LLParser.cpp revision e80250ec84e6e3aa916a66acc507241e7bde89c9
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Update auto-upgraded malloc calls to "malloc".
43  // FIXME: Remove in LLVM 3.0.
44  if (MallocF) {
45    MallocF->setName("malloc");
46    // If setName() does not set the name to "malloc", then there is already a
47    // declaration of "malloc".  In that case, iterate over all calls to MallocF
48    // and get them to call the declared "malloc" instead.
49    if (MallocF->getName() != "malloc") {
50      Constant *RealMallocF = M->getFunction("malloc");
51      if (RealMallocF->getType() != MallocF->getType())
52        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53      MallocF->replaceAllUsesWith(RealMallocF);
54      MallocF->eraseFromParent();
55      MallocF = NULL;
56    }
57  }
58
59
60  // If there are entries in ForwardRefBlockAddresses at this point, they are
61  // references after the function was defined.  Resolve those now.
62  while (!ForwardRefBlockAddresses.empty()) {
63    // Okay, we are referencing an already-parsed function, resolve them now.
64    Function *TheFn = 0;
65    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66    if (Fn.Kind == ValID::t_GlobalName)
67      TheFn = M->getFunction(Fn.StrVal);
68    else if (Fn.UIntVal < NumberedVals.size())
69      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71    if (TheFn == 0)
72      return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74    // Resolve all these references.
75    if (ResolveForwardRefBlockAddresses(TheFn,
76                                      ForwardRefBlockAddresses.begin()->second,
77                                        0))
78      return true;
79
80    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81  }
82
83
84  if (!ForwardRefTypes.empty())
85    return Error(ForwardRefTypes.begin()->second.second,
86                 "use of undefined type named '" +
87                 ForwardRefTypes.begin()->first + "'");
88  if (!ForwardRefTypeIDs.empty())
89    return Error(ForwardRefTypeIDs.begin()->second.second,
90                 "use of undefined type '%" +
91                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93  if (!ForwardRefVals.empty())
94    return Error(ForwardRefVals.begin()->second.second,
95                 "use of undefined value '@" + ForwardRefVals.begin()->first +
96                 "'");
97
98  if (!ForwardRefValIDs.empty())
99    return Error(ForwardRefValIDs.begin()->second.second,
100                 "use of undefined value '@" +
101                 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103  if (!ForwardRefMDNodes.empty())
104    return Error(ForwardRefMDNodes.begin()->second.second,
105                 "use of undefined metadata '!" +
106                 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109  // Look for intrinsic functions and CallInst that need to be upgraded
110  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113  // Check debug info intrinsics.
114  CheckDebugInfoIntrinsics(M);
115  return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120                                               PerFunctionState *PFS) {
121  // Loop over all the references, resolving them.
122  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123    BasicBlock *Res;
124    if (PFS) {
125      if (Refs[i].first.Kind == ValID::t_LocalName)
126        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127      else
128        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130      return Error(Refs[i].first.Loc,
131       "cannot take address of numeric label after the function is defined");
132    } else {
133      Res = dyn_cast_or_null<BasicBlock>(
134                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135    }
136
137    if (Res == 0)
138      return Error(Refs[i].first.Loc,
139                   "referenced value is not a basic block");
140
141    // Get the BlockAddress for this and update references to use it.
142    BlockAddress *BA = BlockAddress::get(TheFn, Res);
143    Refs[i].second->replaceAllUsesWith(BA);
144    Refs[i].second->eraseFromParent();
145  }
146  return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155  while (1) {
156    switch (Lex.getKind()) {
157    default:         return TokError("expected top-level entity");
158    case lltok::Eof: return false;
159    //case lltok::kw_define:
160    case lltok::kw_declare: if (ParseDeclare()) return true; break;
161    case lltok::kw_define:  if (ParseDefine()) return true; break;
162    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
163    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
164    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
166    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
169    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
170    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
171    case lltok::Metadata:   if (ParseStandaloneMetadata()) return true; break;
172    case lltok::NamedOrCustomMD: if (ParseNamedMetadata()) return true; break;
173
174    // The Global variable production with no name can have many different
175    // optional leading prefixes, the production is:
176    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177    //               OptionalAddrSpace ('constant'|'global') ...
178    case lltok::kw_private :       // OptionalLinkage
179    case lltok::kw_linker_private: // OptionalLinkage
180    case lltok::kw_internal:       // OptionalLinkage
181    case lltok::kw_weak:           // OptionalLinkage
182    case lltok::kw_weak_odr:       // OptionalLinkage
183    case lltok::kw_linkonce:       // OptionalLinkage
184    case lltok::kw_linkonce_odr:   // OptionalLinkage
185    case lltok::kw_appending:      // OptionalLinkage
186    case lltok::kw_dllexport:      // OptionalLinkage
187    case lltok::kw_common:         // OptionalLinkage
188    case lltok::kw_dllimport:      // OptionalLinkage
189    case lltok::kw_extern_weak:    // OptionalLinkage
190    case lltok::kw_external: {     // OptionalLinkage
191      unsigned Linkage, Visibility;
192      if (ParseOptionalLinkage(Linkage) ||
193          ParseOptionalVisibility(Visibility) ||
194          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195        return true;
196      break;
197    }
198    case lltok::kw_default:       // OptionalVisibility
199    case lltok::kw_hidden:        // OptionalVisibility
200    case lltok::kw_protected: {   // OptionalVisibility
201      unsigned Visibility;
202      if (ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), 0, false, Visibility))
204        return true;
205      break;
206    }
207
208    case lltok::kw_thread_local:  // OptionalThreadLocal
209    case lltok::kw_addrspace:     // OptionalAddrSpace
210    case lltok::kw_constant:      // GlobalType
211    case lltok::kw_global:        // GlobalType
212      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213      break;
214    }
215  }
216}
217
218
219/// toplevelentity
220///   ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222  assert(Lex.getKind() == lltok::kw_module);
223  Lex.Lex();
224
225  std::string AsmStr;
226  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227      ParseStringConstant(AsmStr)) return true;
228
229  const std::string &AsmSoFar = M->getModuleInlineAsm();
230  if (AsmSoFar.empty())
231    M->setModuleInlineAsm(AsmStr);
232  else
233    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234  return false;
235}
236
237/// toplevelentity
238///   ::= 'target' 'triple' '=' STRINGCONSTANT
239///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241  assert(Lex.getKind() == lltok::kw_target);
242  std::string Str;
243  switch (Lex.Lex()) {
244  default: return TokError("unknown target property");
245  case lltok::kw_triple:
246    Lex.Lex();
247    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248        ParseStringConstant(Str))
249      return true;
250    M->setTargetTriple(Str);
251    return false;
252  case lltok::kw_datalayout:
253    Lex.Lex();
254    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255        ParseStringConstant(Str))
256      return true;
257    M->setDataLayout(Str);
258    return false;
259  }
260}
261
262/// toplevelentity
263///   ::= 'deplibs' '=' '[' ']'
264///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266  assert(Lex.getKind() == lltok::kw_deplibs);
267  Lex.Lex();
268  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270    return true;
271
272  if (EatIfPresent(lltok::rsquare))
273    return false;
274
275  std::string Str;
276  if (ParseStringConstant(Str)) return true;
277  M->addLibrary(Str);
278
279  while (EatIfPresent(lltok::comma)) {
280    if (ParseStringConstant(Str)) return true;
281    M->addLibrary(Str);
282  }
283
284  return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288///   ::= 'type' type
289///   ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291  unsigned TypeID = NumberedTypes.size();
292
293  // Handle the LocalVarID form.
294  if (Lex.getKind() == lltok::LocalVarID) {
295    if (Lex.getUIntVal() != TypeID)
296      return Error(Lex.getLoc(), "type expected to be numbered '%" +
297                   utostr(TypeID) + "'");
298    Lex.Lex(); // eat LocalVarID;
299
300    if (ParseToken(lltok::equal, "expected '=' after name"))
301      return true;
302  }
303
304  assert(Lex.getKind() == lltok::kw_type);
305  LocTy TypeLoc = Lex.getLoc();
306  Lex.Lex(); // eat kw_type
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309  if (ParseType(Ty)) return true;
310
311  // See if this type was previously referenced.
312  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313    FI = ForwardRefTypeIDs.find(TypeID);
314  if (FI != ForwardRefTypeIDs.end()) {
315    if (FI->second.first.get() == Ty)
316      return Error(TypeLoc, "self referential type is invalid");
317
318    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319    Ty = FI->second.first.get();
320    ForwardRefTypeIDs.erase(FI);
321  }
322
323  NumberedTypes.push_back(Ty);
324
325  return false;
326}
327
328/// toplevelentity
329///   ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331  std::string Name = Lex.getStrVal();
332  LocTy NameLoc = Lex.getLoc();
333  Lex.Lex();  // eat LocalVar.
334
335  PATypeHolder Ty(Type::getVoidTy(Context));
336
337  if (ParseToken(lltok::equal, "expected '=' after name") ||
338      ParseToken(lltok::kw_type, "expected 'type' after name") ||
339      ParseType(Ty))
340    return true;
341
342  // Set the type name, checking for conflicts as we do so.
343  bool AlreadyExists = M->addTypeName(Name, Ty);
344  if (!AlreadyExists) return false;
345
346  // See if this type is a forward reference.  We need to eagerly resolve
347  // types to allow recursive type redefinitions below.
348  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349  FI = ForwardRefTypes.find(Name);
350  if (FI != ForwardRefTypes.end()) {
351    if (FI->second.first.get() == Ty)
352      return Error(NameLoc, "self referential type is invalid");
353
354    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355    Ty = FI->second.first.get();
356    ForwardRefTypes.erase(FI);
357  }
358
359  // Inserting a name that is already defined, get the existing name.
360  const Type *Existing = M->getTypeByName(Name);
361  assert(Existing && "Conflict but no matching type?!");
362
363  // Otherwise, this is an attempt to redefine a type. That's okay if
364  // the redefinition is identical to the original.
365  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366  if (Existing == Ty) return false;
367
368  // Any other kind of (non-equivalent) redefinition is an error.
369  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370               Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375///   ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377  assert(Lex.getKind() == lltok::kw_declare);
378  Lex.Lex();
379
380  Function *F;
381  return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385///   ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387  assert(Lex.getKind() == lltok::kw_define);
388  Lex.Lex();
389
390  Function *F;
391  return ParseFunctionHeader(F, true) ||
392         ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396///   ::= 'constant'
397///   ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399  if (Lex.getKind() == lltok::kw_constant)
400    IsConstant = true;
401  else if (Lex.getKind() == lltok::kw_global)
402    IsConstant = false;
403  else {
404    IsConstant = false;
405    return TokError("expected 'global' or 'constant'");
406  }
407  Lex.Lex();
408  return false;
409}
410
411/// ParseUnnamedGlobal:
412///   OptionalVisibility ALIAS ...
413///   OptionalLinkage OptionalVisibility ...   -> global variable
414///   GlobalID '=' OptionalVisibility ALIAS ...
415///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417  unsigned VarID = NumberedVals.size();
418  std::string Name;
419  LocTy NameLoc = Lex.getLoc();
420
421  // Handle the GlobalID form.
422  if (Lex.getKind() == lltok::GlobalID) {
423    if (Lex.getUIntVal() != VarID)
424      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425                   utostr(VarID) + "'");
426    Lex.Lex(); // eat GlobalID;
427
428    if (ParseToken(lltok::equal, "expected '=' after name"))
429      return true;
430  }
431
432  bool HasLinkage;
433  unsigned Linkage, Visibility;
434  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444///   GlobalVar '=' OptionalVisibility ALIAS ...
445///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
446bool LLParser::ParseNamedGlobal() {
447  assert(Lex.getKind() == lltok::GlobalVar);
448  LocTy NameLoc = Lex.getLoc();
449  std::string Name = Lex.getStrVal();
450  Lex.Lex();
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455      ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465//   ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MetadataBase *&MDS) {
467  std::string Str;
468  if (ParseStringConstant(Str)) return true;
469  MDS = MDString::get(Context, Str);
470  return false;
471}
472
473// MDNode:
474//   ::= '!' MDNodeNumber
475// FIXME: Take an MDNode*&.
476bool LLParser::ParseMDNode(MetadataBase *&Node) {
477  // !{ ..., !42, ... }
478  unsigned MID = 0;
479  if (ParseUInt32(MID)) return true;
480
481  // Check existing MDNode.
482  std::map<unsigned, TrackingVH<MDNode> >::iterator I = MetadataCache.find(MID);
483  if (I != MetadataCache.end()) {
484    Node = I->second;
485    return false;
486  }
487
488  // Check known forward references.
489  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
490    FI = ForwardRefMDNodes.find(MID);
491  if (FI != ForwardRefMDNodes.end()) {
492    Node = FI->second.first;
493    return false;
494  }
495
496  // Create MDNode forward reference
497  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
498  SmallVector<Value *, 1> Elts;
499  Elts.push_back(MDString::get(Context, FwdRefName));
500  MDNode *FwdNode = MDNode::get(Context, Elts.data(), Elts.size());
501  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
502  Node = FwdNode;
503  return false;
504}
505
506///ParseNamedMetadata:
507///   !foo = !{ !1, !2 }
508bool LLParser::ParseNamedMetadata() {
509  assert(Lex.getKind() == lltok::NamedOrCustomMD);
510  Lex.Lex();
511  std::string Name = Lex.getStrVal();
512
513  if (ParseToken(lltok::equal, "expected '=' here"))
514    return true;
515
516  if (Lex.getKind() != lltok::Metadata)
517    return TokError("Expected '!' here");
518  Lex.Lex();
519
520  if (Lex.getKind() != lltok::lbrace)
521    return TokError("Expected '{' here");
522  Lex.Lex();
523  SmallVector<MetadataBase *, 8> Elts;
524  do {
525    if (Lex.getKind() != lltok::Metadata)
526      return TokError("Expected '!' here");
527    Lex.Lex();
528    MetadataBase *N = 0;
529    if (ParseMDNode(N)) return true;
530    Elts.push_back(N);
531  } while (EatIfPresent(lltok::comma));
532
533  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
534    return true;
535
536  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
537  return false;
538}
539
540/// ParseStandaloneMetadata:
541///   !42 = !{...}
542bool LLParser::ParseStandaloneMetadata() {
543  assert(Lex.getKind() == lltok::Metadata);
544  Lex.Lex();
545  unsigned MetadataID = 0;
546  if (ParseUInt32(MetadataID))
547    return true;
548  if (MetadataCache.count(MetadataID))
549    return TokError("Metadata id is already used");
550  if (ParseToken(lltok::equal, "expected '=' here"))
551    return true;
552
553  LocTy TyLoc;
554  PATypeHolder Ty(Type::getVoidTy(Context));
555  if (ParseType(Ty, TyLoc))
556    return true;
557
558  if (Lex.getKind() != lltok::Metadata)
559    return TokError("Expected metadata here");
560
561  Lex.Lex();
562  if (Lex.getKind() != lltok::lbrace)
563    return TokError("Expected '{' here");
564
565  SmallVector<Value *, 16> Elts;
566  if (ParseMDNodeVector(Elts)
567      || ParseToken(lltok::rbrace, "expected end of metadata node"))
568    return true;
569
570  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
571  MetadataCache[MetadataID] = Init;
572  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
573    FI = ForwardRefMDNodes.find(MetadataID);
574  if (FI != ForwardRefMDNodes.end()) {
575    FI->second.first->replaceAllUsesWith(Init);
576    ForwardRefMDNodes.erase(FI);
577  }
578
579  return false;
580}
581
582/// ParseInlineMetadata:
583///   !{type %instr}
584///   !{...} MDNode
585///   !"foo" MDString
586bool LLParser::ParseInlineMetadata(Value *&V, PerFunctionState &PFS) {
587  assert(Lex.getKind() == lltok::Metadata && "Only for Metadata");
588  V = 0;
589
590  Lex.Lex();
591  if (Lex.getKind() == lltok::lbrace) {
592    Lex.Lex();
593    if (ParseTypeAndValue(V, PFS) ||
594        ParseToken(lltok::rbrace, "expected end of metadata node"))
595      return true;
596
597    Value *Vals[] = { V };
598    V = MDNode::get(Context, Vals, 1);
599    return false;
600  }
601
602  // Standalone metadata reference
603  // !{ ..., !42, ... }
604  if (!ParseMDNode((MetadataBase *&)V))
605    return false;
606
607  // MDString:
608  // '!' STRINGCONSTANT
609  if (ParseMDString((MetadataBase *&)V)) return true;
610  return false;
611}
612
613/// ParseAlias:
614///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615/// Aliasee
616///   ::= TypeAndValue
617///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619///
620/// Everything through visibility has already been parsed.
