LLParser.cpp revision f1bc7ce7b362d2859349c7a1e2bc6df493d0f809
1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30/// Run: module ::= toplevelentity*
31bool LLParser::Run() {
32  // Prime the lexer.
33  Lex.Lex();
34
35  return ParseTopLevelEntities() ||
36         ValidateEndOfModule();
37}
38
39/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
40/// module.
41bool LLParser::ValidateEndOfModule() {
42  // Update auto-upgraded malloc calls to "malloc".
43  // FIXME: Remove in LLVM 3.0.
44  if (MallocF) {
45    MallocF->setName("malloc");
46    // If setName() does not set the name to "malloc", then there is already a
47    // declaration of "malloc".  In that case, iterate over all calls to MallocF
48    // and get them to call the declared "malloc" instead.
49    if (MallocF->getName() != "malloc") {
50      Constant *RealMallocF = M->getFunction("malloc");
51      if (RealMallocF->getType() != MallocF->getType())
52        RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
53      MallocF->replaceAllUsesWith(RealMallocF);
54      MallocF->eraseFromParent();
55      MallocF = NULL;
56    }
57  }
58
59
60  // If there are entries in ForwardRefBlockAddresses at this point, they are
61  // references after the function was defined.  Resolve those now.
62  while (!ForwardRefBlockAddresses.empty()) {
63    // Okay, we are referencing an already-parsed function, resolve them now.
64    Function *TheFn = 0;
65    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
66    if (Fn.Kind == ValID::t_GlobalName)
67      TheFn = M->getFunction(Fn.StrVal);
68    else if (Fn.UIntVal < NumberedVals.size())
69      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
70
71    if (TheFn == 0)
72      return Error(Fn.Loc, "unknown function referenced by blockaddress");
73
74    // Resolve all these references.
75    if (ResolveForwardRefBlockAddresses(TheFn,
76                                      ForwardRefBlockAddresses.begin()->second,
77                                        0))
78      return true;
79
80    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
81  }
82
83
84  if (!ForwardRefTypes.empty())
85    return Error(ForwardRefTypes.begin()->second.second,
86                 "use of undefined type named '" +
87                 ForwardRefTypes.begin()->first + "'");
88  if (!ForwardRefTypeIDs.empty())
89    return Error(ForwardRefTypeIDs.begin()->second.second,
90                 "use of undefined type '%" +
91                 utostr(ForwardRefTypeIDs.begin()->first) + "'");
92
93  if (!ForwardRefVals.empty())
94    return Error(ForwardRefVals.begin()->second.second,
95                 "use of undefined value '@" + ForwardRefVals.begin()->first +
96                 "'");
97
98  if (!ForwardRefValIDs.empty())
99    return Error(ForwardRefValIDs.begin()->second.second,
100                 "use of undefined value '@" +
101                 utostr(ForwardRefValIDs.begin()->first) + "'");
102
103  if (!ForwardRefMDNodes.empty())
104    return Error(ForwardRefMDNodes.begin()->second.second,
105                 "use of undefined metadata '!" +
106                 utostr(ForwardRefMDNodes.begin()->first) + "'");
107
108
109  // Look for intrinsic functions and CallInst that need to be upgraded
110  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
111    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
112
113  // Check debug info intrinsics.
114  CheckDebugInfoIntrinsics(M);
115  return false;
116}
117
118bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
119                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
120                                               PerFunctionState *PFS) {
121  // Loop over all the references, resolving them.
122  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
123    BasicBlock *Res;
124    if (PFS) {
125      if (Refs[i].first.Kind == ValID::t_LocalName)
126        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
127      else
128        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
129    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
130      return Error(Refs[i].first.Loc,
131       "cannot take address of numeric label after the function is defined");
132    } else {
133      Res = dyn_cast_or_null<BasicBlock>(
134                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
135    }
136
137    if (Res == 0)
138      return Error(Refs[i].first.Loc,
139                   "referenced value is not a basic block");
140
141    // Get the BlockAddress for this and update references to use it.
142    BlockAddress *BA = BlockAddress::get(TheFn, Res);
143    Refs[i].second->replaceAllUsesWith(BA);
144    Refs[i].second->eraseFromParent();
145  }
146  return false;
147}
148
149
150//===----------------------------------------------------------------------===//
151// Top-Level Entities
152//===----------------------------------------------------------------------===//
153
154bool LLParser::ParseTopLevelEntities() {
155  while (1) {
156    switch (Lex.getKind()) {
157    default:         return TokError("expected top-level entity");
158    case lltok::Eof: return false;
159    //case lltok::kw_define:
160    case lltok::kw_declare: if (ParseDeclare()) return true; break;
161    case lltok::kw_define:  if (ParseDefine()) return true; break;
162    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
163    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
164    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
165    case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
166    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
167    case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
168    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
169    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
170    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
171    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
172    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
173
174    // The Global variable production with no name can have many different
175    // optional leading prefixes, the production is:
176    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
177    //               OptionalAddrSpace ('constant'|'global') ...
178    case lltok::kw_private :       // OptionalLinkage
179    case lltok::kw_linker_private: // OptionalLinkage
180    case lltok::kw_internal:       // OptionalLinkage
181    case lltok::kw_weak:           // OptionalLinkage
182    case lltok::kw_weak_odr:       // OptionalLinkage
183    case lltok::kw_linkonce:       // OptionalLinkage
184    case lltok::kw_linkonce_odr:   // OptionalLinkage
185    case lltok::kw_appending:      // OptionalLinkage
186    case lltok::kw_dllexport:      // OptionalLinkage
187    case lltok::kw_common:         // OptionalLinkage
188    case lltok::kw_dllimport:      // OptionalLinkage
189    case lltok::kw_extern_weak:    // OptionalLinkage
190    case lltok::kw_external: {     // OptionalLinkage
191      unsigned Linkage, Visibility;
192      if (ParseOptionalLinkage(Linkage) ||
193          ParseOptionalVisibility(Visibility) ||
194          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
195        return true;
196      break;
197    }
198    case lltok::kw_default:       // OptionalVisibility
199    case lltok::kw_hidden:        // OptionalVisibility
200    case lltok::kw_protected: {   // OptionalVisibility
201      unsigned Visibility;
202      if (ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), 0, false, Visibility))
204        return true;
205      break;
206    }
207
208    case lltok::kw_thread_local:  // OptionalThreadLocal
209    case lltok::kw_addrspace:     // OptionalAddrSpace
210    case lltok::kw_constant:      // GlobalType
211    case lltok::kw_global:        // GlobalType
212      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
213      break;
214    }
215  }
216}
217
218
219/// toplevelentity
220///   ::= 'module' 'asm' STRINGCONSTANT
221bool LLParser::ParseModuleAsm() {
222  assert(Lex.getKind() == lltok::kw_module);
223  Lex.Lex();
224
225  std::string AsmStr;
226  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
227      ParseStringConstant(AsmStr)) return true;
228
229  const std::string &AsmSoFar = M->getModuleInlineAsm();
230  if (AsmSoFar.empty())
231    M->setModuleInlineAsm(AsmStr);
232  else
233    M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
234  return false;
235}
236
237/// toplevelentity
238///   ::= 'target' 'triple' '=' STRINGCONSTANT
239///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
240bool LLParser::ParseTargetDefinition() {
241  assert(Lex.getKind() == lltok::kw_target);
242  std::string Str;
243  switch (Lex.Lex()) {
244  default: return TokError("unknown target property");
245  case lltok::kw_triple:
246    Lex.Lex();
247    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
248        ParseStringConstant(Str))
249      return true;
250    M->setTargetTriple(Str);
251    return false;
252  case lltok::kw_datalayout:
253    Lex.Lex();
254    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
255        ParseStringConstant(Str))
256      return true;
257    M->setDataLayout(Str);
258    return false;
259  }
260}
261
262/// toplevelentity
263///   ::= 'deplibs' '=' '[' ']'
264///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
265bool LLParser::ParseDepLibs() {
266  assert(Lex.getKind() == lltok::kw_deplibs);
267  Lex.Lex();
268  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
269      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
270    return true;
271
272  if (EatIfPresent(lltok::rsquare))
273    return false;
274
275  std::string Str;
276  if (ParseStringConstant(Str)) return true;
277  M->addLibrary(Str);
278
279  while (EatIfPresent(lltok::comma)) {
280    if (ParseStringConstant(Str)) return true;
281    M->addLibrary(Str);
282  }
283
284  return ParseToken(lltok::rsquare, "expected ']' at end of list");
285}
286
287/// ParseUnnamedType:
288///   ::= 'type' type
289///   ::= LocalVarID '=' 'type' type
290bool LLParser::ParseUnnamedType() {
291  unsigned TypeID = NumberedTypes.size();
292
293  // Handle the LocalVarID form.
294  if (Lex.getKind() == lltok::LocalVarID) {
295    if (Lex.getUIntVal() != TypeID)
296      return Error(Lex.getLoc(), "type expected to be numbered '%" +
297                   utostr(TypeID) + "'");
298    Lex.Lex(); // eat LocalVarID;
299
300    if (ParseToken(lltok::equal, "expected '=' after name"))
301      return true;
302  }
303
304  assert(Lex.getKind() == lltok::kw_type);
305  LocTy TypeLoc = Lex.getLoc();
306  Lex.Lex(); // eat kw_type
307
308  PATypeHolder Ty(Type::getVoidTy(Context));
309  if (ParseType(Ty)) return true;
310
311  // See if this type was previously referenced.
312  std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
313    FI = ForwardRefTypeIDs.find(TypeID);
314  if (FI != ForwardRefTypeIDs.end()) {
315    if (FI->second.first.get() == Ty)
316      return Error(TypeLoc, "self referential type is invalid");
317
318    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
319    Ty = FI->second.first.get();
320    ForwardRefTypeIDs.erase(FI);
321  }
322
323  NumberedTypes.push_back(Ty);
324
325  return false;
326}
327
328/// toplevelentity
329///   ::= LocalVar '=' 'type' type
330bool LLParser::ParseNamedType() {
331  std::string Name = Lex.getStrVal();
332  LocTy NameLoc = Lex.getLoc();
333  Lex.Lex();  // eat LocalVar.
334
335  PATypeHolder Ty(Type::getVoidTy(Context));
336
337  if (ParseToken(lltok::equal, "expected '=' after name") ||
338      ParseToken(lltok::kw_type, "expected 'type' after name") ||
339      ParseType(Ty))
340    return true;
341
342  // Set the type name, checking for conflicts as we do so.
343  bool AlreadyExists = M->addTypeName(Name, Ty);
344  if (!AlreadyExists) return false;
345
346  // See if this type is a forward reference.  We need to eagerly resolve
347  // types to allow recursive type redefinitions below.
348  std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
349  FI = ForwardRefTypes.find(Name);
350  if (FI != ForwardRefTypes.end()) {
351    if (FI->second.first.get() == Ty)
352      return Error(NameLoc, "self referential type is invalid");
353
354    cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
355    Ty = FI->second.first.get();
356    ForwardRefTypes.erase(FI);
357  }
358
359  // Inserting a name that is already defined, get the existing name.
360  const Type *Existing = M->getTypeByName(Name);
361  assert(Existing && "Conflict but no matching type?!");
362
363  // Otherwise, this is an attempt to redefine a type. That's okay if
364  // the redefinition is identical to the original.
365  // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
366  if (Existing == Ty) return false;
367
368  // Any other kind of (non-equivalent) redefinition is an error.
369  return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
370               Ty->getDescription() + "'");
371}
372
373
374/// toplevelentity
375///   ::= 'declare' FunctionHeader
376bool LLParser::ParseDeclare() {
377  assert(Lex.getKind() == lltok::kw_declare);
378  Lex.Lex();
379
380  Function *F;
381  return ParseFunctionHeader(F, false);
382}
383
384/// toplevelentity
385///   ::= 'define' FunctionHeader '{' ...
386bool LLParser::ParseDefine() {
387  assert(Lex.getKind() == lltok::kw_define);
388  Lex.Lex();
389
390  Function *F;
391  return ParseFunctionHeader(F, true) ||
392         ParseFunctionBody(*F);
393}
394
395/// ParseGlobalType
396///   ::= 'constant'
397///   ::= 'global'
398bool LLParser::ParseGlobalType(bool &IsConstant) {
399  if (Lex.getKind() == lltok::kw_constant)
400    IsConstant = true;
401  else if (Lex.getKind() == lltok::kw_global)
402    IsConstant = false;
403  else {
404    IsConstant = false;
405    return TokError("expected 'global' or 'constant'");
406  }
407  Lex.Lex();
408  return false;
409}
410
411/// ParseUnnamedGlobal:
412///   OptionalVisibility ALIAS ...
