds = EatIfPresent(lltok::kw_inbounds);
2302    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2303        ParseGlobalValueVector(Elts) ||
2304        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2305      return true;
2306
2307    if (Opc == Instruction::GetElementPtr) {
2308      if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2309        return Error(ID.Loc, "getelementptr requires pointer operand");
2310
2311      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2312      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2313        return Error(ID.Loc, "invalid indices for getelementptr");
2314      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2315                                                      InBounds);
2316    } else if (Opc == Instruction::Select) {
2317      if (Elts.size() != 3)
2318        return Error(ID.Loc, "expected three operands to select");
2319      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2320                                                              Elts[2]))
2321        return Error(ID.Loc, Reason);
2322      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2323    } else if (Opc == Instruction::ShuffleVector) {
2324      if (Elts.size() != 3)
2325        return Error(ID.Loc, "expected three operands to shufflevector");
2326      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2327        return Error(ID.Loc, "invalid operands to shufflevector");
2328      ID.ConstantVal =
2329                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2330    } else if (Opc == Instruction::ExtractElement) {
2331      if (Elts.size() != 2)
2332        return Error(ID.Loc, "expected two operands to extractelement");
2333      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2334        return Error(ID.Loc, "invalid extractelement operands");
2335      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2336    } else {
2337      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2338      if (Elts.size() != 3)
2339      return Error(ID.Loc, "expected three operands to insertelement");
2340      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2341        return Error(ID.Loc, "invalid insertelement operands");
2342      ID.ConstantVal =
2343                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2344    }
2345
2346    ID.Kind = ValID::t_Constant;
2347    return false;
2348  }
2349  }
2350
2351  Lex.Lex();
2352  return false;
2353}
2354
2355/// ParseGlobalValue - Parse a global value with the specified type.
2356bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2357  C = 0;
2358  ValID ID;
2359  Value *V = NULL;
2360  bool Parsed = ParseValID(ID) ||
2361                ConvertValIDToValue(Ty, ID, V, NULL);
2362  if (V && !(C = dyn_cast<Constant>(V)))
2363    return Error(ID.Loc, "global values must be constants");
2364  return Parsed;
2365}
2366
2367bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2368  Type *Ty = 0;
2369  return ParseType(Ty) ||
2370         ParseGlobalValue(Ty, V);
2371}
2372
2373/// ParseGlobalValueVector
2374///   ::= /*empty*/
2375///   ::= TypeAndValue (',' TypeAndValue)*
2376bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2377  // Empty list.
2378  if (Lex.getKind() == lltok::rbrace ||
2379      Lex.getKind() == lltok::rsquare ||
2380      Lex.getKind() == lltok::greater ||
2381      Lex.getKind() == lltok::rparen)
2382    return false;
2383
2384  Constant *C;
2385  if (ParseGlobalTypeAndValue(C)) return true;
2386  Elts.push_back(C);
2387
2388  while (EatIfPresent(lltok::comma)) {
2389    if (ParseGlobalTypeAndValue(C)) return true;
2390    Elts.push_back(C);
2391  }
2392
2393  return false;
2394}
2395
2396bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2397  assert(Lex.getKind() == lltok::lbrace);
2398  Lex.Lex();
2399
2400  SmallVector<Value*, 16> Elts;
2401  if (ParseMDNodeVector(Elts, PFS) ||
2402      ParseToken(lltok::rbrace, "expected end of metadata node"))
2403    return true;
2404
2405  ID.MDNodeVal = MDNode::get(Context, Elts);
2406  ID.Kind = ValID::t_MDNode;
2407  return false;
2408}
2409
2410/// ParseMetadataValue
2411///  ::= !42
2412///  ::= !{...}
2413///  ::= !"string"
2414bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2415  assert(Lex.getKind() == lltok::exclaim);
2416  Lex.Lex();
2417
2418  // MDNode:
2419  // !{ ... }
2420  if (Lex.getKind() == lltok::lbrace)
2421    return ParseMetadataListValue(ID, PFS);
2422
2423  // Standalone metadata reference
2424  // !42
2425  if (Lex.getKind() == lltok::APSInt) {
2426    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2427    ID.Kind = ValID::t_MDNode;
2428    return false;
2429  }
2430
2431  // MDString:
2432  //   ::= '!' STRINGCONSTANT
2433  if (ParseMDString(ID.MDStringVal)) return true;
2434  ID.Kind = ValID::t_MDString;
2435  return false;
2436}
2437
2438
2439//===----------------------------------------------------------------------===//
2440// Function Parsing.
2441//===----------------------------------------------------------------------===//
2442
2443bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2444                                   PerFunctionState *PFS) {
2445  if (Ty->isFunctionTy())
2446    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2447
2448  switch (ID.Kind) {
2449  default: llvm_unreachable("Unknown ValID!");
2450  case ValID::t_LocalID:
2451    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2452    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2453    return (V == 0);
2454  case ValID::t_LocalName:
2455    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2456    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2457    return (V == 0);
2458  case ValID::t_InlineAsm: {
2459    PointerType *PTy = dyn_cast<PointerType>(Ty);
2460    FunctionType *FTy =
2461      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2462    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2463      return Error(ID.Loc, "invalid type for inline asm constraint string");
2464    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2465    return false;
2466  }
2467  case ValID::t_MDNode:
2468    if (!Ty->isMetadataTy())
2469      return Error(ID.Loc, "metadata value must have metadata type");
2470    V = ID.MDNodeVal;
2471    return false;
2472  case ValID::t_MDString:
2473    if (!Ty->isMetadataTy())
2474      return Error(ID.Loc, "metadata value must have metadata type");
2475    V = ID.MDStringVal;
2476    return false;
2477  case ValID::t_GlobalName:
2478    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2479    return V == 0;
2480  case ValID::t_GlobalID:
2481    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2482    return V == 0;
2483  case ValID::t_APSInt:
2484    if (!Ty->isIntegerTy())
2485      return Error(ID.Loc, "integer constant must have integer type");
2486    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2487    V = ConstantInt::get(Context, ID.APSIntVal);
2488    return false;
2489  case ValID::t_APFloat:
2490    if (!Ty->isFloatingPointTy() ||
2491        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2492      return Error(ID.Loc, "floating point constant invalid for type");
2493
2494    // The lexer has no type info, so builds all float and double FP constants
2495    // as double.  Fix this here.  Long double does not need this.
