LLParser.cpp revision e30e678865b8dc1b69ef1c26e7567ffd1300553c
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/ValueSymbolTable.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30using namespace llvm;
31
32namespace llvm {
33  /// ValID - Represents a reference of a definition of some sort with no type.
34  /// There are several cases where we have to parse the value but where the
35  /// type can depend on later context.  This may either be a numeric reference
36  /// or a symbolic (%var) reference.  This is just a discriminated union.
37  struct ValID {
38    enum {
39      t_LocalID, t_GlobalID,      // ID in UIntVal.
40      t_LocalName, t_GlobalName,  // Name in StrVal.
41      t_APSInt, t_APFloat,        // Value in APSIntVal/APFloatVal.
42      t_Null, t_Undef, t_Zero,    // No value.
43      t_EmptyArray,               // No value:  []
44      t_Constant,                 // Value in ConstantVal.
45      t_InlineAsm,                // Value in StrVal/StrVal2/UIntVal.
46      t_Metadata                  // Value in MetadataVal.
47    } Kind;
48
49    LLParser::LocTy Loc;
50    unsigned UIntVal;
51    std::string StrVal, StrVal2;
52    APSInt APSIntVal;
53    APFloat APFloatVal;
54    Constant *ConstantVal;
55    MetadataBase *MetadataVal;
56    ValID() : APFloatVal(0.0) {}
57  };
58}
59
60/// Run: module ::= toplevelentity*
61bool LLParser::Run() {
62  // Prime the lexer.
63  Lex.Lex();
64
65  return ParseTopLevelEntities() ||
66         ValidateEndOfModule();
67}
68
69/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
70/// module.
71bool LLParser::ValidateEndOfModule() {
72  if (!ForwardRefTypes.empty())
73    return Error(ForwardRefTypes.begin()->second.second,
74                 "use of undefined type named '" +
75                 ForwardRefTypes.begin()->first + "'");
76  if (!ForwardRefTypeIDs.empty())
77    return Error(ForwardRefTypeIDs.begin()->second.second,
78                 "use of undefined type '%" +
79                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
80
81  if (!ForwardRefVals.empty())
82    return Error(ForwardRefVals.begin()->second.second,
83                 "use of undefined value '@" + ForwardRefVals.begin()->first +
84                 "'");
85
86  if (!ForwardRefValIDs.empty())
87    return Error(ForwardRefValIDs.begin()->second.second,
88                 "use of undefined value '@" +
89                 utostr(ForwardRefValIDs.begin()->first) + "'");
90
91  if (!ForwardRefMDNodes.empty())
92    return Error(ForwardRefMDNodes.begin()->second.second,
93                 "use of undefined metadata '!" +
94                 utostr(ForwardRefMDNodes.begin()->first) + "'");
95
96
97  // Look for intrinsic functions and CallInst that need to be upgraded
98  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
99    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
100
101  // Check debug info intrinsics.
102  CheckDebugInfoIntrinsics(M);
103  return false;
104}
105
106//===----------------------------------------------------------------------===//
107// Top-Level Entities
108//===----------------------------------------------------------------------===//
109
110bool LLParser::ParseTopLevelEntities() {
111  while (1) {
112    switch (Lex.getKind()) {
113    default:         return TokError("expected top-level entity");
114    case lltok::Eof: return false;
115    //case lltok::kw_define:
116    case lltok::kw_declare: if (ParseDeclare()) return true; break;
117    case lltok::kw_define:  if (ParseDefine()) return true; break;
118    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
119    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
120    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
121    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
122    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
123    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
124    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
125    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
126    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
127    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
128    case lltok::NamedMD:    if (ParseNamedMetadata()) return true; break;
129
130    // The Global variable production with no name can have many different
131    // optional leading prefixes, the production is:
132    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
133    //               OptionalAddrSpace ('constant'|'global') ...
134    case lltok::kw_private :       // OptionalLinkage
135    case lltok::kw_linker_private: // OptionalLinkage
136    case lltok::kw_internal:       // OptionalLinkage
137    case lltok::kw_weak:           // OptionalLinkage
138    case lltok::kw_weak_odr:       // OptionalLinkage
139    case lltok::kw_linkonce:       // OptionalLinkage
140    case lltok::kw_linkonce_odr:   // OptionalLinkage
141    case lltok::kw_appending:      // OptionalLinkage
142    case lltok::kw_dllexport:      // OptionalLinkage
143    case lltok::kw_common:         // OptionalLinkage
144    case lltok::kw_dllimport:      // OptionalLinkage
145    case lltok::kw_extern_weak:    // OptionalLinkage
146    case lltok::kw_external: {     // OptionalLinkage
147      unsigned Linkage, Visibility;
148      if (ParseOptionalLinkage(Linkage) ||
149          ParseOptionalVisibility(Visibility) ||
150          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
151        return true;
152      break;
153    }
154    case lltok::kw_default:       // OptionalVisibility
155    case lltok::kw_hidden:        // OptionalVisibility
156    case lltok::kw_protected: {   // OptionalVisibility
157      unsigned Visibility;
158      if (ParseOptionalVisibility(Visibility) ||
159          ParseGlobal("", SMLoc(), 0, false, Visibility))
160        return true;
161      break;
162    }
163
164    case lltok::kw_thread_local:  // OptionalThreadLocal
165    case lltok::kw_addrspace:     // OptionalAddrSpace
166    case lltok::kw_constant:      // GlobalType
167    case lltok::kw_global:        // GlobalType
168      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
169      break;
170    }
171  }
172}
173
174
175/// toplevelentity
176///   ::= 'module' 'asm' STRINGCONSTANT
177bool LLParser::ParseModuleAsm() {
178  assert(Lex.getKind() == lltok::kw_module);
179  Lex.Lex();
180
181  std::string AsmStr;
182  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
183      ParseStringConstant(AsmStr)) return true;
184
185  const std::string &AsmSoFar = M->getModuleInlineAsm();
186  if (AsmSoFar.empty())
187    M->setModuleInlineAsm(AsmStr);
188  else
189    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
190  return false;
191}
192
193/// toplevelentity
194///   ::= 'target' 'triple' '=' STRINGCONSTANT
195///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
196bool LLParser::ParseTargetDefinition() {
197  assert(Lex.getKind() == lltok::kw_target);
198  std::string Str;
199  switch (Lex.Lex()) {
200  default: return TokError("unknown target property");
201  case lltok::kw_triple:
202    Lex.Lex();
203    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
204        ParseStringConstant(Str))
205      return true;
206    M->setTargetTriple(Str);
207    return false;
208  case lltok::kw_datalayout:
209    Lex.Lex();
210    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
211        ParseStringConstant(Str))
212      return true;
213    M->setDataLayout(Str);
214    return false;
215  }
216}
217
218/// toplevelentity
219///   ::= 'deplibs' '=' '[' ']'
220///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
221bool LLParser::ParseDepLibs() {
222  assert(Lex.getKind() == lltok::kw_deplibs);
223  Lex.Lex();
224  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
225      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
226    return true;
227
228  if (EatIfPresent(lltok::rsquare))
229    return false;
230
231  std::string Str;
232  if (ParseStringConstant(Str)) return true;
233  M->addLibrary(Str);
234
235  while (EatIfPresent(lltok::comma)) {
236    if (ParseStringConstant(Str)) return true;
237    M->addLibrary(Str);
238  }
239
240  return ParseToken(lltok::rsquare, "expected ']' at end of list");
241}
242
243/// ParseUnnamedType:
244///   ::= 'type' type
245///   ::= LocalVarID '=' 'type' type
246bool LLParser::ParseUnnamedType() {
247  unsigned TypeID = NumberedTypes.size();
248
249  // Handle the LocalVarID form.
250  if (Lex.getKind() == lltok::LocalVarID) {
251    if (Lex.getUIntVal() != TypeID)
252      return Error(Lex.getLoc(), "type expected to be numbered '%" +
253                   utostr(TypeID) + "'");
254    Lex.Lex(); // eat LocalVarID;
255
256    if (ParseToken(lltok::equal, "expected '=' after name"))
257      return true;
258  }
259
260  assert(Lex.getKind() == lltok::kw_type);
261  LocTy TypeLoc = Lex.getLoc();
262  Lex.Lex(); // eat kw_type
263
264  PATypeHolder Ty(Type::getVoidTy(Context));
265  if (ParseType(Ty)) return true;
266
267  // See if this type was previously referenced.
268  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
269    FI = ForwardRefTypeIDs.find(TypeID);
270  if (FI != ForwardRefTypeIDs.end()) {
271    if (FI->second.first.get() == Ty)
272      return Error(TypeLoc, "self referential type is invalid");
273
274    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
275    Ty = FI->second.first.get();
276    ForwardRefTypeIDs.erase(FI);
277  }
278
279  NumberedTypes.push_back(Ty);
280
281  return false;
282}
283
284/// toplevelentity
285///   ::= LocalVar '=' 'type' type
286bool LLParser::ParseNamedType() {
287  std::string Name = Lex.getStrVal();
288  LocTy NameLoc = Lex.getLoc();
289  Lex.Lex();  // eat LocalVar.
290
291  PATypeHolder Ty(Type::getVoidTy(Context));
292
293  if (ParseToken(lltok::equal, "expected '=' after name") ||
294      ParseToken(lltok::kw_type, "expected 'type' after name") ||
295      ParseType(Ty))
296    return true;
297
298  // Set the type name, checking for conflicts as we do so.
299  bool AlreadyExists = M->addTypeName(Name, Ty);
300  if (!AlreadyExists) return false;
301
302  // See if this type is a forward reference.  We need to eagerly resolve
303  // types to allow recursive type redefinitions below.
304  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
305  FI = ForwardRefTypes.find(Name);
306  if (FI != ForwardRefTypes.end()) {
307    if (FI->second.first.get() == Ty)
308      return Error(NameLoc, "self referential type is invalid");
309
310    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
311    Ty = FI->second.first.get();
312    ForwardRefTypes.erase(FI);
313  }
314
315  // Inserting a name that is already defined, get the existing name.
316  const Type *Existing = M->getTypeByName(Name);
317  assert(Existing && "Conflict but no matching type?!");
318
319  // Otherwise, this is an attempt to redefine a type. That's okay if
320  // the redefinition is identical to the original.
321  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
322  if (Existing == Ty) return false;
323
324  // Any other kind of (non-equivalent) redefinition is an error.
325  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
326               Ty->getDescription() + "'");
327}
328
329
330/// toplevelentity
331///   ::= 'declare' FunctionHeader
332bool LLParser::ParseDeclare() {
333  assert(Lex.getKind() == lltok::kw_declare);
334  Lex.Lex();
335
336  Function *F;
337  return ParseFunctionHeader(F, false);
338}
339
340/// toplevelentity
341///   ::= 'define' FunctionHeader '{' ...
342bool LLParser::ParseDefine() {
343  assert(Lex.getKind() == lltok::kw_define);
344  Lex.Lex();
345
346  Function *F;
347  return ParseFunctionHeader(F, true) ||
348         ParseFunctionBody(*F);
349}
350
351/// ParseGlobalType
352///   ::= 'constant'
353///   ::= 'global'
354bool LLParser::ParseGlobalType(bool &IsConstant) {
355  if (Lex.getKind() == lltok::kw_constant)
356    IsConstant = true;
357  else if (Lex.getKind() == lltok::kw_global)
358    IsConstant = false;
359  else {
360    IsConstant = false;
361    return TokError("expected 'global' or 'constant'");
362  }
363  Lex.Lex();
364  return false;
365}
366
367/// ParseUnnamedGlobal:
368///   OptionalVisibility ALIAS ...
369///   OptionalLinkage OptionalVisibility ...   -> global variable
370///   GlobalID '=' OptionalVisibility ALIAS ...
371///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
372bool LLParser::ParseUnnamedGlobal() {
373  unsigned VarID = NumberedVals.size();
374  std::string Name;
375  LocTy NameLoc = Lex.getLoc();
376
377  // Handle the GlobalID form.
378  if (Lex.getKind() == lltok::GlobalID) {
379    if (Lex.getUIntVal() != VarID)
380      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
381                   utostr(VarID) + "'");
382    Lex.Lex(); // eat GlobalID;
383
384    if (ParseToken(lltok::equal, "expected '=' after name"))
385      return true;
386  }
387
388  bool HasLinkage;
389  unsigned Linkage, Visibility;
390  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
391      ParseOptionalVisibility(Visibility))
392    return true;
393
394  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
395    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
396  return ParseAlias(Name, NameLoc, Visibility);
397}
398
399/// ParseNamedGlobal:
400///   GlobalVar '=' OptionalVisibility ALIAS ...
401///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
402bool LLParser::ParseNamedGlobal() {
403  assert(Lex.getKind() == lltok::GlobalVar);
404  LocTy NameLoc = Lex.getLoc();
405  std::string Name = Lex.getStrVal();
406  Lex.Lex();
407
408  bool HasLinkage;
409  unsigned Linkage, Visibility;
410  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
411      ParseOptionalLinkage(Linkage, HasLinkage) ||
412      ParseOptionalVisibility(Visibility))
413    return true;
414
415  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
416    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
417  return ParseAlias(Name, NameLoc, Visibility);
418}
419
420// MDString:
421//   ::= '!' STRINGCONSTANT
422bool LLParser::ParseMDString(MetadataBase *&MDS) {
423  std::string Str;
424  if (ParseStringConstant(Str)) return true;
425  MDS = MDString::get(Context, Str);
426  return false;
427}
428
429// MDNode:
430//   ::= '!' MDNodeNumber
431bool LLParser::ParseMDNode(MetadataBase *&Node) {
432  // !{ ..., !42, ... }
433  unsigned MID = 0;
434  if (ParseUInt32(MID))  return true;
435
436  // Check existing MDNode.
437  std::map<unsigned, MetadataBase *>::iterator I = MetadataCache.find(MID);
438  if (I != MetadataCache.end()) {
439    Node = I->second;
440    return false;
441  }
442
443  // Check known forward references.