621///
622bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                          unsigned Visibility) {
624  assert(Lex.getKind() == lltok::kw_alias);
625  Lex.Lex();
626  unsigned Linkage;
627  LocTy LinkageLoc = Lex.getLoc();
628  if (ParseOptionalLinkage(Linkage))
629    return true;
630
631  if (Linkage != GlobalValue::ExternalLinkage &&
632      Linkage != GlobalValue::WeakAnyLinkage &&
633      Linkage != GlobalValue::WeakODRLinkage &&
634      Linkage != GlobalValue::InternalLinkage &&
635      Linkage != GlobalValue::PrivateLinkage &&
636      Linkage != GlobalValue::LinkerPrivateLinkage)
637    return Error(LinkageLoc, "invalid linkage type for alias");
638
639  Constant *Aliasee;
640  LocTy AliaseeLoc = Lex.getLoc();
641  if (Lex.getKind() != lltok::kw_bitcast &&
642      Lex.getKind() != lltok::kw_getelementptr) {
643    if (ParseGlobalTypeAndValue(Aliasee)) return true;
644  } else {
645    // The bitcast dest type is not present, it is implied by the dest type.
646    ValID ID;
647    if (ParseValID(ID)) return true;
648    if (ID.Kind != ValID::t_Constant)
649      return Error(AliaseeLoc, "invalid aliasee");
650    Aliasee = ID.ConstantVal;
651  }
652
653  if (!isa<PointerType>(Aliasee->getType()))
654    return Error(AliaseeLoc, "alias must have pointer type");
655
656  // Okay, create the alias but do not insert it into the module yet.
657  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
658                                    (GlobalValue::LinkageTypes)Linkage, Name,
659                                    Aliasee);
660  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
661
662  // See if this value already exists in the symbol table.  If so, it is either
663  // a redefinition or a definition of a forward reference.
664  if (GlobalValue *Val = M->getNamedValue(Name)) {
665    // See if this was a redefinition.  If so, there is no entry in
666    // ForwardRefVals.
667    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
668      I = ForwardRefVals.find(Name);
669    if (I == ForwardRefVals.end())
670      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
671
672    // Otherwise, this was a definition of forward ref.  Verify that types
673    // agree.
674    if (Val->getType() != GA->getType())
675      return Error(NameLoc,
676              "forward reference and definition of alias have different types");
677
678    // If they agree, just RAUW the old value with the alias and remove the
679    // forward ref info.
680    Val->replaceAllUsesWith(GA);
681    Val->eraseFromParent();
682    ForwardRefVals.erase(I);
683  }
684
685  // Insert into the module, we know its name won't collide now.
686  M->getAliasList().push_back(GA);
687  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
688
689  return false;
690}
691
692/// ParseGlobal
693///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
694///       OptionalAddrSpace GlobalType Type Const
695///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
696///       OptionalAddrSpace GlobalType Type Const
697///
698/// Everything through visibility has been parsed already.
699///
700bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
701                           unsigned Linkage, bool HasLinkage,
702                           unsigned Visibility) {
703  unsigned AddrSpace;
704  bool ThreadLocal, IsConstant;
705  LocTy TyLoc;
706
707  PATypeHolder Ty(Type::getVoidTy(Context));
708  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
709      ParseOptionalAddrSpace(AddrSpace) ||
710      ParseGlobalType(IsConstant) ||
711      ParseType(Ty, TyLoc))
712    return true;
713
714  // If the linkage is specified and is external, then no initializer is
715  // present.
716  Constant *Init = 0;
717  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
718                      Linkage != GlobalValue::ExternalWeakLinkage &&
719                      Linkage != GlobalValue::ExternalLinkage)) {
720    if (ParseGlobalValue(Ty, Init))
721      return true;
722  }
723
724  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
725    return Error(TyLoc, "invalid type for global variable");
726
727  GlobalVariable *GV = 0;
728
729  // See if the global was forward referenced, if so, use the global.
730  if (!Name.empty()) {
731    if (GlobalValue *GVal = M->getNamedValue(Name)) {
732      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
733        return Error(NameLoc, "redefinition of global '@" + Name + "'");
734      GV = cast<GlobalVariable>(GVal);
735    }
736  } else {
737    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
738      I = ForwardRefValIDs.find(NumberedVals.size());
739    if (I != ForwardRefValIDs.end()) {
740      GV = cast<GlobalVariable>(I->second.first);
741      ForwardRefValIDs.erase(I);
742    }
743  }
744
745  if (GV == 0) {
746    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
747                            Name, 0, false, AddrSpace);
748  } else {
749    if (GV->getType()->getElementType() != Ty)
750      return Error(TyLoc,
751            "forward reference and definition of global have different types");
752
753    // Move the forward-reference to the correct spot in the module.
754    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
755  }
756
757  if (Name.empty())
758    NumberedVals.push_back(GV);
759
760  // Set the parsed properties on the global.
761  if (Init)
762    GV->setInitializer(Init);
763  GV->setConstant(IsConstant);
764  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
765  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
766  GV->setThreadLocal(ThreadLocal);
767
768  // Parse attributes on the global.
769  while (Lex.getKind() == lltok::comma) {
770    Lex.Lex();
771
772    if (Lex.getKind() == lltok::kw_section) {
773      Lex.Lex();
774      GV->setSection(Lex.getStrVal());
775      if (ParseToken(lltok::StringConstant, "expected global section string"))
776        return true;
777    } else if (Lex.getKind() == lltok::kw_align) {
778      unsigned Alignment;
779      if (ParseOptionalAlignment(Alignment)) return true;
780      GV->setAlignment(Alignment);
781    } else {
782      TokError("unknown global variable property!");
783    }
784  }
785
786  return false;
787}
788
789
790//===----------------------------------------------------------------------===//
791// GlobalValue Reference/Resolution Routines.
792//===----------------------------------------------------------------------===//
793
794/// GetGlobalVal - Get a value with the specified name or ID, creating a
795/// forward reference record if needed.  This can return null if the value
796/// exists but does not have the right type.
797GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
798                                    LocTy Loc) {
799  const PointerType *PTy = dyn_cast<PointerType>(Ty);
800  if (PTy == 0) {
801    Error(Loc, "global variable reference must have pointer type");
802    return 0;
803  }
804
805  // Look this name up in the normal function symbol table.
806  GlobalValue *Val =
807    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
808
809  // If this is a forward reference for the value, see if we already created a
810  // forward ref record.
811  if (Val == 0) {
812    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
813      I = ForwardRefVals.find(Name);
814    if (I != ForwardRefVals.end())
815      Val = I->second.first;
816  }
817
818  // If we have the value in the symbol table or fwd-ref table, return it.
819  if (Val) {
820    if (Val->getType() == Ty) return Val;
821    Error(Loc, "'@" + Name + "' defined with type '" +
822          Val->getType()->getDescription() + "'");
823    return 0;
824  }
825
826  // Otherwise, create a new forward reference for this value and remember it.
827  GlobalValue *FwdVal;
828  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
829    // Function types can return opaque but functions can't.
830    if (isa<OpaqueType>(FT->getReturnType())) {
831      Error(Loc, "function may not return opaque type");
832      return 0;
833    }
834
835    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
836  } else {
837    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
838                                GlobalValue::ExternalWeakLinkage, 0, Name);
839  }
840
841  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
842  return FwdVal;
843}
844
845GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
846  const PointerType *PTy = dyn_cast<PointerType>(Ty);
847  if (PTy == 0) {
848    Error(Loc, "global variable reference must have pointer type");
849    return 0;
850  }
851
852  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
853
854  // If this is a forward reference for the value, see if we already created a
855  // forward ref record.
856  if (Val == 0) {
857    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
858      I = ForwardRefValIDs.find(ID);
859    if (I != ForwardRefValIDs.end())
860      Val = I->second.first;
861  }
862
863  // If we have the value in the symbol table or fwd-ref table, return it.
864  if (Val) {
865    if (Val->getType() == Ty) return Val;
866    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
867          Val->getType()->getDescription() + "'");
868    return 0;
869  }
870
871  // Otherwise, create a new forward reference for this value and remember it.
872  GlobalValue *FwdVal;
873  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
874    // Function types can return opaque but functions can't.
875    if (isa<OpaqueType>(FT->getReturnType())) {
876      Error(Loc, "function may not return opaque type");
877      return 0;
878    }
879    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
880  } else {
881    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
882                                GlobalValue::ExternalWeakLinkage, 0, "");
883  }
884
885  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
886  return FwdVal;
887}
888
889
890//===----------------------------------------------------------------------===//
891// Helper Routines.
892//===----------------------------------------------------------------------===//
893
894/// ParseToken - If the current token has the specified kind, eat it and return
895/// success.  Otherwise, emit the specified error and return failure.
896bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
897  if (Lex.getKind() != T)
898    return TokError(ErrMsg);
899  Lex.Lex();
900  return false;
901}
902
903/// ParseStringConstant
904///   ::= StringConstant
905bool LLParser::ParseStringConstant(std::string &Result) {
906  if (Lex.getKind() != lltok::StringConstant)
907    return TokError("expected string constant");
908  Result = Lex.getStrVal();
909  Lex.Lex();
910  return false;
911}
912
913/// ParseUInt32
914///   ::= uint32
915bool LLParser::ParseUInt32(unsigned &Val) {
916  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
917    return TokError("expected integer");
918  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
919  if (Val64 != unsigned(Val64))
920    return TokError("expected 32-bit integer (too large)");
921  Val = Val64;
922  Lex.Lex();
923  return false;
924}
925
926
927/// ParseOptionalAddrSpace
928///   := /*empty*/
929///   := 'addrspace' '(' uint32 ')'
930bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
931  AddrSpace = 0;
932  if (!EatIfPresent(lltok::kw_addrspace))
933    return false;
934  return ParseToken(lltok::lparen, "expected '(' in address space") ||
935         ParseUInt32(AddrSpace) ||
936         ParseToken(lltok::rparen, "expected ')' in address space");
937}
938
939/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
940/// indicates what kind of attribute list this is: 0: function arg, 1: result,
941/// 2: function attr.
942/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
943bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
944  Attrs = Attribute::None;
945  LocTy AttrLoc = Lex.getLoc();
946
947  while (1) {
948    switch (Lex.getKind()) {
949    case lltok::kw_sext:
950    case lltok::kw_zext:
951      // Treat these as signext/zeroext if they occur in the argument list after
952      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
953      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
954      // expr.
955      // FIXME: REMOVE THIS IN LLVM 3.0
956      if (AttrKind == 3) {
957        if (Lex.getKind() == lltok::kw_sext)
958          Attrs |= Attribute::SExt;
959        else
960          Attrs |= Attribute::ZExt;
961        break;
962      }
963      // FALL THROUGH.
964    default:  // End of attributes.
965      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
966        return Error(AttrLoc, "invalid use of function-only attribute");
967
968      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
969        return Error(AttrLoc, "invalid use of parameter-only attribute");
970
971      return false;
972    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
973    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
974    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
975    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
976    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
977    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
978    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
979    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
980
981    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
982    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
983    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
984    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
985    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
986    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
987    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
988    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
989    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
990    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
991    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
992    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
993    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
994
995    case lltok::kw_align: {
996      unsigned Alignment;
997      if (ParseOptionalAlignment(Alignment))
998        return true;
999      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1000      continue;
1001    }
1002    }
1003    Lex.Lex();
1004  }
1005}
1006
1007/// ParseOptionalLinkage
1008///   ::= /*empty*/
1009///   ::= 'private'
1010///   ::= 'linker_private'
1011///   ::= 'internal'
1012///   ::= 'weak'
1013///   ::= 'weak_odr'
1014///   ::= 'linkonce'
1015///   ::= 'linkonce_odr'
1016///   ::= 'appending'
1017///   ::= 'dllexport'
1018///   ::= 'common'
1019///   ::= 'dllimport'
1020///   ::= 'extern_weak'
1021///   ::= 'external'
1022bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1023  HasLinkage = false;
1024  switch (Lex.getKind()) {
1025  default:                       Res=GlobalValue::ExternalLinkage; return false;
1026  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1027  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1028  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1029  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1030  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1031  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1032  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1033  case lltok::kw_available_externally:
1034    Res = GlobalValue::AvailableExternallyLinkage;
1035    break;
1036  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1037  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1038  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1039  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1040  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1041  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1042  }
1043  Lex.Lex();
1044  HasLinkage = true;
1045  return false;
1046}
1047
1048/// ParseOptionalVisibility
1049///   ::= /*empty*/
1050///   ::= 'default'
1051///   ::= 'hidden'
1052///   ::= 'protected'
1053///
1054bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1055  switch (Lex.getKind()) {
1056  default:                  Res = GlobalValue::DefaultVisibility; return false;
1057  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1058  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1059  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1060  }
1061  Lex.Lex();
1062  return false;
1063}
1064
1065/// ParseOptionalCallingConv
1066///   ::= /*empty*/
1067///   ::= 'ccc'
1068///   ::= 'fastcc'
1069///   ::= 'coldcc'
1070///   ::= 'x86_stdcallcc'
1071///   ::= 'x86_fastcallcc'
1072///   ::= 'arm_apcscc'
1073///   ::= 'arm_aapcscc'
1074///   ::= 'arm_aapcs_vfpcc'
1075///   ::= 'msp430_intrcc'
1076///   ::= 'cc' UINT
1077///
1078bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1079  switch (Lex.getKind()) {
1080  default:                       CC = CallingConv::C; return false;
1081  case lltok::kw_ccc:            CC = CallingConv::C; break;
1082  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1083  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1084  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1085  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1086  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1087  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1088  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1089  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1090  case lltok::kw_cc: {
1091      unsigned ArbitraryCC;
1092      Lex.Lex();
1093      if (ParseUInt32(ArbitraryCC)) {
1094        return true;
1095      } else
1096        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1097        return false;
1098    }
1099    break;
1100  }
1101
1102  Lex.Lex();
1103  return false;
1104}
1105
1106/// ParseOptionalCustomMetadata
1107///   ::= /* empty */
1108///   ::= !dbg !42 (',' !dbg !57)*
1109bool LLParser::ParseOptionalCustomMetadata() {
1110  if (Lex.getKind() != lltok::NamedOrCustomMD)
1111    return false;
1112
1113  while (1) {
1114    std::string Name = Lex.getStrVal();
1115    Lex.Lex();
1116
1117    if (Lex.getKind() != lltok::Metadata)
1118      return TokError("expected '!' here");
1119    Lex.Lex();
1120
1121    MetadataBase *Node;
1122    if (ParseMDNode(Node)) return true;
1123
1124    unsigned MDK = M->getMDKindID(Name.c_str());
1125    MDsOnInst.push_back(std::make_pair(MDK, cast<MDNode>(Node)));
1126
1127    // If this is the end of the list, we're done.