2496    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2497        Ty->isFloatTy()) {
2498      bool Ignored;
2499      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2500                            &Ignored);
2501    }
2502    V = ConstantFP::get(Context, ID.APFloatVal);
2503
2504    if (V->getType() != Ty)
2505      return Error(ID.Loc, "floating point constant does not have type '" +
2506                   getTypeString(Ty) + "'");
2507
2508    return false;
2509  case ValID::t_Null:
2510    if (!Ty->isPointerTy())
2511      return Error(ID.Loc, "null must be a pointer type");
2512    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2513    return false;
2514  case ValID::t_Undef:
2515    // FIXME: LabelTy should not be a first-class type.
2516    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2517      return Error(ID.Loc, "invalid type for undef constant");
2518    V = UndefValue::get(Ty);
2519    return false;
2520  case ValID::t_EmptyArray:
2521    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2522      return Error(ID.Loc, "invalid empty array initializer");
2523    V = UndefValue::get(Ty);
2524    return false;
2525  case ValID::t_Zero:
2526    // FIXME: LabelTy should not be a first-class type.
2527    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2528      return Error(ID.Loc, "invalid type for null constant");
2529    V = Constant::getNullValue(Ty);
2530    return false;
2531  case ValID::t_Constant:
2532    if (ID.ConstantVal->getType() != Ty)
2533      return Error(ID.Loc, "constant expression type mismatch");
2534
2535    V = ID.ConstantVal;
2536    return false;
2537  case ValID::t_ConstantStruct:
2538  case ValID::t_PackedConstantStruct:
2539    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2540      if (ST->getNumElements() != ID.UIntVal)
2541        return Error(ID.Loc,
2542                     "initializer with struct type has wrong # elements");
2543      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2544        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2545
2546      // Verify that the elements are compatible with the structtype.
2547      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2548        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2549          return Error(ID.Loc, "element " + Twine(i) +
2550                    " of struct initializer doesn't match struct element type");
2551
2552      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2553                                               ID.UIntVal));
2554    } else
2555      return Error(ID.Loc, "constant expression type mismatch");
2556    return false;
2557  }
2558}
2559
2560bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2561  V = 0;
2562  ValID ID;
2563  return ParseValID(ID, PFS) ||
2564         ConvertValIDToValue(Ty, ID, V, PFS);
2565}
2566
2567bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2568  Type *Ty = 0;
2569  return ParseType(Ty) ||
2570         ParseValue(Ty, V, PFS);
2571}
2572
2573bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2574                                      PerFunctionState &PFS) {
2575  Value *V;
2576  Loc = Lex.getLoc();
2577  if (ParseTypeAndValue(V, PFS)) return true;
2578  if (!isa<BasicBlock>(V))
2579    return Error(Loc, "expected a basic block");
2580  BB = cast<BasicBlock>(V);
2581  return false;
2582}
2583
2584
2585/// FunctionHeader
2586///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2587///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2588///       OptionalAlign OptGC
2589bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2590  // Parse the linkage.
2591  LocTy LinkageLoc = Lex.getLoc();
2592  unsigned Linkage;
2593
2594  unsigned Visibility, RetAttrs;
2595  CallingConv::ID CC;
2596  Type *RetType = 0;
2597  LocTy RetTypeLoc = Lex.getLoc();
2598  if (ParseOptionalLinkage(Linkage) ||
2599      ParseOptionalVisibility(Visibility) ||
2600      ParseOptionalCallingConv(CC) ||
2601      ParseOptionalAttrs(RetAttrs, 1) ||
2602      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2603    return true;
2604
2605  // Verify that the linkage is ok.
2606  switch ((GlobalValue::LinkageTypes)Linkage) {
2607  case GlobalValue::ExternalLinkage:
2608    break; // always ok.
2609  case GlobalValue::DLLImportLinkage:
2610  case GlobalValue::ExternalWeakLinkage:
2611    if (isDefine)
2612      return Error(LinkageLoc, "invalid linkage for function definition");
2613    break;
2614  case GlobalValue::PrivateLinkage:
2615  case GlobalValue::LinkerPrivateLinkage:
2616  case GlobalValue::LinkerPrivateWeakLinkage:
2617  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2618  case GlobalValue::InternalLinkage:
2619  case GlobalValue::AvailableExternallyLinkage:
2620  case GlobalValue::LinkOnceAnyLinkage:
2621  case GlobalValue::LinkOnceODRLinkage:
2622  case GlobalValue::WeakAnyLinkage:
2623  case GlobalValue::WeakODRLinkage:
2624  case GlobalValue::DLLExportLinkage:
2625    if (!isDefine)
2626      return Error(LinkageLoc, "invalid linkage for function declaration");
2627    break;
2628  case GlobalValue::AppendingLinkage:
2629  case GlobalValue::CommonLinkage:
2630    return Error(LinkageLoc, "invalid function linkage type");
2631  }
2632
2633  if (!FunctionType::isValidReturnType(RetType))
2634    return Error(RetTypeLoc, "invalid function return type");
2635
2636  LocTy NameLoc = Lex.getLoc();
2637
2638  std::string FunctionName;
2639  if (Lex.getKind() == lltok::GlobalVar) {
2640    FunctionName = Lex.getStrVal();
2641  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2642    unsigned NameID = Lex.getUIntVal();
2643
2644    if (NameID != NumberedVals.size())
2645      return TokError("function expected to be numbered '%" +
2646                      Twine(NumberedVals.size()) + "'");
2647  } else {
2648    return TokError("expected function name");
2649  }
2650
2651  Lex.Lex();
2652
2653  if (Lex.getKind() != lltok::lparen)
2654    return TokError("expected '(' in function argument list");
2655
2656  SmallVector<ArgInfo, 8> ArgList;
2657  bool isVarArg;
2658  unsigned FuncAttrs;
2659  std::string Section;
2660  unsigned Alignment;
2661  std::string GC;
2662  bool UnnamedAddr;
2663  LocTy UnnamedAddrLoc;
2664
2665  if (ParseArgumentList(ArgList, isVarArg) ||
2666      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2667                         &UnnamedAddrLoc) ||
2668      ParseOptionalAttrs(FuncAttrs, 2) ||
2669      (EatIfPresent(lltok::kw_section) &&
2670       ParseStringConstant(Section)) ||
2671      ParseOptionalAlignment(Alignment) ||
2672      (EatIfPresent(lltok::kw_gc) &&
2673       ParseStringConstant(GC)))
2674    return true;
2675
2676  // If the alignment was parsed as an attribute, move to the alignment field.
2677  if (FuncAttrs & Attribute::Alignment) {
2678    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2679    FuncAttrs &= ~Attribute::Alignment;
2680  }
2681
2682  // Okay, if we got here, the function is syntactically valid.  Convert types
2683  // and do semantic checks.