444  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
445    FI = ForwardRefMDNodes.find(MID);
446  if (FI != ForwardRefMDNodes.end()) {
447    Node = FI->second.first;
448    return false;
449  }
450
451  // Create MDNode forward reference
452  SmallVector<Value *, 1> Elts;
453  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
454  Elts.push_back(MDString::get(Context, FwdRefName));
455  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
456  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
457  Node = FwdNode;
458  return false;
459}
460
461///ParseNamedMetadata:
462///   !foo = !{ !1, !2 }
463bool LLParser::ParseNamedMetadata() {
464  assert(Lex.getKind() == lltok::NamedMD);
465  Lex.Lex();
466  std::string Name = Lex.getStrVal();
467
468  if (ParseToken(lltok::equal, "expected '=' here"))
469    return true;
470
471  if (Lex.getKind() != lltok::Metadata)
472    return TokError("Expected '!' here");
473  Lex.Lex();
474
475  if (Lex.getKind() != lltok::lbrace)
476    return TokError("Expected '{' here");
477  Lex.Lex();
478  SmallVector<MetadataBase *, 8> Elts;
479  do {
480    if (Lex.getKind() != lltok::Metadata)
481      return TokError("Expected '!' here");
482    Lex.Lex();
483    MetadataBase *N = 0;
484    if (ParseMDNode(N)) return true;
485    Elts.push_back(N);
486  } while (EatIfPresent(lltok::comma));
487
488  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
489    return true;
490
491  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
492  return false;
493}
494
495/// ParseStandaloneMetadata:
496///   !42 = !{...}
497bool LLParser::ParseStandaloneMetadata() {
498  assert(Lex.getKind() == lltok::Metadata);
499  Lex.Lex();
500  unsigned MetadataID = 0;
501  if (ParseUInt32(MetadataID))
502    return true;
503  if (MetadataCache.find(MetadataID) != MetadataCache.end())
504    return TokError("Metadata id is already used");
505  if (ParseToken(lltok::equal, "expected '=' here"))
506    return true;
507
508  LocTy TyLoc;
509  PATypeHolder Ty(Type::getVoidTy(Context));
510  if (ParseType(Ty, TyLoc))
511    return true;
512
513  if (Lex.getKind() != lltok::Metadata)
514    return TokError("Expected metadata here");
515
516  Lex.Lex();
517  if (Lex.getKind() != lltok::lbrace)
518    return TokError("Expected '{' here");
519
520  SmallVector<Value *, 16> Elts;
521  if (ParseMDNodeVector(Elts)
522      || ParseToken(lltok::rbrace, "expected end of metadata node"))
523    return true;
524
525  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
526  MetadataCache[MetadataID] = Init;
527  std::map<unsigned, std::pair<MetadataBase *, LocTy> >::iterator
528    FI = ForwardRefMDNodes.find(MetadataID);
529  if (FI != ForwardRefMDNodes.end()) {
530    MDNode *FwdNode = cast<MDNode>(FI->second.first);
531    FwdNode->replaceAllUsesWith(Init);
532    ForwardRefMDNodes.erase(FI);
533  }
534
535  return false;
536}
537
538/// ParseAlias:
539///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
540/// Aliasee
541///   ::= TypeAndValue
542///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
543///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
544///
545/// Everything through visibility has already been parsed.
546///
547bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
548                          unsigned Visibility) {
549  assert(Lex.getKind() == lltok::kw_alias);
550  Lex.Lex();
551  unsigned Linkage;
552  LocTy LinkageLoc = Lex.getLoc();
553  if (ParseOptionalLinkage(Linkage))
554    return true;
555
556  if (Linkage != GlobalValue::ExternalLinkage &&
557      Linkage != GlobalValue::WeakAnyLinkage &&
558      Linkage != GlobalValue::WeakODRLinkage &&
559      Linkage != GlobalValue::InternalLinkage &&
560      Linkage != GlobalValue::PrivateLinkage &&
561      Linkage != GlobalValue::LinkerPrivateLinkage)
562    return Error(LinkageLoc, "invalid linkage type for alias");
563
564  Constant *Aliasee;
565  LocTy AliaseeLoc = Lex.getLoc();
566  if (Lex.getKind() != lltok::kw_bitcast &&
567      Lex.getKind() != lltok::kw_getelementptr) {
568    if (ParseGlobalTypeAndValue(Aliasee)) return true;
569  } else {
570    // The bitcast dest type is not present, it is implied by the dest type.
571    ValID ID;
572    if (ParseValID(ID)) return true;
573    if (ID.Kind != ValID::t_Constant)
574      return Error(AliaseeLoc, "invalid aliasee");
575    Aliasee = ID.ConstantVal;
576  }
577
578  if (!isa<PointerType>(Aliasee->getType()))
579    return Error(AliaseeLoc, "alias must have pointer type");
580
581  // Okay, create the alias but do not insert it into the module yet.
582  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
583                                    (GlobalValue::LinkageTypes)Linkage, Name,
584                                    Aliasee);
585  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
586
587  // See if this value already exists in the symbol table.  If so, it is either
588  // a redefinition or a definition of a forward reference.
589  if (GlobalValue *Val =
590        cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
591    // See if this was a redefinition.  If so, there is no entry in
592    // ForwardRefVals.
593    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
594      I = ForwardRefVals.find(Name);
595    if (I == ForwardRefVals.end())
596      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
597
598    // Otherwise, this was a definition of forward ref.  Verify that types
599    // agree.
600    if (Val->getType() != GA->getType())
601      return Error(NameLoc,
602              "forward reference and definition of alias have different types");
603
604    // If they agree, just RAUW the old value with the alias and remove the
605    // forward ref info.
606    Val->replaceAllUsesWith(GA);
607    Val->eraseFromParent();
608    ForwardRefVals.erase(I);
609  }
610
611  // Insert into the module, we know its name won't collide now.
612  M->getAliasList().push_back(GA);
613  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
614
615  return false;
616}
617
618/// ParseGlobal
619///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
620///       OptionalAddrSpace GlobalType Type Const
621///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
622///       OptionalAddrSpace GlobalType Type Const
623///
624/// Everything through visibility has been parsed already.
625///
626bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
627                           unsigned Linkage, bool HasLinkage,
628                           unsigned Visibility) {
629  unsigned AddrSpace;
630  bool ThreadLocal, IsConstant;
631  LocTy TyLoc;
632
633  PATypeHolder Ty(Type::getVoidTy(Context));
634  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
635      ParseOptionalAddrSpace(AddrSpace) ||
636      ParseGlobalType(IsConstant) ||
637      ParseType(Ty, TyLoc))
638    return true;
639
640  // If the linkage is specified and is external, then no initializer is
641  // present.
642  Constant *Init = 0;
643  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
644                      Linkage != GlobalValue::ExternalWeakLinkage &&
645                      Linkage != GlobalValue::ExternalLinkage)) {
646    if (ParseGlobalValue(Ty, Init))
647      return true;
648  }
649
650  if (isa<FunctionType>(Ty) || Ty == Type::getLabelTy(Context))
651    return Error(TyLoc, "invalid type for global variable");
652
653  GlobalVariable *GV = 0;
654
655  // See if the global was forward referenced, if so, use the global.
656  if (!Name.empty()) {
657    if ((GV = M->getGlobalVariable(Name, true)) &&
658        !ForwardRefVals.erase(Name))
659      return Error(NameLoc, "redefinition of global '@" + Name + "'");
660  } else {
661    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
662      I = ForwardRefValIDs.find(NumberedVals.size());
663    if (I != ForwardRefValIDs.end()) {
664      GV = cast<GlobalVariable>(I->second.first);
665      ForwardRefValIDs.erase(I);
666    }
667  }
668
669  if (GV == 0) {
670    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
671                            Name, 0, false, AddrSpace);
672  } else {
673    if (GV->getType()->getElementType() != Ty)
674      return Error(TyLoc,
675            "forward reference and definition of global have different types");
676
677    // Move the forward-reference to the correct spot in the module.
678    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
679  }
680
681  if (Name.empty())
682    NumberedVals.push_back(GV);
683
684  // Set the parsed properties on the global.
685  if (Init)
686    GV->setInitializer(Init);
687  GV->setConstant(IsConstant);
688  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
689  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
690  GV->setThreadLocal(ThreadLocal);
691
692  // Parse attributes on the global.
693  while (Lex.getKind() == lltok::comma) {
694    Lex.Lex();
695
696    if (Lex.getKind() == lltok::kw_section) {
697      Lex.Lex();
698      GV->setSection(Lex.getStrVal());
699      if (ParseToken(lltok::StringConstant, "expected global section string"))
700        return true;
701    } else if (Lex.getKind() == lltok::kw_align) {
702      unsigned Alignment;
703      if (ParseOptionalAlignment(Alignment)) return true;
704      GV->setAlignment(Alignment);
705    } else {
706      TokError("unknown global variable property!");
707    }
708  }
709
710  return false;
711}
712
713
714//===----------------------------------------------------------------------===//
715// GlobalValue Reference/Resolution Routines.
716//===----------------------------------------------------------------------===//
717
718/// GetGlobalVal - Get a value with the specified name or ID, creating a
719/// forward reference record if needed.  This can return null if the value
720/// exists but does not have the right type.
721GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
722                                    LocTy Loc) {
723  const PointerType *PTy = dyn_cast<PointerType>(Ty);
724  if (PTy == 0) {
725    Error(Loc, "global variable reference must have pointer type");
726    return 0;
727  }
728
729  // Look this name up in the normal function symbol table.
730  GlobalValue *Val =
731    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
732
733  // If this is a forward reference for the value, see if we already created a
734  // forward ref record.
735  if (Val == 0) {
736    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
737      I = ForwardRefVals.find(Name);
738    if (I != ForwardRefVals.end())
739      Val = I->second.first;
740  }
741
742  // If we have the value in the symbol table or fwd-ref table, return it.
743  if (Val) {
744    if (Val->getType() == Ty) return Val;
745    Error(Loc, "'@" + Name + "' defined with type '" +
746          Val->getType()->getDescription() + "'");
747    return 0;
748  }
749
750  // Otherwise, create a new forward reference for this value and remember it.
751  GlobalValue *FwdVal;
752  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
753    // Function types can return opaque but functions can't.
754    if (isa<OpaqueType>(FT->getReturnType())) {
755      Error(Loc, "function may not return opaque type");
756      return 0;
757    }
758
759    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
760  } else {
761    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
762                                GlobalValue::ExternalWeakLinkage, 0, Name);
763  }
764
765  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
766  return FwdVal;
767}
768
769GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
770  const PointerType *PTy = dyn_cast<PointerType>(Ty);
771  if (PTy == 0) {
772    Error(Loc, "global variable reference must have pointer type");
773    return 0;
774  }
775
776  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
777
778  // If this is a forward reference for the value, see if we already created a
779  // forward ref record.
780  if (Val == 0) {
781    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
782      I = ForwardRefValIDs.find(ID);
783    if (I != ForwardRefValIDs.end())
784      Val = I->second.first;
785  }
786
787  // If we have the value in the symbol table or fwd-ref table, return it.
788  if (Val) {
789    if (Val->getType() == Ty) return Val;
790    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
791          Val->getType()->getDescription() + "'");
792    return 0;
793  }
794
795  // Otherwise, create a new forward reference for this value and remember it.
796  GlobalValue *FwdVal;
797  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
798    // Function types can return opaque but functions can't.
799    if (isa<OpaqueType>(FT->getReturnType())) {
800      Error(Loc, "function may not return opaque type");
801      return 0;
802    }
803    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
804  } else {
805    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
806                                GlobalValue::ExternalWeakLinkage, 0, "");
807  }
808
809  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
810  return FwdVal;
811}
812
813
814//===----------------------------------------------------------------------===//
815// Helper Routines.
816//===----------------------------------------------------------------------===//
817
818/// ParseToken - If the current token has the specified kind, eat it and return
819/// success.  Otherwise, emit the specified error and return failure.
820bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
821  if (Lex.getKind() != T)
822    return TokError(ErrMsg);
823  Lex.Lex();
824  return false;
825}
826
827/// ParseStringConstant
828///   ::= StringConstant
829bool LLParser::ParseStringConstant(std::string &Result) {
830  if (Lex.getKind() != lltok::StringConstant)
831    return TokError("expected string constant");
832  Result = Lex.getStrVal();
833  Lex.Lex();
834  return false;
835}
836
837/// ParseUInt32
838///   ::= uint32
839bool LLParser::ParseUInt32(unsigned &Val) {
840  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
841    return TokError("expected integer");
842  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
843  if (Val64 != unsigned(Val64))
844    return TokError("expected 32-bit integer (too large)");
845  Val = Val64;
846  Lex.Lex();
847  return false;
848}
849
850
851/// ParseOptionalAddrSpace
852///   := /*empty*/
853///   := 'addrspace' '(' uint32 ')'
854bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
855  AddrSpace = 0;
856  if (!EatIfPresent(lltok::kw_addrspace))
857    return false;
858  return ParseToken(lltok::lparen, "expected '(' in address space") ||
859         ParseUInt32(AddrSpace) ||
860         ParseToken(lltok::rparen, "expected ')' in address space");
861}
862
863/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
864/// indicates what kind of attribute list this is: 0: function arg, 1: result,
865/// 2: function attr.
866/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
867bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
868  Attrs = Attribute::None;
869  LocTy AttrLoc = Lex.getLoc();
870
871  while (1) {
872    switch (Lex.getKind()) {
873    case lltok::kw_sext:
874    case lltok::kw_zext:
875      // Treat these as signext/zeroext if they occur in the argument list after
876      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
877      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
878      // expr.
879      // FIXME: REMOVE THIS IN LLVM 3.0
880      if (AttrKind == 3) {
881        if (Lex.getKind() == lltok::kw_sext)
882          Attrs |= Attribute::SExt;
883        else
884          Attrs |= Attribute::ZExt;
885        break;
886      }
887      // FALL THROUGH.
888    default:  // End of attributes.