1128    if (!EatIfPresent(lltok::comma))
1129      return false;
1130
1131    // The next value must be a custom metadata id.
1132    if (Lex.getKind() != lltok::NamedOrCustomMD)
1133      return TokError("expected more custom metadata ids");
1134  }
1135}
1136
1137/// ParseOptionalAlignment
1138///   ::= /* empty */
1139///   ::= 'align' 4
1140bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1141  Alignment = 0;
1142  if (!EatIfPresent(lltok::kw_align))
1143    return false;
1144  LocTy AlignLoc = Lex.getLoc();
1145  if (ParseUInt32(Alignment)) return true;
1146  if (!isPowerOf2_32(Alignment))
1147    return Error(AlignLoc, "alignment is not a power of two");
1148  return false;
1149}
1150
1151/// ParseOptionalInfo
1152///   ::= OptionalInfo (',' OptionalInfo)+
1153bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1154
1155  // FIXME: Handle customized metadata info attached with an instruction.
1156  do {
1157      if (Lex.getKind() == lltok::NamedOrCustomMD) {
1158      if (ParseOptionalCustomMetadata()) return true;
1159    } else if (Lex.getKind() == lltok::kw_align) {
1160      if (ParseOptionalAlignment(Alignment)) return true;
1161    } else
1162      return true;
1163  } while (EatIfPresent(lltok::comma));
1164
1165  return false;
1166}
1167
1168
1169/// ParseIndexList
1170///    ::=  (',' uint32)+
1171bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
1172  if (Lex.getKind() != lltok::comma)
1173    return TokError("expected ',' as start of index list");
1174
1175  while (EatIfPresent(lltok::comma)) {
1176    if (Lex.getKind() == lltok::NamedOrCustomMD)
1177      break;
1178    unsigned Idx;
1179    if (ParseUInt32(Idx)) return true;
1180    Indices.push_back(Idx);
1181  }
1182
1183  return false;
1184}
1185
1186//===----------------------------------------------------------------------===//
1187// Type Parsing.
1188//===----------------------------------------------------------------------===//
1189
1190/// ParseType - Parse and resolve a full type.
1191bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1192  LocTy TypeLoc = Lex.getLoc();
1193  if (ParseTypeRec(Result)) return true;
1194
1195  // Verify no unresolved uprefs.
1196  if (!UpRefs.empty())
1197    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1198
1199  if (!AllowVoid && Result.get()->isVoidTy())
1200    return Error(TypeLoc, "void type only allowed for function results");
1201
1202  return false;
1203}
1204
1205/// HandleUpRefs - Every time we finish a new layer of types, this function is
1206/// called.  It loops through the UpRefs vector, which is a list of the
1207/// currently active types.  For each type, if the up-reference is contained in
1208/// the newly completed type, we decrement the level count.  When the level
1209/// count reaches zero, the up-referenced type is the type that is passed in:
1210/// thus we can complete the cycle.
1211///
1212PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1213  // If Ty isn't abstract, or if there are no up-references in it, then there is
1214  // nothing to resolve here.
1215  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1216
1217  PATypeHolder Ty(ty);
1218#if 0
1219  dbgs() << "Type '" << Ty->getDescription()
1220         << "' newly formed.  Resolving upreferences.\n"
1221         << UpRefs.size() << " upreferences active!\n";
1222#endif
1223
1224  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1225  // to zero), we resolve them all together before we resolve them to Ty.  At
1226  // the end of the loop, if there is anything to resolve to Ty, it will be in
1227  // this variable.
1228  OpaqueType *TypeToResolve = 0;
1229
1230  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1231    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1232    bool ContainsType =
1233      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1234                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1235
1236#if 0
1237    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1238           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1239           << (ContainsType ? "true" : "false")
1240           << " level=" << UpRefs[i].NestingLevel << "\n";
1241#endif
1242    if (!ContainsType)
1243      continue;
1244
1245    // Decrement level of upreference
1246    unsigned Level = --UpRefs[i].NestingLevel;
1247    UpRefs[i].LastContainedTy = Ty;
1248
1249    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1250    if (Level != 0)
1251      continue;
1252
1253#if 0
1254    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1255#endif
1256    if (!TypeToResolve)
1257      TypeToResolve = UpRefs[i].UpRefTy;
1258    else
1259      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1260    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1261    --i;                                // Do not skip the next element.
1262  }
1263
1264  if (TypeToResolve)
1265    TypeToResolve->refineAbstractTypeTo(Ty);
1266
1267  return Ty;
1268}
1269
1270
1271/// ParseTypeRec - The recursive function used to process the internal
1272/// implementation details of types.
1273bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1274  switch (Lex.getKind()) {
1275  default:
1276    return TokError("expected type");
1277  case lltok::Type:
1278    // TypeRec ::= 'float' | 'void' (etc)
1279    Result = Lex.getTyVal();
1280    Lex.Lex();
1281    break;
1282  case lltok::kw_opaque:
1283    // TypeRec ::= 'opaque'
1284    Result = OpaqueType::get(Context);
1285    Lex.Lex();
1286    break;
1287  case lltok::lbrace:
1288    // TypeRec ::= '{' ... '}'
1289    if (ParseStructType(Result, false))
1290      return true;
1291    break;
1292  case lltok::lsquare:
1293    // TypeRec ::= '[' ... ']'
1294    Lex.Lex(); // eat the lsquare.
1295    if (ParseArrayVectorType(Result, false))
1296      return true;
1297    break;
1298  case lltok::less: // Either vector or packed struct.
1299    // TypeRec ::= '<' ... '>'
1300    Lex.Lex();
1301    if (Lex.getKind() == lltok::lbrace) {
1302      if (ParseStructType(Result, true) ||
1303          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1304        return true;
1305    } else if (ParseArrayVectorType(Result, true))
1306      return true;
1307    break;
1308  case lltok::LocalVar:
1309  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1310    // TypeRec ::= %foo
1311    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1312      Result = T;
1313    } else {
1314      Result = OpaqueType::get(Context);
1315      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1316                                            std::make_pair(Result,
1317                                                           Lex.getLoc())));
1318      M->addTypeName(Lex.getStrVal(), Result.get());
1319    }
1320    Lex.Lex();
1321    break;
1322
1323  case lltok::LocalVarID:
1324    // TypeRec ::= %4
1325    if (Lex.getUIntVal() < NumberedTypes.size())
1326      Result = NumberedTypes[Lex.getUIntVal()];
1327    else {
1328      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1329        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1330      if (I != ForwardRefTypeIDs.end())
1331        Result = I->second.first;
1332      else {
1333        Result = OpaqueType::get(Context);
1334        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1335                                                std::make_pair(Result,
1336                                                               Lex.getLoc())));
1337      }
1338    }
1339    Lex.Lex();
1340    break;
1341  case lltok::backslash: {
1342    // TypeRec ::= '\' 4
1343    Lex.Lex();
1344    unsigned Val;
1345    if (ParseUInt32(Val)) return true;
1346    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1347    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1348    Result = OT;
1349    break;
1350  }
1351  }
1352
1353  // Parse the type suffixes.
1354  while (1) {
1355    switch (Lex.getKind()) {
1356    // End of type.
1357    default: return false;
1358
1359    // TypeRec ::= TypeRec '*'
1360    case lltok::star:
1361      if (Result.get()->isLabelTy())
1362        return TokError("basic block pointers are invalid");
1363      if (Result.get()->isVoidTy())
1364        return TokError("pointers to void are invalid; use i8* instead");
1365      if (!PointerType::isValidElementType(Result.get()))
1366        return TokError("pointer to this type is invalid");
1367      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1368      Lex.Lex();
1369      break;
1370
1371    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1372    case lltok::kw_addrspace: {
1373      if (Result.get()->isLabelTy())
1374        return TokError("basic block pointers are invalid");
1375      if (Result.get()->isVoidTy())
1376        return TokError("pointers to void are invalid; use i8* instead");
1377      if (!PointerType::isValidElementType(Result.get()))
1378        return TokError("pointer to this type is invalid");
1379      unsigned AddrSpace;
1380      if (ParseOptionalAddrSpace(AddrSpace) ||
1381          ParseToken(lltok::star, "expected '*' in address space"))
1382        return true;
1383
1384      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1385      break;
1386    }
1387
1388    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1389    case lltok::lparen:
1390      if (ParseFunctionType(Result))
1391        return true;
1392      break;
1393    }
1394  }
1395}
1396
1397/// ParseParameterList
1398///    ::= '(' ')'
1399///    ::= '(' Arg (',' Arg)* ')'
1400///  Arg
1401///    ::= Type OptionalAttributes Value OptionalAttributes
1402bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1403                                  PerFunctionState &PFS) {
1404  if (ParseToken(lltok::lparen, "expected '(' in call"))
1405    return true;
1406
1407  while (Lex.getKind() != lltok::rparen) {
1408    // If this isn't the first argument, we need a comma.
1409    if (!ArgList.empty() &&
1410        ParseToken(lltok::comma, "expected ',' in argument list"))
1411      return true;
1412
1413    // Parse the argument.
1414    LocTy ArgLoc;
1415    PATypeHolder ArgTy(Type::getVoidTy(Context));
1416    unsigned ArgAttrs1 = Attribute::None;
1417    unsigned ArgAttrs2 = Attribute::None;
1418    Value *V;
1419    if (ParseType(ArgTy, ArgLoc))
1420      return true;
1421
1422    if (Lex.getKind() == lltok::Metadata) {
1423      if (ParseInlineMetadata(V, PFS))
1424        return true;
1425    } else {
1426      if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1427          ParseValue(ArgTy, V, PFS) ||
1428          // FIXME: Should not allow attributes after the argument, remove this
1429          // in LLVM 3.0.
1430          ParseOptionalAttrs(ArgAttrs2, 3))
1431        return true;
1432    }
1433    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1434  }
1435
1436  Lex.Lex();  // Lex the ')'.
1437  return false;
1438}
1439
1440
1441
1442/// ParseArgumentList - Parse the argument list for a function type or function
1443/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1444///   ::= '(' ArgTypeListI ')'
1445/// ArgTypeListI
1446///   ::= /*empty*/
1447///   ::= '...'
1448///   ::= ArgTypeList ',' '...'
1449///   ::= ArgType (',' ArgType)*
1450///
1451bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1452                                 bool &isVarArg, bool inType) {
1453  isVarArg = false;
1454  assert(Lex.getKind() == lltok::lparen);
1455  Lex.Lex(); // eat the (.
1456
1457  if (Lex.getKind() == lltok::rparen) {
1458    // empty
1459  } else if (Lex.getKind() == lltok::dotdotdot) {
1460    isVarArg = true;
1461    Lex.Lex();
1462  } else {
1463    LocTy TypeLoc = Lex.getLoc();
1464    PATypeHolder ArgTy(Type::getVoidTy(Context));
1465    unsigned Attrs;
1466    std::string Name;
1467
1468    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1469    // types (such as a function returning a pointer to itself).  If parsing a
1470    // function prototype, we require fully resolved types.
1471    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1472        ParseOptionalAttrs(Attrs, 0)) return true;
1473
1474    if (ArgTy->isVoidTy())
1475      return Error(TypeLoc, "argument can not have void type");
1476
1477    if (Lex.getKind() == lltok::LocalVar ||
1478        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1479      Name = Lex.getStrVal();
1480      Lex.Lex();
1481    }
1482
1483    if (!FunctionType::isValidArgumentType(ArgTy))
1484      return Error(TypeLoc, "invalid type for function argument");
1485
1486    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1487
1488    while (EatIfPresent(lltok::comma)) {
1489      // Handle ... at end of arg list.
1490      if (EatIfPresent(lltok::dotdotdot)) {
1491        isVarArg = true;
1492        break;
1493      }
1494
1495      // Otherwise must be an argument type.
1496      TypeLoc = Lex.getLoc();
1497      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1498          ParseOptionalAttrs(Attrs, 0)) return true;
1499
1500      if (ArgTy->isVoidTy())
1501        return Error(TypeLoc, "argument can not have void type");
1502
1503      if (Lex.getKind() == lltok::LocalVar ||
1504          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1505        Name = Lex.getStrVal();
1506        Lex.Lex();
1507      } else {
1508        Name = "";
1509      }
1510
1511      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1512        return Error(TypeLoc, "invalid type for function argument");
1513
1514      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1515    }
1516  }
1517
1518  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1519}
1520
1521/// ParseFunctionType
1522///  ::= Type ArgumentList OptionalAttrs
1523bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1524  assert(Lex.getKind() == lltok::lparen);
1525
1526  if (!FunctionType::isValidReturnType(Result))
1527    return TokError("invalid function return type");
1528
1529  std::vector<ArgInfo> ArgList;
1530  bool isVarArg;
1531  unsigned Attrs;
1532  if (ParseArgumentList(ArgList, isVarArg, true) ||
1533      // FIXME: Allow, but ignore attributes on function types!
1534      // FIXME: Remove in LLVM 3.0
1535      ParseOptionalAttrs(Attrs, 2))
1536    return true;
1537
1538  // Reject names on the arguments lists.
1539  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1540    if (!ArgList[i].Name.empty())
1541      return Error(ArgList[i].Loc, "argument name invalid in function type");
1542    if (!ArgList[i].Attrs != 0) {
1543      // Allow but ignore attributes on function types; this permits
1544      // auto-upgrade.