2684  std::vector<Type*> ParamTypeList;
2685  SmallVector<AttributeWithIndex, 8> Attrs;
2686
2687  if (RetAttrs != Attribute::None)
2688    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2689
2690  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2691    ParamTypeList.push_back(ArgList[i].Ty);
2692    if (ArgList[i].Attrs != Attribute::None)
2693      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2694  }
2695
2696  if (FuncAttrs != Attribute::None)
2697    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2698
2699  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2700
2701  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2702    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2703
2704  FunctionType *FT =
2705    FunctionType::get(RetType, ParamTypeList, isVarArg);
2706  PointerType *PFT = PointerType::getUnqual(FT);
2707
2708  Fn = 0;
2709  if (!FunctionName.empty()) {
2710    // If this was a definition of a forward reference, remove the definition
2711    // from the forward reference table and fill in the forward ref.
2712    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2713      ForwardRefVals.find(FunctionName);
2714    if (FRVI != ForwardRefVals.end()) {
2715      Fn = M->getFunction(FunctionName);
2716      if (Fn->getType() != PFT)
2717        return Error(FRVI->second.second, "invalid forward reference to "
2718                     "function '" + FunctionName + "' with wrong type!");
2719
2720      ForwardRefVals.erase(FRVI);
2721    } else if ((Fn = M->getFunction(FunctionName))) {
2722      // Reject redefinitions.
2723      return Error(NameLoc, "invalid redefinition of function '" +
2724                   FunctionName + "'");
2725    } else if (M->getNamedValue(FunctionName)) {
2726      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2727    }
2728
2729  } else {
2730    // If this is a definition of a forward referenced function, make sure the
2731    // types agree.
2732    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2733      = ForwardRefValIDs.find(NumberedVals.size());
2734    if (I != ForwardRefValIDs.end()) {
2735      Fn = cast<Function>(I->second.first);
2736      if (Fn->getType() != PFT)
2737        return Error(NameLoc, "type of definition and forward reference of '@" +
2738                     Twine(NumberedVals.size()) + "' disagree");
2739      ForwardRefValIDs.erase(I);
2740    }
2741  }
2742
2743  if (Fn == 0)
2744    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2745  else // Move the forward-reference to the correct spot in the module.
2746    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2747
2748  if (FunctionName.empty())
2749    NumberedVals.push_back(Fn);
2750
2751  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2752  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2753  Fn->setCallingConv(CC);
2754  Fn->setAttributes(PAL);
2755  Fn->setUnnamedAddr(UnnamedAddr);
2756  Fn->setAlignment(Alignment);
2757  Fn->setSection(Section);
2758  if (!GC.empty()) Fn->setGC(GC.c_str());
2759
2760  // Add all of the arguments we parsed to the function.
2761  Function::arg_iterator ArgIt = Fn->arg_begin();
2762  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2763    // If the argument has a name, insert it into the argument symbol table.
2764    if (ArgList[i].Name.empty()) continue;
2765
2766    // Set the name, if it conflicted, it will be auto-renamed.
2767    ArgIt->setName(ArgList[i].Name);
2768
2769    if (ArgIt->getName() != ArgList[i].Name)
2770      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2771                   ArgList[i].Name + "'");
2772  }
2773
2774  return false;
2775}
2776
2777
2778/// ParseFunctionBody
2779///   ::= '{' BasicBlock+ '}'
2780///
2781bool LLParser::ParseFunctionBody(Function &Fn) {
2782  if (Lex.getKind() != lltok::lbrace)
2783    return TokError("expected '{' in function body");
2784  Lex.Lex();  // eat the {.
2785
2786  int FunctionNumber = -1;
2787  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2788
2789  PerFunctionState PFS(*this, Fn, FunctionNumber);
2790
2791  // We need at least one basic block.
2792  if (Lex.getKind() == lltok::rbrace)
2793    return TokError("function body requires at least one basic block");
2794
2795  while (Lex.getKind() != lltok::rbrace)
2796    if (ParseBasicBlock(PFS)) return true;
2797
2798  // Eat the }.
2799  Lex.Lex();
2800
2801  // Verify function is ok.
2802  return PFS.FinishFunction();
2803}
2804
2805/// ParseBasicBlock
2806///   ::= LabelStr? Instruction*
2807bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2808  // If this basic block starts out with a name, remember it.
2809  std::string Name;
2810  LocTy NameLoc = Lex.getLoc();
2811  if (Lex.getKind() == lltok::LabelStr) {
2812    Name = Lex.getStrVal();
2813    Lex.Lex();
2814  }
2815
2816  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2817  if (BB == 0) return true;
2818
2819  std::string NameStr;
2820
2821  // Parse the instructions in this block until we get a terminator.
2822  Instruction *Inst;
2823  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2824  do {
2825    // This instruction may have three possibilities for a name: a) none
2826    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2827    LocTy NameLoc = Lex.getLoc();
2828    int NameID = -1;
2829    NameStr = "";
2830
2831    if (Lex.getKind() == lltok::LocalVarID) {
2832      NameID = Lex.getUIntVal();
2833      Lex.Lex();
2834      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2835        return true;
2836    } else if (Lex.getKind() == lltok::LocalVar) {
2837      NameStr = Lex.getStrVal();
2838      Lex.Lex();
2839      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2840        return true;
2841    }
2842
2843    switch (ParseInstruction(Inst, BB, PFS)) {
2844    default: assert(0 && "Unknown ParseInstruction result!");
2845    case InstError: return true;
2846    case InstNormal:
2847      BB->getInstList().push_back(Inst);
2848
2849      // With a normal result, we check to see if the instruction is followed by
2850      // a comma and metadata.
2851      if (EatIfPresent(lltok::comma))
2852        if (ParseInstructionMetadata(Inst, &PFS))
2853          return true;
2854      break;
2855    case InstExtraComma:
2856      BB->getInstList().push_back(Inst);
2857
2858      // If the instruction parser ate an extra comma at the end of it, it
2859      // *must* be followed by metadata.
2860      if (ParseInstructionMetadata(Inst, &PFS))
2861        return true;
2862      break;
2863    }
2864
2865    // Set the name on the instruction.
2866    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2867  } while (!isa<TerminatorInst>(Inst));
2868
2869  return false;
2870}
2871
2872//===----------------------------------------------------------------------===//
2873// Instruction Parsing.
2874//===----------------------------------------------------------------------===//
2875
2876/// ParseInstruction - Parse one of the many different instructions.
2877///
2878int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2879                               PerFunctionState &PFS) {
2880  lltok::Kind Token = Lex.getKind();
2881  if (Token == lltok::Eof)
2882    return TokError("found end of file when expecting more instructions");
2883  LocTy Loc = Lex.getLoc();
2884  unsigned KeywordVal = Lex.getUIntVal();
2885  Lex.Lex();  // Eat the keyword.
2886
2887  switch (Token) {
2888  default:                    return Error(Loc, "expected instruction opcode");
2889  // Terminator Instructions.