889      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
890        return Error(AttrLoc, "invalid use of function-only attribute");
891
892      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
893        return Error(AttrLoc, "invalid use of parameter-only attribute");
894
895      return false;
896    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
897    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
898    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
899    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
900    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
901    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
902    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
903    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
904
905    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
906    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
907    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
908    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
909    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
910    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
911    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
912    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
913    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
914    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
915    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
916    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
917    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
918
919    case lltok::kw_align: {
920      unsigned Alignment;
921      if (ParseOptionalAlignment(Alignment))
922        return true;
923      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
924      continue;
925    }
926    }
927    Lex.Lex();
928  }
929}
930
931/// ParseOptionalLinkage
932///   ::= /*empty*/
933///   ::= 'private'
934///   ::= 'linker_private'
935///   ::= 'internal'
936///   ::= 'weak'
937///   ::= 'weak_odr'
938///   ::= 'linkonce'
939///   ::= 'linkonce_odr'
940///   ::= 'appending'
941///   ::= 'dllexport'
942///   ::= 'common'
943///   ::= 'dllimport'
944///   ::= 'extern_weak'
945///   ::= 'external'
946bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
947  HasLinkage = false;
948  switch (Lex.getKind()) {
949  default:                       Res=GlobalValue::ExternalLinkage; return false;
950  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
951  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
952  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
953  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
954  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
955  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
956  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
957  case lltok::kw_available_externally:
958    Res = GlobalValue::AvailableExternallyLinkage;
959    break;
960  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
961  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
962  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
963  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
964  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
965  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
966  }
967  Lex.Lex();
968  HasLinkage = true;
969  return false;
970}
971
972/// ParseOptionalVisibility
973///   ::= /*empty*/
974///   ::= 'default'
975///   ::= 'hidden'
976///   ::= 'protected'
977///
978bool LLParser::ParseOptionalVisibility(unsigned &Res) {
979  switch (Lex.getKind()) {
980  default:                  Res = GlobalValue::DefaultVisibility; return false;
981  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
982  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
983  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
984  }
985  Lex.Lex();
986  return false;
987}
988
989/// ParseOptionalCallingConv
990///   ::= /*empty*/
991///   ::= 'ccc'
992///   ::= 'fastcc'
993///   ::= 'coldcc'
994///   ::= 'x86_stdcallcc'
995///   ::= 'x86_fastcallcc'
996///   ::= 'arm_apcscc'
997///   ::= 'arm_aapcscc'
998///   ::= 'arm_aapcs_vfpcc'
999///   ::= 'cc' UINT
1000///
1001bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1002  switch (Lex.getKind()) {
1003  default:                       CC = CallingConv::C; return false;
1004  case lltok::kw_ccc:            CC = CallingConv::C; break;
1005  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1006  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1007  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1008  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1009  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1010  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1011  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1012  case lltok::kw_cc: {
1013      unsigned ArbitraryCC;
1014      Lex.Lex();
1015      if (ParseUInt32(ArbitraryCC)) {
1016        return true;
1017      } else
1018        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1019        return false;
1020    }
1021    break;
1022  }
1023
1024  Lex.Lex();
1025  return false;
1026}
1027
1028/// ParseOptionalDbgInfo
1029///   ::= /* empty */
1030///   ::= 'dbg' !42
1031bool LLParser::ParseOptionalDbgInfo() {
1032
1033  if (!EatIfPresent(lltok::kw_dbg))
1034    return false;
1035  if (Lex.getKind() != lltok::Metadata)
1036    return TokError("Expected '!' here");
1037  Lex.Lex();
1038  MetadataBase *Node;
1039  if (ParseMDNode(Node)) return true;
1040
1041  MetadataContext &TheMetadata = M->getContext().getMetadata();
1042  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
1043  if (!MDDbgKind)
1044    MDDbgKind = TheMetadata.RegisterMDKind("dbg");
1045  MDsOnInst.push_back(std::make_pair(MDDbgKind, cast<MDNode>(Node)));
1046
1047  return false;
1048}
1049
1050/// ParseOptionalAlignment
1051///   ::= /* empty */
1052///   ::= 'align' 4
1053bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1054  Alignment = 0;
1055  if (!EatIfPresent(lltok::kw_align))
1056    return false;
1057  LocTy AlignLoc = Lex.getLoc();
1058  if (ParseUInt32(Alignment)) return true;
1059  if (!isPowerOf2_32(Alignment))
1060    return Error(AlignLoc, "alignment is not a power of two");
1061  return false;
1062}
1063
1064/// ParseOptionalInfo
1065///   ::= OptionalInfo (',' OptionalInfo)+
1066bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1067
1068  // FIXME: Handle customized metadata info attached with an instruction.
1069  do {
1070    if (Lex.getKind() == lltok::kw_dbg) {
1071      if (ParseOptionalDbgInfo()) return true;
1072    } else if (Lex.getKind() == lltok::kw_align) {
1073      if (ParseOptionalAlignment(Alignment)) return true;
1074    } else
1075      return true;
1076  } while (EatIfPresent(lltok::comma));
1077
1078  return false;
1079}
1080
1081
1082/// ParseIndexList
1083///    ::=  (',' uint32)+
1084bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1085  if (Lex.getKind() != lltok::comma)
1086    return TokError("expected ',' as start of index list");
1087
1088  while (EatIfPresent(lltok::comma)) {
1089    unsigned Idx;
1090    if (ParseUInt32(Idx)) return true;
1091    Indices.push_back(Idx);
1092  }
1093
1094  return false;
1095}
1096
1097//===----------------------------------------------------------------------===//
1098// Type Parsing.
1099//===----------------------------------------------------------------------===//
1100
1101/// ParseType - Parse and resolve a full type.
1102bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1103  LocTy TypeLoc = Lex.getLoc();
1104  if (ParseTypeRec(Result)) return true;
1105
1106  // Verify no unresolved uprefs.
1107  if (!UpRefs.empty())
1108    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1109
1110  if (!AllowVoid && Result.get() == Type::getVoidTy(Context))
1111    return Error(TypeLoc, "void type only allowed for function results");
1112
1113  return false;
1114}
1115
1116/// HandleUpRefs - Every time we finish a new layer of types, this function is
1117/// called.  It loops through the UpRefs vector, which is a list of the
1118/// currently active types.  For each type, if the up-reference is contained in
1119/// the newly completed type, we decrement the level count.  When the level
1120/// count reaches zero, the up-referenced type is the type that is passed in:
1121/// thus we can complete the cycle.
1122///
1123PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1124  // If Ty isn't abstract, or if there are no up-references in it, then there is
1125  // nothing to resolve here.
1126  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1127
1128  PATypeHolder Ty(ty);
1129#if 0
1130  errs() << "Type '" << Ty->getDescription()
1131         << "' newly formed.  Resolving upreferences.\n"
1132         << UpRefs.size() << " upreferences active!\n";
1133#endif
1134
1135  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1136  // to zero), we resolve them all together before we resolve them to Ty.  At
1137  // the end of the loop, if there is anything to resolve to Ty, it will be in
1138  // this variable.
1139  OpaqueType *TypeToResolve = 0;
1140
1141  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1142    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1143    bool ContainsType =
1144      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1145                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1146
1147#if 0
1148    errs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1149           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1150           << (ContainsType ? "true" : "false")
1151           << " level=" << UpRefs[i].NestingLevel << "\n";
1152#endif
1153    if (!ContainsType)
1154      continue;
1155
1156    // Decrement level of upreference
1157    unsigned Level = --UpRefs[i].NestingLevel;
1158    UpRefs[i].LastContainedTy = Ty;
1159
1160    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1161    if (Level != 0)
1162      continue;
1163
1164#if 0
1165    errs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1166#endif
1167    if (!TypeToResolve)
1168      TypeToResolve = UpRefs[i].UpRefTy;
1169    else
1170      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1171    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1172    --i;                                // Do not skip the next element.
1173  }
1174
1175  if (TypeToResolve)
1176    TypeToResolve->refineAbstractTypeTo(Ty);
1177
1178  return Ty;
1179}
1180
1181
1182/// ParseTypeRec - The recursive function used to process the internal
1183/// implementation details of types.
1184bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1185  switch (Lex.getKind()) {
1186  default:
1187    return TokError("expected type");
1188  case lltok::Type:
1189    // TypeRec ::= 'float' | 'void' (etc)
1190    Result = Lex.getTyVal();
1191    Lex.Lex();
1192    break;
1193  case lltok::kw_opaque:
1194    // TypeRec ::= 'opaque'
1195    Result = OpaqueType::get(Context);
1196    Lex.Lex();
1197    break;
1198  case lltok::lbrace:
1199    // TypeRec ::= '{' ... '}'
1200    if (ParseStructType(Result, false))
1201      return true;
1202    break;
1203  case lltok::lsquare:
1204    // TypeRec ::= '[' ... ']'
1205    Lex.Lex(); // eat the lsquare.
1206    if (ParseArrayVectorType(Result, false))
1207      return true;
1208    break;
1209  case lltok::less: // Either vector or packed struct.
1210    // TypeRec ::= '<' ... '>'
1211    Lex.Lex();
1212    if (Lex.getKind() == lltok::lbrace) {
1213      if (ParseStructType(Result, true) ||
1214          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1215        return true;
1216    } else if (ParseArrayVectorType(Result, true))
1217      return true;
1218    break;
1219  case lltok::LocalVar:
1220  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1221    // TypeRec ::= %foo
1222    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1223      Result = T;
1224    } else {
1225      Result = OpaqueType::get(Context);
1226      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1227                                            std::make_pair(Result,
1228                                                           Lex.getLoc())));
1229      M->addTypeName(Lex.getStrVal(), Result.get());
1230    }
1231    Lex.Lex();
1232    break;
1233
1234  case lltok::LocalVarID:
1235    // TypeRec ::= %4
1236    if (Lex.getUIntVal() < NumberedTypes.size())
1237      Result = NumberedTypes[Lex.getUIntVal()];
1238    else {
1239      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1240        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1241      if (I != ForwardRefTypeIDs.end())
1242        Result = I->second.first;
1243      else {
1244        Result = OpaqueType::get(Context);
1245        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1246                                                std::make_pair(Result,
1247                                                               Lex.getLoc())));
1248      }
1249    }
1250    Lex.Lex();
1251    break;
1252  case lltok::backslash: {
1253    // TypeRec ::= '\' 4
1254    Lex.Lex();
1255    unsigned Val;
1256    if (ParseUInt32(Val)) return true;
1257    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1258    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1259    Result = OT;
1260    break;
1261  }
1262  }
1263
1264  // Parse the type suffixes.
1265  while (1) {
1266    switch (Lex.getKind()) {
1267    // End of type.
1268    default: return false;
1269
1270    // TypeRec ::= TypeRec '*'
1271    case lltok::star:
1272      if (Result.get() == Type::getLabelTy(Context))
1273        return TokError("basic block pointers are invalid");
1274      if (Result.get() == Type::getVoidTy(Context))
1275        return TokError("pointers to void are invalid; use i8* instead");
1276      if (!PointerType::isValidElementType(Result.get()))
1277        return TokError("pointer to this type is invalid");
1278      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1279      Lex.Lex();
1280      break;
1281
1282    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1283    case lltok::kw_addrspace: {
1284      if (Result.get() == Type::getLabelTy(Context))
1285        return TokError("basic block pointers are invalid");
1286      if (Result.get() == Type::getVoidTy(Context))
1287        return TokError("pointers to void are invalid; use i8* instead");
1288      if (!PointerType::isValidElementType(Result.get()))
1289        return TokError("pointer to this type is invalid");
1290      unsigned AddrSpace;
1291      if (ParseOptionalAddrSpace(AddrSpace) ||
1292          ParseToken(lltok::star, "expected '*' in address space"))
1293        return true;
1294
1295      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1296      break;
1297    }
1298
1299    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1300    case lltok::lparen:
1301      if (ParseFunctionType(Result))
1302        return true;
1303      break;
1304    }
1305  }
1306}
1307
1308/// ParseParameterList
1309///    ::= '(' ')'
1310///    ::= '(' Arg (',' Arg)* ')'
1311///  Arg
1312///    ::= Type OptionalAttributes Value OptionalAttributes
1313bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1314                                  PerFunctionState &PFS) {
1315  if (ParseToken(lltok::lparen, "expected '(' in call"))
1316    return true;
1317
1318  while (Lex.getKind() != lltok::rparen) {
1319    // If this isn't the first argument, we need a comma.
1320    if (!ArgList.empty() &&
1321        ParseToken(lltok::comma, "expected ',' in argument list"))
1322      return true;
1323
1324    // Parse the argument.
1325    LocTy ArgLoc;
1326    PATypeHolder ArgTy(Type::getVoidTy(Context));
1327    unsigned ArgAttrs1, ArgAttrs2;
1328    Value *V;
1329    if (ParseType(ArgTy, ArgLoc) ||
1330        ParseOptionalAttrs(ArgAttrs1, 0) ||
1331        ParseValue(ArgTy, V, PFS) ||
1332        // FIXME: Should not allow attributes after the argument, remove this in
1333        // LLVM 3.0.
1334        ParseOptionalAttrs(ArgAttrs2, 3))
1335      return true;
1336    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1337  }
1338
1339  Lex.Lex();  // Lex the ')'.
1340  return false;
1341}
1342
1343
1344
1345/// ParseArgumentList - Parse the argument list for a function type or function
1346/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1347///   ::= '(' ArgTypeListI ')'
1348/// ArgTypeListI
1349///   ::= /*empty*/
1350///   ::= '...'
1351///   ::= ArgTypeList ',' '...'
1352///   ::= ArgType (',' ArgType)*
1353///
1354bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1355                                 bool &isVarArg, bool inType) {
1356  isVarArg = false;
1357  assert(Lex.getKind() == lltok::lparen);
1358  Lex.Lex(); // eat the (.
1359
1360  if (Lex.getKind() == lltok::rparen) {
1361    // empty
1362  } else if (Lex.getKind() == lltok::dotdotdot) {
1363    isVarArg = true;
1364    Lex.Lex();
1365  } else {
1366    LocTy TypeLoc = Lex.getLoc();
1367    PATypeHolder ArgTy(Type::getVoidTy(Context));
1368    unsigned Attrs;
1369    std::string Name;
1370
1371    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1372    // types (such as a function returning a pointer to itself).  If parsing a
1373    // function prototype, we require fully resolved types.
1374    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1375        ParseOptionalAttrs(Attrs, 0)) return true;
1376
1377    if (ArgTy == Type::getVoidTy(Context))
1378      return Error(TypeLoc, "argument can not have void type");
1379
1380    if (Lex.getKind() == lltok::LocalVar ||
1381        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1382      Name = Lex.getStrVal();
1383      Lex.Lex();
1384    }
1385
1386    if (!FunctionType::isValidArgumentType(ArgTy))
1387      return Error(TypeLoc, "invalid type for function argument");
1388
1389    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1390
1391    while (EatIfPresent(lltok::comma)) {
1392      // Handle ... at end of arg list.
1393      if (EatIfPresent(lltok::dotdotdot)) {
1394        isVarArg = true;
1395        break;
1396      }
1397
1398      // Otherwise must be an argument type.
1399      TypeLoc = Lex.getLoc();
1400      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1401          ParseOptionalAttrs(Attrs, 0)) return true;
1402
1403      if (ArgTy == Type::getVoidTy(Context))
1404        return Error(TypeLoc, "argument can not have void type");
1405
1406      if (Lex.getKind() == lltok::LocalVar ||
1407          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1408        Name = Lex.getStrVal();
1409        Lex.Lex();
1410      } else {
1411        Name = "";
1412      }
1413
1414      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1415        return Error(TypeLoc, "invalid type for function argument");
1416
1417      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1418    }
1419  }
1420
1421  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1422}
1423
1424/// ParseFunctionType
1425///  ::= Type ArgumentList OptionalAttrs
1426bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1427  assert(Lex.getKind() == lltok::lparen);
1428
1429  if (!FunctionType::isValidReturnType(Result))
1430    return TokError("invalid function return type");
1431
1432  std::vector<ArgInfo> ArgList;
1433  bool isVarArg;
1434  unsigned Attrs;
1435  if (ParseArgumentList(ArgList, isVarArg, true) ||
1436      // FIXME: Allow, but ignore attributes on function types!