413///   OptionalLinkage OptionalVisibility ...   -> global variable
414///   GlobalID '=' OptionalVisibility ALIAS ...
415///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
416bool LLParser::ParseUnnamedGlobal() {
417  unsigned VarID = NumberedVals.size();
418  std::string Name;
419  LocTy NameLoc = Lex.getLoc();
420
421  // Handle the GlobalID form.
422  if (Lex.getKind() == lltok::GlobalID) {
423    if (Lex.getUIntVal() != VarID)
424      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
425                   utostr(VarID) + "'");
426    Lex.Lex(); // eat GlobalID;
427
428    if (ParseToken(lltok::equal, "expected '=' after name"))
429      return true;
430  }
431
432  bool HasLinkage;
433  unsigned Linkage, Visibility;
434  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
435      ParseOptionalVisibility(Visibility))
436    return true;
437
438  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
439    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
440  return ParseAlias(Name, NameLoc, Visibility);
441}
442
443/// ParseNamedGlobal:
444///   GlobalVar '=' OptionalVisibility ALIAS ...
445///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
446bool LLParser::ParseNamedGlobal() {
447  assert(Lex.getKind() == lltok::GlobalVar);
448  LocTy NameLoc = Lex.getLoc();
449  std::string Name = Lex.getStrVal();
450  Lex.Lex();
451
452  bool HasLinkage;
453  unsigned Linkage, Visibility;
454  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
455      ParseOptionalLinkage(Linkage, HasLinkage) ||
456      ParseOptionalVisibility(Visibility))
457    return true;
458
459  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461  return ParseAlias(Name, NameLoc, Visibility);
462}
463
464// MDString:
465//   ::= '!' STRINGCONSTANT
466bool LLParser::ParseMDString(MDString *&Result) {
467  std::string Str;
468  if (ParseStringConstant(Str)) return true;
469  Result = MDString::get(Context, Str);
470  return false;
471}
472
473// MDNode:
474//   ::= '!' MDNodeNumber
475bool LLParser::ParseMDNodeID(MDNode *&Result) {
476  // !{ ..., !42, ... }
477  unsigned MID = 0;
478  if (ParseUInt32(MID)) return true;
479
480  // Check existing MDNode.
481  if (MID < NumberedMetadata.size() && NumberedMetadata[MID] != 0) {
482    Result = NumberedMetadata[MID];
483    return false;
484  }
485
486  // Create MDNode forward reference.
487
488  // FIXME: This is not unique enough!
489  std::string FwdRefName = "llvm.mdnode.fwdref." + utostr(MID);
490  Value *V = MDString::get(Context, FwdRefName);
491  MDNode *FwdNode = MDNode::get(Context, &V, 1);
492  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
493
494  if (NumberedMetadata.size() <= MID)
495    NumberedMetadata.resize(MID+1);
496  NumberedMetadata[MID] = FwdNode;
497  Result = FwdNode;
498  return false;
499}
500
501/// ParseNamedMetadata:
502///   !foo = !{ !1, !2 }
503bool LLParser::ParseNamedMetadata() {
504  assert(Lex.getKind() == lltok::MetadataVar);
505  std::string Name = Lex.getStrVal();
506  Lex.Lex();
507
508  if (ParseToken(lltok::equal, "expected '=' here") ||
509      ParseToken(lltok::exclaim, "Expected '!' here") ||
510      ParseToken(lltok::lbrace, "Expected '{' here"))
511    return true;
512
513  SmallVector<MetadataBase *, 8> Elts;
514  do {
515    if (ParseToken(lltok::exclaim, "Expected '!' here"))
516      return true;
517
518    // FIXME: This rejects MDStrings.  Are they legal in an named MDNode or not?
519    MDNode *N = 0;
520    if (ParseMDNodeID(N)) return true;
521    Elts.push_back(N);
522  } while (EatIfPresent(lltok::comma));
523
524  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
525    return true;
526
527  NamedMDNode::Create(Context, Name, Elts.data(), Elts.size(), M);
528  return false;
529}
530
531/// ParseStandaloneMetadata:
532///   !42 = !{...}
533bool LLParser::ParseStandaloneMetadata() {
534  assert(Lex.getKind() == lltok::exclaim);
535  Lex.Lex();
536  unsigned MetadataID = 0;
537
538  LocTy TyLoc;
539  PATypeHolder Ty(Type::getVoidTy(Context));
540  SmallVector<Value *, 16> Elts;
541  // FIXME: This doesn't make sense here.  Pull braced MD stuff parsing out!
542  if (ParseUInt32(MetadataID) ||
543      ParseToken(lltok::equal, "expected '=' here") ||
544      ParseType(Ty, TyLoc) ||
545      ParseToken(lltok::exclaim, "Expected '!' here") ||
546      ParseToken(lltok::lbrace, "Expected '{' here") ||
547      ParseMDNodeVector(Elts) ||
548      ParseToken(lltok::rbrace, "expected end of metadata node"))
549    return true;
550
551  MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
552
553  // See if this was forward referenced, if so, handle it.
554  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
555    FI = ForwardRefMDNodes.find(MetadataID);
556  if (FI != ForwardRefMDNodes.end()) {
557    FI->second.first->replaceAllUsesWith(Init);
558    ForwardRefMDNodes.erase(FI);
559
560    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
561  } else {
562    if (MetadataID >= NumberedMetadata.size())
563      NumberedMetadata.resize(MetadataID+1);
564
565    if (NumberedMetadata[MetadataID] != 0)
566      return TokError("Metadata id is already used");
567    NumberedMetadata[MetadataID] = Init;
568  }
569
570  return false;
571}
572
573/// ParseAlias:
574///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
575/// Aliasee
576///   ::= TypeAndValue
577///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
578///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
579///
580/// Everything through visibility has already been parsed.
581///
582bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
583                          unsigned Visibility) {
584  assert(Lex.getKind() == lltok::kw_alias);
585  Lex.Lex();
586  unsigned Linkage;
587  LocTy LinkageLoc = Lex.getLoc();
588  if (ParseOptionalLinkage(Linkage))
589    return true;
590
591  if (Linkage != GlobalValue::ExternalLinkage &&
592      Linkage != GlobalValue::WeakAnyLinkage &&
593      Linkage != GlobalValue::WeakODRLinkage &&
594      Linkage != GlobalValue::InternalLinkage &&
595      Linkage != GlobalValue::PrivateLinkage &&
596      Linkage != GlobalValue::LinkerPrivateLinkage)
597    return Error(LinkageLoc, "invalid linkage type for alias");
598
599  Constant *Aliasee;
600  LocTy AliaseeLoc = Lex.getLoc();
601  if (Lex.getKind() != lltok::kw_bitcast &&
602      Lex.getKind() != lltok::kw_getelementptr) {
603    if (ParseGlobalTypeAndValue(Aliasee)) return true;
604  } else {
605    // The bitcast dest type is not present, it is implied by the dest type.
606    ValID ID;
607    if (ParseValID(ID)) return true;
608    if (ID.Kind != ValID::t_Constant)
609      return Error(AliaseeLoc, "invalid aliasee");
610    Aliasee = ID.ConstantVal;
611  }
612
613  if (!isa<PointerType>(Aliasee->getType()))
614    return Error(AliaseeLoc, "alias must have pointer type");
615
616  // Okay, create the alias but do not insert it into the module yet.
617  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
618                                    (GlobalValue::LinkageTypes)Linkage, Name,
619                                    Aliasee);
620  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
621
622  // See if this value already exists in the symbol table.  If so, it is either
623  // a redefinition or a definition of a forward reference.
624  if (GlobalValue *Val = M->getNamedValue(Name)) {
625    // See if this was a redefinition.  If so, there is no entry in
626    // ForwardRefVals.
627    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
628      I = ForwardRefVals.find(Name);
629    if (I == ForwardRefVals.end())
630      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
631
632    // Otherwise, this was a definition of forward ref.  Verify that types
633    // agree.
634    if (Val->getType() != GA->getType())
635      return Error(NameLoc,
636              "forward reference and definition of alias have different types");
637
638    // If they agree, just RAUW the old value with the alias and remove the
639    // forward ref info.
640    Val->replaceAllUsesWith(GA);
641    Val->eraseFromParent();
642    ForwardRefVals.erase(I);
643  }
644
645  // Insert into the module, we know its name won't collide now.
646  M->getAliasList().push_back(GA);
647  assert(GA->getNameStr() == Name && "Should not be a name conflict!");
648
649  return false;
650}
651
652/// ParseGlobal
653///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
654///       OptionalAddrSpace GlobalType Type Const
655///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
656///       OptionalAddrSpace GlobalType Type Const
657///
658/// Everything through visibility has been parsed already.
659///
660bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
661                           unsigned Linkage, bool HasLinkage,
662                           unsigned Visibility) {
663  unsigned AddrSpace;
664  bool ThreadLocal, IsConstant;
665  LocTy TyLoc;
666
667  PATypeHolder Ty(Type::getVoidTy(Context));
668  if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
669      ParseOptionalAddrSpace(AddrSpace) ||
670      ParseGlobalType(IsConstant) ||
671      ParseType(Ty, TyLoc))
672    return true;
673
674  // If the linkage is specified and is external, then no initializer is
675  // present.
676  Constant *Init = 0;
677  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
678                      Linkage != GlobalValue::ExternalWeakLinkage &&
679                      Linkage != GlobalValue::ExternalLinkage)) {
680    if (ParseGlobalValue(Ty, Init))
681      return true;
682  }
683
684  if (isa<FunctionType>(Ty) || Ty->isLabelTy())
685    return Error(TyLoc, "invalid type for global variable");
686
687  GlobalVariable *GV = 0;
688
689  // See if the global was forward referenced, if so, use the global.
690  if (!Name.empty()) {
691    if (GlobalValue *GVal = M->getNamedValue(Name)) {
692      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
693        return Error(NameLoc, "redefinition of global '@" + Name + "'");
694      GV = cast<GlobalVariable>(GVal);
695    }
696  } else {
697    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
698      I = ForwardRefValIDs.find(NumberedVals.size());
699    if (I != ForwardRefValIDs.end()) {
700      GV = cast<GlobalVariable>(I->second.first);
701      ForwardRefValIDs.erase(I);
702    }
703  }
704
705  if (GV == 0) {
706    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
707                            Name, 0, false, AddrSpace);
708  } else {
709    if (GV->getType()->getElementType() != Ty)
710      return Error(TyLoc,
711            "forward reference and definition of global have different types");
712
713    // Move the forward-reference to the correct spot in the module.
714    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
715  }
716
717  if (Name.empty())
718    NumberedVals.push_back(GV);
719
720  // Set the parsed properties on the global.
721  if (Init)
722    GV->setInitializer(Init);
723  GV->setConstant(IsConstant);
724  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
725  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
726  GV->setThreadLocal(ThreadLocal);
727
728  // Parse attributes on the global.
729  while (Lex.getKind() == lltok::comma) {
730    Lex.Lex();
731
732    if (Lex.getKind() == lltok::kw_section) {
733      Lex.Lex();
734      GV->setSection(Lex.getStrVal());
735      if (ParseToken(lltok::StringConstant, "expected global section string"))
736        return true;
737    } else if (Lex.getKind() == lltok::kw_align) {
738      unsigned Alignment;
739      if (ParseOptionalAlignment(Alignment)) return true;
740      GV->setAlignment(Alignment);
741    } else {
742      TokError("unknown global variable property!");
743    }
744  }
745
746  return false;
747}
748
749
750//===----------------------------------------------------------------------===//
751// GlobalValue Reference/Resolution Routines.
752//===----------------------------------------------------------------------===//
753
754/// GetGlobalVal - Get a value with the specified name or ID, creating a
755/// forward reference record if needed.  This can return null if the value
756/// exists but does not have the right type.
757GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
758                                    LocTy Loc) {
759  const PointerType *PTy = dyn_cast<PointerType>(Ty);
760  if (PTy == 0) {
761    Error(Loc, "global variable reference must have pointer type");
762    return 0;
763  }
764
765  // Look this name up in the normal function symbol table.