2890  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2891  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2892  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2893  case lltok::kw_br:          return ParseBr(Inst, PFS);
2894  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2895  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2896  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2897  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2898  // Binary Operators.
2899  case lltok::kw_add:
2900  case lltok::kw_sub:
2901  case lltok::kw_mul:
2902  case lltok::kw_shl: {
2903    bool NUW = EatIfPresent(lltok::kw_nuw);
2904    bool NSW = EatIfPresent(lltok::kw_nsw);
2905    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2906
2907    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2908
2909    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2910    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2911    return false;
2912  }
2913  case lltok::kw_fadd:
2914  case lltok::kw_fsub:
2915  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2916
2917  case lltok::kw_sdiv:
2918  case lltok::kw_udiv:
2919  case lltok::kw_lshr:
2920  case lltok::kw_ashr: {
2921    bool Exact = EatIfPresent(lltok::kw_exact);
2922
2923    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2924    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
2925    return false;
2926  }
2927
2928  case lltok::kw_urem:
2929  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2930  case lltok::kw_fdiv:
2931  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2932  case lltok::kw_and:
2933  case lltok::kw_or:
2934  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2935  case lltok::kw_icmp:
2936  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2937  // Casts.
2938  case lltok::kw_trunc:
2939  case lltok::kw_zext:
2940  case lltok::kw_sext:
2941  case lltok::kw_fptrunc:
2942  case lltok::kw_fpext:
2943  case lltok::kw_bitcast:
2944  case lltok::kw_uitofp:
2945  case lltok::kw_sitofp:
2946  case lltok::kw_fptoui:
2947  case lltok::kw_fptosi:
2948  case lltok::kw_inttoptr:
2949  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2950  // Other.
2951  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2952  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2953  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2954  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2955  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2956  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2957  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
2958  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2959  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2960  // Memory.
2961  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2962  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2963  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2964  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
2965  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
2966  case lltok::kw_fence:          return ParseFence(Inst, PFS);
2967  case lltok::kw_volatile:
2968    // For compatibility; canonical location is after load
2969    if (EatIfPresent(lltok::kw_load))
2970      return ParseLoad(Inst, PFS, true);
2971    else if (EatIfPresent(lltok::kw_store))
2972      return ParseStore(Inst, PFS, true);
2973    else
2974      return TokError("expected 'load' or 'store'");
2975  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2976  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2977  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2978  }
2979}
2980
2981/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2982bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2983  if (Opc == Instruction::FCmp) {
2984    switch (Lex.getKind()) {
2985    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2986    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2987    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2988    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2989    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2990    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2991    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2992    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2993    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2994    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2995    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2996    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2997    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2998    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2999    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3000    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3001    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3002    }
3003  } else {
3004    switch (Lex.getKind()) {
3005    default: TokError("expected icmp predicate (e.g. 'eq')");
3006    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3007    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3008    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3009    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3010    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3011    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3012    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3013    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3014    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3015    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3016    }
3017  }
3018  Lex.Lex();
3019  return false;
3020}
3021
3022//===----------------------------------------------------------------------===//
3023// Terminator Instructions.
3024//===----------------------------------------------------------------------===//
3025
3026/// ParseRet - Parse a return instruction.
3027///   ::= 'ret' void (',' !dbg, !1)*
3028///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3029bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3030                        PerFunctionState &PFS) {
3031  SMLoc TypeLoc = Lex.getLoc();
3032  Type *Ty = 0;
3033  if (ParseType(Ty, true /*void allowed*/)) return true;
3034
3035  Type *ResType = PFS.getFunction().getReturnType();
3036
3037  if (Ty->isVoidTy()) {
3038    if (!ResType->isVoidTy())
3039      return Error(TypeLoc, "value doesn't match function result type '" +
3040                   getTypeString(ResType) + "'");
3041
3042    Inst = ReturnInst::Create(Context);
3043    return false;
3044  }
3045
3046  Value *RV;
3047  if (ParseValue(Ty, RV, PFS)) return true;
3048
3049  if (ResType != RV->getType())
3050    return Error(TypeLoc, "value doesn't match function result type '" +
3051                 getTypeString(ResType) + "'");
3052
3053  Inst = ReturnInst::Create(Context, RV);
3054  return false;
3055}
3056
3057
3058/// ParseBr
3059///   ::= 'br' TypeAndValue
3060///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3061bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3062  LocTy Loc, Loc2;
3063  Value *Op0;
3064  BasicBlock *Op1, *Op2;
3065  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3066
3067  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3068    Inst = BranchInst::Create(BB);
3069    return false;
3070  }
3071
3072  if (Op0->getType() != Type::getInt1Ty(Context))
3073    return Error(Loc, "branch condition must have 'i1' type");
3074
3075  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3076      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3077      ParseToken(lltok::comma, "expected ',' after true destination") ||
3078      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3079    return true;
3080
3081  Inst = BranchInst::Create(Op1, Op2, Op0);
3082  return false;
3083}
3084
3085/// ParseSwitch
3086///  Instruction
3087///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3088///  JumpTable
3089///    ::= (TypeAndValue ',' TypeAndValue)*
3090bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3091  LocTy CondLoc, BBLoc;
3092  Value *Cond;
3093  BasicBlock *DefaultBB;
3094  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3095      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3096      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3097      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3098    return true;
3099
3100  if (!Cond->getType()->isIntegerTy())
3101    return Error(CondLoc, "switch condition must have integer type");
3102
3103  // Parse the jump table pairs.
3104  SmallPtrSet<Value*, 32> SeenCases;
3105  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3106  while (Lex.getKind() != lltok::rsquare) {
3107    Value *Constant;
3108    BasicBlock *DestBB;
3109
3110    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3111        ParseToken(lltok::comma, "expected ',' after case value") ||
3112        ParseTypeAndBasicBlock(DestBB, PFS))
3113      return true;
3114
3115    if (!SeenCases.insert(Constant))
3116      return Error(CondLoc, "duplicate case value in switch");
3117    if (!isa<ConstantInt>(Constant))
3118      return Error(CondLoc, "case value is not a constant integer");
3119
3120    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3121  }
3122
3123  Lex.Lex();  // Eat the ']'.
3124
3125  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3126  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3127    SI->addCase(Table[i].first, Table[i].second);
3128  Inst = SI;
3129  return false;
3130}
3131
3132/// ParseIndirectBr
3133///  Instruction
3134///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3135bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3136  LocTy AddrLoc;
3137  Value *Address;
3138  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3139      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3140      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3141    return true;
3142
3143  if (!Address->getType()->isPointerTy())
3144    return Error(AddrLoc, "indirectbr address must have pointer type");
3145
3146  // Parse the destination list.