1437      // FIXME: Remove in LLVM 3.0
1438      ParseOptionalAttrs(Attrs, 2))
1439    return true;
1440
1441  // Reject names on the arguments lists.
1442  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1443    if (!ArgList[i].Name.empty())
1444      return Error(ArgList[i].Loc, "argument name invalid in function type");
1445    if (!ArgList[i].Attrs != 0) {
1446      // Allow but ignore attributes on function types; this permits
1447      // auto-upgrade.
1448      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1449    }
1450  }
1451
1452  std::vector<const Type*> ArgListTy;
1453  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1454    ArgListTy.push_back(ArgList[i].Type);
1455
1456  Result = HandleUpRefs(FunctionType::get(Result.get(),
1457                                                ArgListTy, isVarArg));
1458  return false;
1459}
1460
1461/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1462///   TypeRec
1463///     ::= '{' '}'
1464///     ::= '{' TypeRec (',' TypeRec)* '}'
1465///     ::= '<' '{' '}' '>'
1466///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1467bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1468  assert(Lex.getKind() == lltok::lbrace);
1469  Lex.Lex(); // Consume the '{'
1470
1471  if (EatIfPresent(lltok::rbrace)) {
1472    Result = StructType::get(Context, Packed);
1473    return false;
1474  }
1475
1476  std::vector<PATypeHolder> ParamsList;
1477  LocTy EltTyLoc = Lex.getLoc();
1478  if (ParseTypeRec(Result)) return true;
1479  ParamsList.push_back(Result);
1480
1481  if (Result == Type::getVoidTy(Context))
1482    return Error(EltTyLoc, "struct element can not have void type");
1483  if (!StructType::isValidElementType(Result))
1484    return Error(EltTyLoc, "invalid element type for struct");
1485
1486  while (EatIfPresent(lltok::comma)) {
1487    EltTyLoc = Lex.getLoc();
1488    if (ParseTypeRec(Result)) return true;
1489
1490    if (Result == Type::getVoidTy(Context))
1491      return Error(EltTyLoc, "struct element can not have void type");
1492    if (!StructType::isValidElementType(Result))
1493      return Error(EltTyLoc, "invalid element type for struct");
1494
1495    ParamsList.push_back(Result);
1496  }
1497
1498  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1499    return true;
1500
1501  std::vector<const Type*> ParamsListTy;
1502  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1503    ParamsListTy.push_back(ParamsList[i].get());
1504  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1505  return false;
1506}
1507
1508/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1509/// token has already been consumed.
1510///   TypeRec
1511///     ::= '[' APSINTVAL 'x' Types ']'
1512///     ::= '<' APSINTVAL 'x' Types '>'
1513bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1514  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1515      Lex.getAPSIntVal().getBitWidth() > 64)
1516    return TokError("expected number in address space");
1517
1518  LocTy SizeLoc = Lex.getLoc();
1519  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1520  Lex.Lex();
1521
1522  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1523      return true;
1524
1525  LocTy TypeLoc = Lex.getLoc();
1526  PATypeHolder EltTy(Type::getVoidTy(Context));
1527  if (ParseTypeRec(EltTy)) return true;
1528
1529  if (EltTy == Type::getVoidTy(Context))
1530    return Error(TypeLoc, "array and vector element type cannot be void");
1531
1532  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1533                 "expected end of sequential type"))
1534    return true;
1535
1536  if (isVector) {
1537    if (Size == 0)
1538      return Error(SizeLoc, "zero element vector is illegal");
1539    if ((unsigned)Size != Size)
1540      return Error(SizeLoc, "size too large for vector");
1541    if (!VectorType::isValidElementType(EltTy))
1542      return Error(TypeLoc, "vector element type must be fp or integer");
1543    Result = VectorType::get(EltTy, unsigned(Size));
1544  } else {
1545    if (!ArrayType::isValidElementType(EltTy))
1546      return Error(TypeLoc, "invalid array element type");
1547    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1548  }
1549  return false;
1550}
1551
1552//===----------------------------------------------------------------------===//
1553// Function Semantic Analysis.
1554//===----------------------------------------------------------------------===//
1555
1556LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
1557  : P(p), F(f) {
1558
1559  // Insert unnamed arguments into the NumberedVals list.
1560  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1561       AI != E; ++AI)
1562    if (!AI->hasName())
1563      NumberedVals.push_back(AI);
1564}
1565
1566LLParser::PerFunctionState::~PerFunctionState() {
1567  // If there were any forward referenced non-basicblock values, delete them.
1568  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1569       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1570    if (!isa<BasicBlock>(I->second.first)) {
1571      I->second.first->replaceAllUsesWith(
1572                           UndefValue::get(I->second.first->getType()));
1573      delete I->second.first;
1574      I->second.first = 0;
1575    }
1576
1577  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1578       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1579    if (!isa<BasicBlock>(I->second.first)) {
1580      I->second.first->replaceAllUsesWith(
1581                           UndefValue::get(I->second.first->getType()));
1582      delete I->second.first;
1583      I->second.first = 0;
1584    }
1585}
1586
1587bool LLParser::PerFunctionState::VerifyFunctionComplete() {
1588  if (!ForwardRefVals.empty())
1589    return P.Error(ForwardRefVals.begin()->second.second,
1590                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1591                   "'");
1592  if (!ForwardRefValIDs.empty())
1593    return P.Error(ForwardRefValIDs.begin()->second.second,
1594                   "use of undefined value '%" +
1595                   utostr(ForwardRefValIDs.begin()->first) + "'");
1596  return false;
1597}
1598
1599
1600/// GetVal - Get a value with the specified name or ID, creating a
1601/// forward reference record if needed.  This can return null if the value
1602/// exists but does not have the right type.
1603Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1604                                          const Type *Ty, LocTy Loc) {
1605  // Look this name up in the normal function symbol table.
1606  Value *Val = F.getValueSymbolTable().lookup(Name);
1607
1608  // If this is a forward reference for the value, see if we already created a
1609  // forward ref record.
1610  if (Val == 0) {
1611    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1612      I = ForwardRefVals.find(Name);
1613    if (I != ForwardRefVals.end())
1614      Val = I->second.first;
1615  }
1616
1617  // If we have the value in the symbol table or fwd-ref table, return it.
1618  if (Val) {
1619    if (Val->getType() == Ty) return Val;
1620    if (Ty == Type::getLabelTy(F.getContext()))
1621      P.Error(Loc, "'%" + Name + "' is not a basic block");
1622    else
1623      P.Error(Loc, "'%" + Name + "' defined with type '" +
1624              Val->getType()->getDescription() + "'");
1625    return 0;
1626  }
1627
1628  // Don't make placeholders with invalid type.
1629  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1630      Ty != Type::getLabelTy(F.getContext())) {
1631    P.Error(Loc, "invalid use of a non-first-class type");
1632    return 0;
1633  }
1634
1635  // Otherwise, create a new forward reference for this value and remember it.
1636  Value *FwdVal;
1637  if (Ty == Type::getLabelTy(F.getContext()))
1638    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1639  else
1640    FwdVal = new Argument(Ty, Name);
1641
1642  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1643  return FwdVal;
1644}
1645
1646Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1647                                          LocTy Loc) {
1648  // Look this name up in the normal function symbol table.
1649  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1650
1651  // If this is a forward reference for the value, see if we already created a
1652  // forward ref record.
1653  if (Val == 0) {
1654    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1655      I = ForwardRefValIDs.find(ID);
1656    if (I != ForwardRefValIDs.end())
1657      Val = I->second.first;
1658  }
1659
1660  // If we have the value in the symbol table or fwd-ref table, return it.
1661  if (Val) {
1662    if (Val->getType() == Ty) return Val;
1663    if (Ty == Type::getLabelTy(F.getContext()))
1664      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1665    else
1666      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1667              Val->getType()->getDescription() + "'");
1668    return 0;
1669  }
1670
1671  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1672      Ty != Type::getLabelTy(F.getContext())) {
1673    P.Error(Loc, "invalid use of a non-first-class type");
1674    return 0;
1675  }
1676
1677  // Otherwise, create a new forward reference for this value and remember it.
1678  Value *FwdVal;
1679  if (Ty == Type::getLabelTy(F.getContext()))
1680    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1681  else
1682    FwdVal = new Argument(Ty);
1683
1684  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1685  return FwdVal;
1686}
1687
1688/// SetInstName - After an instruction is parsed and inserted into its
1689/// basic block, this installs its name.
1690bool LLParser::PerFunctionState::SetInstName(int NameID,
1691                                             const std::string &NameStr,
1692                                             LocTy NameLoc, Instruction *Inst) {
1693  // If this instruction has void type, it cannot have a name or ID specified.
1694  if (Inst->getType() == Type::getVoidTy(F.getContext())) {
1695    if (NameID != -1 || !NameStr.empty())
1696      return P.Error(NameLoc, "instructions returning void cannot have a name");
1697    return false;
1698  }
1699
1700  // If this was a numbered instruction, verify that the instruction is the
1701  // expected value and resolve any forward references.
1702  if (NameStr.empty()) {
1703    // If neither a name nor an ID was specified, just use the next ID.
1704    if (NameID == -1)
1705      NameID = NumberedVals.size();
1706
1707    if (unsigned(NameID) != NumberedVals.size())
1708      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1709                     utostr(NumberedVals.size()) + "'");
1710
1711    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1712      ForwardRefValIDs.find(NameID);
1713    if (FI != ForwardRefValIDs.end()) {
1714      if (FI->second.first->getType() != Inst->getType())
1715        return P.Error(NameLoc, "instruction forward referenced with type '" +
1716                       FI->second.first->getType()->getDescription() + "'");
1717      FI->second.first->replaceAllUsesWith(Inst);
1718      delete FI->second.first;
1719      ForwardRefValIDs.erase(FI);
1720    }
1721
1722    NumberedVals.push_back(Inst);
1723    return false;
1724  }
1725
1726  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1727  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1728    FI = ForwardRefVals.find(NameStr);
1729  if (FI != ForwardRefVals.end()) {
1730    if (FI->second.first->getType() != Inst->getType())
1731      return P.Error(NameLoc, "instruction forward referenced with type '" +
1732                     FI->second.first->getType()->getDescription() + "'");
1733    FI->second.first->replaceAllUsesWith(Inst);
1734    delete FI->second.first;
1735    ForwardRefVals.erase(FI);
1736  }
1737
1738  // Set the name on the instruction.
1739  Inst->setName(NameStr);
1740
1741  if (Inst->getNameStr() != NameStr)
1742    return P.Error(NameLoc, "multiple definition of local value named '" +
1743                   NameStr + "'");
1744  return false;
1745}
1746
1747/// GetBB - Get a basic block with the specified name or ID, creating a
1748/// forward reference record if needed.
1749BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1750                                              LocTy Loc) {
1751  return cast_or_null<BasicBlock>(GetVal(Name,
1752                                        Type::getLabelTy(F.getContext()), Loc));
1753}
1754
1755BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1756  return cast_or_null<BasicBlock>(GetVal(ID,
1757                                        Type::getLabelTy(F.getContext()), Loc));
1758}
1759
1760/// DefineBB - Define the specified basic block, which is either named or
1761/// unnamed.  If there is an error, this returns null otherwise it returns
1762/// the block being defined.
1763BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1764                                                 LocTy Loc) {
1765  BasicBlock *BB;
1766  if (Name.empty())
1767    BB = GetBB(NumberedVals.size(), Loc);
1768  else
1769    BB = GetBB(Name, Loc);
1770  if (BB == 0) return 0; // Already diagnosed error.
1771
1772  // Move the block to the end of the function.  Forward ref'd blocks are
1773  // inserted wherever they happen to be referenced.
1774  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1775
1776  // Remove the block from forward ref sets.
1777  if (Name.empty()) {
1778    ForwardRefValIDs.erase(NumberedVals.size());
1779    NumberedVals.push_back(BB);
1780  } else {
1781    // BB forward references are already in the function symbol table.
1782    ForwardRefVals.erase(Name);
1783  }
1784
1785  return BB;
1786}
1787
1788//===----------------------------------------------------------------------===//
1789// Constants.
1790//===----------------------------------------------------------------------===//
1791
1792/// ParseValID - Parse an abstract value that doesn't necessarily have a
1793/// type implied.  For example, if we parse "4" we don't know what integer type
1794/// it has.  The value will later be combined with its type and checked for
1795/// sanity.
1796bool LLParser::ParseValID(ValID &ID) {
1797  ID.Loc = Lex.getLoc();
1798  switch (Lex.getKind()) {
1799  default: return TokError("expected value token");
1800  case lltok::GlobalID:  // @42
1801    ID.UIntVal = Lex.getUIntVal();
1802    ID.Kind = ValID::t_GlobalID;
1803    break;
1804  case lltok::GlobalVar:  // @foo
1805    ID.StrVal = Lex.getStrVal();
1806    ID.Kind = ValID::t_GlobalName;
1807    break;
1808  case lltok::LocalVarID:  // %42
1809    ID.UIntVal = Lex.getUIntVal();
1810    ID.Kind = ValID::t_LocalID;
1811    break;
1812  case lltok::LocalVar:  // %foo
1813  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1814    ID.StrVal = Lex.getStrVal();
1815    ID.Kind = ValID::t_LocalName;
1816    break;
1817  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1818    ID.Kind = ValID::t_Metadata;
1819    Lex.Lex();
1820    if (Lex.getKind() == lltok::lbrace) {
1821      SmallVector<Value*, 16> Elts;
1822      if (ParseMDNodeVector(Elts) ||
1823          ParseToken(lltok::rbrace, "expected end of metadata node"))
1824        return true;
1825
1826      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1827      return false;
1828    }
1829
1830    // Standalone metadata reference
1831    // !{ ..., !42, ... }
1832    if (!ParseMDNode(ID.MetadataVal))
1833      return false;
1834
1835    // MDString:
1836    //   ::= '!' STRINGCONSTANT
1837    if (ParseMDString(ID.MetadataVal)) return true;
1838    ID.Kind = ValID::t_Metadata;
1839    return false;
1840  }
1841  case lltok::APSInt:
1842    ID.APSIntVal = Lex.getAPSIntVal();
1843    ID.Kind = ValID::t_APSInt;
1844    break;
1845  case lltok::APFloat:
1846    ID.APFloatVal = Lex.getAPFloatVal();
1847    ID.Kind = ValID::t_APFloat;
1848    break;
1849  case lltok::kw_true:
1850    ID.ConstantVal = ConstantInt::getTrue(Context);
1851    ID.Kind = ValID::t_Constant;
1852    break;
1853  case lltok::kw_false:
1854    ID.ConstantVal = ConstantInt::getFalse(Context);
1855    ID.Kind = ValID::t_Constant;
1856    break;
1857  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1858  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1859  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1860
1861  case lltok::lbrace: {
1862    // ValID ::= '{' ConstVector '}'
1863    Lex.Lex();
1864    SmallVector<Constant*, 16> Elts;
1865    if (ParseGlobalValueVector(Elts) ||
1866        ParseToken(lltok::rbrace, "expected end of struct constant"))
1867      return true;
1868
1869    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1870                                         Elts.size(), false);
1871    ID.Kind = ValID::t_Constant;
1872    return false;
1873  }
1874  case lltok::less: {
1875    // ValID ::= '<' ConstVector '>'         --> Vector.