766  GlobalValue *Val =
767    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
768
769  // If this is a forward reference for the value, see if we already created a
770  // forward ref record.
771  if (Val == 0) {
772    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
773      I = ForwardRefVals.find(Name);
774    if (I != ForwardRefVals.end())
775      Val = I->second.first;
776  }
777
778  // If we have the value in the symbol table or fwd-ref table, return it.
779  if (Val) {
780    if (Val->getType() == Ty) return Val;
781    Error(Loc, "'@" + Name + "' defined with type '" +
782          Val->getType()->getDescription() + "'");
783    return 0;
784  }
785
786  // Otherwise, create a new forward reference for this value and remember it.
787  GlobalValue *FwdVal;
788  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
789    // Function types can return opaque but functions can't.
790    if (isa<OpaqueType>(FT->getReturnType())) {
791      Error(Loc, "function may not return opaque type");
792      return 0;
793    }
794
795    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
796  } else {
797    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
798                                GlobalValue::ExternalWeakLinkage, 0, Name);
799  }
800
801  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
802  return FwdVal;
803}
804
805GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
806  const PointerType *PTy = dyn_cast<PointerType>(Ty);
807  if (PTy == 0) {
808    Error(Loc, "global variable reference must have pointer type");
809    return 0;
810  }
811
812  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
813
814  // If this is a forward reference for the value, see if we already created a
815  // forward ref record.
816  if (Val == 0) {
817    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
818      I = ForwardRefValIDs.find(ID);
819    if (I != ForwardRefValIDs.end())
820      Val = I->second.first;
821  }
822
823  // If we have the value in the symbol table or fwd-ref table, return it.
824  if (Val) {
825    if (Val->getType() == Ty) return Val;
826    Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
827          Val->getType()->getDescription() + "'");
828    return 0;
829  }
830
831  // Otherwise, create a new forward reference for this value and remember it.
832  GlobalValue *FwdVal;
833  if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
834    // Function types can return opaque but functions can't.
835    if (isa<OpaqueType>(FT->getReturnType())) {
836      Error(Loc, "function may not return opaque type");
837      return 0;
838    }
839    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
840  } else {
841    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
842                                GlobalValue::ExternalWeakLinkage, 0, "");
843  }
844
845  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
846  return FwdVal;
847}
848
849
850//===----------------------------------------------------------------------===//
851// Helper Routines.
852//===----------------------------------------------------------------------===//
853
854/// ParseToken - If the current token has the specified kind, eat it and return
855/// success.  Otherwise, emit the specified error and return failure.
856bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
857  if (Lex.getKind() != T)
858    return TokError(ErrMsg);
859  Lex.Lex();
860  return false;
861}
862
863/// ParseStringConstant
864///   ::= StringConstant
865bool LLParser::ParseStringConstant(std::string &Result) {
866  if (Lex.getKind() != lltok::StringConstant)
867    return TokError("expected string constant");
868  Result = Lex.getStrVal();
869  Lex.Lex();
870  return false;
871}
872
873/// ParseUInt32
874///   ::= uint32
875bool LLParser::ParseUInt32(unsigned &Val) {
876  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
877    return TokError("expected integer");
878  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
879  if (Val64 != unsigned(Val64))
880    return TokError("expected 32-bit integer (too large)");
881  Val = Val64;
882  Lex.Lex();
883  return false;
884}
885
886
887/// ParseOptionalAddrSpace
888///   := /*empty*/
889///   := 'addrspace' '(' uint32 ')'
890bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
891  AddrSpace = 0;
892  if (!EatIfPresent(lltok::kw_addrspace))
893    return false;
894  return ParseToken(lltok::lparen, "expected '(' in address space") ||
895         ParseUInt32(AddrSpace) ||
896         ParseToken(lltok::rparen, "expected ')' in address space");
897}
898
899/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
900/// indicates what kind of attribute list this is: 0: function arg, 1: result,
901/// 2: function attr.
902/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
903bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
904  Attrs = Attribute::None;
905  LocTy AttrLoc = Lex.getLoc();
906
907  while (1) {
908    switch (Lex.getKind()) {
909    case lltok::kw_sext:
910    case lltok::kw_zext:
911      // Treat these as signext/zeroext if they occur in the argument list after
912      // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
913      // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
914      // expr.
915      // FIXME: REMOVE THIS IN LLVM 3.0
916      if (AttrKind == 3) {
917        if (Lex.getKind() == lltok::kw_sext)
918          Attrs |= Attribute::SExt;
919        else
920          Attrs |= Attribute::ZExt;
921        break;
922      }
923      // FALL THROUGH.
924    default:  // End of attributes.
925      if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
926        return Error(AttrLoc, "invalid use of function-only attribute");
927
928      if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
929        return Error(AttrLoc, "invalid use of parameter-only attribute");
930
931      return false;
932    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
933    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
934    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
935    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
936    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
937    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
938    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
939    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
940
941    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
942    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
943    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
944    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
945    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
946    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
947    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
948    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
949    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
950    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
951    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
952    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
953    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
954
955    case lltok::kw_align: {
956      unsigned Alignment;
957      if (ParseOptionalAlignment(Alignment))
958        return true;
959      Attrs |= Attribute::constructAlignmentFromInt(Alignment);
960      continue;
961    }
962    }
963    Lex.Lex();
964  }
965}
966
967/// ParseOptionalLinkage
968///   ::= /*empty*/
969///   ::= 'private'
970///   ::= 'linker_private'
971///   ::= 'internal'
972///   ::= 'weak'
973///   ::= 'weak_odr'
974///   ::= 'linkonce'
975///   ::= 'linkonce_odr'
976///   ::= 'appending'
977///   ::= 'dllexport'
978///   ::= 'common'
979///   ::= 'dllimport'
980///   ::= 'extern_weak'
981///   ::= 'external'
982bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
983  HasLinkage = false;
984  switch (Lex.getKind()) {
985  default:                       Res=GlobalValue::ExternalLinkage; return false;
986  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
987  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
988  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
989  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
990  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
991  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
992  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
993  case lltok::kw_available_externally:
994    Res = GlobalValue::AvailableExternallyLinkage;
995    break;
996  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
997  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
998  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
999  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1000  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1001  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1002  }
1003  Lex.Lex();
1004  HasLinkage = true;
1005  return false;
1006}
1007
1008/// ParseOptionalVisibility
1009///   ::= /*empty*/
1010///   ::= 'default'
1011///   ::= 'hidden'
1012///   ::= 'protected'
1013///
1014bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1015  switch (Lex.getKind()) {
1016  default:                  Res = GlobalValue::DefaultVisibility; return false;
1017  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1018  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1019  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1020  }
1021  Lex.Lex();
1022  return false;
1023}
1024
1025/// ParseOptionalCallingConv
1026///   ::= /*empty*/
1027///   ::= 'ccc'
1028///   ::= 'fastcc'
1029///   ::= 'coldcc'
1030///   ::= 'x86_stdcallcc'
1031///   ::= 'x86_fastcallcc'
1032///   ::= 'arm_apcscc'
1033///   ::= 'arm_aapcscc'
1034///   ::= 'arm_aapcs_vfpcc'
1035///   ::= 'msp430_intrcc'
1036///   ::= 'cc' UINT
1037///
1038bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1039  switch (Lex.getKind()) {
1040  default:                       CC = CallingConv::C; return false;
1041  case lltok::kw_ccc:            CC = CallingConv::C; break;
1042  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1043  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1044  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1045  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1046  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1047  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1048  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1049  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1050  case lltok::kw_cc: {
1051      unsigned ArbitraryCC;
1052      Lex.Lex();
1053      if (ParseUInt32(ArbitraryCC)) {
1054        return true;
1055      } else
1056        CC = static_cast<CallingConv::ID>(ArbitraryCC);
1057        return false;
1058    }
1059    break;
1060  }
1061
1062  Lex.Lex();
1063  return false;
1064}
1065
1066/// ParseOptionalCustomMetadata
1067///   ::= /* empty */
1068///   ::= !dbg !42 (',' !dbg !57)*
1069bool LLParser::ParseOptionalCustomMetadata() {
1070  if (Lex.getKind() != lltok::MetadataVar)
1071    return false;
1072
1073  while (1) {
1074    std::string Name = Lex.getStrVal();
1075    Lex.Lex();
1076
1077    MDNode *Node;
1078    if (ParseToken(lltok::exclaim, "expected '!' here") ||
1079        ParseMDNodeID(Node))
1080      return true;
1081
1082    unsigned MDK = M->getMDKindID(Name.c_str());
1083    MDsOnInst.push_back(std::make_pair(MDK, Node));
1084
1085    // If this is the end of the list, we're done.
1086    if (!EatIfPresent(lltok::comma))
1087      return false;
1088
1089    // The next value must be a custom metadata id.
1090    if (Lex.getKind() != lltok::MetadataVar)
1091      return TokError("expected more custom metadata ids");
1092  }
1093}
1094
1095/// ParseOptionalAlignment
1096///   ::= /* empty */
1097///   ::= 'align' 4
1098bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1099  Alignment = 0;
1100  if (!EatIfPresent(lltok::kw_align))
1101    return false;
1102  LocTy AlignLoc = Lex.getLoc();
1103  if (ParseUInt32(Alignment)) return true;
1104  if (!isPowerOf2_32(Alignment))
1105    return Error(AlignLoc, "alignment is not a power of two");
1106  return false;
1107}
1108
1109/// ParseOptionalInfo
1110///   ::= OptionalInfo (',' OptionalInfo)+
1111bool LLParser::ParseOptionalInfo(unsigned &Alignment) {
1112
1113  // FIXME: Handle customized metadata info attached with an instruction.
1114  do {
1115    if (Lex.getKind() == lltok::MetadataVar) {
1116      if (ParseOptionalCustomMetadata()) return true;
1117    } else if (Lex.getKind() == lltok::kw_align) {
1118      if (ParseOptionalAlignment(Alignment)) return true;
1119    } else
1120      return true;
1121  } while (EatIfPresent(lltok::comma));
1122
1123  return false;
1124}
1125
1126
1127/// ParseIndexList - This parses the index list for an insert/extractvalue
1128/// instruction.  This sets AteExtraComma in the case where we eat an extra
1129/// comma at the end of the line and find that it is followed by metadata.
1130/// Clients that don't allow metadata can call the version of this function that
1131/// only takes one argument.
1132///
1133/// ParseIndexList
1134///    ::=  (',' uint32)+
1135///
1136bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1137                              bool &AteExtraComma) {
1138  AteExtraComma = false;
1139
1140  if (Lex.getKind() != lltok::comma)
1141    return TokError("expected ',' as start of index list");
1142
1143  while (EatIfPresent(lltok::comma)) {
1144    if (Lex.getKind() == lltok::MetadataVar) {
1145      AteExtraComma = true;
1146      return false;
1147    }
1148    unsigned Idx;
1149    if (ParseUInt32(Idx)) return true;
1150    Indices.push_back(Idx);
1151  }
1152
1153  return false;
1154}
1155
1156//===----------------------------------------------------------------------===//
1157// Type Parsing.
1158//===----------------------------------------------------------------------===//
1159
1160/// ParseType - Parse and resolve a full type.
1161bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1162  LocTy TypeLoc = Lex.getLoc();
1163  if (ParseTypeRec(Result)) return true;
1164
1165  // Verify no unresolved uprefs.
1166  if (!UpRefs.empty())
1167    return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1168
1169  if (!AllowVoid && Result.get()->isVoidTy())
1170    return Error(TypeLoc, "void type only allowed for function results");
1171
1172  return false;
1173}
1174
1175/// HandleUpRefs - Every time we finish a new layer of types, this function is
1176/// called.  It loops through the UpRefs vector, which is a list of the
1177/// currently active types.  For each type, if the up-reference is contained in
1178/// the newly completed type, we decrement the level count.  When the level
1179/// count reaches zero, the up-referenced type is the type that is passed in:
1180/// thus we can complete the cycle.
1181///
1182PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1183  // If Ty isn't abstract, or if there are no up-references in it, then there is
1184  // nothing to resolve here.