3147  SmallVector<BasicBlock*, 16> DestList;
3148
3149  if (Lex.getKind() != lltok::rsquare) {
3150    BasicBlock *DestBB;
3151    if (ParseTypeAndBasicBlock(DestBB, PFS))
3152      return true;
3153    DestList.push_back(DestBB);
3154
3155    while (EatIfPresent(lltok::comma)) {
3156      if (ParseTypeAndBasicBlock(DestBB, PFS))
3157        return true;
3158      DestList.push_back(DestBB);
3159    }
3160  }
3161
3162  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3163    return true;
3164
3165  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3166  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3167    IBI->addDestination(DestList[i]);
3168  Inst = IBI;
3169  return false;
3170}
3171
3172
3173/// ParseInvoke
3174///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3175///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3176bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3177  LocTy CallLoc = Lex.getLoc();
3178  unsigned RetAttrs, FnAttrs;
3179  CallingConv::ID CC;
3180  Type *RetType = 0;
3181  LocTy RetTypeLoc;
3182  ValID CalleeID;
3183  SmallVector<ParamInfo, 16> ArgList;
3184
3185  BasicBlock *NormalBB, *UnwindBB;
3186  if (ParseOptionalCallingConv(CC) ||
3187      ParseOptionalAttrs(RetAttrs, 1) ||
3188      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3189      ParseValID(CalleeID) ||
3190      ParseParameterList(ArgList, PFS) ||
3191      ParseOptionalAttrs(FnAttrs, 2) ||
3192      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3193      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3194      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3195      ParseTypeAndBasicBlock(UnwindBB, PFS))
3196    return true;
3197
3198  // If RetType is a non-function pointer type, then this is the short syntax
3199  // for the call, which means that RetType is just the return type.  Infer the
3200  // rest of the function argument types from the arguments that are present.
3201  PointerType *PFTy = 0;
3202  FunctionType *Ty = 0;
3203  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3204      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3205    // Pull out the types of all of the arguments...
3206    std::vector<Type*> ParamTypes;
3207    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3208      ParamTypes.push_back(ArgList[i].V->getType());
3209
3210    if (!FunctionType::isValidReturnType(RetType))
3211      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3212
3213    Ty = FunctionType::get(RetType, ParamTypes, false);
3214    PFTy = PointerType::getUnqual(Ty);
3215  }
3216
3217  // Look up the callee.
3218  Value *Callee;
3219  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3220
3221  // Set up the Attributes for the function.
3222  SmallVector<AttributeWithIndex, 8> Attrs;
3223  if (RetAttrs != Attribute::None)
3224    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3225
3226  SmallVector<Value*, 8> Args;
3227
3228  // Loop through FunctionType's arguments and ensure they are specified
3229  // correctly.  Also, gather any parameter attributes.
3230  FunctionType::param_iterator I = Ty->param_begin();
3231  FunctionType::param_iterator E = Ty->param_end();
3232  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3233    Type *ExpectedTy = 0;
3234    if (I != E) {
3235      ExpectedTy = *I++;
3236    } else if (!Ty->isVarArg()) {
3237      return Error(ArgList[i].Loc, "too many arguments specified");
3238    }
3239
3240    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3241      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3242                   getTypeString(ExpectedTy) + "'");
3243    Args.push_back(ArgList[i].V);
3244    if (ArgList[i].Attrs != Attribute::None)
3245      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3246  }
3247
3248  if (I != E)
3249    return Error(CallLoc, "not enough parameters specified for call");
3250
3251  if (FnAttrs != Attribute::None)
3252    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3253
3254  // Finish off the Attributes and check them
3255  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3256
3257  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3258  II->setCallingConv(CC);
3259  II->setAttributes(PAL);
3260  Inst = II;
3261  return false;
3262}
3263
3264/// ParseResume
3265///   ::= 'resume' TypeAndValue
3266bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3267  Value *Exn; LocTy ExnLoc;
3268  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3269    return true;
3270
3271  ResumeInst *RI = ResumeInst::Create(Exn);
3272  Inst = RI;
3273  return false;
3274}
3275
3276//===----------------------------------------------------------------------===//
3277// Binary Operators.
3278//===----------------------------------------------------------------------===//
3279
3280/// ParseArithmetic
3281///  ::= ArithmeticOps TypeAndValue ',' Value
3282///
3283/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3284/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3285bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3286                               unsigned Opc, unsigned OperandType) {
3287  LocTy Loc; Value *LHS, *RHS;
3288  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3289      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3290      ParseValue(LHS->getType(), RHS, PFS))
3291    return true;
3292
3293  bool Valid;
3294  switch (OperandType) {
3295  default: llvm_unreachable("Unknown operand type!");
3296  case 0: // int or FP.
3297    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3298            LHS->getType()->isFPOrFPVectorTy();
3299    break;
3300  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3301  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3302  }
3303
3304  if (!Valid)
3305    return Error(Loc, "invalid operand type for instruction");
3306
3307  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3308  return false;
3309}
3310
3311/// ParseLogical
3312///  ::= ArithmeticOps TypeAndValue ',' Value {
3313bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3314                            unsigned Opc) {
3315  LocTy Loc; Value *LHS, *RHS;
3316  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3317      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3318      ParseValue(LHS->getType(), RHS, PFS))
3319    return true;
3320
3321  if (!LHS->getType()->isIntOrIntVectorTy())
3322    return Error(Loc,"instruction requires integer or integer vector operands");
3323
3324  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3325  return false;
3326}
3327
3328
3329/// ParseCompare
3330///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3331///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3332bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3333                            unsigned Opc) {
3334  // Parse the integer/fp comparison predicate.
3335  LocTy Loc;
3336  unsigned Pred;
3337  Value *LHS, *RHS;
3338  if (ParseCmpPredicate(Pred, Opc) ||
3339      ParseTypeAndValue(LHS, Loc, PFS) ||
3340      ParseToken(lltok::comma, "expected ',' after compare value") ||
3341      ParseValue(LHS->getType(), RHS, PFS))
3342    return true;
3343
3344  if (Opc == Instruction::FCmp) {
3345    if (!LHS->getType()->isFPOrFPVectorTy())
3346      return Error(Loc, "fcmp requires floating point operands");
3347    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3348  } else {
3349    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3350    if (!LHS->getType()->isIntOrIntVectorTy() &&
3351        !LHS->getType()->isPointerTy())
3352      return Error(Loc, "icmp requires integer operands");
3353    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3354  }
3355  return false;
3356}
3357
3358//===----------------------------------------------------------------------===//
3359// Other Instructions.