1876    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1877    Lex.Lex();
1878    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1879
1880    SmallVector<Constant*, 16> Elts;
1881    LocTy FirstEltLoc = Lex.getLoc();
1882    if (ParseGlobalValueVector(Elts) ||
1883        (isPackedStruct &&
1884         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1885        ParseToken(lltok::greater, "expected end of constant"))
1886      return true;
1887
1888    if (isPackedStruct) {
1889      ID.ConstantVal =
1890        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1891      ID.Kind = ValID::t_Constant;
1892      return false;
1893    }
1894
1895    if (Elts.empty())
1896      return Error(ID.Loc, "constant vector must not be empty");
1897
1898    if (!Elts[0]->getType()->isInteger() &&
1899        !Elts[0]->getType()->isFloatingPoint())
1900      return Error(FirstEltLoc,
1901                   "vector elements must have integer or floating point type");
1902
1903    // Verify that all the vector elements have the same type.
1904    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1905      if (Elts[i]->getType() != Elts[0]->getType())
1906        return Error(FirstEltLoc,
1907                     "vector element #" + utostr(i) +
1908                    " is not of type '" + Elts[0]->getType()->getDescription());
1909
1910    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
1911    ID.Kind = ValID::t_Constant;
1912    return false;
1913  }
1914  case lltok::lsquare: {   // Array Constant
1915    Lex.Lex();
1916    SmallVector<Constant*, 16> Elts;
1917    LocTy FirstEltLoc = Lex.getLoc();
1918    if (ParseGlobalValueVector(Elts) ||
1919        ParseToken(lltok::rsquare, "expected end of array constant"))
1920      return true;
1921
1922    // Handle empty element.
1923    if (Elts.empty()) {
1924      // Use undef instead of an array because it's inconvenient to determine
1925      // the element type at this point, there being no elements to examine.
1926      ID.Kind = ValID::t_EmptyArray;
1927      return false;
1928    }
1929
1930    if (!Elts[0]->getType()->isFirstClassType())
1931      return Error(FirstEltLoc, "invalid array element type: " +
1932                   Elts[0]->getType()->getDescription());
1933
1934    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
1935
1936    // Verify all elements are correct type!
1937    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
1938      if (Elts[i]->getType() != Elts[0]->getType())
1939        return Error(FirstEltLoc,
1940                     "array element #" + utostr(i) +
1941                     " is not of type '" +Elts[0]->getType()->getDescription());
1942    }
1943
1944    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
1945    ID.Kind = ValID::t_Constant;
1946    return false;
1947  }
1948  case lltok::kw_c:  // c "foo"
1949    Lex.Lex();
1950    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
1951    if (ParseToken(lltok::StringConstant, "expected string")) return true;
1952    ID.Kind = ValID::t_Constant;
1953    return false;
1954
1955  case lltok::kw_asm: {
1956    // ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
1957    bool HasSideEffect;
1958    Lex.Lex();
1959    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
1960        ParseStringConstant(ID.StrVal) ||
1961        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
1962        ParseToken(lltok::StringConstant, "expected constraint string"))
1963      return true;
1964    ID.StrVal2 = Lex.getStrVal();
1965    ID.UIntVal = HasSideEffect;
1966    ID.Kind = ValID::t_InlineAsm;
1967    return false;
1968  }
1969
1970  case lltok::kw_trunc:
1971  case lltok::kw_zext:
1972  case lltok::kw_sext:
1973  case lltok::kw_fptrunc:
1974  case lltok::kw_fpext:
1975  case lltok::kw_bitcast:
1976  case lltok::kw_uitofp:
1977  case lltok::kw_sitofp:
1978  case lltok::kw_fptoui:
1979  case lltok::kw_fptosi:
1980  case lltok::kw_inttoptr:
1981  case lltok::kw_ptrtoint: {
1982    unsigned Opc = Lex.getUIntVal();
1983    PATypeHolder DestTy(Type::getVoidTy(Context));
1984    Constant *SrcVal;
1985    Lex.Lex();
1986    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
1987        ParseGlobalTypeAndValue(SrcVal) ||
1988        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
1989        ParseType(DestTy) ||
1990        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
1991      return true;
1992    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
1993      return Error(ID.Loc, "invalid cast opcode for cast from '" +
1994                   SrcVal->getType()->getDescription() + "' to '" +
1995                   DestTy->getDescription() + "'");
1996    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
1997                                                 SrcVal, DestTy);
1998    ID.Kind = ValID::t_Constant;
1999    return false;
2000  }
2001  case lltok::kw_extractvalue: {
2002    Lex.Lex();
2003    Constant *Val;
2004    SmallVector<unsigned, 4> Indices;
2005    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2006        ParseGlobalTypeAndValue(Val) ||
2007        ParseIndexList(Indices) ||
2008        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2009      return true;
2010    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2011      return Error(ID.Loc, "extractvalue operand must be array or struct");
2012    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2013                                          Indices.end()))
2014      return Error(ID.Loc, "invalid indices for extractvalue");
2015    ID.ConstantVal =
2016      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2017    ID.Kind = ValID::t_Constant;
2018    return false;
2019  }
2020  case lltok::kw_insertvalue: {
2021    Lex.Lex();
2022    Constant *Val0, *Val1;
2023    SmallVector<unsigned, 4> Indices;
2024    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2025        ParseGlobalTypeAndValue(Val0) ||
2026        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2027        ParseGlobalTypeAndValue(Val1) ||
2028        ParseIndexList(Indices) ||
2029        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2030      return true;
2031    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2032      return Error(ID.Loc, "extractvalue operand must be array or struct");
2033    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2034                                          Indices.end()))
2035      return Error(ID.Loc, "invalid indices for insertvalue");
2036    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2037                       Indices.data(), Indices.size());
2038    ID.Kind = ValID::t_Constant;
2039    return false;
2040  }
2041  case lltok::kw_icmp:
2042  case lltok::kw_fcmp: {
2043    unsigned PredVal, Opc = Lex.getUIntVal();
2044    Constant *Val0, *Val1;
2045    Lex.Lex();
2046    if (ParseCmpPredicate(PredVal, Opc) ||
2047        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2048        ParseGlobalTypeAndValue(Val0) ||
2049        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2050        ParseGlobalTypeAndValue(Val1) ||
2051        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2052      return true;
2053
2054    if (Val0->getType() != Val1->getType())
2055      return Error(ID.Loc, "compare operands must have the same type");
2056
2057    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2058
2059    if (Opc == Instruction::FCmp) {
2060      if (!Val0->getType()->isFPOrFPVector())
2061        return Error(ID.Loc, "fcmp requires floating point operands");
2062      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2063    } else {
2064      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2065      if (!Val0->getType()->isIntOrIntVector() &&
2066          !isa<PointerType>(Val0->getType()))
2067        return Error(ID.Loc, "icmp requires pointer or integer operands");
2068      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2069    }
2070    ID.Kind = ValID::t_Constant;
2071    return false;
2072  }
2073
2074  // Binary Operators.
2075  case lltok::kw_add:
2076  case lltok::kw_fadd:
2077  case lltok::kw_sub:
2078  case lltok::kw_fsub:
2079  case lltok::kw_mul:
2080  case lltok::kw_fmul:
2081  case lltok::kw_udiv:
2082  case lltok::kw_sdiv:
2083  case lltok::kw_fdiv:
2084  case lltok::kw_urem:
2085  case lltok::kw_srem:
2086  case lltok::kw_frem: {
2087    bool NUW = false;
2088    bool NSW = false;
2089    bool Exact = false;
2090    unsigned Opc = Lex.getUIntVal();
2091    Constant *Val0, *Val1;
2092    Lex.Lex();
2093    LocTy ModifierLoc = Lex.getLoc();
2094    if (Opc == Instruction::Add ||
2095        Opc == Instruction::Sub ||
2096        Opc == Instruction::Mul) {
2097      if (EatIfPresent(lltok::kw_nuw))
2098        NUW = true;
2099      if (EatIfPresent(lltok::kw_nsw)) {
2100        NSW = true;
2101        if (EatIfPresent(lltok::kw_nuw))
2102          NUW = true;
2103      }
2104    } else if (Opc == Instruction::SDiv) {
2105      if (EatIfPresent(lltok::kw_exact))
2106        Exact = true;
2107    }
2108    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2109        ParseGlobalTypeAndValue(Val0) ||
2110        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2111        ParseGlobalTypeAndValue(Val1) ||
2112        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2113      return true;
2114    if (Val0->getType() != Val1->getType())
2115      return Error(ID.Loc, "operands of constexpr must have same type");
2116    if (!Val0->getType()->isIntOrIntVector()) {
2117      if (NUW)
2118        return Error(ModifierLoc, "nuw only applies to integer operations");
2119      if (NSW)
2120        return Error(ModifierLoc, "nsw only applies to integer operations");
2121    }
2122    // API compatibility: Accept either integer or floating-point types with
2123    // add, sub, and mul.
2124    if (!Val0->getType()->isIntOrIntVector() &&
2125        !Val0->getType()->isFPOrFPVector())
2126      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2127    unsigned Flags = 0;
2128    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2129    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2130    if (Exact) Flags |= SDivOperator::IsExact;
2131    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2132    ID.ConstantVal = C;
2133    ID.Kind = ValID::t_Constant;
2134    return false;
2135  }
2136
2137  // Logical Operations
2138  case lltok::kw_shl:
2139  case lltok::kw_lshr:
2140  case lltok::kw_ashr:
2141  case lltok::kw_and:
2142  case lltok::kw_or:
2143  case lltok::kw_xor: {
2144    unsigned Opc = Lex.getUIntVal();
2145    Constant *Val0, *Val1;
2146    Lex.Lex();
2147    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2148        ParseGlobalTypeAndValue(Val0) ||
2149        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2150        ParseGlobalTypeAndValue(Val1) ||
2151        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2152      return true;
2153    if (Val0->getType() != Val1->getType())
2154      return Error(ID.Loc, "operands of constexpr must have same type");
2155    if (!Val0->getType()->isIntOrIntVector())
2156      return Error(ID.Loc,
2157                   "constexpr requires integer or integer vector operands");
2158    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2159    ID.Kind = ValID::t_Constant;
2160    return false;
2161  }
2162
2163  case lltok::kw_getelementptr:
2164  case lltok::kw_shufflevector:
2165  case lltok::kw_insertelement:
2166  case lltok::kw_extractelement:
2167  case lltok::kw_select: {
2168    unsigned Opc = Lex.getUIntVal();
2169    SmallVector<Constant*, 16> Elts;
2170    bool InBounds = false;
2171    Lex.Lex();
2172    if (Opc == Instruction::GetElementPtr)
2173      InBounds = EatIfPresent(lltok::kw_inbounds);
2174    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2175        ParseGlobalValueVector(Elts) ||
2176        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2177      return true;
2178
2179    if (Opc == Instruction::GetElementPtr) {
2180      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2181        return Error(ID.Loc, "getelementptr requires pointer operand");
2182
2183      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2184                                             (Value**)(Elts.data() + 1),
2185                                             Elts.size() - 1))
2186        return Error(ID.Loc, "invalid indices for getelementptr");
2187      ID.ConstantVal = InBounds ?
2188        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2189                                               Elts.data() + 1,
2190                                               Elts.size() - 1) :
2191        ConstantExpr::getGetElementPtr(Elts[0],
2192                                       Elts.data() + 1, Elts.size() - 1);
2193    } else if (Opc == Instruction::Select) {
2194      if (Elts.size() != 3)
2195        return Error(ID.Loc, "expected three operands to select");
2196      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2197                                                              Elts[2]))
2198        return Error(ID.Loc, Reason);
2199      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2200    } else if (Opc == Instruction::ShuffleVector) {
2201      if (Elts.size() != 3)
2202        return Error(ID.Loc, "expected three operands to shufflevector");
2203      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2204        return Error(ID.Loc, "invalid operands to shufflevector");
2205      ID.ConstantVal =
2206                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2207    } else if (Opc == Instruction::ExtractElement) {
2208      if (Elts.size() != 2)
2209        return Error(ID.Loc, "expected two operands to extractelement");
2210      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2211        return Error(ID.Loc, "invalid extractelement operands");
2212      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2213    } else {
2214      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2215      if (Elts.size() != 3)
2216      return Error(ID.Loc, "expected three operands to insertelement");
2217      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2218        return Error(ID.Loc, "invalid insertelement operands");
2219      ID.ConstantVal =
2220                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2221    }
2222
2223    ID.Kind = ValID::t_Constant;
2224    return false;
2225  }
2226  }
2227
2228  Lex.Lex();
2229  return false;
2230}
2231
2232/// ParseGlobalValue - Parse a global value with the specified type.
2233bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2234  V = 0;
2235  ValID ID;
2236  return ParseValID(ID) ||
2237         ConvertGlobalValIDToValue(Ty, ID, V);
2238}
2239
2240/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2241/// constant.
2242bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2243                                         Constant *&V) {
2244  if (isa<FunctionType>(Ty))
2245    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2246
2247  switch (ID.Kind) {
2248  default: llvm_unreachable("Unknown ValID!");
2249  case ValID::t_Metadata:
2250    return Error(ID.Loc, "invalid use of metadata");
2251  case ValID::t_LocalID:
2252  case ValID::t_LocalName:
2253    return Error(ID.Loc, "invalid use of function-local name");
2254  case ValID::t_InlineAsm:
2255    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2256  case ValID::t_GlobalName:
2257    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2258    return V == 0;
2259  case ValID::t_GlobalID:
2260    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2261    return V == 0;
2262  case ValID::t_APSInt:
2263    if (!isa<IntegerType>(Ty))
2264      return Error(ID.Loc, "integer constant must have integer type");
2265    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2266    V = ConstantInt::get(Context, ID.APSIntVal);
2267    return false;
2268  case ValID::t_APFloat:
2269    if (!Ty->isFloatingPoint() ||
2270        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2271      return Error(ID.Loc, "floating point constant invalid for type");
2272
2273    // The lexer has no type info, so builds all float and double FP constants
2274    // as double.  Fix this here.  Long double does not need this.