1545      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1546    }
1547  }
1548
1549  std::vector<const Type*> ArgListTy;
1550  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1551    ArgListTy.push_back(ArgList[i].Type);
1552
1553  Result = HandleUpRefs(FunctionType::get(Result.get(),
1554                                                ArgListTy, isVarArg));
1555  return false;
1556}
1557
1558/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1559///   TypeRec
1560///     ::= '{' '}'
1561///     ::= '{' TypeRec (',' TypeRec)* '}'
1562///     ::= '<' '{' '}' '>'
1563///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1564bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1565  assert(Lex.getKind() == lltok::lbrace);
1566  Lex.Lex(); // Consume the '{'
1567
1568  if (EatIfPresent(lltok::rbrace)) {
1569    Result = StructType::get(Context, Packed);
1570    return false;
1571  }
1572
1573  std::vector<PATypeHolder> ParamsList;
1574  LocTy EltTyLoc = Lex.getLoc();
1575  if (ParseTypeRec(Result)) return true;
1576  ParamsList.push_back(Result);
1577
1578  if (Result->isVoidTy())
1579    return Error(EltTyLoc, "struct element can not have void type");
1580  if (!StructType::isValidElementType(Result))
1581    return Error(EltTyLoc, "invalid element type for struct");
1582
1583  while (EatIfPresent(lltok::comma)) {
1584    EltTyLoc = Lex.getLoc();
1585    if (ParseTypeRec(Result)) return true;
1586
1587    if (Result->isVoidTy())
1588      return Error(EltTyLoc, "struct element can not have void type");
1589    if (!StructType::isValidElementType(Result))
1590      return Error(EltTyLoc, "invalid element type for struct");
1591
1592    ParamsList.push_back(Result);
1593  }
1594
1595  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1596    return true;
1597
1598  std::vector<const Type*> ParamsListTy;
1599  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1600    ParamsListTy.push_back(ParamsList[i].get());
1601  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1602  return false;
1603}
1604
1605/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1606/// token has already been consumed.
1607///   TypeRec
1608///     ::= '[' APSINTVAL 'x' Types ']'
1609///     ::= '<' APSINTVAL 'x' Types '>'
1610bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1611  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1612      Lex.getAPSIntVal().getBitWidth() > 64)
1613    return TokError("expected number in address space");
1614
1615  LocTy SizeLoc = Lex.getLoc();
1616  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1617  Lex.Lex();
1618
1619  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1620      return true;
1621
1622  LocTy TypeLoc = Lex.getLoc();
1623  PATypeHolder EltTy(Type::getVoidTy(Context));
1624  if (ParseTypeRec(EltTy)) return true;
1625
1626  if (EltTy->isVoidTy())
1627    return Error(TypeLoc, "array and vector element type cannot be void");
1628
1629  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1630                 "expected end of sequential type"))
1631    return true;
1632
1633  if (isVector) {
1634    if (Size == 0)
1635      return Error(SizeLoc, "zero element vector is illegal");
1636    if ((unsigned)Size != Size)
1637      return Error(SizeLoc, "size too large for vector");
1638    if (!VectorType::isValidElementType(EltTy))
1639      return Error(TypeLoc, "vector element type must be fp or integer");
1640    Result = VectorType::get(EltTy, unsigned(Size));
1641  } else {
1642    if (!ArrayType::isValidElementType(EltTy))
1643      return Error(TypeLoc, "invalid array element type");
1644    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1645  }
1646  return false;
1647}
1648
1649//===----------------------------------------------------------------------===//
1650// Function Semantic Analysis.
1651//===----------------------------------------------------------------------===//
1652
1653LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1654                                             int functionNumber)
1655  : P(p), F(f), FunctionNumber(functionNumber) {
1656
1657  // Insert unnamed arguments into the NumberedVals list.
1658  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1659       AI != E; ++AI)
1660    if (!AI->hasName())
1661      NumberedVals.push_back(AI);
1662}
1663
1664LLParser::PerFunctionState::~PerFunctionState() {
1665  // If there were any forward referenced non-basicblock values, delete them.
1666  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1667       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1668    if (!isa<BasicBlock>(I->second.first)) {
1669      I->second.first->replaceAllUsesWith(
1670                           UndefValue::get(I->second.first->getType()));
1671      delete I->second.first;
1672      I->second.first = 0;
1673    }
1674
1675  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1676       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1677    if (!isa<BasicBlock>(I->second.first)) {
1678      I->second.first->replaceAllUsesWith(
1679                           UndefValue::get(I->second.first->getType()));
1680      delete I->second.first;
1681      I->second.first = 0;
1682    }
1683}
1684
1685bool LLParser::PerFunctionState::FinishFunction() {
1686  // Check to see if someone took the address of labels in this block.
1687  if (!P.ForwardRefBlockAddresses.empty()) {
1688    ValID FunctionID;
1689    if (!F.getName().empty()) {
1690      FunctionID.Kind = ValID::t_GlobalName;
1691      FunctionID.StrVal = F.getName();
1692    } else {
1693      FunctionID.Kind = ValID::t_GlobalID;
1694      FunctionID.UIntVal = FunctionNumber;
1695    }
1696
1697    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1698      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1699    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1700      // Resolve all these references.
1701      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1702        return true;
1703
1704      P.ForwardRefBlockAddresses.erase(FRBAI);
1705    }
1706  }
1707
1708  if (!ForwardRefVals.empty())
1709    return P.Error(ForwardRefVals.begin()->second.second,
1710                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1711                   "'");
1712  if (!ForwardRefValIDs.empty())
1713    return P.Error(ForwardRefValIDs.begin()->second.second,
1714                   "use of undefined value '%" +
1715                   utostr(ForwardRefValIDs.begin()->first) + "'");
1716  return false;
1717}
1718
1719
1720/// GetVal - Get a value with the specified name or ID, creating a
1721/// forward reference record if needed.  This can return null if the value
1722/// exists but does not have the right type.
1723Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1724                                          const Type *Ty, LocTy Loc) {
1725  // Look this name up in the normal function symbol table.
1726  Value *Val = F.getValueSymbolTable().lookup(Name);
1727
1728  // If this is a forward reference for the value, see if we already created a
1729  // forward ref record.
1730  if (Val == 0) {
1731    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1732      I = ForwardRefVals.find(Name);
1733    if (I != ForwardRefVals.end())
1734      Val = I->second.first;
1735  }
1736
1737  // If we have the value in the symbol table or fwd-ref table, return it.
1738  if (Val) {
1739    if (Val->getType() == Ty) return Val;
1740    if (Ty->isLabelTy())
1741      P.Error(Loc, "'%" + Name + "' is not a basic block");
1742    else
1743      P.Error(Loc, "'%" + Name + "' defined with type '" +
1744              Val->getType()->getDescription() + "'");
1745    return 0;
1746  }
1747
1748  // Don't make placeholders with invalid type.
1749  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1750      Ty != Type::getLabelTy(F.getContext())) {
1751    P.Error(Loc, "invalid use of a non-first-class type");
1752    return 0;
1753  }
1754
1755  // Otherwise, create a new forward reference for this value and remember it.
1756  Value *FwdVal;
1757  if (Ty->isLabelTy())
1758    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1759  else
1760    FwdVal = new Argument(Ty, Name);
1761
1762  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1763  return FwdVal;
1764}
1765
1766Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1767                                          LocTy Loc) {
1768  // Look this name up in the normal function symbol table.
1769  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1770
1771  // If this is a forward reference for the value, see if we already created a
1772  // forward ref record.
1773  if (Val == 0) {
1774    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1775      I = ForwardRefValIDs.find(ID);
1776    if (I != ForwardRefValIDs.end())
1777      Val = I->second.first;
1778  }
1779
1780  // If we have the value in the symbol table or fwd-ref table, return it.
1781  if (Val) {
1782    if (Val->getType() == Ty) return Val;
1783    if (Ty->isLabelTy())
1784      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1785    else
1786      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1787              Val->getType()->getDescription() + "'");
1788    return 0;
1789  }
1790
1791  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1792      Ty != Type::getLabelTy(F.getContext())) {
1793    P.Error(Loc, "invalid use of a non-first-class type");
1794    return 0;
1795  }
1796
1797  // Otherwise, create a new forward reference for this value and remember it.
1798  Value *FwdVal;
1799  if (Ty->isLabelTy())
1800    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1801  else
1802    FwdVal = new Argument(Ty);
1803
1804  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1805  return FwdVal;
1806}
1807
1808/// SetInstName - After an instruction is parsed and inserted into its
1809/// basic block, this installs its name.
1810bool LLParser::PerFunctionState::SetInstName(int NameID,
1811                                             const std::string &NameStr,
1812                                             LocTy NameLoc, Instruction *Inst) {
1813  // If this instruction has void type, it cannot have a name or ID specified.
1814  if (Inst->getType()->isVoidTy()) {
1815    if (NameID != -1 || !NameStr.empty())
1816      return P.Error(NameLoc, "instructions returning void cannot have a name");
1817    return false;
1818  }
1819
1820  // If this was a numbered instruction, verify that the instruction is the
1821  // expected value and resolve any forward references.
1822  if (NameStr.empty()) {
1823    // If neither a name nor an ID was specified, just use the next ID.
1824    if (NameID == -1)
1825      NameID = NumberedVals.size();
1826
1827    if (unsigned(NameID) != NumberedVals.size())
1828      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1829                     utostr(NumberedVals.size()) + "'");
1830
1831    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1832      ForwardRefValIDs.find(NameID);
1833    if (FI != ForwardRefValIDs.end()) {
1834      if (FI->second.first->getType() != Inst->getType())
1835        return P.Error(NameLoc, "instruction forward referenced with type '" +
1836                       FI->second.first->getType()->getDescription() + "'");
1837      FI->second.first->replaceAllUsesWith(Inst);
1838      delete FI->second.first;
1839      ForwardRefValIDs.erase(FI);
1840    }
1841
1842    NumberedVals.push_back(Inst);
1843    return false;
1844  }
1845
1846  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1847  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1848    FI = ForwardRefVals.find(NameStr);
1849  if (FI != ForwardRefVals.end()) {
1850    if (FI->second.first->getType() != Inst->getType())
1851      return P.Error(NameLoc, "instruction forward referenced with type '" +
1852                     FI->second.first->getType()->getDescription() + "'");
1853    FI->second.first->replaceAllUsesWith(Inst);
1854    delete FI->second.first;
1855    ForwardRefVals.erase(FI);
1856  }
1857
1858  // Set the name on the instruction.
1859  Inst->setName(NameStr);
1860
1861  if (Inst->getNameStr() != NameStr)
1862    return P.Error(NameLoc, "multiple definition of local value named '" +
1863                   NameStr + "'");
1864  return false;
1865}
1866
1867/// GetBB - Get a basic block with the specified name or ID, creating a
1868/// forward reference record if needed.
1869BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1870                                              LocTy Loc) {
1871  return cast_or_null<BasicBlock>(GetVal(Name,
1872                                        Type::getLabelTy(F.getContext()), Loc));
1873}
1874
1875BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1876  return cast_or_null<BasicBlock>(GetVal(ID,
1877                                        Type::getLabelTy(F.getContext()), Loc));
1878}
1879
1880/// DefineBB - Define the specified basic block, which is either named or
1881/// unnamed.  If there is an error, this returns null otherwise it returns
1882/// the block being defined.
1883BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1884                                                 LocTy Loc) {
1885  BasicBlock *BB;
1886  if (Name.empty())
1887    BB = GetBB(NumberedVals.size(), Loc);
1888  else
1889    BB = GetBB(Name, Loc);
1890  if (BB == 0) return 0; // Already diagnosed error.
1891
1892  // Move the block to the end of the function.  Forward ref'd blocks are
1893  // inserted wherever they happen to be referenced.
1894  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1895
1896  // Remove the block from forward ref sets.
1897  if (Name.empty()) {
1898    ForwardRefValIDs.erase(NumberedVals.size());
1899    NumberedVals.push_back(BB);
1900  } else {
1901    // BB forward references are already in the function symbol table.
1902    ForwardRefVals.erase(Name);
1903  }
1904
1905  return BB;
1906}
1907
1908//===----------------------------------------------------------------------===//
1909// Constants.
1910//===----------------------------------------------------------------------===//
1911
1912/// ParseValID - Parse an abstract value that doesn't necessarily have a
1913/// type implied.  For example, if we parse "4" we don't know what integer type
1914/// it has.  The value will later be combined with its type and checked for
1915/// sanity.
1916bool LLParser::ParseValID(ValID &ID) {
1917  ID.Loc = Lex.getLoc();
1918  switch (Lex.getKind()) {
1919  default: return TokError("expected value token");
1920  case lltok::GlobalID:  // @42
1921    ID.UIntVal = Lex.getUIntVal();
1922    ID.Kind = ValID::t_GlobalID;
1923    break;
1924  case lltok::GlobalVar:  // @foo
1925    ID.StrVal = Lex.getStrVal();
1926    ID.Kind = ValID::t_GlobalName;
1927    break;
1928  case lltok::LocalVarID:  // %42
1929    ID.UIntVal = Lex.getUIntVal();
1930    ID.Kind = ValID::t_LocalID;
1931    break;
1932  case lltok::LocalVar:  // %foo
1933  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1934    ID.StrVal = Lex.getStrVal();
1935    ID.Kind = ValID::t_LocalName;
1936    break;
1937  case lltok::Metadata: {  // !{...} MDNode, !"foo" MDString
1938    ID.Kind = ValID::t_Metadata;
1939    Lex.Lex();
1940    if (Lex.getKind() == lltok::lbrace) {
1941      SmallVector<Value*, 16> Elts;
1942      if (ParseMDNodeVector(Elts) ||
1943          ParseToken(lltok::rbrace, "expected end of metadata node"))
1944        return true;
1945
1946      ID.MetadataVal = MDNode::get(Context, Elts.data(), Elts.size());
1947      return false;
1948    }
1949
1950    // Standalone metadata reference
1951    // !{ ..., !42, ... }
1952    if (!ParseMDNode(ID.MetadataVal))
1953      return false;
1954
1955    // MDString:
1956    //   ::= '!' STRINGCONSTANT
1957    if (ParseMDString(ID.MetadataVal)) return true;
1958    ID.Kind = ValID::t_Metadata;
1959    return false;
1960  }
1961  case lltok::APSInt:
1962    ID.APSIntVal = Lex.getAPSIntVal();
1963    ID.Kind = ValID::t_APSInt;
1964    break;
1965  case lltok::APFloat:
1966    ID.APFloatVal = Lex.getAPFloatVal();
1967    ID.Kind = ValID::t_APFloat;
1968    break;
1969  case lltok::kw_true:
1970    ID.ConstantVal = ConstantInt::getTrue(Context);
1971    ID.Kind = ValID::t_Constant;
1972    break;
1973  case lltok::kw_false:
1974    ID.ConstantVal = ConstantInt::getFalse(Context);
1975    ID.Kind = ValID::t_Constant;
1976    break;
1977  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1978  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1979  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1980
1981  case lltok::lbrace: {
1982    // ValID ::= '{' ConstVector '}'
1983    Lex.Lex();
1984    SmallVector<Constant*, 16> Elts;
1985    if (ParseGlobalValueVector(Elts) ||
1986        ParseToken(lltok::rbrace, "expected end of struct constant"))
1987      return true;
1988
1989    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1990                                         Elts.size(), false);
1991    ID.Kind = ValID::t_Constant;
1992    return false;
1993  }
1994  case lltok::less: {
1995    // ValID ::= '<' ConstVector '>'         --> Vector.