3360//===----------------------------------------------------------------------===//
3361
3362
3363/// ParseCast
3364///   ::= CastOpc TypeAndValue 'to' Type
3365bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3366                         unsigned Opc) {
3367  LocTy Loc;
3368  Value *Op;
3369  Type *DestTy = 0;
3370  if (ParseTypeAndValue(Op, Loc, PFS) ||
3371      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3372      ParseType(DestTy))
3373    return true;
3374
3375  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3376    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3377    return Error(Loc, "invalid cast opcode for cast from '" +
3378                 getTypeString(Op->getType()) + "' to '" +
3379                 getTypeString(DestTy) + "'");
3380  }
3381  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3382  return false;
3383}
3384
3385/// ParseSelect
3386///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3387bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3388  LocTy Loc;
3389  Value *Op0, *Op1, *Op2;
3390  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3391      ParseToken(lltok::comma, "expected ',' after select condition") ||
3392      ParseTypeAndValue(Op1, PFS) ||
3393      ParseToken(lltok::comma, "expected ',' after select value") ||
3394      ParseTypeAndValue(Op2, PFS))
3395    return true;
3396
3397  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3398    return Error(Loc, Reason);
3399
3400  Inst = SelectInst::Create(Op0, Op1, Op2);
3401  return false;
3402}
3403
3404/// ParseVA_Arg
3405///   ::= 'va_arg' TypeAndValue ',' Type
3406bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3407  Value *Op;
3408  Type *EltTy = 0;
3409  LocTy TypeLoc;
3410  if (ParseTypeAndValue(Op, PFS) ||
3411      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3412      ParseType(EltTy, TypeLoc))
3413    return true;
3414
3415  if (!EltTy->isFirstClassType())
3416    return Error(TypeLoc, "va_arg requires operand with first class type");
3417
3418  Inst = new VAArgInst(Op, EltTy);
3419  return false;
3420}
3421
3422/// ParseExtractElement
3423///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3424bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3425  LocTy Loc;
3426  Value *Op0, *Op1;
3427  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3428      ParseToken(lltok::comma, "expected ',' after extract value") ||
3429      ParseTypeAndValue(Op1, PFS))
3430    return true;
3431
3432  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3433    return Error(Loc, "invalid extractelement operands");
3434
3435  Inst = ExtractElementInst::Create(Op0, Op1);
3436  return false;
3437}
3438
3439/// ParseInsertElement
3440///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3441bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3442  LocTy Loc;
3443  Value *Op0, *Op1, *Op2;
3444  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3445      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3446      ParseTypeAndValue(Op1, PFS) ||
3447      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3448      ParseTypeAndValue(Op2, PFS))
3449    return true;
3450
3451  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3452    return Error(Loc, "invalid insertelement operands");
3453
3454  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3455  return false;
3456}
3457
3458/// ParseShuffleVector
3459///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3460bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3461  LocTy Loc;
3462  Value *Op0, *Op1, *Op2;
3463  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3464      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3465      ParseTypeAndValue(Op1, PFS) ||
3466      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3467      ParseTypeAndValue(Op2, PFS))
3468    return true;
3469
3470  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3471    return Error(Loc, "invalid extractelement operands");
3472
3473  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3474  return false;
3475}
3476
3477/// ParsePHI
3478///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3479int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3480  Type *Ty = 0;  LocTy TypeLoc;
3481  Value *Op0, *Op1;
3482
3483  if (ParseType(Ty, TypeLoc) ||
3484      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3485      ParseValue(Ty, Op0, PFS) ||
3486      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3487      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3488      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3489    return true;
3490
3491  bool AteExtraComma = false;
3492  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3493  while (1) {
3494    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3495
3496    if (!EatIfPresent(lltok::comma))
3497      break;
3498
3499    if (Lex.getKind() == lltok::MetadataVar) {
3500      AteExtraComma = true;
3501      break;
3502    }
3503
3504    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3505        ParseValue(Ty, Op0, PFS) ||
3506        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3507        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3508        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3509      return true;
3510  }
3511
3512  if (!Ty->isFirstClassType())
3513    return Error(TypeLoc, "phi node must have first class type");
3514
3515  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3516  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3517    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3518  Inst = PN;
3519  return AteExtraComma ? InstExtraComma : InstNormal;
3520}
3521
3522/// ParseLandingPad
3523///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3524/// Clause
3525///   ::= 'catch' TypeAndValue
3526///   ::= 'filter'
3527///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3528bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3529  Type *Ty = 0; LocTy TyLoc;
3530  Value *PersFn; LocTy PersFnLoc;
3531
3532  if (ParseType(Ty, TyLoc) ||
3533      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3534      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3535    return true;
3536
3537  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3538  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3539
3540  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3541    LandingPadInst::ClauseType CT;
3542    if (EatIfPresent(lltok::kw_catch))
3543      CT = LandingPadInst::Catch;
3544    else if (EatIfPresent(lltok::kw_filter))
3545      CT = LandingPadInst::Filter;
3546    else
3547      return TokError("expected 'catch' or 'filter' clause type");
3548
3549    Value *V; LocTy VLoc;
3550    if (ParseTypeAndValue(V, VLoc, PFS)) {
3551      delete LP;
3552      return true;
3553    }
3554
3555    // A 'catch' type expects a non-array constant. A filter clause expects an
3556    // array constant.
3557    if (CT == LandingPadInst::Catch) {
3558      if (isa<ArrayType>(V->getType()))
3559        Error(VLoc, "'catch' clause has an invalid type");
3560    } else {
3561      if (!isa<ArrayType>(V->getType()))
3562        Error(VLoc, "'filter' clause has an invalid type");
3563    }
3564
3565    LP->addClause(V);
3566  }
3567
3568  Inst = LP;
3569  return false;
3570}
3571
3572/// ParseCall
3573///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3574///       ParameterList OptionalAttrs
3575bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3576                         bool isTail) {
3577  unsigned RetAttrs, FnAttrs;
3578  CallingConv::ID CC;
3579  Type *RetType = 0;
3580  LocTy RetTypeLoc;
3581  ValID CalleeID;
3582  SmallVector<ParamInfo, 16> ArgList;
3583  LocTy CallLoc = Lex.getLoc();
3584
3585  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3586      ParseOptionalCallingConv(CC) ||
3587      ParseOptionalAttrs(RetAttrs, 1) ||
3588      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3589      ParseValID(CalleeID) ||
3590      ParseParameterList(ArgList, PFS) ||
3591      ParseOptionalAttrs(FnAttrs, 2))
3592    return true;
3593
3594  // If RetType is a non-function pointer type, then this is the short syntax
3595  // for the call, which means that RetType is just the return type.  Infer the
3596  // rest of the function argument types from the arguments that are present.