1185  if (!ty->isAbstract() || UpRefs.empty()) return ty;
1186
1187  PATypeHolder Ty(ty);
1188#if 0
1189  dbgs() << "Type '" << Ty->getDescription()
1190         << "' newly formed.  Resolving upreferences.\n"
1191         << UpRefs.size() << " upreferences active!\n";
1192#endif
1193
1194  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1195  // to zero), we resolve them all together before we resolve them to Ty.  At
1196  // the end of the loop, if there is anything to resolve to Ty, it will be in
1197  // this variable.
1198  OpaqueType *TypeToResolve = 0;
1199
1200  for (unsigned i = 0; i != UpRefs.size(); ++i) {
1201    // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1202    bool ContainsType =
1203      std::find(Ty->subtype_begin(), Ty->subtype_end(),
1204                UpRefs[i].LastContainedTy) != Ty->subtype_end();
1205
1206#if 0
1207    dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1208           << UpRefs[i].LastContainedTy->getDescription() << ") = "
1209           << (ContainsType ? "true" : "false")
1210           << " level=" << UpRefs[i].NestingLevel << "\n";
1211#endif
1212    if (!ContainsType)
1213      continue;
1214
1215    // Decrement level of upreference
1216    unsigned Level = --UpRefs[i].NestingLevel;
1217    UpRefs[i].LastContainedTy = Ty;
1218
1219    // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1220    if (Level != 0)
1221      continue;
1222
1223#if 0
1224    dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1225#endif
1226    if (!TypeToResolve)
1227      TypeToResolve = UpRefs[i].UpRefTy;
1228    else
1229      UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1230    UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1231    --i;                                // Do not skip the next element.
1232  }
1233
1234  if (TypeToResolve)
1235    TypeToResolve->refineAbstractTypeTo(Ty);
1236
1237  return Ty;
1238}
1239
1240
1241/// ParseTypeRec - The recursive function used to process the internal
1242/// implementation details of types.
1243bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1244  switch (Lex.getKind()) {
1245  default:
1246    return TokError("expected type");
1247  case lltok::Type:
1248    // TypeRec ::= 'float' | 'void' (etc)
1249    Result = Lex.getTyVal();
1250    Lex.Lex();
1251    break;
1252  case lltok::kw_opaque:
1253    // TypeRec ::= 'opaque'
1254    Result = OpaqueType::get(Context);
1255    Lex.Lex();
1256    break;
1257  case lltok::lbrace:
1258    // TypeRec ::= '{' ... '}'
1259    if (ParseStructType(Result, false))
1260      return true;
1261    break;
1262  case lltok::lsquare:
1263    // TypeRec ::= '[' ... ']'
1264    Lex.Lex(); // eat the lsquare.
1265    if (ParseArrayVectorType(Result, false))
1266      return true;
1267    break;
1268  case lltok::less: // Either vector or packed struct.
1269    // TypeRec ::= '<' ... '>'
1270    Lex.Lex();
1271    if (Lex.getKind() == lltok::lbrace) {
1272      if (ParseStructType(Result, true) ||
1273          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1274        return true;
1275    } else if (ParseArrayVectorType(Result, true))
1276      return true;
1277    break;
1278  case lltok::LocalVar:
1279  case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1280    // TypeRec ::= %foo
1281    if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1282      Result = T;
1283    } else {
1284      Result = OpaqueType::get(Context);
1285      ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1286                                            std::make_pair(Result,
1287                                                           Lex.getLoc())));
1288      M->addTypeName(Lex.getStrVal(), Result.get());
1289    }
1290    Lex.Lex();
1291    break;
1292
1293  case lltok::LocalVarID:
1294    // TypeRec ::= %4
1295    if (Lex.getUIntVal() < NumberedTypes.size())
1296      Result = NumberedTypes[Lex.getUIntVal()];
1297    else {
1298      std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1299        I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1300      if (I != ForwardRefTypeIDs.end())
1301        Result = I->second.first;
1302      else {
1303        Result = OpaqueType::get(Context);
1304        ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1305                                                std::make_pair(Result,
1306                                                               Lex.getLoc())));
1307      }
1308    }
1309    Lex.Lex();
1310    break;
1311  case lltok::backslash: {
1312    // TypeRec ::= '\' 4
1313    Lex.Lex();
1314    unsigned Val;
1315    if (ParseUInt32(Val)) return true;
1316    OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1317    UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1318    Result = OT;
1319    break;
1320  }
1321  }
1322
1323  // Parse the type suffixes.
1324  while (1) {
1325    switch (Lex.getKind()) {
1326    // End of type.
1327    default: return false;
1328
1329    // TypeRec ::= TypeRec '*'
1330    case lltok::star:
1331      if (Result.get()->isLabelTy())
1332        return TokError("basic block pointers are invalid");
1333      if (Result.get()->isVoidTy())
1334        return TokError("pointers to void are invalid; use i8* instead");
1335      if (!PointerType::isValidElementType(Result.get()))
1336        return TokError("pointer to this type is invalid");
1337      Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1338      Lex.Lex();
1339      break;
1340
1341    // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1342    case lltok::kw_addrspace: {
1343      if (Result.get()->isLabelTy())
1344        return TokError("basic block pointers are invalid");
1345      if (Result.get()->isVoidTy())
1346        return TokError("pointers to void are invalid; use i8* instead");
1347      if (!PointerType::isValidElementType(Result.get()))
1348        return TokError("pointer to this type is invalid");
1349      unsigned AddrSpace;
1350      if (ParseOptionalAddrSpace(AddrSpace) ||
1351          ParseToken(lltok::star, "expected '*' in address space"))
1352        return true;
1353
1354      Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1355      break;
1356    }
1357
1358    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1359    case lltok::lparen:
1360      if (ParseFunctionType(Result))
1361        return true;
1362      break;
1363    }
1364  }
1365}
1366
1367/// ParseParameterList
1368///    ::= '(' ')'
1369///    ::= '(' Arg (',' Arg)* ')'
1370///  Arg
1371///    ::= Type OptionalAttributes Value OptionalAttributes
1372bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1373                                  PerFunctionState &PFS) {
1374  if (ParseToken(lltok::lparen, "expected '(' in call"))
1375    return true;
1376
1377  while (Lex.getKind() != lltok::rparen) {
1378    // If this isn't the first argument, we need a comma.
1379    if (!ArgList.empty() &&
1380        ParseToken(lltok::comma, "expected ',' in argument list"))
1381      return true;
1382
1383    // Parse the argument.
1384    LocTy ArgLoc;
1385    PATypeHolder ArgTy(Type::getVoidTy(Context));
1386    unsigned ArgAttrs1 = Attribute::None;
1387    unsigned ArgAttrs2 = Attribute::None;
1388    Value *V;
1389    if (ParseType(ArgTy, ArgLoc))
1390      return true;
1391
1392    // Otherwise, handle normal operands.
1393    if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1394        ParseValue(ArgTy, V, PFS) ||
1395        // FIXME: Should not allow attributes after the argument, remove this
1396        // in LLVM 3.0.
1397        ParseOptionalAttrs(ArgAttrs2, 3))
1398      return true;
1399    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1400  }
1401
1402  Lex.Lex();  // Lex the ')'.
1403  return false;
1404}
1405
1406
1407
1408/// ParseArgumentList - Parse the argument list for a function type or function
1409/// prototype.  If 'inType' is true then we are parsing a FunctionType.
1410///   ::= '(' ArgTypeListI ')'
1411/// ArgTypeListI
1412///   ::= /*empty*/
1413///   ::= '...'
1414///   ::= ArgTypeList ',' '...'
1415///   ::= ArgType (',' ArgType)*
1416///
1417bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1418                                 bool &isVarArg, bool inType) {
1419  isVarArg = false;
1420  assert(Lex.getKind() == lltok::lparen);
1421  Lex.Lex(); // eat the (.
1422
1423  if (Lex.getKind() == lltok::rparen) {
1424    // empty
1425  } else if (Lex.getKind() == lltok::dotdotdot) {
1426    isVarArg = true;
1427    Lex.Lex();
1428  } else {
1429    LocTy TypeLoc = Lex.getLoc();
1430    PATypeHolder ArgTy(Type::getVoidTy(Context));
1431    unsigned Attrs;
1432    std::string Name;
1433
1434    // If we're parsing a type, use ParseTypeRec, because we allow recursive
1435    // types (such as a function returning a pointer to itself).  If parsing a
1436    // function prototype, we require fully resolved types.
1437    if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1438        ParseOptionalAttrs(Attrs, 0)) return true;
1439
1440    if (ArgTy->isVoidTy())
1441      return Error(TypeLoc, "argument can not have void type");
1442
1443    if (Lex.getKind() == lltok::LocalVar ||
1444        Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1445      Name = Lex.getStrVal();
1446      Lex.Lex();
1447    }
1448
1449    if (!FunctionType::isValidArgumentType(ArgTy))
1450      return Error(TypeLoc, "invalid type for function argument");
1451
1452    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1453
1454    while (EatIfPresent(lltok::comma)) {
1455      // Handle ... at end of arg list.
1456      if (EatIfPresent(lltok::dotdotdot)) {
1457        isVarArg = true;
1458        break;
1459      }
1460
1461      // Otherwise must be an argument type.
1462      TypeLoc = Lex.getLoc();
1463      if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1464          ParseOptionalAttrs(Attrs, 0)) return true;
1465
1466      if (ArgTy->isVoidTy())
1467        return Error(TypeLoc, "argument can not have void type");
1468
1469      if (Lex.getKind() == lltok::LocalVar ||
1470          Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1471        Name = Lex.getStrVal();
1472        Lex.Lex();
1473      } else {
1474        Name = "";
1475      }
1476
1477      if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
1478        return Error(TypeLoc, "invalid type for function argument");
1479
1480      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1481    }
1482  }
1483
1484  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1485}
1486
1487/// ParseFunctionType
1488///  ::= Type ArgumentList OptionalAttrs
1489bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1490  assert(Lex.getKind() == lltok::lparen);
1491
1492  if (!FunctionType::isValidReturnType(Result))
1493    return TokError("invalid function return type");
1494
1495  std::vector<ArgInfo> ArgList;
1496  bool isVarArg;
1497  unsigned Attrs;
1498  if (ParseArgumentList(ArgList, isVarArg, true) ||
1499      // FIXME: Allow, but ignore attributes on function types!
1500      // FIXME: Remove in LLVM 3.0
1501      ParseOptionalAttrs(Attrs, 2))
1502    return true;
1503
1504  // Reject names on the arguments lists.
1505  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1506    if (!ArgList[i].Name.empty())
1507      return Error(ArgList[i].Loc, "argument name invalid in function type");
1508    if (!ArgList[i].Attrs != 0) {
1509      // Allow but ignore attributes on function types; this permits
1510      // auto-upgrade.
1511      // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1512    }
1513  }
1514
1515  std::vector<const Type*> ArgListTy;
1516  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1517    ArgListTy.push_back(ArgList[i].Type);
1518
1519  Result = HandleUpRefs(FunctionType::get(Result.get(),
1520                                                ArgListTy, isVarArg));
1521  return false;
1522}
1523
1524/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1525///   TypeRec
1526///     ::= '{' '}'
1527///     ::= '{' TypeRec (',' TypeRec)* '}'
1528///     ::= '<' '{' '}' '>'
1529///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1530bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1531  assert(Lex.getKind() == lltok::lbrace);
1532  Lex.Lex(); // Consume the '{'
1533
1534  if (EatIfPresent(lltok::rbrace)) {
1535    Result = StructType::get(Context, Packed);
1536    return false;
1537  }
1538
1539  std::vector<PATypeHolder> ParamsList;
1540  LocTy EltTyLoc = Lex.getLoc();
1541  if (ParseTypeRec(Result)) return true;
1542  ParamsList.push_back(Result);
1543
1544  if (Result->isVoidTy())
1545    return Error(EltTyLoc, "struct element can not have void type");
1546  if (!StructType::isValidElementType(Result))
1547    return Error(EltTyLoc, "invalid element type for struct");
1548
1549  while (EatIfPresent(lltok::comma)) {
1550    EltTyLoc = Lex.getLoc();
1551    if (ParseTypeRec(Result)) return true;
1552
1553    if (Result->isVoidTy())
1554      return Error(EltTyLoc, "struct element can not have void type");
1555    if (!StructType::isValidElementType(Result))
1556      return Error(EltTyLoc, "invalid element type for struct");
1557
1558    ParamsList.push_back(Result);
1559  }
1560
1561  if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1562    return true;
1563
1564  std::vector<const Type*> ParamsListTy;
1565  for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1566    ParamsListTy.push_back(ParamsList[i].get());
1567  Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1568  return false;
1569}
1570
1571/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1572/// token has already been consumed.