1996    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1997    Lex.Lex();
1998    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1999
2000    SmallVector<Constant*, 16> Elts;
2001    LocTy FirstEltLoc = Lex.getLoc();
2002    if (ParseGlobalValueVector(Elts) ||
2003        (isPackedStruct &&
2004         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2005        ParseToken(lltok::greater, "expected end of constant"))
2006      return true;
2007
2008    if (isPackedStruct) {
2009      ID.ConstantVal =
2010        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2011      ID.Kind = ValID::t_Constant;
2012      return false;
2013    }
2014
2015    if (Elts.empty())
2016      return Error(ID.Loc, "constant vector must not be empty");
2017
2018    if (!Elts[0]->getType()->isInteger() &&
2019        !Elts[0]->getType()->isFloatingPoint())
2020      return Error(FirstEltLoc,
2021                   "vector elements must have integer or floating point type");
2022
2023    // Verify that all the vector elements have the same type.
2024    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2025      if (Elts[i]->getType() != Elts[0]->getType())
2026        return Error(FirstEltLoc,
2027                     "vector element #" + utostr(i) +
2028                    " is not of type '" + Elts[0]->getType()->getDescription());
2029
2030    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2031    ID.Kind = ValID::t_Constant;
2032    return false;
2033  }
2034  case lltok::lsquare: {   // Array Constant
2035    Lex.Lex();
2036    SmallVector<Constant*, 16> Elts;
2037    LocTy FirstEltLoc = Lex.getLoc();
2038    if (ParseGlobalValueVector(Elts) ||
2039        ParseToken(lltok::rsquare, "expected end of array constant"))
2040      return true;
2041
2042    // Handle empty element.
2043    if (Elts.empty()) {
2044      // Use undef instead of an array because it's inconvenient to determine
2045      // the element type at this point, there being no elements to examine.
2046      ID.Kind = ValID::t_EmptyArray;
2047      return false;
2048    }
2049
2050    if (!Elts[0]->getType()->isFirstClassType())
2051      return Error(FirstEltLoc, "invalid array element type: " +
2052                   Elts[0]->getType()->getDescription());
2053
2054    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2055
2056    // Verify all elements are correct type!
2057    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2058      if (Elts[i]->getType() != Elts[0]->getType())
2059        return Error(FirstEltLoc,
2060                     "array element #" + utostr(i) +
2061                     " is not of type '" +Elts[0]->getType()->getDescription());
2062    }
2063
2064    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2065    ID.Kind = ValID::t_Constant;
2066    return false;
2067  }
2068  case lltok::kw_c:  // c "foo"
2069    Lex.Lex();
2070    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2071    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2072    ID.Kind = ValID::t_Constant;
2073    return false;
2074
2075  case lltok::kw_asm: {
2076    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2077    bool HasSideEffect, AlignStack;
2078    Lex.Lex();
2079    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2080        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2081        ParseStringConstant(ID.StrVal) ||
2082        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2083        ParseToken(lltok::StringConstant, "expected constraint string"))
2084      return true;
2085    ID.StrVal2 = Lex.getStrVal();
2086    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2087    ID.Kind = ValID::t_InlineAsm;
2088    return false;
2089  }
2090
2091  case lltok::kw_blockaddress: {
2092    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2093    Lex.Lex();
2094
2095    ValID Fn, Label;
2096    LocTy FnLoc, LabelLoc;
2097
2098    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2099        ParseValID(Fn) ||
2100        ParseToken(lltok::comma, "expected comma in block address expression")||
2101        ParseValID(Label) ||
2102        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2103      return true;
2104
2105    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2106      return Error(Fn.Loc, "expected function name in blockaddress");
2107    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2108      return Error(Label.Loc, "expected basic block name in blockaddress");
2109
2110    // Make a global variable as a placeholder for this reference.
2111    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2112                                           false, GlobalValue::InternalLinkage,
2113                                                0, "");
2114    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2115    ID.ConstantVal = FwdRef;
2116    ID.Kind = ValID::t_Constant;
2117    return false;
2118  }
2119
2120  case lltok::kw_trunc:
2121  case lltok::kw_zext:
2122  case lltok::kw_sext:
2123  case lltok::kw_fptrunc:
2124  case lltok::kw_fpext:
2125  case lltok::kw_bitcast:
2126  case lltok::kw_uitofp:
2127  case lltok::kw_sitofp:
2128  case lltok::kw_fptoui:
2129  case lltok::kw_fptosi:
2130  case lltok::kw_inttoptr:
2131  case lltok::kw_ptrtoint: {
2132    unsigned Opc = Lex.getUIntVal();
2133    PATypeHolder DestTy(Type::getVoidTy(Context));
2134    Constant *SrcVal;
2135    Lex.Lex();
2136    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2137        ParseGlobalTypeAndValue(SrcVal) ||
2138        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2139        ParseType(DestTy) ||
2140        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2141      return true;
2142    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2143      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2144                   SrcVal->getType()->getDescription() + "' to '" +
2145                   DestTy->getDescription() + "'");
2146    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2147                                                 SrcVal, DestTy);
2148    ID.Kind = ValID::t_Constant;
2149    return false;
2150  }
2151  case lltok::kw_extractvalue: {
2152    Lex.Lex();
2153    Constant *Val;
2154    SmallVector<unsigned, 4> Indices;
2155    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2156        ParseGlobalTypeAndValue(Val) ||
2157        ParseIndexList(Indices) ||
2158        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2159      return true;
2160    if (Lex.getKind() == lltok::NamedOrCustomMD)
2161      if (ParseOptionalCustomMetadata()) return true;
2162
2163    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2164      return Error(ID.Loc, "extractvalue operand must be array or struct");
2165    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2166                                          Indices.end()))
2167      return Error(ID.Loc, "invalid indices for extractvalue");
2168    ID.ConstantVal =
2169      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2170    ID.Kind = ValID::t_Constant;
2171    return false;
2172  }
2173  case lltok::kw_insertvalue: {
2174    Lex.Lex();
2175    Constant *Val0, *Val1;
2176    SmallVector<unsigned, 4> Indices;
2177    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2178        ParseGlobalTypeAndValue(Val0) ||
2179        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2180        ParseGlobalTypeAndValue(Val1) ||
2181        ParseIndexList(Indices) ||
2182        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2183      return true;
2184    if (Lex.getKind() == lltok::NamedOrCustomMD)
2185      if (ParseOptionalCustomMetadata()) return true;
2186    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2187      return Error(ID.Loc, "extractvalue operand must be array or struct");
2188    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2189                                          Indices.end()))
2190      return Error(ID.Loc, "invalid indices for insertvalue");
2191    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2192                       Indices.data(), Indices.size());
2193    ID.Kind = ValID::t_Constant;
2194    return false;
2195  }
2196  case lltok::kw_icmp:
2197  case lltok::kw_fcmp: {
2198    unsigned PredVal, Opc = Lex.getUIntVal();
2199    Constant *Val0, *Val1;
2200    Lex.Lex();
2201    if (ParseCmpPredicate(PredVal, Opc) ||
2202        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2203        ParseGlobalTypeAndValue(Val0) ||
2204        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2205        ParseGlobalTypeAndValue(Val1) ||
2206        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2207      return true;
2208
2209    if (Val0->getType() != Val1->getType())
2210      return Error(ID.Loc, "compare operands must have the same type");
2211
2212    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2213
2214    if (Opc == Instruction::FCmp) {
2215      if (!Val0->getType()->isFPOrFPVector())
2216        return Error(ID.Loc, "fcmp requires floating point operands");
2217      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2218    } else {
2219      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2220      if (!Val0->getType()->isIntOrIntVector() &&
2221          !isa<PointerType>(Val0->getType()))
2222        return Error(ID.Loc, "icmp requires pointer or integer operands");
2223      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2224    }
2225    ID.Kind = ValID::t_Constant;
2226    return false;
2227  }
2228
2229  // Binary Operators.
2230  case lltok::kw_add:
2231  case lltok::kw_fadd:
2232  case lltok::kw_sub:
2233  case lltok::kw_fsub:
2234  case lltok::kw_mul:
2235  case lltok::kw_fmul:
2236  case lltok::kw_udiv:
2237  case lltok::kw_sdiv:
2238  case lltok::kw_fdiv:
2239  case lltok::kw_urem:
2240  case lltok::kw_srem:
2241  case lltok::kw_frem: {
2242    bool NUW = false;
2243    bool NSW = false;
2244    bool Exact = false;
2245    unsigned Opc = Lex.getUIntVal();
2246    Constant *Val0, *Val1;
2247    Lex.Lex();
2248    LocTy ModifierLoc = Lex.getLoc();
2249    if (Opc == Instruction::Add ||
2250        Opc == Instruction::Sub ||
2251        Opc == Instruction::Mul) {
2252      if (EatIfPresent(lltok::kw_nuw))
2253        NUW = true;
2254      if (EatIfPresent(lltok::kw_nsw)) {
2255        NSW = true;
2256        if (EatIfPresent(lltok::kw_nuw))
2257          NUW = true;
2258      }
2259    } else if (Opc == Instruction::SDiv) {
2260      if (EatIfPresent(lltok::kw_exact))
2261        Exact = true;
2262    }
2263    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2264        ParseGlobalTypeAndValue(Val0) ||
2265        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2266        ParseGlobalTypeAndValue(Val1) ||
2267        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2268      return true;
2269    if (Val0->getType() != Val1->getType())
2270      return Error(ID.Loc, "operands of constexpr must have same type");
2271    if (!Val0->getType()->isIntOrIntVector()) {
2272      if (NUW)
2273        return Error(ModifierLoc, "nuw only applies to integer operations");
2274      if (NSW)
2275        return Error(ModifierLoc, "nsw only applies to integer operations");
2276    }
2277    // API compatibility: Accept either integer or floating-point types with
2278    // add, sub, and mul.
2279    if (!Val0->getType()->isIntOrIntVector() &&
2280        !Val0->getType()->isFPOrFPVector())
2281      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2282    unsigned Flags = 0;
2283    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2284    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2285    if (Exact) Flags |= SDivOperator::IsExact;
2286    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2287    ID.ConstantVal = C;
2288    ID.Kind = ValID::t_Constant;
2289    return false;
2290  }
2291
2292  // Logical Operations
2293  case lltok::kw_shl:
2294  case lltok::kw_lshr:
2295  case lltok::kw_ashr:
2296  case lltok::kw_and:
2297  case lltok::kw_or:
2298  case lltok::kw_xor: {
2299    unsigned Opc = Lex.getUIntVal();
2300    Constant *Val0, *Val1;
2301    Lex.Lex();
2302    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2303        ParseGlobalTypeAndValue(Val0) ||
2304        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2305        ParseGlobalTypeAndValue(Val1) ||
2306        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2307      return true;
2308    if (Val0->getType() != Val1->getType())
2309      return Error(ID.Loc, "operands of constexpr must have same type");
2310    if (!Val0->getType()->isIntOrIntVector())
2311      return Error(ID.Loc,
2312                   "constexpr requires integer or integer vector operands");
2313    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2314    ID.Kind = ValID::t_Constant;
2315    return false;
2316  }
2317
2318  case lltok::kw_getelementptr:
2319  case lltok::kw_shufflevector:
2320  case lltok::kw_insertelement:
2321  case lltok::kw_extractelement:
2322  case lltok::kw_select: {
2323    unsigned Opc = Lex.getUIntVal();
2324    SmallVector<Constant*, 16> Elts;
2325    bool InBounds = false;
2326    Lex.Lex();
2327    if (Opc == Instruction::GetElementPtr)
2328      InBounds = EatIfPresent(lltok::kw_inbounds);
2329    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2330        ParseGlobalValueVector(Elts) ||
2331        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2332      return true;
2333
2334    if (Opc == Instruction::GetElementPtr) {
2335      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2336        return Error(ID.Loc, "getelementptr requires pointer operand");
2337
2338      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2339                                             (Value**)(Elts.data() + 1),
2340                                             Elts.size() - 1))
2341        return Error(ID.Loc, "invalid indices for getelementptr");
2342      ID.ConstantVal = InBounds ?
2343        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2344                                               Elts.data() + 1,
2345                                               Elts.size() - 1) :
2346        ConstantExpr::getGetElementPtr(Elts[0],
2347                                       Elts.data() + 1, Elts.size() - 1);
2348    } else if (Opc == Instruction::Select) {
2349      if (Elts.size() != 3)
2350        return Error(ID.Loc, "expected three operands to select");
2351      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2352                                                              Elts[2]))
2353        return Error(ID.Loc, Reason);
2354      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2355    } else if (Opc == Instruction::ShuffleVector) {
2356      if (Elts.size() != 3)
2357        return Error(ID.Loc, "expected three operands to shufflevector");
2358      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2359        return Error(ID.Loc, "invalid operands to shufflevector");
2360      ID.ConstantVal =
2361                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2362    } else if (Opc == Instruction::ExtractElement) {
2363      if (Elts.size() != 2)
2364        return Error(ID.Loc, "expected two operands to extractelement");
2365      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2366        return Error(ID.Loc, "invalid extractelement operands");
2367      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2368    } else {
2369      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2370      if (Elts.size() != 3)
2371      return Error(ID.Loc, "expected three operands to insertelement");
2372      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2373        return Error(ID.Loc, "invalid insertelement operands");
2374      ID.ConstantVal =
2375                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2376    }
2377
2378    ID.Kind = ValID::t_Constant;
2379    return false;
2380  }
2381  }
2382
2383  Lex.Lex();
2384  return false;
2385}
2386
2387/// ParseGlobalValue - Parse a global value with the specified type.
2388bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2389  V = 0;
2390  ValID ID;
2391  return ParseValID(ID) ||
2392         ConvertGlobalValIDToValue(Ty, ID, V);
2393}
2394
2395/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2396/// constant.
2397bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2398                                         Constant *&V) {
2399  if (isa<FunctionType>(Ty))
2400    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2401
2402  switch (ID.Kind) {
2403  default: llvm_unreachable("Unknown ValID!");
2404  case ValID::t_Metadata:
2405    return Error(ID.Loc, "invalid use of metadata");
2406  case ValID::t_LocalID:
2407  case ValID::t_LocalName:
2408    return Error(ID.Loc, "invalid use of function-local name");
2409  case ValID::t_InlineAsm:
2410    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2411  case ValID::t_GlobalName:
2412    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2413    return V == 0;
2414  case ValID::t_GlobalID:
2415    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2416    return V == 0;
2417  case ValID::t_APSInt:
2418    if (!isa<IntegerType>(Ty))
2419      return Error(ID.Loc, "integer constant must have integer type");
2420    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2421    V = ConstantInt::get(Context, ID.APSIntVal);
2422    return false;
2423  case ValID::t_APFloat:
2424    if (!Ty->isFloatingPoint() ||
2425        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2426      return Error(ID.Loc, "floating point constant invalid for type");
2427
2428    // The lexer has no type info, so builds all float and double FP constants
2429    // as double.  Fix this here.  Long double does not need this.