3597  PointerType *PFTy = 0;
3598  FunctionType *Ty = 0;
3599  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3600      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3601    // Pull out the types of all of the arguments...
3602    std::vector<Type*> ParamTypes;
3603    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3604      ParamTypes.push_back(ArgList[i].V->getType());
3605
3606    if (!FunctionType::isValidReturnType(RetType))
3607      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3608
3609    Ty = FunctionType::get(RetType, ParamTypes, false);
3610    PFTy = PointerType::getUnqual(Ty);
3611  }
3612
3613  // Look up the callee.
3614  Value *Callee;
3615  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3616
3617  // Set up the Attributes for the function.
3618  SmallVector<AttributeWithIndex, 8> Attrs;
3619  if (RetAttrs != Attribute::None)
3620    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3621
3622  SmallVector<Value*, 8> Args;
3623
3624  // Loop through FunctionType's arguments and ensure they are specified
3625  // correctly.  Also, gather any parameter attributes.
3626  FunctionType::param_iterator I = Ty->param_begin();
3627  FunctionType::param_iterator E = Ty->param_end();
3628  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3629    Type *ExpectedTy = 0;
3630    if (I != E) {
3631      ExpectedTy = *I++;
3632    } else if (!Ty->isVarArg()) {
3633      return Error(ArgList[i].Loc, "too many arguments specified");
3634    }
3635
3636    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3637      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3638                   getTypeString(ExpectedTy) + "'");
3639    Args.push_back(ArgList[i].V);
3640    if (ArgList[i].Attrs != Attribute::None)
3641      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3642  }
3643
3644  if (I != E)
3645    return Error(CallLoc, "not enough parameters specified for call");
3646
3647  if (FnAttrs != Attribute::None)
3648    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3649
3650  // Finish off the Attributes and check them
3651  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3652
3653  CallInst *CI = CallInst::Create(Callee, Args);
3654  CI->setTailCall(isTail);
3655  CI->setCallingConv(CC);
3656  CI->setAttributes(PAL);
3657  Inst = CI;
3658  return false;
3659}
3660
3661//===----------------------------------------------------------------------===//
3662// Memory Instructions.
3663//===----------------------------------------------------------------------===//
3664
3665/// ParseAlloc
3666///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3667int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3668  Value *Size = 0;
3669  LocTy SizeLoc;
3670  unsigned Alignment = 0;
3671  Type *Ty = 0;
3672  if (ParseType(Ty)) return true;
3673
3674  bool AteExtraComma = false;
3675  if (EatIfPresent(lltok::comma)) {
3676    if (Lex.getKind() == lltok::kw_align) {
3677      if (ParseOptionalAlignment(Alignment)) return true;
3678    } else if (Lex.getKind() == lltok::MetadataVar) {
3679      AteExtraComma = true;
3680    } else {
3681      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3682          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3683        return true;
3684    }
3685  }
3686
3687  if (Size && !Size->getType()->isIntegerTy())
3688    return Error(SizeLoc, "element count must have integer type");
3689
3690  Inst = new AllocaInst(Ty, Size, Alignment);
3691  return AteExtraComma ? InstExtraComma : InstNormal;
3692}
3693
3694/// ParseLoad
3695///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3696///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3697///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3698///   Compatibility:
3699///   ::= 'volatile' 'load' TypeAndValue (',' 'align' i32)?
3700int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3701                        bool isVolatile) {
3702  Value *Val; LocTy Loc;
3703  unsigned Alignment = 0;
3704  bool AteExtraComma = false;
3705  bool isAtomic = false;
3706  AtomicOrdering Ordering = NotAtomic;
3707  SynchronizationScope Scope = CrossThread;
3708
3709  if (Lex.getKind() == lltok::kw_atomic) {
3710    if (isVolatile)
3711      return TokError("mixing atomic with old volatile placement");
3712    isAtomic = true;
3713    Lex.Lex();
3714  }
3715
3716  if (Lex.getKind() == lltok::kw_volatile) {
3717    if (isVolatile)
3718      return TokError("duplicate volatile before and after store");
3719    isVolatile = true;
3720    Lex.Lex();
3721  }
3722
3723  if (ParseTypeAndValue(Val, Loc, PFS) ||
3724      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3725      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3726    return true;
3727
3728  if (!Val->getType()->isPointerTy() ||
3729      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3730    return Error(Loc, "load operand must be a pointer to a first class type");
3731  if (isAtomic && !Alignment)
3732    return Error(Loc, "atomic load must have explicit non-zero alignment");
3733  if (Ordering == Release || Ordering == AcquireRelease)
3734    return Error(Loc, "atomic load cannot use Release ordering");
3735
3736  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3737  return AteExtraComma ? InstExtraComma : InstNormal;
3738}
3739
3740/// ParseStore
3741
3742///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3743///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3744///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3745///   Compatibility:
3746///   ::= 'volatile' 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3747int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3748                         bool isVolatile) {
3749  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3750  unsigned Alignment = 0;
3751  bool AteExtraComma = false;
3752  bool isAtomic = false;
3753  AtomicOrdering Ordering = NotAtomic;
3754  SynchronizationScope Scope = CrossThread;
3755
3756  if (Lex.getKind() == lltok::kw_atomic) {
3757    if (isVolatile)
3758      return TokError("mixing atomic with old volatile placement");
3759    isAtomic = true;
3760    Lex.Lex();
3761  }
3762
3763  if (Lex.getKind() == lltok::kw_volatile) {
3764    if (isVolatile)
3765      return TokError("duplicate volatile before and after store");
3766    isVolatile = true;
3767    Lex.Lex();
3768  }
3769
3770  if (ParseTypeAndValue(Val, Loc, PFS) ||
3771      ParseToken(lltok::comma, "expected ',' after store operand") ||
3772      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3773      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3774      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3775    return true;
3776
3777  if (!Ptr->getType()->isPointerTy())
3778    return Error(PtrLoc, "store operand must be a pointer");
3779  if (!Val->getType()->isFirstClassType())
3780    return Error(Loc, "store operand must be a first class value");
3781  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3782    return Error(Loc, "stored value and pointer type do not match");
3783  if (isAtomic && !Alignment)
3784    return Error(Loc, "atomic store must have explicit non-zero alignment");
3785  if (Ordering == Acquire || Ordering == AcquireRelease)
3786    return Error(Loc, "atomic store cannot use Acquire ordering");
3787
3788  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3789  return AteExtraComma ? InstExtraComma : InstNormal;
3790}
3791
3792/// ParseCmpXchg
3793///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3794///       'singlethread'? AtomicOrdering
3795int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3796  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3797  bool AteExtraComma = false;
3798  AtomicOrdering Ordering = NotAtomic;
3799  SynchronizationScope Scope = CrossThread;
3800  bool isVolatile = false;
3801
3802  if (EatIfPresent(lltok::kw_volatile))
3803    isVolatile = true;
3804
3805  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3806      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3807      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3808      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3809      ParseTypeAndValue(New, NewLoc, PFS) ||
3810      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3811    return true;
3812
3813  if (Ordering == Unordered)
3814    return TokError("cmpxchg cannot be unordered");
3815  if (!Ptr->getType()->isPointerTy())
3816    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3817  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3818    return Error(CmpLoc, "compare value and pointer type do not match");
3819  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3820    return Error(NewLoc, "new value and pointer type do not match");
3821  if (!New->getType()->isIntegerTy())
3822    return Error(NewLoc, "cmpxchg operand must be an integer");
3823  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3824  if (Size < 8 || (Size & (Size - 1)))
3825    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3826                         " integer");
3827
3828  AtomicCmpXchgInst *CXI =
3829    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3830  CXI->setVolatile(isVolatile);
3831  Inst = CXI;
3832  return AteExtraComma ? InstExtraComma : InstNormal;
3833}
3834
3835/// ParseAtomicRMW
3836///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3837///       'singlethread'? AtomicOrdering
3838int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3839  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3840  bool AteExtraComma = false;
3841  AtomicOrdering Ordering = NotAtomic;
3842  SynchronizationScope Scope = CrossThread;
3843  bool isVolatile = false;
3844  AtomicRMWInst::BinOp Operation;
3845
3846  if (EatIfPresent(lltok::kw_volatile))
3847    isVolatile = true;
3848
3849  switch (Lex.getKind()) {
3850  default: return TokError("expected binary operation in atomicrmw");
3851  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3852  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3853  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3854  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3855  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3856  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3857  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3858  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3859  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3860  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3861  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3862  }