2275    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2276        Ty == Type::getFloatTy(Context)) {
2277      bool Ignored;
2278      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2279                            &Ignored);
2280    }
2281    V = ConstantFP::get(Context, ID.APFloatVal);
2282
2283    if (V->getType() != Ty)
2284      return Error(ID.Loc, "floating point constant does not have type '" +
2285                   Ty->getDescription() + "'");
2286
2287    return false;
2288  case ValID::t_Null:
2289    if (!isa<PointerType>(Ty))
2290      return Error(ID.Loc, "null must be a pointer type");
2291    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2292    return false;
2293  case ValID::t_Undef:
2294    // FIXME: LabelTy should not be a first-class type.
2295    if ((!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context)) &&
2296        !isa<OpaqueType>(Ty))
2297      return Error(ID.Loc, "invalid type for undef constant");
2298    V = UndefValue::get(Ty);
2299    return false;
2300  case ValID::t_EmptyArray:
2301    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2302      return Error(ID.Loc, "invalid empty array initializer");
2303    V = UndefValue::get(Ty);
2304    return false;
2305  case ValID::t_Zero:
2306    // FIXME: LabelTy should not be a first-class type.
2307    if (!Ty->isFirstClassType() || Ty == Type::getLabelTy(Context))
2308      return Error(ID.Loc, "invalid type for null constant");
2309    V = Constant::getNullValue(Ty);
2310    return false;
2311  case ValID::t_Constant:
2312    if (ID.ConstantVal->getType() != Ty)
2313      return Error(ID.Loc, "constant expression type mismatch");
2314    V = ID.ConstantVal;
2315    return false;
2316  }
2317}
2318
2319bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2320  PATypeHolder Type(Type::getVoidTy(Context));
2321  return ParseType(Type) ||
2322         ParseGlobalValue(Type, V);
2323}
2324
2325/// ParseGlobalValueVector
2326///   ::= /*empty*/
2327///   ::= TypeAndValue (',' TypeAndValue)*
2328bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2329  // Empty list.
2330  if (Lex.getKind() == lltok::rbrace ||
2331      Lex.getKind() == lltok::rsquare ||
2332      Lex.getKind() == lltok::greater ||
2333      Lex.getKind() == lltok::rparen)
2334    return false;
2335
2336  Constant *C;
2337  if (ParseGlobalTypeAndValue(C)) return true;
2338  Elts.push_back(C);
2339
2340  while (EatIfPresent(lltok::comma)) {
2341    if (ParseGlobalTypeAndValue(C)) return true;
2342    Elts.push_back(C);
2343  }
2344
2345  return false;
2346}
2347
2348
2349//===----------------------------------------------------------------------===//
2350// Function Parsing.
2351//===----------------------------------------------------------------------===//
2352
2353bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2354                                   PerFunctionState &PFS) {
2355  if (ID.Kind == ValID::t_LocalID)
2356    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2357  else if (ID.Kind == ValID::t_LocalName)
2358    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2359  else if (ID.Kind == ValID::t_InlineAsm) {
2360    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2361    const FunctionType *FTy =
2362      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2363    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2364      return Error(ID.Loc, "invalid type for inline asm constraint string");
2365    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
2366    return false;
2367  } else if (ID.Kind == ValID::t_Metadata) {
2368    V = ID.MetadataVal;
2369  } else {
2370    Constant *C;
2371    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2372    V = C;
2373    return false;
2374  }
2375
2376  return V == 0;
2377}
2378
2379bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2380  V = 0;
2381  ValID ID;
2382  return ParseValID(ID) ||
2383         ConvertValIDToValue(Ty, ID, V, PFS);
2384}
2385
2386bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2387  PATypeHolder T(Type::getVoidTy(Context));
2388  return ParseType(T) ||
2389         ParseValue(T, V, PFS);
2390}
2391
2392/// FunctionHeader
2393///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2394///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2395///       OptionalAlign OptGC
2396bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2397  // Parse the linkage.
2398  LocTy LinkageLoc = Lex.getLoc();
2399  unsigned Linkage;
2400
2401  unsigned Visibility, RetAttrs;
2402  CallingConv::ID CC;
2403  PATypeHolder RetType(Type::getVoidTy(Context));
2404  LocTy RetTypeLoc = Lex.getLoc();
2405  if (ParseOptionalLinkage(Linkage) ||
2406      ParseOptionalVisibility(Visibility) ||
2407      ParseOptionalCallingConv(CC) ||
2408      ParseOptionalAttrs(RetAttrs, 1) ||
2409      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2410    return true;
2411
2412  // Verify that the linkage is ok.
2413  switch ((GlobalValue::LinkageTypes)Linkage) {
2414  case GlobalValue::ExternalLinkage:
2415    break; // always ok.
2416  case GlobalValue::DLLImportLinkage:
2417  case GlobalValue::ExternalWeakLinkage:
2418    if (isDefine)
2419      return Error(LinkageLoc, "invalid linkage for function definition");
2420    break;
2421  case GlobalValue::PrivateLinkage:
2422  case GlobalValue::LinkerPrivateLinkage:
2423  case GlobalValue::InternalLinkage:
2424  case GlobalValue::AvailableExternallyLinkage:
2425  case GlobalValue::LinkOnceAnyLinkage:
2426  case GlobalValue::LinkOnceODRLinkage:
2427  case GlobalValue::WeakAnyLinkage:
2428  case GlobalValue::WeakODRLinkage:
2429  case GlobalValue::DLLExportLinkage:
2430    if (!isDefine)
2431      return Error(LinkageLoc, "invalid linkage for function declaration");
2432    break;
2433  case GlobalValue::AppendingLinkage:
2434  case GlobalValue::GhostLinkage:
2435  case GlobalValue::CommonLinkage:
2436    return Error(LinkageLoc, "invalid function linkage type");
2437  }
2438
2439  if (!FunctionType::isValidReturnType(RetType) ||
2440      isa<OpaqueType>(RetType))
2441    return Error(RetTypeLoc, "invalid function return type");
2442
2443  LocTy NameLoc = Lex.getLoc();
2444
2445  std::string FunctionName;
2446  if (Lex.getKind() == lltok::GlobalVar) {
2447    FunctionName = Lex.getStrVal();
2448  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2449    unsigned NameID = Lex.getUIntVal();
2450
2451    if (NameID != NumberedVals.size())
2452      return TokError("function expected to be numbered '%" +
2453                      utostr(NumberedVals.size()) + "'");
2454  } else {
2455    return TokError("expected function name");
2456  }
2457
2458  Lex.Lex();
2459
2460  if (Lex.getKind() != lltok::lparen)
2461    return TokError("expected '(' in function argument list");
2462
2463  std::vector<ArgInfo> ArgList;
2464  bool isVarArg;
2465  unsigned FuncAttrs;
2466  std::string Section;
2467  unsigned Alignment;
2468  std::string GC;
2469
2470  if (ParseArgumentList(ArgList, isVarArg, false) ||
2471      ParseOptionalAttrs(FuncAttrs, 2) ||
2472      (EatIfPresent(lltok::kw_section) &&
2473       ParseStringConstant(Section)) ||
2474      ParseOptionalAlignment(Alignment) ||
2475      (EatIfPresent(lltok::kw_gc) &&
2476       ParseStringConstant(GC)))
2477    return true;
2478
2479  // If the alignment was parsed as an attribute, move to the alignment field.
2480  if (FuncAttrs & Attribute::Alignment) {
2481    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2482    FuncAttrs &= ~Attribute::Alignment;
2483  }
2484
2485  // Okay, if we got here, the function is syntactically valid.  Convert types
2486  // and do semantic checks.
2487  std::vector<const Type*> ParamTypeList;
2488  SmallVector<AttributeWithIndex, 8> Attrs;
2489  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2490  // attributes.
2491  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2492  if (FuncAttrs & ObsoleteFuncAttrs) {
2493    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2494    FuncAttrs &= ~ObsoleteFuncAttrs;
2495  }
2496
2497  if (RetAttrs != Attribute::None)
2498    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2499
2500  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2501    ParamTypeList.push_back(ArgList[i].Type);
2502    if (ArgList[i].Attrs != Attribute::None)
2503      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2504  }
2505
2506  if (FuncAttrs != Attribute::None)
2507    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2508
2509  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2510
2511  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2512      RetType != Type::getVoidTy(Context))
2513    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2514
2515  const FunctionType *FT =
2516    FunctionType::get(RetType, ParamTypeList, isVarArg);
2517  const PointerType *PFT = PointerType::getUnqual(FT);
2518
2519  Fn = 0;
2520  if (!FunctionName.empty()) {
2521    // If this was a definition of a forward reference, remove the definition
2522    // from the forward reference table and fill in the forward ref.
2523    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2524      ForwardRefVals.find(FunctionName);
2525    if (FRVI != ForwardRefVals.end()) {
2526      Fn = M->getFunction(FunctionName);
2527      ForwardRefVals.erase(FRVI);
2528    } else if ((Fn = M->getFunction(FunctionName))) {
2529      // If this function already exists in the symbol table, then it is
2530      // multiply defined.  We accept a few cases for old backwards compat.
2531      // FIXME: Remove this stuff for LLVM 3.0.
2532      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2533          (!Fn->isDeclaration() && isDefine)) {
2534        // If the redefinition has different type or different attributes,
2535        // reject it.  If both have bodies, reject it.
2536        return Error(NameLoc, "invalid redefinition of function '" +
2537                     FunctionName + "'");
2538      } else if (Fn->isDeclaration()) {
2539        // Make sure to strip off any argument names so we can't get conflicts.
2540        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2541             AI != AE; ++AI)
2542          AI->setName("");
2543      }
2544    }
2545
2546  } else {
2547    // If this is a definition of a forward referenced function, make sure the
2548    // types agree.
2549    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2550      = ForwardRefValIDs.find(NumberedVals.size());
2551    if (I != ForwardRefValIDs.end()) {
2552      Fn = cast<Function>(I->second.first);
2553      if (Fn->getType() != PFT)
2554        return Error(NameLoc, "type of definition and forward reference of '@" +
2555                     utostr(NumberedVals.size()) +"' disagree");
2556      ForwardRefValIDs.erase(I);
2557    }
2558  }
2559
2560  if (Fn == 0)
2561    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2562  else // Move the forward-reference to the correct spot in the module.
2563    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2564
2565  if (FunctionName.empty())
2566    NumberedVals.push_back(Fn);
2567
2568  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2569  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2570  Fn->setCallingConv(CC);
2571  Fn->setAttributes(PAL);
2572  Fn->setAlignment(Alignment);
2573  Fn->setSection(Section);
2574  if (!GC.empty()) Fn->setGC(GC.c_str());
2575
2576  // Add all of the arguments we parsed to the function.
2577  Function::arg_iterator ArgIt = Fn->arg_begin();
2578  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2579    // If the argument has a name, insert it into the argument symbol table.
2580    if (ArgList[i].Name.empty()) continue;
2581
2582    // Set the name, if it conflicted, it will be auto-renamed.
2583    ArgIt->setName(ArgList[i].Name);
2584
2585    if (ArgIt->getNameStr() != ArgList[i].Name)
2586      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2587                   ArgList[i].Name + "'");
2588  }
2589
2590  return false;
2591}
2592
2593
2594/// ParseFunctionBody
2595///   ::= '{' BasicBlock+ '}'
2596///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2597///
2598bool LLParser::ParseFunctionBody(Function &Fn) {
2599  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2600    return TokError("expected '{' in function body");
2601  Lex.Lex();  // eat the {.
2602
2603  PerFunctionState PFS(*this, Fn);
2604
2605  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2606    if (ParseBasicBlock(PFS)) return true;
2607
2608  // Eat the }.
2609  Lex.Lex();
2610
2611  // Verify function is ok.
2612  return PFS.VerifyFunctionComplete();
2613}
2614
2615/// ParseBasicBlock
2616///   ::= LabelStr? Instruction*
2617bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2618  // If this basic block starts out with a name, remember it.
2619  std::string Name;
2620  LocTy NameLoc = Lex.getLoc();
2621  if (Lex.getKind() == lltok::LabelStr) {
2622    Name = Lex.getStrVal();
2623    Lex.Lex();
2624  }
2625
2626  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2627  if (BB == 0) return true;
2628
2629  std::string NameStr;
2630
2631  // Parse the instructions in this block until we get a terminator.
2632  Instruction *Inst;
2633  do {
2634    // This instruction may have three possibilities for a name: a) none
2635    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2636    LocTy NameLoc = Lex.getLoc();
2637    int NameID = -1;
2638    NameStr = "";
2639
2640    if (Lex.getKind() == lltok::LocalVarID) {
2641      NameID = Lex.getUIntVal();
2642      Lex.Lex();
2643      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2644        return true;
2645    } else if (Lex.getKind() == lltok::LocalVar ||
2646               // FIXME: REMOVE IN LLVM 3.0
2647               Lex.getKind() == lltok::StringConstant) {
2648      NameStr = Lex.getStrVal();
2649      Lex.Lex();
2650      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2651        return true;
2652    }
2653
2654    if (ParseInstruction(Inst, BB, PFS)) return true;
2655    if (EatIfPresent(lltok::comma))
2656      ParseOptionalDbgInfo();
2657
2658    // Set metadata attached with this instruction.
2659    MetadataContext &TheMetadata = M->getContext().getMetadata();
2660    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2661           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2662      TheMetadata.setMD(MDI->first, MDI->second, Inst);
2663    MDsOnInst.clear();
2664
2665    BB->getInstList().push_back(Inst);
2666
2667    // Set the name on the instruction.
2668    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2669  } while (!isa<TerminatorInst>(Inst));
2670
2671  return false;
2672}
2673
2674//===----------------------------------------------------------------------===//
2675// Instruction Parsing.
2676//===----------------------------------------------------------------------===//
2677
2678/// ParseInstruction - Parse one of the many different instructions.