2430    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2431        Ty->isFloatTy()) {
2432      bool Ignored;
2433      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2434                            &Ignored);
2435    }
2436    V = ConstantFP::get(Context, ID.APFloatVal);
2437
2438    if (V->getType() != Ty)
2439      return Error(ID.Loc, "floating point constant does not have type '" +
2440                   Ty->getDescription() + "'");
2441
2442    return false;
2443  case ValID::t_Null:
2444    if (!isa<PointerType>(Ty))
2445      return Error(ID.Loc, "null must be a pointer type");
2446    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2447    return false;
2448  case ValID::t_Undef:
2449    // FIXME: LabelTy should not be a first-class type.
2450    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2451        !isa<OpaqueType>(Ty))
2452      return Error(ID.Loc, "invalid type for undef constant");
2453    V = UndefValue::get(Ty);
2454    return false;
2455  case ValID::t_EmptyArray:
2456    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2457      return Error(ID.Loc, "invalid empty array initializer");
2458    V = UndefValue::get(Ty);
2459    return false;
2460  case ValID::t_Zero:
2461    // FIXME: LabelTy should not be a first-class type.
2462    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2463      return Error(ID.Loc, "invalid type for null constant");
2464    V = Constant::getNullValue(Ty);
2465    return false;
2466  case ValID::t_Constant:
2467    if (ID.ConstantVal->getType() != Ty)
2468      return Error(ID.Loc, "constant expression type mismatch");
2469    V = ID.ConstantVal;
2470    return false;
2471  }
2472}
2473
2474bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2475  PATypeHolder Type(Type::getVoidTy(Context));
2476  return ParseType(Type) ||
2477         ParseGlobalValue(Type, V);
2478}
2479
2480/// ParseGlobalValueVector
2481///   ::= /*empty*/
2482///   ::= TypeAndValue (',' TypeAndValue)*
2483bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2484  // Empty list.
2485  if (Lex.getKind() == lltok::rbrace ||
2486      Lex.getKind() == lltok::rsquare ||
2487      Lex.getKind() == lltok::greater ||
2488      Lex.getKind() == lltok::rparen)
2489    return false;
2490
2491  Constant *C;
2492  if (ParseGlobalTypeAndValue(C)) return true;
2493  Elts.push_back(C);
2494
2495  while (EatIfPresent(lltok::comma)) {
2496    if (ParseGlobalTypeAndValue(C)) return true;
2497    Elts.push_back(C);
2498  }
2499
2500  return false;
2501}
2502
2503
2504//===----------------------------------------------------------------------===//
2505// Function Parsing.
2506//===----------------------------------------------------------------------===//
2507
2508bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2509                                   PerFunctionState &PFS) {
2510  if (ID.Kind == ValID::t_LocalID)
2511    V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
2512  else if (ID.Kind == ValID::t_LocalName)
2513    V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
2514  else if (ID.Kind == ValID::t_InlineAsm) {
2515    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2516    const FunctionType *FTy =
2517      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2518    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2519      return Error(ID.Loc, "invalid type for inline asm constraint string");
2520    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2521    return false;
2522  } else if (ID.Kind == ValID::t_Metadata) {
2523    V = ID.MetadataVal;
2524  } else {
2525    Constant *C;
2526    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2527    V = C;
2528    return false;
2529  }
2530
2531  return V == 0;
2532}
2533
2534bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2535  V = 0;
2536  ValID ID;
2537  return ParseValID(ID) ||
2538         ConvertValIDToValue(Ty, ID, V, PFS);
2539}
2540
2541bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2542  PATypeHolder T(Type::getVoidTy(Context));
2543  return ParseType(T) ||
2544         ParseValue(T, V, PFS);
2545}
2546
2547bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2548                                      PerFunctionState &PFS) {
2549  Value *V;
2550  Loc = Lex.getLoc();
2551  if (ParseTypeAndValue(V, PFS)) return true;
2552  if (!isa<BasicBlock>(V))
2553    return Error(Loc, "expected a basic block");
2554  BB = cast<BasicBlock>(V);
2555  return false;
2556}
2557
2558
2559/// FunctionHeader
2560///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2561///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2562///       OptionalAlign OptGC
2563bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2564  // Parse the linkage.
2565  LocTy LinkageLoc = Lex.getLoc();
2566  unsigned Linkage;
2567
2568  unsigned Visibility, RetAttrs;
2569  CallingConv::ID CC;
2570  PATypeHolder RetType(Type::getVoidTy(Context));
2571  LocTy RetTypeLoc = Lex.getLoc();
2572  if (ParseOptionalLinkage(Linkage) ||
2573      ParseOptionalVisibility(Visibility) ||
2574      ParseOptionalCallingConv(CC) ||
2575      ParseOptionalAttrs(RetAttrs, 1) ||
2576      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2577    return true;
2578
2579  // Verify that the linkage is ok.
2580  switch ((GlobalValue::LinkageTypes)Linkage) {
2581  case GlobalValue::ExternalLinkage:
2582    break; // always ok.
2583  case GlobalValue::DLLImportLinkage:
2584  case GlobalValue::ExternalWeakLinkage:
2585    if (isDefine)
2586      return Error(LinkageLoc, "invalid linkage for function definition");
2587    break;
2588  case GlobalValue::PrivateLinkage:
2589  case GlobalValue::LinkerPrivateLinkage:
2590  case GlobalValue::InternalLinkage:
2591  case GlobalValue::AvailableExternallyLinkage:
2592  case GlobalValue::LinkOnceAnyLinkage:
2593  case GlobalValue::LinkOnceODRLinkage:
2594  case GlobalValue::WeakAnyLinkage:
2595  case GlobalValue::WeakODRLinkage:
2596  case GlobalValue::DLLExportLinkage:
2597    if (!isDefine)
2598      return Error(LinkageLoc, "invalid linkage for function declaration");
2599    break;
2600  case GlobalValue::AppendingLinkage:
2601  case GlobalValue::GhostLinkage:
2602  case GlobalValue::CommonLinkage:
2603    return Error(LinkageLoc, "invalid function linkage type");
2604  }
2605
2606  if (!FunctionType::isValidReturnType(RetType) ||
2607      isa<OpaqueType>(RetType))
2608    return Error(RetTypeLoc, "invalid function return type");
2609
2610  LocTy NameLoc = Lex.getLoc();
2611
2612  std::string FunctionName;
2613  if (Lex.getKind() == lltok::GlobalVar) {
2614    FunctionName = Lex.getStrVal();
2615  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2616    unsigned NameID = Lex.getUIntVal();
2617
2618    if (NameID != NumberedVals.size())
2619      return TokError("function expected to be numbered '%" +
2620                      utostr(NumberedVals.size()) + "'");
2621  } else {
2622    return TokError("expected function name");
2623  }
2624
2625  Lex.Lex();
2626
2627  if (Lex.getKind() != lltok::lparen)
2628    return TokError("expected '(' in function argument list");
2629
2630  std::vector<ArgInfo> ArgList;
2631  bool isVarArg;
2632  unsigned FuncAttrs;
2633  std::string Section;
2634  unsigned Alignment;
2635  std::string GC;
2636
2637  if (ParseArgumentList(ArgList, isVarArg, false) ||
2638      ParseOptionalAttrs(FuncAttrs, 2) ||
2639      (EatIfPresent(lltok::kw_section) &&
2640       ParseStringConstant(Section)) ||
2641      ParseOptionalAlignment(Alignment) ||
2642      (EatIfPresent(lltok::kw_gc) &&
2643       ParseStringConstant(GC)))
2644    return true;
2645
2646  // If the alignment was parsed as an attribute, move to the alignment field.
2647  if (FuncAttrs & Attribute::Alignment) {
2648    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2649    FuncAttrs &= ~Attribute::Alignment;
2650  }
2651
2652  // Okay, if we got here, the function is syntactically valid.  Convert types
2653  // and do semantic checks.
2654  std::vector<const Type*> ParamTypeList;
2655  SmallVector<AttributeWithIndex, 8> Attrs;
2656  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2657  // attributes.
2658  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2659  if (FuncAttrs & ObsoleteFuncAttrs) {
2660    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2661    FuncAttrs &= ~ObsoleteFuncAttrs;
2662  }
2663
2664  if (RetAttrs != Attribute::None)
2665    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2666
2667  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2668    ParamTypeList.push_back(ArgList[i].Type);
2669    if (ArgList[i].Attrs != Attribute::None)
2670      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2671  }
2672
2673  if (FuncAttrs != Attribute::None)
2674    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2675
2676  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2677
2678  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2679      RetType != Type::getVoidTy(Context))
2680    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2681
2682  const FunctionType *FT =
2683    FunctionType::get(RetType, ParamTypeList, isVarArg);
2684  const PointerType *PFT = PointerType::getUnqual(FT);
2685
2686  Fn = 0;
2687  if (!FunctionName.empty()) {
2688    // If this was a definition of a forward reference, remove the definition
2689    // from the forward reference table and fill in the forward ref.
2690    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2691      ForwardRefVals.find(FunctionName);
2692    if (FRVI != ForwardRefVals.end()) {
2693      Fn = M->getFunction(FunctionName);
2694      ForwardRefVals.erase(FRVI);
2695    } else if ((Fn = M->getFunction(FunctionName))) {
2696      // If this function already exists in the symbol table, then it is
2697      // multiply defined.  We accept a few cases for old backwards compat.
2698      // FIXME: Remove this stuff for LLVM 3.0.
2699      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2700          (!Fn->isDeclaration() && isDefine)) {
2701        // If the redefinition has different type or different attributes,
2702        // reject it.  If both have bodies, reject it.
2703        return Error(NameLoc, "invalid redefinition of function '" +
2704                     FunctionName + "'");
2705      } else if (Fn->isDeclaration()) {
2706        // Make sure to strip off any argument names so we can't get conflicts.
2707        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2708             AI != AE; ++AI)
2709          AI->setName("");
2710      }
2711    } else if (M->getNamedValue(FunctionName)) {
2712      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2713    }
2714
2715  } else {
2716    // If this is a definition of a forward referenced function, make sure the
2717    // types agree.
2718    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2719      = ForwardRefValIDs.find(NumberedVals.size());
2720    if (I != ForwardRefValIDs.end()) {
2721      Fn = cast<Function>(I->second.first);
2722      if (Fn->getType() != PFT)
2723        return Error(NameLoc, "type of definition and forward reference of '@" +
2724                     utostr(NumberedVals.size()) +"' disagree");
2725      ForwardRefValIDs.erase(I);
2726    }
2727  }
2728
2729  if (Fn == 0)
2730    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2731  else // Move the forward-reference to the correct spot in the module.
2732    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2733
2734  if (FunctionName.empty())
2735    NumberedVals.push_back(Fn);
2736
2737  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2738  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2739  Fn->setCallingConv(CC);
2740  Fn->setAttributes(PAL);
2741  Fn->setAlignment(Alignment);
2742  Fn->setSection(Section);
2743  if (!GC.empty()) Fn->setGC(GC.c_str());
2744
2745  // Add all of the arguments we parsed to the function.
2746  Function::arg_iterator ArgIt = Fn->arg_begin();
2747  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2748    // If we run out of arguments in the Function prototype, exit early.
2749    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2750    if (ArgIt == Fn->arg_end()) break;
2751
2752    // If the argument has a name, insert it into the argument symbol table.
2753    if (ArgList[i].Name.empty()) continue;
2754
2755    // Set the name, if it conflicted, it will be auto-renamed.
2756    ArgIt->setName(ArgList[i].Name);
2757
2758    if (ArgIt->getNameStr() != ArgList[i].Name)
2759      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2760                   ArgList[i].Name + "'");
2761  }
2762
2763  return false;
2764}
2765
2766
2767/// ParseFunctionBody
2768///   ::= '{' BasicBlock+ '}'
2769///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2770///
2771bool LLParser::ParseFunctionBody(Function &Fn) {
2772  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2773    return TokError("expected '{' in function body");
2774  Lex.Lex();  // eat the {.
2775
2776  int FunctionNumber = -1;
2777  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2778
2779  PerFunctionState PFS(*this, Fn, FunctionNumber);
2780
2781  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2782    if (ParseBasicBlock(PFS)) return true;
2783
2784  // Eat the }.
2785  Lex.Lex();
2786
2787  // Verify function is ok.
2788  return PFS.FinishFunction();
2789}
2790
2791/// ParseBasicBlock
2792///   ::= LabelStr? Instruction*
2793bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2794  // If this basic block starts out with a name, remember it.
2795  std::string Name;
2796  LocTy NameLoc = Lex.getLoc();
2797  if (Lex.getKind() == lltok::LabelStr) {
2798    Name = Lex.getStrVal();
2799    Lex.Lex();
2800  }
2801
2802  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2803  if (BB == 0) return true;
2804
2805  std::string NameStr;
2806
2807  // Parse the instructions in this block until we get a terminator.
2808  Instruction *Inst;
2809  do {
2810    // This instruction may have three possibilities for a name: a) none
2811    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2812    LocTy NameLoc = Lex.getLoc();
2813    int NameID = -1;
2814    NameStr = "";
2815
2816    if (Lex.getKind() == lltok::LocalVarID) {
2817      NameID = Lex.getUIntVal();
2818      Lex.Lex();
2819      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2820        return true;
2821    } else if (Lex.getKind() == lltok::LocalVar ||
2822               // FIXME: REMOVE IN LLVM 3.0
2823               Lex.getKind() == lltok::StringConstant) {
2824      NameStr = Lex.getStrVal();
2825      Lex.Lex();
2826      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2827        return true;
2828    }
2829
2830    if (ParseInstruction(Inst, BB, PFS)) return true;
2831    if (EatIfPresent(lltok::comma))
2832      ParseOptionalCustomMetadata();
2833
2834    // Set metadata attached with this instruction.
2835    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2836           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2837      Inst->setMetadata(MDI->first, MDI->second);
2838    MDsOnInst.clear();
2839
2840    BB->getInstList().push_back(Inst);
2841
2842    // Set the name on the instruction.
2843    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2844  } while (!isa<TerminatorInst>(Inst));
2845
2846  return false;
2847}
2848
2849//===----------------------------------------------------------------------===//
2850// Instruction Parsing.
2851//===----------------------------------------------------------------------===//
2852
2853/// ParseInstruction - Parse one of the many different instructions.