3863  Lex.Lex();  // Eat the operation.
3864
3865  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3866      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3867      ParseTypeAndValue(Val, ValLoc, PFS) ||
3868      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3869    return true;
3870
3871  if (Ordering == Unordered)
3872    return TokError("atomicrmw cannot be unordered");
3873  if (!Ptr->getType()->isPointerTy())
3874    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3875  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3876    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3877  if (!Val->getType()->isIntegerTy())
3878    return Error(ValLoc, "atomicrmw operand must be an integer");
3879  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3880  if (Size < 8 || (Size & (Size - 1)))
3881    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3882                         " integer");
3883
3884  AtomicRMWInst *RMWI =
3885    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3886  RMWI->setVolatile(isVolatile);
3887  Inst = RMWI;
3888  return AteExtraComma ? InstExtraComma : InstNormal;
3889}
3890
3891/// ParseFence
3892///   ::= 'fence' 'singlethread'? AtomicOrdering
3893int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3894  AtomicOrdering Ordering = NotAtomic;
3895  SynchronizationScope Scope = CrossThread;
3896  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3897    return true;
3898
3899  if (Ordering == Unordered)
3900    return TokError("fence cannot be unordered");
3901  if (Ordering == Monotonic)
3902    return TokError("fence cannot be monotonic");
3903
3904  Inst = new FenceInst(Context, Ordering, Scope);
3905  return InstNormal;
3906}
3907
3908/// ParseGetElementPtr
3909///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3910int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3911  Value *Ptr, *Val; LocTy Loc, EltLoc;
3912
3913  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3914
3915  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3916
3917  if (!Ptr->getType()->isPointerTy())
3918    return Error(Loc, "base of getelementptr must be a pointer");
3919
3920  SmallVector<Value*, 16> Indices;
3921  bool AteExtraComma = false;
3922  while (EatIfPresent(lltok::comma)) {
3923    if (Lex.getKind() == lltok::MetadataVar) {
3924      AteExtraComma = true;
3925      break;
3926    }
3927    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3928    if (!Val->getType()->isIntegerTy())
3929      return Error(EltLoc, "getelementptr index must be an integer");
3930    Indices.push_back(Val);
3931  }
3932
3933  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
3934    return Error(Loc, "invalid getelementptr indices");
3935  Inst = GetElementPtrInst::Create(Ptr, Indices);
3936  if (InBounds)
3937    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3938  return AteExtraComma ? InstExtraComma : InstNormal;
3939}
3940
3941/// ParseExtractValue
3942///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3943int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3944  Value *Val; LocTy Loc;
3945  SmallVector<unsigned, 4> Indices;
3946  bool AteExtraComma;
3947  if (ParseTypeAndValue(Val, Loc, PFS) ||
3948      ParseIndexList(Indices, AteExtraComma))
3949    return true;
3950
3951  if (!Val->getType()->isAggregateType())
3952    return Error(Loc, "extractvalue operand must be aggregate type");
3953
3954  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3955    return Error(Loc, "invalid indices for extractvalue");
3956  Inst = ExtractValueInst::Create(Val, Indices);
3957  return AteExtraComma ? InstExtraComma : InstNormal;
3958}
3959
3960/// ParseInsertValue
3961///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3962int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3963  Value *Val0, *Val1; LocTy Loc0, Loc1;
3964  SmallVector<unsigned, 4> Indices;
3965  bool AteExtraComma;
3966  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3967      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3968      ParseTypeAndValue(Val1, Loc1, PFS) ||
3969      ParseIndexList(Indices, AteExtraComma))
3970    return true;
3971
3972  if (!Val0->getType()->isAggregateType())
3973    return Error(Loc0, "insertvalue operand must be aggregate type");
3974
3975  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
3976    return Error(Loc0, "invalid indices for insertvalue");
3977  Inst = InsertValueInst::Create(Val0, Val1, Indices);
3978  return AteExtraComma ? InstExtraComma : InstNormal;
3979}
3980
3981//===----------------------------------------------------------------------===//
3982// Embedded metadata.
3983//===----------------------------------------------------------------------===//
3984
3985/// ParseMDNodeVector
3986///   ::= Element (',' Element)*
3987/// Element
3988///   ::= 'null' | TypeAndValue
3989bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3990                                 PerFunctionState *PFS) {
3991  // Check for an empty list.
3992  if (Lex.getKind() == lltok::rbrace)
3993    return false;
3994
3995  do {
3996    // Null is a special case since it is typeless.
3997    if (EatIfPresent(lltok::kw_null)) {
3998      Elts.push_back(0);
3999      continue;
4000    }
4001
4002    Value *V = 0;
4003    if (ParseTypeAndValue(V, PFS)) return true;
4004    Elts.push_back(V);
4005  } while (EatIfPresent(lltok::comma));
4006
4007  return false;
4008}
4009