2679///
2680bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2681                                PerFunctionState &PFS) {
2682  lltok::Kind Token = Lex.getKind();
2683  if (Token == lltok::Eof)
2684    return TokError("found end of file when expecting more instructions");
2685  LocTy Loc = Lex.getLoc();
2686  unsigned KeywordVal = Lex.getUIntVal();
2687  Lex.Lex();  // Eat the keyword.
2688
2689  switch (Token) {
2690  default:                    return Error(Loc, "expected instruction opcode");
2691  // Terminator Instructions.
2692  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2693  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2694  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2695  case lltok::kw_br:          return ParseBr(Inst, PFS);
2696  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2697  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2698  // Binary Operators.
2699  case lltok::kw_add:
2700  case lltok::kw_sub:
2701  case lltok::kw_mul: {
2702    bool NUW = false;
2703    bool NSW = false;
2704    LocTy ModifierLoc = Lex.getLoc();
2705    if (EatIfPresent(lltok::kw_nuw))
2706      NUW = true;
2707    if (EatIfPresent(lltok::kw_nsw)) {
2708      NSW = true;
2709      if (EatIfPresent(lltok::kw_nuw))
2710        NUW = true;
2711    }
2712    // API compatibility: Accept either integer or floating-point types.
2713    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2714    if (!Result) {
2715      if (!Inst->getType()->isIntOrIntVector()) {
2716        if (NUW)
2717          return Error(ModifierLoc, "nuw only applies to integer operations");
2718        if (NSW)
2719          return Error(ModifierLoc, "nsw only applies to integer operations");
2720      }
2721      if (NUW)
2722        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2723      if (NSW)
2724        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2725    }
2726    return Result;
2727  }
2728  case lltok::kw_fadd:
2729  case lltok::kw_fsub:
2730  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2731
2732  case lltok::kw_sdiv: {
2733    bool Exact = false;
2734    if (EatIfPresent(lltok::kw_exact))
2735      Exact = true;
2736    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2737    if (!Result)
2738      if (Exact)
2739        cast<BinaryOperator>(Inst)->setIsExact(true);
2740    return Result;
2741  }
2742
2743  case lltok::kw_udiv:
2744  case lltok::kw_urem:
2745  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2746  case lltok::kw_fdiv:
2747  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2748  case lltok::kw_shl:
2749  case lltok::kw_lshr:
2750  case lltok::kw_ashr:
2751  case lltok::kw_and:
2752  case lltok::kw_or:
2753  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2754  case lltok::kw_icmp:
2755  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2756  // Casts.
2757  case lltok::kw_trunc:
2758  case lltok::kw_zext:
2759  case lltok::kw_sext:
2760  case lltok::kw_fptrunc:
2761  case lltok::kw_fpext:
2762  case lltok::kw_bitcast:
2763  case lltok::kw_uitofp:
2764  case lltok::kw_sitofp:
2765  case lltok::kw_fptoui:
2766  case lltok::kw_fptosi:
2767  case lltok::kw_inttoptr:
2768  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2769  // Other.
2770  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2771  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2772  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2773  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2774  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2775  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2776  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2777  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2778  // Memory.
2779  case lltok::kw_alloca:
2780  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, KeywordVal);
2781  case lltok::kw_free:           return ParseFree(Inst, PFS);
2782  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2783  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2784  case lltok::kw_volatile:
2785    if (EatIfPresent(lltok::kw_load))
2786      return ParseLoad(Inst, PFS, true);
2787    else if (EatIfPresent(lltok::kw_store))
2788      return ParseStore(Inst, PFS, true);
2789    else
2790      return TokError("expected 'load' or 'store'");
2791  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2792  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2793  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2794  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2795  }
2796}
2797
2798/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2799bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2800  if (Opc == Instruction::FCmp) {
2801    switch (Lex.getKind()) {
2802    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2803    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2804    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2805    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2806    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2807    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2808    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2809    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2810    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2811    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2812    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2813    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2814    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2815    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2816    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2817    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2818    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2819    }
2820  } else {
2821    switch (Lex.getKind()) {
2822    default: TokError("expected icmp predicate (e.g. 'eq')");
2823    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
2824    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
2825    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
2826    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
2827    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
2828    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
2829    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
2830    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
2831    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
2832    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
2833    }
2834  }
2835  Lex.Lex();
2836  return false;
2837}
2838
2839//===----------------------------------------------------------------------===//
2840// Terminator Instructions.
2841//===----------------------------------------------------------------------===//
2842
2843/// ParseRet - Parse a return instruction.
2844///   ::= 'ret' void (',' 'dbg' !1)
2845///   ::= 'ret' TypeAndValue (',' 'dbg' !1)
2846///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' 'dbg' !1)
2847///         [[obsolete: LLVM 3.0]]
2848bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
2849                        PerFunctionState &PFS) {
2850  PATypeHolder Ty(Type::getVoidTy(Context));
2851  if (ParseType(Ty, true /*void allowed*/)) return true;
2852
2853  if (Ty == Type::getVoidTy(Context)) {
2854    if (EatIfPresent(lltok::comma))
2855      if (ParseOptionalDbgInfo()) return true;
2856    Inst = ReturnInst::Create(Context);
2857    return false;
2858  }
2859
2860  Value *RV;
2861  if (ParseValue(Ty, RV, PFS)) return true;
2862
2863  if (EatIfPresent(lltok::comma)) {
2864    // Parse optional 'dbg'
2865    if (Lex.getKind() == lltok::kw_dbg) {
2866      if (ParseOptionalDbgInfo()) return true;
2867    } else {
2868      // The normal case is one return value.
2869      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
2870      // of 'ret {i32,i32} {i32 1, i32 2}'
2871      SmallVector<Value*, 8> RVs;
2872      RVs.push_back(RV);
2873
2874      do {
2875        // If optional 'dbg' is seen then this is the end of MRV.
2876        if (Lex.getKind() == lltok::kw_dbg)
2877          break;
2878        if (ParseTypeAndValue(RV, PFS)) return true;
2879        RVs.push_back(RV);
2880      } while (EatIfPresent(lltok::comma));
2881
2882      RV = UndefValue::get(PFS.getFunction().getReturnType());
2883      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
2884        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
2885        BB->getInstList().push_back(I);
2886        RV = I;
2887      }
2888    }
2889  }
2890  if (EatIfPresent(lltok::comma))
2891    if (ParseOptionalDbgInfo()) return true;
2892
2893  Inst = ReturnInst::Create(Context, RV);
2894  return false;
2895}
2896
2897
2898/// ParseBr
2899///   ::= 'br' TypeAndValue
2900///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
2901bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
2902  LocTy Loc, Loc2;
2903  Value *Op0, *Op1, *Op2;
2904  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
2905
2906  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
2907    Inst = BranchInst::Create(BB);
2908    return false;
2909  }
2910
2911  if (Op0->getType() != Type::getInt1Ty(Context))
2912    return Error(Loc, "branch condition must have 'i1' type");
2913
2914  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
2915      ParseTypeAndValue(Op1, Loc, PFS) ||
2916      ParseToken(lltok::comma, "expected ',' after true destination") ||
2917      ParseTypeAndValue(Op2, Loc2, PFS))
2918    return true;
2919
2920  if (!isa<BasicBlock>(Op1))
2921    return Error(Loc, "true destination of branch must be a basic block");
2922  if (!isa<BasicBlock>(Op2))
2923    return Error(Loc2, "true destination of branch must be a basic block");
2924
2925  Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
2926  return false;
2927}
2928
2929/// ParseSwitch
2930///  Instruction
2931///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
2932///  JumpTable
2933///    ::= (TypeAndValue ',' TypeAndValue)*
2934bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
2935  LocTy CondLoc, BBLoc;
2936  Value *Cond, *DefaultBB;
2937  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
2938      ParseToken(lltok::comma, "expected ',' after switch condition") ||
2939      ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
2940      ParseToken(lltok::lsquare, "expected '[' with switch table"))
2941    return true;
2942
2943  if (!isa<IntegerType>(Cond->getType()))
2944    return Error(CondLoc, "switch condition must have integer type");
2945  if (!isa<BasicBlock>(DefaultBB))
2946    return Error(BBLoc, "default destination must be a basic block");
2947
2948  // Parse the jump table pairs.
2949  SmallPtrSet<Value*, 32> SeenCases;
2950  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
2951  while (Lex.getKind() != lltok::rsquare) {
2952    Value *Constant, *DestBB;
2953
2954    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
2955        ParseToken(lltok::comma, "expected ',' after case value") ||
2956        ParseTypeAndValue(DestBB, BBLoc, PFS))
2957      return true;
2958
2959    if (!SeenCases.insert(Constant))
2960      return Error(CondLoc, "duplicate case value in switch");
2961    if (!isa<ConstantInt>(Constant))
2962      return Error(CondLoc, "case value is not a constant integer");
2963    if (!isa<BasicBlock>(DestBB))
2964      return Error(BBLoc, "case destination is not a basic block");
2965
2966    Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
2967                                   cast<BasicBlock>(DestBB)));
2968  }
2969
2970  Lex.Lex();  // Eat the ']'.
2971
2972  SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
2973                                      Table.size());
2974  for (unsigned i = 0, e = Table.size(); i != e; ++i)
2975    SI->addCase(Table[i].first, Table[i].second);
2976  Inst = SI;
2977  return false;
2978}
2979
2980/// ParseInvoke
2981///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
2982///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
2983bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
2984  LocTy CallLoc = Lex.getLoc();
2985  unsigned RetAttrs, FnAttrs;
2986  CallingConv::ID CC;
2987  PATypeHolder RetType(Type::getVoidTy(Context));
2988  LocTy RetTypeLoc;
2989  ValID CalleeID;
2990  SmallVector<ParamInfo, 16> ArgList;
2991
2992  Value *NormalBB, *UnwindBB;
2993  if (ParseOptionalCallingConv(CC) ||
2994      ParseOptionalAttrs(RetAttrs, 1) ||
2995      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
2996      ParseValID(CalleeID) ||
2997      ParseParameterList(ArgList, PFS) ||
2998      ParseOptionalAttrs(FnAttrs, 2) ||
2999      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3000      ParseTypeAndValue(NormalBB, PFS) ||
3001      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3002      ParseTypeAndValue(UnwindBB, PFS))
3003    return true;
3004
3005  if (!isa<BasicBlock>(NormalBB))
3006    return Error(CallLoc, "normal destination is not a basic block");
3007  if (!isa<BasicBlock>(UnwindBB))
3008    return Error(CallLoc, "unwind destination is not a basic block");
3009
3010  // If RetType is a non-function pointer type, then this is the short syntax
3011  // for the call, which means that RetType is just the return type.  Infer the
3012  // rest of the function argument types from the arguments that are present.
3013  const PointerType *PFTy = 0;
3014  const FunctionType *Ty = 0;
3015  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3016      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3017    // Pull out the types of all of the arguments...
3018    std::vector<const Type*> ParamTypes;
3019    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3020      ParamTypes.push_back(ArgList[i].V->getType());
3021
3022    if (!FunctionType::isValidReturnType(RetType))
3023      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3024
3025    Ty = FunctionType::get(RetType, ParamTypes, false);
3026    PFTy = PointerType::getUnqual(Ty);
3027  }
3028
3029  // Look up the callee.
3030  Value *Callee;
3031  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3032
3033  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3034  // function attributes.
3035  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3036  if (FnAttrs & ObsoleteFuncAttrs) {
3037    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3038    FnAttrs &= ~ObsoleteFuncAttrs;
3039  }
3040
3041  // Set up the Attributes for the function.
3042  SmallVector<AttributeWithIndex, 8> Attrs;
3043  if (RetAttrs != Attribute::None)
3044    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3045
3046  SmallVector<Value*, 8> Args;
3047
3048  // Loop through FunctionType's arguments and ensure they are specified
3049  // correctly.  Also, gather any parameter attributes.
3050  FunctionType::param_iterator I = Ty->param_begin();
3051  FunctionType::param_iterator E = Ty->param_end();
3052  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3053    const Type *ExpectedTy = 0;
3054    if (I != E) {
3055      ExpectedTy = *I++;
3056    } else if (!Ty->isVarArg()) {
3057      return Error(ArgList[i].Loc, "too many arguments specified");
3058    }
3059
3060    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3061      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3062                   ExpectedTy->getDescription() + "'");
3063    Args.push_back(ArgList[i].V);
3064    if (ArgList[i].Attrs != Attribute::None)
3065      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3066  }
3067
3068  if (I != E)
3069    return Error(CallLoc, "not enough parameters specified for call");
3070
3071  if (FnAttrs != Attribute::None)
3072    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3073
3074  // Finish off the Attributes and check them
3075  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3076
3077  InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
3078                                      cast<BasicBlock>(UnwindBB),
3079                                      Args.begin(), Args.end());
3080  II->setCallingConv(CC);
3081  II->setAttributes(PAL);
3082  Inst = II;
3083  return false;
3084}
3085
3086
3087
3088//===----------------------------------------------------------------------===//
3089// Binary Operators.
3090//===----------------------------------------------------------------------===//
3091
3092/// ParseArithmetic
3093///  ::= ArithmeticOps TypeAndValue ',' Value
3094///
3095/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3096/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3097bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3098                               unsigned Opc, unsigned OperandType) {
3099  LocTy Loc; Value *LHS, *RHS;
3100  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3101      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3102      ParseValue(LHS->getType(), RHS, PFS))
3103    return true;
3104
3105  bool Valid;
3106  switch (OperandType) {
3107  default: llvm_unreachable("Unknown operand type!");
3108  case 0: // int or FP.
3109    Valid = LHS->getType()->isIntOrIntVector() ||
3110            LHS->getType()->isFPOrFPVector();
3111    break;
3112  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3113  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3114  }
3115
3116  if (!Valid)
3117    return Error(Loc, "invalid operand type for instruction");
3118
3119  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3120  return false;
3121}
3122
3123/// ParseLogical
3124///  ::= ArithmeticOps TypeAndValue ',' Value {
3125bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3126                            unsigned Opc) {
3127  LocTy Loc; Value *LHS, *RHS;
3128  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3129      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3130      ParseValue(LHS->getType(), RHS, PFS))
3131    return true;
3132
3133  if (!LHS->getType()->isIntOrIntVector())
3134    return Error(Loc,"instruction requires integer or integer vector operands");
3135
3136  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3137  return false;
3138}
3139
3140
3141/// ParseCompare
3142///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3143///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3144bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3145                            unsigned Opc) {
3146  // Parse the integer/fp comparison predicate.