2854///
2855bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2856                                PerFunctionState &PFS) {
2857  lltok::Kind Token = Lex.getKind();
2858  if (Token == lltok::Eof)
2859    return TokError("found end of file when expecting more instructions");
2860  LocTy Loc = Lex.getLoc();
2861  unsigned KeywordVal = Lex.getUIntVal();
2862  Lex.Lex();  // Eat the keyword.
2863
2864  switch (Token) {
2865  default:                    return Error(Loc, "expected instruction opcode");
2866  // Terminator Instructions.
2867  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2868  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2869  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2870  case lltok::kw_br:          return ParseBr(Inst, PFS);
2871  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2872  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2873  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2874  // Binary Operators.
2875  case lltok::kw_add:
2876  case lltok::kw_sub:
2877  case lltok::kw_mul: {
2878    bool NUW = false;
2879    bool NSW = false;
2880    LocTy ModifierLoc = Lex.getLoc();
2881    if (EatIfPresent(lltok::kw_nuw))
2882      NUW = true;
2883    if (EatIfPresent(lltok::kw_nsw)) {
2884      NSW = true;
2885      if (EatIfPresent(lltok::kw_nuw))
2886        NUW = true;
2887    }
2888    // API compatibility: Accept either integer or floating-point types.
2889    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2890    if (!Result) {
2891      if (!Inst->getType()->isIntOrIntVector()) {
2892        if (NUW)
2893          return Error(ModifierLoc, "nuw only applies to integer operations");
2894        if (NSW)
2895          return Error(ModifierLoc, "nsw only applies to integer operations");
2896      }
2897      if (NUW)
2898        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2899      if (NSW)
2900        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2901    }
2902    return Result;
2903  }
2904  case lltok::kw_fadd:
2905  case lltok::kw_fsub:
2906  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2907
2908  case lltok::kw_sdiv: {
2909    bool Exact = false;
2910    if (EatIfPresent(lltok::kw_exact))
2911      Exact = true;
2912    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2913    if (!Result)
2914      if (Exact)
2915        cast<BinaryOperator>(Inst)->setIsExact(true);
2916    return Result;
2917  }
2918
2919  case lltok::kw_udiv:
2920  case lltok::kw_urem:
2921  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2922  case lltok::kw_fdiv:
2923  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2924  case lltok::kw_shl:
2925  case lltok::kw_lshr:
2926  case lltok::kw_ashr:
2927  case lltok::kw_and:
2928  case lltok::kw_or:
2929  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2930  case lltok::kw_icmp:
2931  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2932  // Casts.
2933  case lltok::kw_trunc:
2934  case lltok::kw_zext:
2935  case lltok::kw_sext:
2936  case lltok::kw_fptrunc:
2937  case lltok::kw_fpext:
2938  case lltok::kw_bitcast:
2939  case lltok::kw_uitofp:
2940  case lltok::kw_sitofp:
2941  case lltok::kw_fptoui:
2942  case lltok::kw_fptosi:
2943  case lltok::kw_inttoptr:
2944  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2945  // Other.
2946  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2947  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2948  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2949  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2950  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2951  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2952  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2953  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2954  // Memory.
2955  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2956  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2957  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
2958  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2959  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2960  case lltok::kw_volatile:
2961    if (EatIfPresent(lltok::kw_load))
2962      return ParseLoad(Inst, PFS, true);
2963    else if (EatIfPresent(lltok::kw_store))
2964      return ParseStore(Inst, PFS, true);
2965    else
2966      return TokError("expected 'load' or 'store'");
2967  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2968  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2969  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2970  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2971  }
2972}
2973
2974/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2975bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2976  if (Opc == Instruction::FCmp) {
2977    switch (Lex.getKind()) {
2978    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2979    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2980    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2981    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2982    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2983    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2984    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2985    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2986    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2987    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2988    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2989    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2990    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2991    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2992    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2993    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2994    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2995    }
2996  } else {
2997    switch (Lex.getKind()) {
2998    default: TokError("expected icmp predicate (e.g. 'eq')");
2999    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3000    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3001    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3002    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3003    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3004    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3005    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3006    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3007    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3008    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3009    }
3010  }
3011  Lex.Lex();
3012  return false;
3013}
3014
3015//===----------------------------------------------------------------------===//
3016// Terminator Instructions.
3017//===----------------------------------------------------------------------===//
3018
3019/// ParseRet - Parse a return instruction.
3020///   ::= 'ret' void (',' !dbg, !1)*
3021///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3022///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3023///         [[obsolete: LLVM 3.0]]
3024bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3025                        PerFunctionState &PFS) {
3026  PATypeHolder Ty(Type::getVoidTy(Context));
3027  if (ParseType(Ty, true /*void allowed*/)) return true;
3028
3029  if (Ty->isVoidTy()) {
3030    Inst = ReturnInst::Create(Context);
3031    return false;
3032  }
3033
3034  Value *RV;
3035  if (ParseValue(Ty, RV, PFS)) return true;
3036
3037  if (EatIfPresent(lltok::comma)) {
3038    // Parse optional custom metadata, e.g. !dbg
3039    if (Lex.getKind() == lltok::NamedOrCustomMD) {
3040      if (ParseOptionalCustomMetadata()) return true;
3041    } else {
3042      // The normal case is one return value.
3043      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3044      // use of 'ret {i32,i32} {i32 1, i32 2}'
3045      SmallVector<Value*, 8> RVs;
3046      RVs.push_back(RV);
3047
3048      do {
3049        // If optional custom metadata, e.g. !dbg is seen then this is the
3050        // end of MRV.
3051        if (Lex.getKind() == lltok::NamedOrCustomMD)
3052          break;
3053        if (ParseTypeAndValue(RV, PFS)) return true;
3054        RVs.push_back(RV);
3055      } while (EatIfPresent(lltok::comma));
3056
3057      RV = UndefValue::get(PFS.getFunction().getReturnType());
3058      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3059        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3060        BB->getInstList().push_back(I);
3061        RV = I;
3062      }
3063    }
3064  }
3065
3066  Inst = ReturnInst::Create(Context, RV);
3067  return false;
3068}
3069
3070
3071/// ParseBr
3072///   ::= 'br' TypeAndValue
3073///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3074bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3075  LocTy Loc, Loc2;
3076  Value *Op0;
3077  BasicBlock *Op1, *Op2;
3078  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3079
3080  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3081    Inst = BranchInst::Create(BB);
3082    return false;
3083  }
3084
3085  if (Op0->getType() != Type::getInt1Ty(Context))
3086    return Error(Loc, "branch condition must have 'i1' type");
3087
3088  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3089      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3090      ParseToken(lltok::comma, "expected ',' after true destination") ||
3091      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3092    return true;
3093
3094  Inst = BranchInst::Create(Op1, Op2, Op0);
3095  return false;
3096}
3097
3098/// ParseSwitch
3099///  Instruction
3100///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3101///  JumpTable
3102///    ::= (TypeAndValue ',' TypeAndValue)*
3103bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3104  LocTy CondLoc, BBLoc;
3105  Value *Cond;
3106  BasicBlock *DefaultBB;
3107  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3108      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3109      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3110      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3111    return true;
3112
3113  if (!isa<IntegerType>(Cond->getType()))
3114    return Error(CondLoc, "switch condition must have integer type");
3115
3116  // Parse the jump table pairs.
3117  SmallPtrSet<Value*, 32> SeenCases;
3118  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3119  while (Lex.getKind() != lltok::rsquare) {
3120    Value *Constant;
3121    BasicBlock *DestBB;
3122
3123    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3124        ParseToken(lltok::comma, "expected ',' after case value") ||
3125        ParseTypeAndBasicBlock(DestBB, PFS))
3126      return true;
3127
3128    if (!SeenCases.insert(Constant))
3129      return Error(CondLoc, "duplicate case value in switch");
3130    if (!isa<ConstantInt>(Constant))
3131      return Error(CondLoc, "case value is not a constant integer");
3132
3133    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3134  }
3135
3136  Lex.Lex();  // Eat the ']'.
3137
3138  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3139  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3140    SI->addCase(Table[i].first, Table[i].second);
3141  Inst = SI;
3142  return false;
3143}
3144
3145/// ParseIndirectBr
3146///  Instruction
3147///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3148bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3149  LocTy AddrLoc;
3150  Value *Address;
3151  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3152      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3153      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3154    return true;
3155
3156  if (!isa<PointerType>(Address->getType()))
3157    return Error(AddrLoc, "indirectbr address must have pointer type");
3158
3159  // Parse the destination list.
3160  SmallVector<BasicBlock*, 16> DestList;
3161
3162  if (Lex.getKind() != lltok::rsquare) {
3163    BasicBlock *DestBB;
3164    if (ParseTypeAndBasicBlock(DestBB, PFS))
3165      return true;
3166    DestList.push_back(DestBB);
3167
3168    while (EatIfPresent(lltok::comma)) {
3169      if (ParseTypeAndBasicBlock(DestBB, PFS))
3170        return true;
3171      DestList.push_back(DestBB);
3172    }
3173  }
3174
3175  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3176    return true;
3177
3178  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3179  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3180    IBI->addDestination(DestList[i]);
3181  Inst = IBI;
3182  return false;
3183}
3184
3185
3186/// ParseInvoke
3187///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3188///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3189bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3190  LocTy CallLoc = Lex.getLoc();
3191  unsigned RetAttrs, FnAttrs;
3192  CallingConv::ID CC;
3193  PATypeHolder RetType(Type::getVoidTy(Context));
3194  LocTy RetTypeLoc;
3195  ValID CalleeID;
3196  SmallVector<ParamInfo, 16> ArgList;
3197
3198  BasicBlock *NormalBB, *UnwindBB;
3199  if (ParseOptionalCallingConv(CC) ||
3200      ParseOptionalAttrs(RetAttrs, 1) ||
3201      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3202      ParseValID(CalleeID) ||
3203      ParseParameterList(ArgList, PFS) ||
3204      ParseOptionalAttrs(FnAttrs, 2) ||
3205      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3206      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3207      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3208      ParseTypeAndBasicBlock(UnwindBB, PFS))
3209    return true;
3210
3211  // If RetType is a non-function pointer type, then this is the short syntax
3212  // for the call, which means that RetType is just the return type.  Infer the
3213  // rest of the function argument types from the arguments that are present.
3214  const PointerType *PFTy = 0;
3215  const FunctionType *Ty = 0;
3216  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3217      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3218    // Pull out the types of all of the arguments...
3219    std::vector<const Type*> ParamTypes;
3220    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3221      ParamTypes.push_back(ArgList[i].V->getType());
3222
3223    if (!FunctionType::isValidReturnType(RetType))
3224      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3225
3226    Ty = FunctionType::get(RetType, ParamTypes, false);
3227    PFTy = PointerType::getUnqual(Ty);
3228  }
3229
3230  // Look up the callee.
3231  Value *Callee;
3232  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3233
3234  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3235  // function attributes.
3236  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3237  if (FnAttrs & ObsoleteFuncAttrs) {
3238    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3239    FnAttrs &= ~ObsoleteFuncAttrs;
3240  }
3241
3242  // Set up the Attributes for the function.
3243  SmallVector<AttributeWithIndex, 8> Attrs;
3244  if (RetAttrs != Attribute::None)
3245    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3246
3247  SmallVector<Value*, 8> Args;
3248
3249  // Loop through FunctionType's arguments and ensure they are specified
3250  // correctly.  Also, gather any parameter attributes.
3251  FunctionType::param_iterator I = Ty->param_begin();
3252  FunctionType::param_iterator E = Ty->param_end();
3253  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3254    const Type *ExpectedTy = 0;
3255    if (I != E) {
3256      ExpectedTy = *I++;
3257    } else if (!Ty->isVarArg()) {
3258      return Error(ArgList[i].Loc, "too many arguments specified");
3259    }
3260
3261    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3262      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3263                   ExpectedTy->getDescription() + "'");
3264    Args.push_back(ArgList[i].V);
3265    if (ArgList[i].Attrs != Attribute::None)
3266      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3267  }
3268
3269  if (I != E)
3270    return Error(CallLoc, "not enough parameters specified for call");
3271
3272  if (FnAttrs != Attribute::None)
3273    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3274
3275  // Finish off the Attributes and check them
3276  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3277
3278  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3279                                      Args.begin(), Args.end());
3280  II->setCallingConv(CC);
3281  II->setAttributes(PAL);
3282  Inst = II;
3283  return false;
3284}
3285
3286
3287
3288//===----------------------------------------------------------------------===//
3289// Binary Operators.
3290//===----------------------------------------------------------------------===//
3291
3292/// ParseArithmetic
3293///  ::= ArithmeticOps TypeAndValue ',' Value
3294///
3295/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3296/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3297bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3298                               unsigned Opc, unsigned OperandType) {
3299  LocTy Loc; Value *LHS, *RHS;
3300  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3301      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3302      ParseValue(LHS->getType(), RHS, PFS))
3303    return true;
3304
3305  bool Valid;
3306  switch (OperandType) {
3307  default: llvm_unreachable("Unknown operand type!");
3308  case 0: // int or FP.
3309    Valid = LHS->getType()->isIntOrIntVector() ||
3310            LHS->getType()->isFPOrFPVector();
3311    break;
3312  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3313  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3314  }
3315
3316  if (!Valid)
3317    return Error(Loc, "invalid operand type for instruction");
3318
3319  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3320  return false;
3321}
3322
3323/// ParseLogical
3324///  ::= ArithmeticOps TypeAndValue ',' Value {
3325bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3326                            unsigned Opc) {
3327  LocTy Loc; Value *LHS, *RHS;
3328  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3329      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3330      ParseValue(LHS->getType(), RHS, PFS))
3331    return true;
3332
3333  if (!LHS->getType()->isIntOrIntVector())
3334    return Error(Loc,"instruction requires integer or integer vector operands");
3335
3336  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3337  return false;
3338}
3339
3340
3341/// ParseCompare
3342///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3343///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3344bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3345                            unsigned Opc) {
3346  // Parse the integer/fp comparison predicate.
3347  LocTy Loc;
3348  unsigned Pred;
3349  Value *LHS, *RHS;
3350  if (ParseCmpPredicate(Pred, Opc) ||
3351      ParseTypeAndValue(LHS, Loc, PFS) ||
3352      ParseToken(lltok::comma, "expected ',' after compare value") ||
3353      ParseValue(LHS->getType(), RHS, PFS))
3354    return true;
3355
3356  if (Opc == Instruction::FCmp) {
3357    if (!LHS->getType()->isFPOrFPVector())
3358      return Error(Loc, "fcmp requires floating point operands");
3359    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3360  } else {
3361    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3362    if (!LHS->getType()->isIntOrIntVector() &&
3363        !isa<PointerType>(LHS->getType()))
3364      return Error(Loc, "icmp requires integer operands");
3365    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3366  }
3367  return false;
3368}
3369
3370//===----------------------------------------------------------------------===//
3371// Other Instructions.