1573///   TypeRec
1574///     ::= '[' APSINTVAL 'x' Types ']'
1575///     ::= '<' APSINTVAL 'x' Types '>'
1576bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1577  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1578      Lex.getAPSIntVal().getBitWidth() > 64)
1579    return TokError("expected number in address space");
1580
1581  LocTy SizeLoc = Lex.getLoc();
1582  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1583  Lex.Lex();
1584
1585  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1586      return true;
1587
1588  LocTy TypeLoc = Lex.getLoc();
1589  PATypeHolder EltTy(Type::getVoidTy(Context));
1590  if (ParseTypeRec(EltTy)) return true;
1591
1592  if (EltTy->isVoidTy())
1593    return Error(TypeLoc, "array and vector element type cannot be void");
1594
1595  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1596                 "expected end of sequential type"))
1597    return true;
1598
1599  if (isVector) {
1600    if (Size == 0)
1601      return Error(SizeLoc, "zero element vector is illegal");
1602    if ((unsigned)Size != Size)
1603      return Error(SizeLoc, "size too large for vector");
1604    if (!VectorType::isValidElementType(EltTy))
1605      return Error(TypeLoc, "vector element type must be fp or integer");
1606    Result = VectorType::get(EltTy, unsigned(Size));
1607  } else {
1608    if (!ArrayType::isValidElementType(EltTy))
1609      return Error(TypeLoc, "invalid array element type");
1610    Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1611  }
1612  return false;
1613}
1614
1615//===----------------------------------------------------------------------===//
1616// Function Semantic Analysis.
1617//===----------------------------------------------------------------------===//
1618
1619LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1620                                             int functionNumber)
1621  : P(p), F(f), FunctionNumber(functionNumber) {
1622
1623  // Insert unnamed arguments into the NumberedVals list.
1624  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1625       AI != E; ++AI)
1626    if (!AI->hasName())
1627      NumberedVals.push_back(AI);
1628}
1629
1630LLParser::PerFunctionState::~PerFunctionState() {
1631  // If there were any forward referenced non-basicblock values, delete them.
1632  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1633       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1634    if (!isa<BasicBlock>(I->second.first)) {
1635      I->second.first->replaceAllUsesWith(
1636                           UndefValue::get(I->second.first->getType()));
1637      delete I->second.first;
1638      I->second.first = 0;
1639    }
1640
1641  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1642       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1643    if (!isa<BasicBlock>(I->second.first)) {
1644      I->second.first->replaceAllUsesWith(
1645                           UndefValue::get(I->second.first->getType()));
1646      delete I->second.first;
1647      I->second.first = 0;
1648    }
1649}
1650
1651bool LLParser::PerFunctionState::FinishFunction() {
1652  // Check to see if someone took the address of labels in this block.
1653  if (!P.ForwardRefBlockAddresses.empty()) {
1654    ValID FunctionID;
1655    if (!F.getName().empty()) {
1656      FunctionID.Kind = ValID::t_GlobalName;
1657      FunctionID.StrVal = F.getName();
1658    } else {
1659      FunctionID.Kind = ValID::t_GlobalID;
1660      FunctionID.UIntVal = FunctionNumber;
1661    }
1662
1663    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1664      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1665    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1666      // Resolve all these references.
1667      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1668        return true;
1669
1670      P.ForwardRefBlockAddresses.erase(FRBAI);
1671    }
1672  }
1673
1674  if (!ForwardRefVals.empty())
1675    return P.Error(ForwardRefVals.begin()->second.second,
1676                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1677                   "'");
1678  if (!ForwardRefValIDs.empty())
1679    return P.Error(ForwardRefValIDs.begin()->second.second,
1680                   "use of undefined value '%" +
1681                   utostr(ForwardRefValIDs.begin()->first) + "'");
1682  return false;
1683}
1684
1685
1686/// GetVal - Get a value with the specified name or ID, creating a
1687/// forward reference record if needed.  This can return null if the value
1688/// exists but does not have the right type.
1689Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1690                                          const Type *Ty, LocTy Loc) {
1691  // Look this name up in the normal function symbol table.
1692  Value *Val = F.getValueSymbolTable().lookup(Name);
1693
1694  // If this is a forward reference for the value, see if we already created a
1695  // forward ref record.
1696  if (Val == 0) {
1697    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1698      I = ForwardRefVals.find(Name);
1699    if (I != ForwardRefVals.end())
1700      Val = I->second.first;
1701  }
1702
1703  // If we have the value in the symbol table or fwd-ref table, return it.
1704  if (Val) {
1705    if (Val->getType() == Ty) return Val;
1706    if (Ty->isLabelTy())
1707      P.Error(Loc, "'%" + Name + "' is not a basic block");
1708    else
1709      P.Error(Loc, "'%" + Name + "' defined with type '" +
1710              Val->getType()->getDescription() + "'");
1711    return 0;
1712  }
1713
1714  // Don't make placeholders with invalid type.
1715  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1716      Ty != Type::getLabelTy(F.getContext())) {
1717    P.Error(Loc, "invalid use of a non-first-class type");
1718    return 0;
1719  }
1720
1721  // Otherwise, create a new forward reference for this value and remember it.
1722  Value *FwdVal;
1723  if (Ty->isLabelTy())
1724    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1725  else
1726    FwdVal = new Argument(Ty, Name);
1727
1728  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1729  return FwdVal;
1730}
1731
1732Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1733                                          LocTy Loc) {
1734  // Look this name up in the normal function symbol table.
1735  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1736
1737  // If this is a forward reference for the value, see if we already created a
1738  // forward ref record.
1739  if (Val == 0) {
1740    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1741      I = ForwardRefValIDs.find(ID);
1742    if (I != ForwardRefValIDs.end())
1743      Val = I->second.first;
1744  }
1745
1746  // If we have the value in the symbol table or fwd-ref table, return it.
1747  if (Val) {
1748    if (Val->getType() == Ty) return Val;
1749    if (Ty->isLabelTy())
1750      P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
1751    else
1752      P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
1753              Val->getType()->getDescription() + "'");
1754    return 0;
1755  }
1756
1757  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) &&
1758      Ty != Type::getLabelTy(F.getContext())) {
1759    P.Error(Loc, "invalid use of a non-first-class type");
1760    return 0;
1761  }
1762
1763  // Otherwise, create a new forward reference for this value and remember it.
1764  Value *FwdVal;
1765  if (Ty->isLabelTy())
1766    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1767  else
1768    FwdVal = new Argument(Ty);
1769
1770  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1771  return FwdVal;
1772}
1773
1774/// SetInstName - After an instruction is parsed and inserted into its
1775/// basic block, this installs its name.
1776bool LLParser::PerFunctionState::SetInstName(int NameID,
1777                                             const std::string &NameStr,
1778                                             LocTy NameLoc, Instruction *Inst) {
1779  // If this instruction has void type, it cannot have a name or ID specified.
1780  if (Inst->getType()->isVoidTy()) {
1781    if (NameID != -1 || !NameStr.empty())
1782      return P.Error(NameLoc, "instructions returning void cannot have a name");
1783    return false;
1784  }
1785
1786  // If this was a numbered instruction, verify that the instruction is the
1787  // expected value and resolve any forward references.
1788  if (NameStr.empty()) {
1789    // If neither a name nor an ID was specified, just use the next ID.
1790    if (NameID == -1)
1791      NameID = NumberedVals.size();
1792
1793    if (unsigned(NameID) != NumberedVals.size())
1794      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1795                     utostr(NumberedVals.size()) + "'");
1796
1797    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1798      ForwardRefValIDs.find(NameID);
1799    if (FI != ForwardRefValIDs.end()) {
1800      if (FI->second.first->getType() != Inst->getType())
1801        return P.Error(NameLoc, "instruction forward referenced with type '" +
1802                       FI->second.first->getType()->getDescription() + "'");
1803      FI->second.first->replaceAllUsesWith(Inst);
1804      delete FI->second.first;
1805      ForwardRefValIDs.erase(FI);
1806    }
1807
1808    NumberedVals.push_back(Inst);
1809    return false;
1810  }
1811
1812  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1813  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1814    FI = ForwardRefVals.find(NameStr);
1815  if (FI != ForwardRefVals.end()) {
1816    if (FI->second.first->getType() != Inst->getType())
1817      return P.Error(NameLoc, "instruction forward referenced with type '" +
1818                     FI->second.first->getType()->getDescription() + "'");
1819    FI->second.first->replaceAllUsesWith(Inst);
1820    delete FI->second.first;
1821    ForwardRefVals.erase(FI);
1822  }
1823
1824  // Set the name on the instruction.
1825  Inst->setName(NameStr);
1826
1827  if (Inst->getNameStr() != NameStr)
1828    return P.Error(NameLoc, "multiple definition of local value named '" +
1829                   NameStr + "'");
1830  return false;
1831}
1832
1833/// GetBB - Get a basic block with the specified name or ID, creating a
1834/// forward reference record if needed.
1835BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1836                                              LocTy Loc) {
1837  return cast_or_null<BasicBlock>(GetVal(Name,
1838                                        Type::getLabelTy(F.getContext()), Loc));
1839}
1840
1841BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1842  return cast_or_null<BasicBlock>(GetVal(ID,
1843                                        Type::getLabelTy(F.getContext()), Loc));
1844}
1845
1846/// DefineBB - Define the specified basic block, which is either named or
1847/// unnamed.  If there is an error, this returns null otherwise it returns
1848/// the block being defined.
1849BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1850                                                 LocTy Loc) {
1851  BasicBlock *BB;
1852  if (Name.empty())
1853    BB = GetBB(NumberedVals.size(), Loc);
1854  else
1855    BB = GetBB(Name, Loc);
1856  if (BB == 0) return 0; // Already diagnosed error.
1857
1858  // Move the block to the end of the function.  Forward ref'd blocks are
1859  // inserted wherever they happen to be referenced.
1860  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1861
1862  // Remove the block from forward ref sets.
1863  if (Name.empty()) {
1864    ForwardRefValIDs.erase(NumberedVals.size());
1865    NumberedVals.push_back(BB);
1866  } else {
1867    // BB forward references are already in the function symbol table.
1868    ForwardRefVals.erase(Name);
1869  }
1870
1871  return BB;
1872}
1873
1874//===----------------------------------------------------------------------===//
1875// Constants.
1876//===----------------------------------------------------------------------===//
1877
1878/// ParseValID - Parse an abstract value that doesn't necessarily have a
1879/// type implied.  For example, if we parse "4" we don't know what integer type
1880/// it has.  The value will later be combined with its type and checked for
1881/// sanity.
1882bool LLParser::ParseValID(ValID &ID) {
1883  ID.Loc = Lex.getLoc();
1884  switch (Lex.getKind()) {
1885  default: return TokError("expected value token");
1886  case lltok::GlobalID:  // @42
1887    ID.UIntVal = Lex.getUIntVal();
1888    ID.Kind = ValID::t_GlobalID;
1889    break;
1890  case lltok::GlobalVar:  // @foo
1891    ID.StrVal = Lex.getStrVal();
1892    ID.Kind = ValID::t_GlobalName;
1893    break;
1894  case lltok::LocalVarID:  // %42
1895    ID.UIntVal = Lex.getUIntVal();
1896    ID.Kind = ValID::t_LocalID;
1897    break;
1898  case lltok::LocalVar:  // %foo
1899  case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
1900    ID.StrVal = Lex.getStrVal();
1901    ID.Kind = ValID::t_LocalName;
1902    break;
1903  case lltok::exclaim:   // !{...} MDNode, !"foo" MDString
1904    Lex.Lex();
1905
1906    // FIXME: This doesn't belong here.