3147  LocTy Loc;
3148  unsigned Pred;
3149  Value *LHS, *RHS;
3150  if (ParseCmpPredicate(Pred, Opc) ||
3151      ParseTypeAndValue(LHS, Loc, PFS) ||
3152      ParseToken(lltok::comma, "expected ',' after compare value") ||
3153      ParseValue(LHS->getType(), RHS, PFS))
3154    return true;
3155
3156  if (Opc == Instruction::FCmp) {
3157    if (!LHS->getType()->isFPOrFPVector())
3158      return Error(Loc, "fcmp requires floating point operands");
3159    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3160  } else {
3161    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3162    if (!LHS->getType()->isIntOrIntVector() &&
3163        !isa<PointerType>(LHS->getType()))
3164      return Error(Loc, "icmp requires integer operands");
3165    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3166  }
3167  return false;
3168}
3169
3170//===----------------------------------------------------------------------===//
3171// Other Instructions.
3172//===----------------------------------------------------------------------===//
3173
3174
3175/// ParseCast
3176///   ::= CastOpc TypeAndValue 'to' Type
3177bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3178                         unsigned Opc) {
3179  LocTy Loc;  Value *Op;
3180  PATypeHolder DestTy(Type::getVoidTy(Context));
3181  if (ParseTypeAndValue(Op, Loc, PFS) ||
3182      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3183      ParseType(DestTy))
3184    return true;
3185
3186  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3187    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3188    return Error(Loc, "invalid cast opcode for cast from '" +
3189                 Op->getType()->getDescription() + "' to '" +
3190                 DestTy->getDescription() + "'");
3191  }
3192  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3193  return false;
3194}
3195
3196/// ParseSelect
3197///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3198bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3199  LocTy Loc;
3200  Value *Op0, *Op1, *Op2;
3201  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3202      ParseToken(lltok::comma, "expected ',' after select condition") ||
3203      ParseTypeAndValue(Op1, PFS) ||
3204      ParseToken(lltok::comma, "expected ',' after select value") ||
3205      ParseTypeAndValue(Op2, PFS))
3206    return true;
3207
3208  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3209    return Error(Loc, Reason);
3210
3211  Inst = SelectInst::Create(Op0, Op1, Op2);
3212  return false;
3213}
3214
3215/// ParseVA_Arg
3216///   ::= 'va_arg' TypeAndValue ',' Type
3217bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3218  Value *Op;
3219  PATypeHolder EltTy(Type::getVoidTy(Context));
3220  LocTy TypeLoc;
3221  if (ParseTypeAndValue(Op, PFS) ||
3222      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3223      ParseType(EltTy, TypeLoc))
3224    return true;
3225
3226  if (!EltTy->isFirstClassType())
3227    return Error(TypeLoc, "va_arg requires operand with first class type");
3228
3229  Inst = new VAArgInst(Op, EltTy);
3230  return false;
3231}
3232
3233/// ParseExtractElement
3234///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3235bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3236  LocTy Loc;
3237  Value *Op0, *Op1;
3238  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3239      ParseToken(lltok::comma, "expected ',' after extract value") ||
3240      ParseTypeAndValue(Op1, PFS))
3241    return true;
3242
3243  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3244    return Error(Loc, "invalid extractelement operands");
3245
3246  Inst = ExtractElementInst::Create(Op0, Op1);
3247  return false;
3248}
3249
3250/// ParseInsertElement
3251///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3252bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3253  LocTy Loc;
3254  Value *Op0, *Op1, *Op2;
3255  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3256      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3257      ParseTypeAndValue(Op1, PFS) ||
3258      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3259      ParseTypeAndValue(Op2, PFS))
3260    return true;
3261
3262  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3263    return Error(Loc, "invalid insertelement operands");
3264
3265  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3266  return false;
3267}
3268
3269/// ParseShuffleVector
3270///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3271bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3272  LocTy Loc;
3273  Value *Op0, *Op1, *Op2;
3274  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3275      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3276      ParseTypeAndValue(Op1, PFS) ||
3277      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3278      ParseTypeAndValue(Op2, PFS))
3279    return true;
3280
3281  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3282    return Error(Loc, "invalid extractelement operands");
3283
3284  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3285  return false;
3286}
3287
3288/// ParsePHI
3289///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
3290bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3291  PATypeHolder Ty(Type::getVoidTy(Context));
3292  Value *Op0, *Op1;
3293  LocTy TypeLoc = Lex.getLoc();
3294
3295  if (ParseType(Ty) ||
3296      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3297      ParseValue(Ty, Op0, PFS) ||
3298      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3299      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3300      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3301    return true;
3302
3303  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3304  while (1) {
3305    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3306
3307    if (!EatIfPresent(lltok::comma))
3308      break;
3309
3310    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3311        ParseValue(Ty, Op0, PFS) ||
3312        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3313        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3314        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3315      return true;
3316  }
3317
3318  if (!Ty->isFirstClassType())
3319    return Error(TypeLoc, "phi node must have first class type");
3320
3321  PHINode *PN = PHINode::Create(Ty);
3322  PN->reserveOperandSpace(PHIVals.size());
3323  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3324    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3325  Inst = PN;
3326  return false;
3327}
3328
3329/// ParseCall
3330///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3331///       ParameterList OptionalAttrs
3332bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3333                         bool isTail) {
3334  unsigned RetAttrs, FnAttrs;
3335  CallingConv::ID CC;
3336  PATypeHolder RetType(Type::getVoidTy(Context));
3337  LocTy RetTypeLoc;
3338  ValID CalleeID;
3339  SmallVector<ParamInfo, 16> ArgList;
3340  LocTy CallLoc = Lex.getLoc();
3341
3342  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3343      ParseOptionalCallingConv(CC) ||
3344      ParseOptionalAttrs(RetAttrs, 1) ||
3345      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3346      ParseValID(CalleeID) ||
3347      ParseParameterList(ArgList, PFS) ||
3348      ParseOptionalAttrs(FnAttrs, 2))
3349    return true;
3350
3351  // If RetType is a non-function pointer type, then this is the short syntax
3352  // for the call, which means that RetType is just the return type.  Infer the
3353  // rest of the function argument types from the arguments that are present.
3354  const PointerType *PFTy = 0;
3355  const FunctionType *Ty = 0;
3356  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3357      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3358    // Pull out the types of all of the arguments...
3359    std::vector<const Type*> ParamTypes;
3360    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3361      ParamTypes.push_back(ArgList[i].V->getType());
3362
3363    if (!FunctionType::isValidReturnType(RetType))
3364      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3365
3366    Ty = FunctionType::get(RetType, ParamTypes, false);
3367    PFTy = PointerType::getUnqual(Ty);
3368  }
3369
3370  // Look up the callee.
3371  Value *Callee;
3372  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3373
3374  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3375  // function attributes.
3376  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3377  if (FnAttrs & ObsoleteFuncAttrs) {
3378    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3379    FnAttrs &= ~ObsoleteFuncAttrs;
3380  }
3381
3382  // Set up the Attributes for the function.
3383  SmallVector<AttributeWithIndex, 8> Attrs;
3384  if (RetAttrs != Attribute::None)
3385    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3386
3387  SmallVector<Value*, 8> Args;
3388
3389  // Loop through FunctionType's arguments and ensure they are specified
3390  // correctly.  Also, gather any parameter attributes.
3391  FunctionType::param_iterator I = Ty->param_begin();
3392  FunctionType::param_iterator E = Ty->param_end();
3393  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3394    const Type *ExpectedTy = 0;
3395    if (I != E) {
3396      ExpectedTy = *I++;
3397    } else if (!Ty->isVarArg()) {
3398      return Error(ArgList[i].Loc, "too many arguments specified");
3399    }
3400
3401    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3402      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3403                   ExpectedTy->getDescription() + "'");
3404    Args.push_back(ArgList[i].V);
3405    if (ArgList[i].Attrs != Attribute::None)
3406      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3407  }
3408
3409  if (I != E)
3410    return Error(CallLoc, "not enough parameters specified for call");
3411
3412  if (FnAttrs != Attribute::None)
3413    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3414
3415  // Finish off the Attributes and check them
3416  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3417
3418  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3419  CI->setTailCall(isTail);
3420  CI->setCallingConv(CC);
3421  CI->setAttributes(PAL);
3422  Inst = CI;
3423  return false;
3424}
3425
3426//===----------------------------------------------------------------------===//
3427// Memory Instructions.
3428//===----------------------------------------------------------------------===//
3429
3430/// ParseAlloc
3431///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3432///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3433bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3434                          unsigned Opc) {
3435  PATypeHolder Ty(Type::getVoidTy(Context));
3436  Value *Size = 0;
3437  LocTy SizeLoc;
3438  unsigned Alignment = 0;
3439  if (ParseType(Ty)) return true;
3440
3441  if (EatIfPresent(lltok::comma)) {
3442    if (Lex.getKind() == lltok::kw_align || Lex.getKind() == lltok::kw_dbg) {
3443      if (ParseOptionalInfo(Alignment)) return true;
3444    } else {
3445      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3446      if (EatIfPresent(lltok::comma))
3447        if (ParseOptionalInfo(Alignment)) return true;
3448    }
3449  }
3450
3451  if (Size && Size->getType() != Type::getInt32Ty(Context))
3452    return Error(SizeLoc, "element count must be i32");
3453
3454  if (Opc == Instruction::Malloc)
3455    Inst = new MallocInst(Ty, Size, Alignment);
3456  else
3457    Inst = new AllocaInst(Ty, Size, Alignment);
3458  return false;
3459}
3460
3461/// ParseFree
3462///   ::= 'free' TypeAndValue
3463bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
3464  Value *Val; LocTy Loc;
3465  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3466  if (!isa<PointerType>(Val->getType()))
3467    return Error(Loc, "operand to free must be a pointer");
3468  Inst = new FreeInst(Val);
3469  return false;
3470}
3471
3472/// ParseLoad
3473///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3474bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3475                         bool isVolatile) {
3476  Value *Val; LocTy Loc;
3477  unsigned Alignment = 0;
3478  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3479
3480  if (EatIfPresent(lltok::comma))
3481    if (ParseOptionalInfo(Alignment)) return true;
3482
3483  if (!isa<PointerType>(Val->getType()) ||
3484      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3485    return Error(Loc, "load operand must be a pointer to a first class type");
3486
3487  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3488  return false;
3489}
3490
3491/// ParseStore
3492///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3493bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3494                          bool isVolatile) {
3495  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3496  unsigned Alignment = 0;
3497  if (ParseTypeAndValue(Val, Loc, PFS) ||
3498      ParseToken(lltok::comma, "expected ',' after store operand") ||
3499      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3500    return true;
3501
3502  if (EatIfPresent(lltok::comma))
3503    if (ParseOptionalInfo(Alignment)) return true;
3504
3505  if (!isa<PointerType>(Ptr->getType()))
3506    return Error(PtrLoc, "store operand must be a pointer");
3507  if (!Val->getType()->isFirstClassType())
3508    return Error(Loc, "store operand must be a first class value");
3509  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3510    return Error(Loc, "stored value and pointer type do not match");
3511
3512  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3513  return false;
3514}
3515
3516/// ParseGetResult
3517///   ::= 'getresult' TypeAndValue ',' i32
3518/// FIXME: Remove support for getresult in LLVM 3.0
3519bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3520  Value *Val; LocTy ValLoc, EltLoc;
3521  unsigned Element;
3522  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3523      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3524      ParseUInt32(Element, EltLoc))
3525    return true;
3526
3527  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3528    return Error(ValLoc, "getresult inst requires an aggregate operand");
3529  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3530    return Error(EltLoc, "invalid getresult index for value");
3531  Inst = ExtractValueInst::Create(Val, Element);
3532  return false;
3533}
3534
3535/// ParseGetElementPtr
3536///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3537bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3538  Value *Ptr, *Val; LocTy Loc, EltLoc;
3539
3540  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3541
3542  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3543
3544  if (!isa<PointerType>(Ptr->getType()))
3545    return Error(Loc, "base of getelementptr must be a pointer");
3546
3547  SmallVector<Value*, 16> Indices;
3548  while (EatIfPresent(lltok::comma)) {
3549    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3550    if (!isa<IntegerType>(Val->getType()))
3551      return Error(EltLoc, "getelementptr index must be an integer");
3552    Indices.push_back(Val);
3553  }
3554
3555  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3556                                         Indices.begin(), Indices.end()))
3557    return Error(Loc, "invalid getelementptr indices");
3558  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3559  if (InBounds)
3560    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3561  return false;
3562}
3563
3564/// ParseExtractValue
3565///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3566bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3567  Value *Val; LocTy Loc;
3568  SmallVector<unsigned, 4> Indices;
3569  if (ParseTypeAndValue(Val, Loc, PFS) ||
3570      ParseIndexList(Indices))
3571    return true;
3572
3573  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3574    return Error(Loc, "extractvalue operand must be array or struct");
3575
3576  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3577                                        Indices.end()))
3578    return Error(Loc, "invalid indices for extractvalue");
3579  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3580  return false;
3581}
3582
3583/// ParseInsertValue
3584///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3585bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3586  Value *Val0, *Val1; LocTy Loc0, Loc1;
3587  SmallVector<unsigned, 4> Indices;
3588  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3589      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3590      ParseTypeAndValue(Val1, Loc1, PFS) ||
3591      ParseIndexList(Indices))
3592    return true;
3593
3594  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3595    return Error(Loc0, "extractvalue operand must be array or struct");
3596
3597  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3598                                        Indices.end()))
3599    return Error(Loc0, "invalid indices for insertvalue");
3600  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3601  return false;
3602}
3603
3604//===----------------------------------------------------------------------===//
3605// Embedded metadata.
3606//===----------------------------------------------------------------------===//
3607
3608/// ParseMDNodeVector
3609///   ::= Element (',' Element)*
3610/// Element
3611///   ::= 'null' | TypeAndValue
3612bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3613  assert(Lex.getKind() == lltok::lbrace);
3614  Lex.Lex();
3615  do {
3616    Value *V = 0;
3617    if (Lex.getKind() == lltok::kw_null) {
3618      Lex.Lex();
3619      V = 0;
3620    } else {
3621      PATypeHolder Ty(Type::getVoidTy(Context));
3622      if (ParseType(Ty)) return true;
3623      if (Lex.getKind() == lltok::Metadata) {
3624        Lex.Lex();
3625        MetadataBase *Node = 0;
3626        if (!ParseMDNode(Node))
3627          V = Node;
3628        else {
3629          MetadataBase *MDS = 0;
3630          if (ParseMDString(MDS)) return true;
3631          V = MDS;
3632        }
3633      } else {
3634        Constant *C;
3635        if (ParseGlobalValue(Ty, C)) return true;
3636        V = C;
3637      }
3638    }
3639    Elts.push_back(V);
3640  } while (EatIfPresent(lltok::comma));
3641
3642  return false;
3643}
3644