3372//===----------------------------------------------------------------------===//
3373
3374
3375/// ParseCast
3376///   ::= CastOpc TypeAndValue 'to' Type
3377bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3378                         unsigned Opc) {
3379  LocTy Loc;  Value *Op;
3380  PATypeHolder DestTy(Type::getVoidTy(Context));
3381  if (ParseTypeAndValue(Op, Loc, PFS) ||
3382      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3383      ParseType(DestTy))
3384    return true;
3385
3386  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3387    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3388    return Error(Loc, "invalid cast opcode for cast from '" +
3389                 Op->getType()->getDescription() + "' to '" +
3390                 DestTy->getDescription() + "'");
3391  }
3392  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3393  return false;
3394}
3395
3396/// ParseSelect
3397///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3398bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3399  LocTy Loc;
3400  Value *Op0, *Op1, *Op2;
3401  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3402      ParseToken(lltok::comma, "expected ',' after select condition") ||
3403      ParseTypeAndValue(Op1, PFS) ||
3404      ParseToken(lltok::comma, "expected ',' after select value") ||
3405      ParseTypeAndValue(Op2, PFS))
3406    return true;
3407
3408  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3409    return Error(Loc, Reason);
3410
3411  Inst = SelectInst::Create(Op0, Op1, Op2);
3412  return false;
3413}
3414
3415/// ParseVA_Arg
3416///   ::= 'va_arg' TypeAndValue ',' Type
3417bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3418  Value *Op;
3419  PATypeHolder EltTy(Type::getVoidTy(Context));
3420  LocTy TypeLoc;
3421  if (ParseTypeAndValue(Op, PFS) ||
3422      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3423      ParseType(EltTy, TypeLoc))
3424    return true;
3425
3426  if (!EltTy->isFirstClassType())
3427    return Error(TypeLoc, "va_arg requires operand with first class type");
3428
3429  Inst = new VAArgInst(Op, EltTy);
3430  return false;
3431}
3432
3433/// ParseExtractElement
3434///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3435bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3436  LocTy Loc;
3437  Value *Op0, *Op1;
3438  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3439      ParseToken(lltok::comma, "expected ',' after extract value") ||
3440      ParseTypeAndValue(Op1, PFS))
3441    return true;
3442
3443  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3444    return Error(Loc, "invalid extractelement operands");
3445
3446  Inst = ExtractElementInst::Create(Op0, Op1);
3447  return false;
3448}
3449
3450/// ParseInsertElement
3451///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3452bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3453  LocTy Loc;
3454  Value *Op0, *Op1, *Op2;
3455  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3456      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3457      ParseTypeAndValue(Op1, PFS) ||
3458      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3459      ParseTypeAndValue(Op2, PFS))
3460    return true;
3461
3462  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3463    return Error(Loc, "invalid insertelement operands");
3464
3465  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3466  return false;
3467}
3468
3469/// ParseShuffleVector
3470///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3471bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3472  LocTy Loc;
3473  Value *Op0, *Op1, *Op2;
3474  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3475      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3476      ParseTypeAndValue(Op1, PFS) ||
3477      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3478      ParseTypeAndValue(Op2, PFS))
3479    return true;
3480
3481  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3482    return Error(Loc, "invalid extractelement operands");
3483
3484  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3485  return false;
3486}
3487
3488/// ParsePHI
3489///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3490bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3491  PATypeHolder Ty(Type::getVoidTy(Context));
3492  Value *Op0, *Op1;
3493  LocTy TypeLoc = Lex.getLoc();
3494
3495  if (ParseType(Ty) ||
3496      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3497      ParseValue(Ty, Op0, PFS) ||
3498      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3499      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3500      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3501    return true;
3502
3503  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3504  while (1) {
3505    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3506
3507    if (!EatIfPresent(lltok::comma))
3508      break;
3509
3510    if (Lex.getKind() == lltok::NamedOrCustomMD)
3511      break;
3512
3513    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3514        ParseValue(Ty, Op0, PFS) ||
3515        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3516        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3517        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3518      return true;
3519  }
3520
3521  if (Lex.getKind() == lltok::NamedOrCustomMD)
3522    if (ParseOptionalCustomMetadata()) return true;
3523
3524  if (!Ty->isFirstClassType())
3525    return Error(TypeLoc, "phi node must have first class type");
3526
3527  PHINode *PN = PHINode::Create(Ty);
3528  PN->reserveOperandSpace(PHIVals.size());
3529  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3530    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3531  Inst = PN;
3532  return false;
3533}
3534
3535/// ParseCall
3536///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3537///       ParameterList OptionalAttrs
3538bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3539                         bool isTail) {
3540  unsigned RetAttrs, FnAttrs;
3541  CallingConv::ID CC;
3542  PATypeHolder RetType(Type::getVoidTy(Context));
3543  LocTy RetTypeLoc;
3544  ValID CalleeID;
3545  SmallVector<ParamInfo, 16> ArgList;
3546  LocTy CallLoc = Lex.getLoc();
3547
3548  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3549      ParseOptionalCallingConv(CC) ||
3550      ParseOptionalAttrs(RetAttrs, 1) ||
3551      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3552      ParseValID(CalleeID) ||
3553      ParseParameterList(ArgList, PFS) ||
3554      ParseOptionalAttrs(FnAttrs, 2))
3555    return true;
3556
3557  // If RetType is a non-function pointer type, then this is the short syntax
3558  // for the call, which means that RetType is just the return type.  Infer the
3559  // rest of the function argument types from the arguments that are present.
3560  const PointerType *PFTy = 0;
3561  const FunctionType *Ty = 0;
3562  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3563      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3564    // Pull out the types of all of the arguments...
3565    std::vector<const Type*> ParamTypes;
3566    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3567      ParamTypes.push_back(ArgList[i].V->getType());
3568
3569    if (!FunctionType::isValidReturnType(RetType))
3570      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3571
3572    Ty = FunctionType::get(RetType, ParamTypes, false);
3573    PFTy = PointerType::getUnqual(Ty);
3574  }
3575
3576  // Look up the callee.
3577  Value *Callee;
3578  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3579
3580  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3581  // function attributes.
3582  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3583  if (FnAttrs & ObsoleteFuncAttrs) {
3584    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3585    FnAttrs &= ~ObsoleteFuncAttrs;
3586  }
3587
3588  // Set up the Attributes for the function.
3589  SmallVector<AttributeWithIndex, 8> Attrs;
3590  if (RetAttrs != Attribute::None)
3591    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3592
3593  SmallVector<Value*, 8> Args;
3594
3595  // Loop through FunctionType's arguments and ensure they are specified
3596  // correctly.  Also, gather any parameter attributes.
3597  FunctionType::param_iterator I = Ty->param_begin();
3598  FunctionType::param_iterator E = Ty->param_end();
3599  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3600    const Type *ExpectedTy = 0;
3601    if (I != E) {
3602      ExpectedTy = *I++;
3603    } else if (!Ty->isVarArg()) {
3604      return Error(ArgList[i].Loc, "too many arguments specified");
3605    }
3606
3607    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3608      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3609                   ExpectedTy->getDescription() + "'");
3610    Args.push_back(ArgList[i].V);
3611    if (ArgList[i].Attrs != Attribute::None)
3612      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3613  }
3614
3615  if (I != E)
3616    return Error(CallLoc, "not enough parameters specified for call");
3617
3618  if (FnAttrs != Attribute::None)
3619    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3620
3621  // Finish off the Attributes and check them
3622  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3623
3624  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3625  CI->setTailCall(isTail);
3626  CI->setCallingConv(CC);
3627  CI->setAttributes(PAL);
3628  Inst = CI;
3629  return false;
3630}
3631
3632//===----------------------------------------------------------------------===//
3633// Memory Instructions.
3634//===----------------------------------------------------------------------===//
3635
3636/// ParseAlloc
3637///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3638///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3639bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3640                          BasicBlock* BB, bool isAlloca) {
3641  PATypeHolder Ty(Type::getVoidTy(Context));
3642  Value *Size = 0;
3643  LocTy SizeLoc;
3644  unsigned Alignment = 0;
3645  if (ParseType(Ty)) return true;
3646
3647  if (EatIfPresent(lltok::comma)) {
3648    if (Lex.getKind() == lltok::kw_align
3649        || Lex.getKind() == lltok::NamedOrCustomMD) {
3650      if (ParseOptionalInfo(Alignment)) return true;
3651    } else {
3652      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3653      if (EatIfPresent(lltok::comma))
3654        if (ParseOptionalInfo(Alignment)) return true;
3655    }
3656  }
3657
3658  if (Size && Size->getType() != Type::getInt32Ty(Context))
3659    return Error(SizeLoc, "element count must be i32");
3660
3661  if (isAlloca) {
3662    Inst = new AllocaInst(Ty, Size, Alignment);
3663    return false;
3664  }
3665
3666  // Autoupgrade old malloc instruction to malloc call.
3667  // FIXME: Remove in LLVM 3.0.
3668  const Type *IntPtrTy = Type::getInt32Ty(Context);
3669  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3670  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3671  if (!MallocF)
3672    // Prototype malloc as "void *(int32)".
3673    // This function is renamed as "malloc" in ValidateEndOfModule().
3674    MallocF = cast<Function>(
3675       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3676  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3677  return false;
3678}
3679
3680/// ParseFree
3681///   ::= 'free' TypeAndValue
3682bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3683                         BasicBlock* BB) {
3684  Value *Val; LocTy Loc;
3685  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3686  if (!isa<PointerType>(Val->getType()))
3687    return Error(Loc, "operand to free must be a pointer");
3688  Inst = CallInst::CreateFree(Val, BB);
3689  return false;
3690}
3691
3692/// ParseLoad
3693///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3694bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3695                         bool isVolatile) {
3696  Value *Val; LocTy Loc;
3697  unsigned Alignment = 0;
3698  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3699
3700  if (EatIfPresent(lltok::comma))
3701    if (ParseOptionalInfo(Alignment)) return true;
3702
3703  if (!isa<PointerType>(Val->getType()) ||
3704      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3705    return Error(Loc, "load operand must be a pointer to a first class type");
3706
3707  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3708  return false;
3709}
3710
3711/// ParseStore
3712///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3713bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3714                          bool isVolatile) {
3715  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3716  unsigned Alignment = 0;
3717  if (ParseTypeAndValue(Val, Loc, PFS) ||
3718      ParseToken(lltok::comma, "expected ',' after store operand") ||
3719      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3720    return true;
3721
3722  if (EatIfPresent(lltok::comma))
3723    if (ParseOptionalInfo(Alignment)) return true;
3724
3725  if (!isa<PointerType>(Ptr->getType()))
3726    return Error(PtrLoc, "store operand must be a pointer");
3727  if (!Val->getType()->isFirstClassType())
3728    return Error(Loc, "store operand must be a first class value");
3729  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3730    return Error(Loc, "stored value and pointer type do not match");
3731
3732  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3733  return false;
3734}
3735
3736/// ParseGetResult
3737///   ::= 'getresult' TypeAndValue ',' i32
3738/// FIXME: Remove support for getresult in LLVM 3.0
3739bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3740  Value *Val; LocTy ValLoc, EltLoc;
3741  unsigned Element;
3742  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3743      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3744      ParseUInt32(Element, EltLoc))
3745    return true;
3746
3747  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3748    return Error(ValLoc, "getresult inst requires an aggregate operand");
3749  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3750    return Error(EltLoc, "invalid getresult index for value");
3751  Inst = ExtractValueInst::Create(Val, Element);
3752  return false;
3753}
3754
3755/// ParseGetElementPtr
3756///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3757bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3758  Value *Ptr, *Val; LocTy Loc, EltLoc;
3759
3760  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3761
3762  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3763
3764  if (!isa<PointerType>(Ptr->getType()))
3765    return Error(Loc, "base of getelementptr must be a pointer");
3766
3767  SmallVector<Value*, 16> Indices;
3768  while (EatIfPresent(lltok::comma)) {
3769    if (Lex.getKind() == lltok::NamedOrCustomMD)
3770      break;
3771    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3772    if (!isa<IntegerType>(Val->getType()))
3773      return Error(EltLoc, "getelementptr index must be an integer");
3774    Indices.push_back(Val);
3775  }
3776  if (Lex.getKind() == lltok::NamedOrCustomMD)
3777    if (ParseOptionalCustomMetadata()) return true;
3778
3779  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3780                                         Indices.begin(), Indices.end()))
3781    return Error(Loc, "invalid getelementptr indices");
3782  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3783  if (InBounds)
3784    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3785  return false;
3786}
3787
3788/// ParseExtractValue
3789///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3790bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3791  Value *Val; LocTy Loc;
3792  SmallVector<unsigned, 4> Indices;
3793  if (ParseTypeAndValue(Val, Loc, PFS) ||
3794      ParseIndexList(Indices))
3795    return true;
3796  if (Lex.getKind() == lltok::NamedOrCustomMD)
3797    if (ParseOptionalCustomMetadata()) return true;
3798
3799  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3800    return Error(Loc, "extractvalue operand must be array or struct");
3801
3802  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3803                                        Indices.end()))
3804    return Error(Loc, "invalid indices for extractvalue");
3805  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3806  return false;
3807}
3808
3809/// ParseInsertValue
3810///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3811bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3812  Value *Val0, *Val1; LocTy Loc0, Loc1;
3813  SmallVector<unsigned, 4> Indices;
3814  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3815      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3816      ParseTypeAndValue(Val1, Loc1, PFS) ||
3817      ParseIndexList(Indices))
3818    return true;
3819  if (Lex.getKind() == lltok::NamedOrCustomMD)
3820    if (ParseOptionalCustomMetadata()) return true;
3821
3822  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3823    return Error(Loc0, "extractvalue operand must be array or struct");
3824
3825  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3826                                        Indices.end()))
3827    return Error(Loc0, "invalid indices for insertvalue");
3828  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3829  return false;
3830}
3831
3832//===----------------------------------------------------------------------===//
3833// Embedded metadata.
3834//===----------------------------------------------------------------------===//
3835
3836/// ParseMDNodeVector
3837///   ::= Element (',' Element)*
3838/// Element
3839///   ::= 'null' | TypeAndValue
3840bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3841  assert(Lex.getKind() == lltok::lbrace);
3842  Lex.Lex();
3843  do {
3844    Value *V = 0;
3845    if (Lex.getKind() == lltok::kw_null) {
3846      Lex.Lex();
3847      V = 0;
3848    } else {
3849      PATypeHolder Ty(Type::getVoidTy(Context));
3850      if (ParseType(Ty)) return true;
3851      if (Lex.getKind() == lltok::Metadata) {
3852        Lex.Lex();
3853        MetadataBase *Node = 0;
3854        if (!ParseMDNode(Node))
3855          V = Node;
3856        else {
3857          MetadataBase *MDS = 0;
3858          if (ParseMDString(MDS)) return true;
3859          V = MDS;
3860        }
3861      } else {
3862        Constant *C;
3863        if (ParseGlobalValue(Ty, C)) return true;
3864        V = C;
3865      }
3866    }
3867    Elts.push_back(V);
3868  } while (EatIfPresent(lltok::comma));
3869
3870  return false;
3871}
3872