1907    if (EatIfPresent(lltok::lbrace)) {
1908      SmallVector<Value*, 16> Elts;
1909      if (ParseMDNodeVector(Elts) ||
1910          ParseToken(lltok::rbrace, "expected end of metadata node"))
1911        return true;
1912
1913      ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
1914      ID.Kind = ValID::t_MDNode;
1915      return false;
1916    }
1917
1918    // Standalone metadata reference
1919    // !{ ..., !42, ... }
1920    if (Lex.getKind() == lltok::APSInt) {
1921      if (ParseMDNodeID(ID.MDNodeVal)) return true;
1922      ID.Kind = ValID::t_MDNode;
1923      return false;
1924    }
1925
1926    // MDString:
1927    //   ::= '!' STRINGCONSTANT
1928    if (ParseMDString(ID.MDStringVal)) return true;
1929    ID.Kind = ValID::t_MDString;
1930    return false;
1931  case lltok::APSInt:
1932    ID.APSIntVal = Lex.getAPSIntVal();
1933    ID.Kind = ValID::t_APSInt;
1934    break;
1935  case lltok::APFloat:
1936    ID.APFloatVal = Lex.getAPFloatVal();
1937    ID.Kind = ValID::t_APFloat;
1938    break;
1939  case lltok::kw_true:
1940    ID.ConstantVal = ConstantInt::getTrue(Context);
1941    ID.Kind = ValID::t_Constant;
1942    break;
1943  case lltok::kw_false:
1944    ID.ConstantVal = ConstantInt::getFalse(Context);
1945    ID.Kind = ValID::t_Constant;
1946    break;
1947  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
1948  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
1949  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
1950
1951  case lltok::lbrace: {
1952    // ValID ::= '{' ConstVector '}'
1953    Lex.Lex();
1954    SmallVector<Constant*, 16> Elts;
1955    if (ParseGlobalValueVector(Elts) ||
1956        ParseToken(lltok::rbrace, "expected end of struct constant"))
1957      return true;
1958
1959    ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
1960                                         Elts.size(), false);
1961    ID.Kind = ValID::t_Constant;
1962    return false;
1963  }
1964  case lltok::less: {
1965    // ValID ::= '<' ConstVector '>'         --> Vector.
1966    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
1967    Lex.Lex();
1968    bool isPackedStruct = EatIfPresent(lltok::lbrace);
1969
1970    SmallVector<Constant*, 16> Elts;
1971    LocTy FirstEltLoc = Lex.getLoc();
1972    if (ParseGlobalValueVector(Elts) ||
1973        (isPackedStruct &&
1974         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
1975        ParseToken(lltok::greater, "expected end of constant"))
1976      return true;
1977
1978    if (isPackedStruct) {
1979      ID.ConstantVal =
1980        ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
1981      ID.Kind = ValID::t_Constant;
1982      return false;
1983    }
1984
1985    if (Elts.empty())
1986      return Error(ID.Loc, "constant vector must not be empty");
1987
1988    if (!Elts[0]->getType()->isInteger() &&
1989        !Elts[0]->getType()->isFloatingPoint())
1990      return Error(FirstEltLoc,
1991                   "vector elements must have integer or floating point type");
1992
1993    // Verify that all the vector elements have the same type.
1994    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
1995      if (Elts[i]->getType() != Elts[0]->getType())
1996        return Error(FirstEltLoc,
1997                     "vector element #" + utostr(i) +
1998                    " is not of type '" + Elts[0]->getType()->getDescription());
1999
2000    ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2001    ID.Kind = ValID::t_Constant;
2002    return false;
2003  }
2004  case lltok::lsquare: {   // Array Constant
2005    Lex.Lex();
2006    SmallVector<Constant*, 16> Elts;
2007    LocTy FirstEltLoc = Lex.getLoc();
2008    if (ParseGlobalValueVector(Elts) ||
2009        ParseToken(lltok::rsquare, "expected end of array constant"))
2010      return true;
2011
2012    // Handle empty element.
2013    if (Elts.empty()) {
2014      // Use undef instead of an array because it's inconvenient to determine
2015      // the element type at this point, there being no elements to examine.
2016      ID.Kind = ValID::t_EmptyArray;
2017      return false;
2018    }
2019
2020    if (!Elts[0]->getType()->isFirstClassType())
2021      return Error(FirstEltLoc, "invalid array element type: " +
2022                   Elts[0]->getType()->getDescription());
2023
2024    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2025
2026    // Verify all elements are correct type!
2027    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2028      if (Elts[i]->getType() != Elts[0]->getType())
2029        return Error(FirstEltLoc,
2030                     "array element #" + utostr(i) +
2031                     " is not of type '" +Elts[0]->getType()->getDescription());
2032    }
2033
2034    ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2035    ID.Kind = ValID::t_Constant;
2036    return false;
2037  }
2038  case lltok::kw_c:  // c "foo"
2039    Lex.Lex();
2040    ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2041    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2042    ID.Kind = ValID::t_Constant;
2043    return false;
2044
2045  case lltok::kw_asm: {
2046    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2047    bool HasSideEffect, AlignStack;
2048    Lex.Lex();
2049    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2050        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2051        ParseStringConstant(ID.StrVal) ||
2052        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2053        ParseToken(lltok::StringConstant, "expected constraint string"))
2054      return true;
2055    ID.StrVal2 = Lex.getStrVal();
2056    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2057    ID.Kind = ValID::t_InlineAsm;
2058    return false;
2059  }
2060
2061  case lltok::kw_blockaddress: {
2062    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2063    Lex.Lex();
2064
2065    ValID Fn, Label;
2066    LocTy FnLoc, LabelLoc;
2067
2068    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2069        ParseValID(Fn) ||
2070        ParseToken(lltok::comma, "expected comma in block address expression")||
2071        ParseValID(Label) ||
2072        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2073      return true;
2074
2075    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2076      return Error(Fn.Loc, "expected function name in blockaddress");
2077    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2078      return Error(Label.Loc, "expected basic block name in blockaddress");
2079
2080    // Make a global variable as a placeholder for this reference.
2081    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2082                                           false, GlobalValue::InternalLinkage,
2083                                                0, "");
2084    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2085    ID.ConstantVal = FwdRef;
2086    ID.Kind = ValID::t_Constant;
2087    return false;
2088  }
2089
2090  case lltok::kw_trunc:
2091  case lltok::kw_zext:
2092  case lltok::kw_sext:
2093  case lltok::kw_fptrunc:
2094  case lltok::kw_fpext:
2095  case lltok::kw_bitcast:
2096  case lltok::kw_uitofp:
2097  case lltok::kw_sitofp:
2098  case lltok::kw_fptoui:
2099  case lltok::kw_fptosi:
2100  case lltok::kw_inttoptr:
2101  case lltok::kw_ptrtoint: {
2102    unsigned Opc = Lex.getUIntVal();
2103    PATypeHolder DestTy(Type::getVoidTy(Context));
2104    Constant *SrcVal;
2105    Lex.Lex();
2106    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2107        ParseGlobalTypeAndValue(SrcVal) ||
2108        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2109        ParseType(DestTy) ||
2110        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2111      return true;
2112    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2113      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2114                   SrcVal->getType()->getDescription() + "' to '" +
2115                   DestTy->getDescription() + "'");
2116    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2117                                                 SrcVal, DestTy);
2118    ID.Kind = ValID::t_Constant;
2119    return false;
2120  }
2121  case lltok::kw_extractvalue: {
2122    Lex.Lex();
2123    Constant *Val;
2124    SmallVector<unsigned, 4> Indices;
2125    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2126        ParseGlobalTypeAndValue(Val) ||
2127        ParseIndexList(Indices) ||
2128        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2129      return true;
2130
2131    if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
2132      return Error(ID.Loc, "extractvalue operand must be array or struct");
2133    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2134                                          Indices.end()))
2135      return Error(ID.Loc, "invalid indices for extractvalue");
2136    ID.ConstantVal =
2137      ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2138    ID.Kind = ValID::t_Constant;
2139    return false;
2140  }
2141  case lltok::kw_insertvalue: {
2142    Lex.Lex();
2143    Constant *Val0, *Val1;
2144    SmallVector<unsigned, 4> Indices;
2145    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2146        ParseGlobalTypeAndValue(Val0) ||
2147        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2148        ParseGlobalTypeAndValue(Val1) ||
2149        ParseIndexList(Indices) ||
2150        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2151      return true;
2152    if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
2153      return Error(ID.Loc, "extractvalue operand must be array or struct");
2154    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2155                                          Indices.end()))
2156      return Error(ID.Loc, "invalid indices for insertvalue");
2157    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2158                       Indices.data(), Indices.size());
2159    ID.Kind = ValID::t_Constant;
2160    return false;
2161  }
2162  case lltok::kw_icmp:
2163  case lltok::kw_fcmp: {
2164    unsigned PredVal, Opc = Lex.getUIntVal();
2165    Constant *Val0, *Val1;
2166    Lex.Lex();
2167    if (ParseCmpPredicate(PredVal, Opc) ||
2168        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2169        ParseGlobalTypeAndValue(Val0) ||
2170        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2171        ParseGlobalTypeAndValue(Val1) ||
2172        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2173      return true;
2174
2175    if (Val0->getType() != Val1->getType())
2176      return Error(ID.Loc, "compare operands must have the same type");
2177
2178    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2179
2180    if (Opc == Instruction::FCmp) {
2181      if (!Val0->getType()->isFPOrFPVector())
2182        return Error(ID.Loc, "fcmp requires floating point operands");
2183      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2184    } else {
2185      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2186      if (!Val0->getType()->isIntOrIntVector() &&
2187          !isa<PointerType>(Val0->getType()))
2188        return Error(ID.Loc, "icmp requires pointer or integer operands");
2189      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2190    }
2191    ID.Kind = ValID::t_Constant;
2192    return false;
2193  }
2194
2195  // Binary Operators.
2196  case lltok::kw_add:
2197  case lltok::kw_fadd:
2198  case lltok::kw_sub:
2199  case lltok::kw_fsub:
2200  case lltok::kw_mul:
2201  case lltok::kw_fmul:
2202  case lltok::kw_udiv:
2203  case lltok::kw_sdiv:
2204  case lltok::kw_fdiv:
2205  case lltok::kw_urem:
2206  case lltok::kw_srem:
2207  case lltok::kw_frem: {
2208    bool NUW = false;
2209    bool NSW = false;
2210    bool Exact = false;
2211    unsigned Opc = Lex.getUIntVal();
2212    Constant *Val0, *Val1;
2213    Lex.Lex();
2214    LocTy ModifierLoc = Lex.getLoc();
2215    if (Opc == Instruction::Add ||
2216        Opc == Instruction::Sub ||
2217        Opc == Instruction::Mul) {
2218      if (EatIfPresent(lltok::kw_nuw))
2219        NUW = true;
2220      if (EatIfPresent(lltok::kw_nsw)) {
2221        NSW = true;
2222        if (EatIfPresent(lltok::kw_nuw))
2223          NUW = true;
2224      }
2225    } else if (Opc == Instruction::SDiv) {
2226      if (EatIfPresent(lltok::kw_exact))
2227        Exact = true;
2228    }
2229    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2230        ParseGlobalTypeAndValue(Val0) ||
2231        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2232        ParseGlobalTypeAndValue(Val1) ||
2233        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2234      return true;
2235    if (Val0->getType() != Val1->getType())
2236      return Error(ID.Loc, "operands of constexpr must have same type");
2237    if (!Val0->getType()->isIntOrIntVector()) {
2238      if (NUW)
2239        return Error(ModifierLoc, "nuw only applies to integer operations");
2240      if (NSW)
2241        return Error(ModifierLoc, "nsw only applies to integer operations");
2242    }
2243    // API compatibility: Accept either integer or floating-point types with
2244    // add, sub, and mul.
2245    if (!Val0->getType()->isIntOrIntVector() &&
2246        !Val0->getType()->isFPOrFPVector())
2247      return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
2248    unsigned Flags = 0;
2249    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2250    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2251    if (Exact) Flags |= SDivOperator::IsExact;
2252    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2253    ID.ConstantVal = C;
2254    ID.Kind = ValID::t_Constant;
2255    return false;
2256  }
2257
2258  // Logical Operations
2259  case lltok::kw_shl:
2260  case lltok::kw_lshr:
2261  case lltok::kw_ashr:
2262  case lltok::kw_and:
2263  case lltok::kw_or:
2264  case lltok::kw_xor: {
2265    unsigned Opc = Lex.getUIntVal();
2266    Constant *Val0, *Val1;
2267    Lex.Lex();
2268    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2269        ParseGlobalTypeAndValue(Val0) ||
2270        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2271        ParseGlobalTypeAndValue(Val1) ||
2272        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2273      return true;
2274    if (Val0->getType() != Val1->getType())
2275      return Error(ID.Loc, "operands of constexpr must have same type");
2276    if (!Val0->getType()->isIntOrIntVector())
2277      return Error(ID.Loc,
2278                   "constexpr requires integer or integer vector operands");
2279    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2280    ID.Kind = ValID::t_Constant;
2281    return false;
2282  }
2283
2284  case lltok::kw_getelementptr:
2285  case lltok::kw_shufflevector:
2286  case lltok::kw_insertelement:
2287  case lltok::kw_extractelement:
2288  case lltok::kw_select: {
2289    unsigned Opc = Lex.getUIntVal();
2290    SmallVector<Constant*, 16> Elts;
2291    bool InBounds = false;
2292    Lex.Lex();
2293    if (Opc == Instruction::GetElementPtr)
2294      InBounds = EatIfPresent(lltok::kw_inbounds);
2295    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2296        ParseGlobalValueVector(Elts) ||
2297        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2298      return true;
2299
2300    if (Opc == Instruction::GetElementPtr) {
2301      if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
2302        return Error(ID.Loc, "getelementptr requires pointer operand");
2303
2304      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2305                                             (Value**)(Elts.data() + 1),
2306                                             Elts.size() - 1))
2307        return Error(ID.Loc, "invalid indices for getelementptr");
2308      ID.ConstantVal = InBounds ?
2309        ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2310                                               Elts.data() + 1,
2311                                               Elts.size() - 1) :
2312        ConstantExpr::getGetElementPtr(Elts[0],
2313                                       Elts.data() + 1, Elts.size() - 1);
2314    } else if (Opc == Instruction::Select) {
2315      if (Elts.size() != 3)
2316        return Error(ID.Loc, "expected three operands to select");
2317      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2318                                                              Elts[2]))
2319        return Error(ID.Loc, Reason);
2320      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2321    } else if (Opc == Instruction::ShuffleVector) {
2322      if (Elts.size() != 3)
2323        return Error(ID.Loc, "expected three operands to shufflevector");
2324      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2325        return Error(ID.Loc, "invalid operands to shufflevector");
2326      ID.ConstantVal =
2327                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2328    } else if (Opc == Instruction::ExtractElement) {
2329      if (Elts.size() != 2)
2330        return Error(ID.Loc, "expected two operands to extractelement");
2331      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2332        return Error(ID.Loc, "invalid extractelement operands");
2333      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2334    } else {
2335      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2336      if (Elts.size() != 3)
2337      return Error(ID.Loc, "expected three operands to insertelement");
2338      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2339        return Error(ID.Loc, "invalid insertelement operands");
2340      ID.ConstantVal =
2341                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2342    }
2343
2344    ID.Kind = ValID::t_Constant;
2345    return false;
2346  }
2347  }
2348
2349  Lex.Lex();
2350  return false;
2351}
2352
2353/// ParseGlobalValue - Parse a global value with the specified type.
2354bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
2355  V = 0;
2356  ValID ID;
2357  return ParseValID(ID) ||
2358         ConvertGlobalValIDToValue(Ty, ID, V);
2359}
2360
2361/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
2362/// constant.
2363bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
2364                                         Constant *&V) {
2365  if (isa<FunctionType>(Ty))
2366    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2367
2368  switch (ID.Kind) {
2369  default: llvm_unreachable("Unknown ValID!");
2370  case ValID::t_MDNode:
2371  case ValID::t_MDString:
2372    return Error(ID.Loc, "invalid use of metadata");
2373  case ValID::t_LocalID:
2374  case ValID::t_LocalName:
2375    return Error(ID.Loc, "invalid use of function-local name");
2376  case ValID::t_InlineAsm:
2377    return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
2378  case ValID::t_GlobalName:
2379    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2380    return V == 0;
2381  case ValID::t_GlobalID:
2382    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2383    return V == 0;
2384  case ValID::t_APSInt:
2385    if (!isa<IntegerType>(Ty))
2386      return Error(ID.Loc, "integer constant must have integer type");
2387    ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2388    V = ConstantInt::get(Context, ID.APSIntVal);
2389    return false;
2390  case ValID::t_APFloat:
2391    if (!Ty->isFloatingPoint() ||
2392        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2393      return Error(ID.Loc, "floating point constant invalid for type");
2394
2395    // The lexer has no type info, so builds all float and double FP constants
2396    // as double.  Fix this here.  Long double does not need this.
2397    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2398        Ty->isFloatTy()) {
2399      bool Ignored;
2400      ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2401                            &Ignored);
2402    }
2403    V = ConstantFP::get(Context, ID.APFloatVal);
2404
2405    if (V->getType() != Ty)
2406      return Error(ID.Loc, "floating point constant does not have type '" +
2407                   Ty->getDescription() + "'");
2408
2409    return false;
2410  case ValID::t_Null:
2411    if (!isa<PointerType>(Ty))
2412      return Error(ID.Loc, "null must be a pointer type");
2413    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2414    return false;
2415  case ValID::t_Undef:
2416    // FIXME: LabelTy should not be a first-class type.
2417    if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2418        !isa<OpaqueType>(Ty))
2419      return Error(ID.Loc, "invalid type for undef constant");
2420    V = UndefValue::get(Ty);
2421    return false;
2422  case ValID::t_EmptyArray:
2423    if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
2424      return Error(ID.Loc, "invalid empty array initializer");
2425    V = UndefValue::get(Ty);
2426    return false;
2427  case ValID::t_Zero:
2428    // FIXME: LabelTy should not be a first-class type.
2429    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2430      return Error(ID.Loc, "invalid type for null constant");
2431    V = Constant::getNullValue(Ty);
2432    return false;
2433  case ValID::t_Constant:
2434    if (ID.ConstantVal->getType() != Ty)
2435      return Error(ID.Loc, "constant expression type mismatch");
2436    V = ID.ConstantVal;
2437    return false;
2438  }
2439}
2440
2441/// ConvertGlobalOrMetadataValIDToValue - Apply a type to a ValID to get a fully
2442/// resolved constant or metadata value.
2443bool LLParser::ConvertGlobalOrMetadataValIDToValue(const Type *Ty, ValID &ID,
2444                                                   Value *&V) {
2445  switch (ID.Kind) {
2446  case ValID::t_MDNode:
2447    if (!Ty->isMetadataTy())
2448      return Error(ID.Loc, "metadata value must have metadata type");
2449    V = ID.MDNodeVal;
2450    return false;
2451  case ValID::t_MDString:
2452    if (!Ty->isMetadataTy())
2453      return Error(ID.Loc, "metadata value must have metadata type");
2454    V = ID.MDStringVal;
2455    return false;
2456  default:
2457    Constant *C;
2458    if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
2459    V = C;
2460    return false;
2461  }
2462}
2463
2464
2465bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2466  PATypeHolder Type(Type::getVoidTy(Context));
2467  return ParseType(Type) ||
2468         ParseGlobalValue(Type, V);
2469}
2470
2471/// ParseGlobalValueVector
2472///   ::= /*empty*/
2473///   ::= TypeAndValue (',' TypeAndValue)*
2474bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2475  // Empty list.
2476  if (Lex.getKind() == lltok::rbrace ||
2477      Lex.getKind() == lltok::rsquare ||
2478      Lex.getKind() == lltok::greater ||
2479      Lex.getKind() == lltok::rparen)
2480    return false;
2481
2482  Constant *C;
2483  if (ParseGlobalTypeAndValue(C)) return true;
2484  Elts.push_back(C);
2485
2486  while (EatIfPresent(lltok::comma)) {
2487    if (ParseGlobalTypeAndValue(C)) return true;
2488    Elts.push_back(C);
2489  }
2490
2491  return false;
2492}
2493
2494
2495//===----------------------------------------------------------------------===//
2496// Function Parsing.
2497//===----------------------------------------------------------------------===//
2498
2499bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2500                                   PerFunctionState &PFS) {
2501  switch (ID.Kind) {
2502  case ValID::t_LocalID: V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc); break;
2503  case ValID::t_LocalName: V = PFS.GetVal(ID.StrVal, Ty, ID.Loc); break;
2504  case ValID::t_InlineAsm: {
2505    const PointerType *PTy = dyn_cast<PointerType>(Ty);
2506    const FunctionType *FTy =
2507      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2508    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2509      return Error(ID.Loc, "invalid type for inline asm constraint string");
2510    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2511    return false;
2512  }
2513  default:
2514    return ConvertGlobalOrMetadataValIDToValue(Ty, ID, V);
2515  }
2516
2517  return V == 0;
2518}
2519
2520bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2521  V = 0;
2522  ValID ID;
2523  return ParseValID(ID) ||
2524         ConvertValIDToValue(Ty, ID, V, PFS);
2525}
2526
2527bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2528  PATypeHolder T(Type::getVoidTy(Context));
2529  return ParseType(T) ||
2530         ParseValue(T, V, PFS);
2531}
2532
2533bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2534                                      PerFunctionState &PFS) {
2535  Value *V;
2536  Loc = Lex.getLoc();
2537  if (ParseTypeAndValue(V, PFS)) return true;
2538  if (!isa<BasicBlock>(V))
2539    return Error(Loc, "expected a basic block");
2540  BB = cast<BasicBlock>(V);
2541  return false;
2542}
2543
2544
2545/// FunctionHeader
2546///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2547///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2548///       OptionalAlign OptGC
2549bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2550  // Parse the linkage.
2551  LocTy LinkageLoc = Lex.getLoc();
2552  unsigned Linkage;
2553
2554  unsigned Visibility, RetAttrs;
2555  CallingConv::ID CC;
2556  PATypeHolder RetType(Type::getVoidTy(Context));
2557  LocTy RetTypeLoc = Lex.getLoc();
2558  if (ParseOptionalLinkage(Linkage) ||
2559      ParseOptionalVisibility(Visibility) ||
2560      ParseOptionalCallingConv(CC) ||
2561      ParseOptionalAttrs(RetAttrs, 1) ||
2562      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2563    return true;
2564
2565  // Verify that the linkage is ok.
2566  switch ((GlobalValue::LinkageTypes)Linkage) {
2567  case GlobalValue::ExternalLinkage:
2568    break; // always ok.
2569  case GlobalValue::DLLImportLinkage:
2570  case GlobalValue::ExternalWeakLinkage:
2571    if (isDefine)
2572      return Error(LinkageLoc, "invalid linkage for function definition");
2573    break;
2574  case GlobalValue::PrivateLinkage:
2575  case GlobalValue::LinkerPrivateLinkage:
2576  case GlobalValue::InternalLinkage:
2577  case GlobalValue::AvailableExternallyLinkage:
2578  case GlobalValue::LinkOnceAnyLinkage:
2579  case GlobalValue::LinkOnceODRLinkage:
2580  case GlobalValue::WeakAnyLinkage:
2581  case GlobalValue::WeakODRLinkage:
2582  case GlobalValue::DLLExportLinkage:
2583    if (!isDefine)
2584      return Error(LinkageLoc, "invalid linkage for function declaration");
2585    break;
2586  case GlobalValue::AppendingLinkage:
2587  case GlobalValue::GhostLinkage:
2588  case GlobalValue::CommonLinkage:
2589    return Error(LinkageLoc, "invalid function linkage type");
2590  }
2591
2592  if (!FunctionType::isValidReturnType(RetType) ||
2593      isa<OpaqueType>(RetType))
2594    return Error(RetTypeLoc, "invalid function return type");
2595
2596  LocTy NameLoc = Lex.getLoc();
2597
2598  std::string FunctionName;
2599  if (Lex.getKind() == lltok::GlobalVar) {
2600    FunctionName = Lex.getStrVal();
2601  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2602    unsigned NameID = Lex.getUIntVal();
2603
2604    if (NameID != NumberedVals.size())
2605      return TokError("function expected to be numbered '%" +
2606                      utostr(NumberedVals.size()) + "'");
2607  } else {
2608    return TokError("expected function name");
2609  }
2610
2611  Lex.Lex();
2612
2613  if (Lex.getKind() != lltok::lparen)
2614    return TokError("expected '(' in function argument list");
2615
2616  std::vector<ArgInfo> ArgList;
2617  bool isVarArg;
2618  unsigned FuncAttrs;
2619  std::string Section;
2620  unsigned Alignment;
2621  std::string GC;
2622
2623  if (ParseArgumentList(ArgList, isVarArg, false) ||
2624      ParseOptionalAttrs(FuncAttrs, 2) ||
2625      (EatIfPresent(lltok::kw_section) &&
2626       ParseStringConstant(Section)) ||
2627      ParseOptionalAlignment(Alignment) ||
2628      (EatIfPresent(lltok::kw_gc) &&
2629       ParseStringConstant(GC)))
2630    return true;
2631
2632  // If the alignment was parsed as an attribute, move to the alignment field.
2633  if (FuncAttrs & Attribute::Alignment) {
2634    Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2635    FuncAttrs &= ~Attribute::Alignment;
2636  }
2637
2638  // Okay, if we got here, the function is syntactically valid.  Convert types
2639  // and do semantic checks.
2640  std::vector<const Type*> ParamTypeList;
2641  SmallVector<AttributeWithIndex, 8> Attrs;
2642  // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2643  // attributes.
2644  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2645  if (FuncAttrs & ObsoleteFuncAttrs) {
2646    RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2647    FuncAttrs &= ~ObsoleteFuncAttrs;
2648  }
2649
2650  if (RetAttrs != Attribute::None)
2651    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2652
2653  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2654    ParamTypeList.push_back(ArgList[i].Type);
2655    if (ArgList[i].Attrs != Attribute::None)
2656      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2657  }
2658
2659  if (FuncAttrs != Attribute::None)
2660    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2661
2662  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2663
2664  if (PAL.paramHasAttr(1, Attribute::StructRet) &&
2665      RetType != Type::getVoidTy(Context))
2666    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2667
2668  const FunctionType *FT =
2669    FunctionType::get(RetType, ParamTypeList, isVarArg);
2670  const PointerType *PFT = PointerType::getUnqual(FT);
2671
2672  Fn = 0;
2673  if (!FunctionName.empty()) {
2674    // If this was a definition of a forward reference, remove the definition
2675    // from the forward reference table and fill in the forward ref.
2676    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2677      ForwardRefVals.find(FunctionName);
2678    if (FRVI != ForwardRefVals.end()) {
2679      Fn = M->getFunction(FunctionName);
2680      ForwardRefVals.erase(FRVI);
2681    } else if ((Fn = M->getFunction(FunctionName))) {
2682      // If this function already exists in the symbol table, then it is
2683      // multiply defined.  We accept a few cases for old backwards compat.
2684      // FIXME: Remove this stuff for LLVM 3.0.
2685      if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2686          (!Fn->isDeclaration() && isDefine)) {
2687        // If the redefinition has different type or different attributes,
2688        // reject it.  If both have bodies, reject it.
2689        return Error(NameLoc, "invalid redefinition of function '" +
2690                     FunctionName + "'");
2691      } else if (Fn->isDeclaration()) {
2692        // Make sure to strip off any argument names so we can't get conflicts.
2693        for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2694             AI != AE; ++AI)
2695          AI->setName("");
2696      }
2697    } else if (M->getNamedValue(FunctionName)) {
2698      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2699    }
2700
2701  } else {
2702    // If this is a definition of a forward referenced function, make sure the
2703    // types agree.
2704    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2705      = ForwardRefValIDs.find(NumberedVals.size());
2706    if (I != ForwardRefValIDs.end()) {
2707      Fn = cast<Function>(I->second.first);
2708      if (Fn->getType() != PFT)
2709        return Error(NameLoc, "type of definition and forward reference of '@" +
2710                     utostr(NumberedVals.size()) +"' disagree");
2711      ForwardRefValIDs.erase(I);
2712    }
2713  }
2714
2715  if (Fn == 0)
2716    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2717  else // Move the forward-reference to the correct spot in the module.
2718    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2719
2720  if (FunctionName.empty())
2721    NumberedVals.push_back(Fn);
2722
2723  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2724  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2725  Fn->setCallingConv(CC);
2726  Fn->setAttributes(PAL);
2727  Fn->setAlignment(Alignment);
2728  Fn->setSection(Section);
2729  if (!GC.empty()) Fn->setGC(GC.c_str());
2730
2731  // Add all of the arguments we parsed to the function.
2732  Function::arg_iterator ArgIt = Fn->arg_begin();
2733  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2734    // If we run out of arguments in the Function prototype, exit early.
2735    // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2736    if (ArgIt == Fn->arg_end()) break;
2737
2738    // If the argument has a name, insert it into the argument symbol table.
2739    if (ArgList[i].Name.empty()) continue;
2740
2741    // Set the name, if it conflicted, it will be auto-renamed.
2742    ArgIt->setName(ArgList[i].Name);
2743
2744    if (ArgIt->getNameStr() != ArgList[i].Name)
2745      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2746                   ArgList[i].Name + "'");
2747  }
2748
2749  return false;
2750}
2751
2752
2753/// ParseFunctionBody
2754///   ::= '{' BasicBlock+ '}'
2755///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2756///
2757bool LLParser::ParseFunctionBody(Function &Fn) {
2758  if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2759    return TokError("expected '{' in function body");
2760  Lex.Lex();  // eat the {.
2761
2762  int FunctionNumber = -1;
2763  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2764
2765  PerFunctionState PFS(*this, Fn, FunctionNumber);
2766
2767  while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2768    if (ParseBasicBlock(PFS)) return true;
2769
2770  // Eat the }.
2771  Lex.Lex();
2772
2773  // Verify function is ok.
2774  return PFS.FinishFunction();
2775}
2776
2777/// ParseBasicBlock
2778///   ::= LabelStr? Instruction*
2779bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2780  // If this basic block starts out with a name, remember it.
2781  std::string Name;
2782  LocTy NameLoc = Lex.getLoc();
2783  if (Lex.getKind() == lltok::LabelStr) {
2784    Name = Lex.getStrVal();
2785    Lex.Lex();
2786  }
2787
2788  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2789  if (BB == 0) return true;
2790
2791  std::string NameStr;
2792
2793  // Parse the instructions in this block until we get a terminator.
2794  Instruction *Inst;
2795  do {
2796    // This instruction may have three possibilities for a name: a) none
2797    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2798    LocTy NameLoc = Lex.getLoc();
2799    int NameID = -1;
2800    NameStr = "";
2801
2802    if (Lex.getKind() == lltok::LocalVarID) {
2803      NameID = Lex.getUIntVal();
2804      Lex.Lex();
2805      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2806        return true;
2807    } else if (Lex.getKind() == lltok::LocalVar ||
2808               // FIXME: REMOVE IN LLVM 3.0
2809               Lex.getKind() == lltok::StringConstant) {
2810      NameStr = Lex.getStrVal();
2811      Lex.Lex();
2812      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2813        return true;
2814    }
2815
2816    switch (ParseInstruction(Inst, BB, PFS)) {
2817    default: assert(0 && "Unknown ParseInstruction result!");
2818    case InstError: return true;
2819    case InstNormal:
2820      // With a normal result, we check to see if the instruction is followed by
2821      // a comma and metadata.
2822      if (EatIfPresent(lltok::comma))
2823        if (ParseOptionalCustomMetadata())
2824          return true;
2825      break;
2826    case InstExtraComma:
2827      // If the instruction parser ate an extra comma at the end of it, it
2828      // *must* be followed by metadata.
2829      if (Lex.getKind() != lltok::MetadataVar)
2830        return TokError("expected metadata after comma");
2831      // Parse it.
2832      if (ParseOptionalCustomMetadata())
2833        return true;
2834      break;
2835    }
2836
2837    // Set metadata attached with this instruction.
2838    for (SmallVector<std::pair<unsigned, MDNode *>, 2>::iterator
2839           MDI = MDsOnInst.begin(), MDE = MDsOnInst.end(); MDI != MDE; ++MDI)
2840      Inst->setMetadata(MDI->first, MDI->second);
2841    MDsOnInst.clear();
2842
2843    BB->getInstList().push_back(Inst);
2844
2845    // Set the name on the instruction.
2846    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2847  } while (!isa<TerminatorInst>(Inst));
2848
2849  return false;
2850}
2851
2852//===----------------------------------------------------------------------===//
2853// Instruction Parsing.
2854//===----------------------------------------------------------------------===//
2855
2856/// ParseInstruction - Parse one of the many different instructions.
2857///
2858int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2859                               PerFunctionState &PFS) {
2860  lltok::Kind Token = Lex.getKind();
2861  if (Token == lltok::Eof)
2862    return TokError("found end of file when expecting more instructions");
2863  LocTy Loc = Lex.getLoc();
2864  unsigned KeywordVal = Lex.getUIntVal();
2865  Lex.Lex();  // Eat the keyword.
2866
2867  switch (Token) {
2868  default:                    return Error(Loc, "expected instruction opcode");
2869  // Terminator Instructions.
2870  case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2871  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2872  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2873  case lltok::kw_br:          return ParseBr(Inst, PFS);
2874  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2875  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2876  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2877  // Binary Operators.
2878  case lltok::kw_add:
2879  case lltok::kw_sub:
2880  case lltok::kw_mul: {
2881    bool NUW = false;
2882    bool NSW = false;
2883    LocTy ModifierLoc = Lex.getLoc();
2884    if (EatIfPresent(lltok::kw_nuw))
2885      NUW = true;
2886    if (EatIfPresent(lltok::kw_nsw)) {
2887      NSW = true;
2888      if (EatIfPresent(lltok::kw_nuw))
2889        NUW = true;
2890    }
2891    // API compatibility: Accept either integer or floating-point types.
2892    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 0);
2893    if (!Result) {
2894      if (!Inst->getType()->isIntOrIntVector()) {
2895        if (NUW)
2896          return Error(ModifierLoc, "nuw only applies to integer operations");
2897        if (NSW)
2898          return Error(ModifierLoc, "nsw only applies to integer operations");
2899      }
2900      if (NUW)
2901        cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2902      if (NSW)
2903        cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2904    }
2905    return Result;
2906  }
2907  case lltok::kw_fadd:
2908  case lltok::kw_fsub:
2909  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2910
2911  case lltok::kw_sdiv: {
2912    bool Exact = false;
2913    if (EatIfPresent(lltok::kw_exact))
2914      Exact = true;
2915    bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
2916    if (!Result)
2917      if (Exact)
2918        cast<BinaryOperator>(Inst)->setIsExact(true);
2919    return Result;
2920  }
2921
2922  case lltok::kw_udiv:
2923  case lltok::kw_urem:
2924  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
2925  case lltok::kw_fdiv:
2926  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2927  case lltok::kw_shl:
2928  case lltok::kw_lshr:
2929  case lltok::kw_ashr:
2930  case lltok::kw_and:
2931  case lltok::kw_or:
2932  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
2933  case lltok::kw_icmp:
2934  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
2935  // Casts.
2936  case lltok::kw_trunc:
2937  case lltok::kw_zext:
2938  case lltok::kw_sext:
2939  case lltok::kw_fptrunc:
2940  case lltok::kw_fpext:
2941  case lltok::kw_bitcast:
2942  case lltok::kw_uitofp:
2943  case lltok::kw_sitofp:
2944  case lltok::kw_fptoui:
2945  case lltok::kw_fptosi:
2946  case lltok::kw_inttoptr:
2947  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
2948  // Other.
2949  case lltok::kw_select:         return ParseSelect(Inst, PFS);
2950  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
2951  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
2952  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
2953  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
2954  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
2955  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
2956  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
2957  // Memory.
2958  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
2959  case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
2960  case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
2961  case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
2962  case lltok::kw_store:          return ParseStore(Inst, PFS, false);
2963  case lltok::kw_volatile:
2964    if (EatIfPresent(lltok::kw_load))
2965      return ParseLoad(Inst, PFS, true);
2966    else if (EatIfPresent(lltok::kw_store))
2967      return ParseStore(Inst, PFS, true);
2968    else
2969      return TokError("expected 'load' or 'store'");
2970  case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
2971  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
2972  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
2973  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
2974  }
2975}
2976
2977/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
2978bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
2979  if (Opc == Instruction::FCmp) {
2980    switch (Lex.getKind()) {
2981    default: TokError("expected fcmp predicate (e.g. 'oeq')");
2982    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
2983    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
2984    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
2985    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
2986    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
2987    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
2988    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
2989    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
2990    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
2991    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
2992    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
2993    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
2994    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
2995    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
2996    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
2997    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
2998    }
2999  } else {
3000    switch (Lex.getKind()) {
3001    default: TokError("expected icmp predicate (e.g. 'eq')");
3002    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3003    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3004    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3005    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3006    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3007    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3008    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3009    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3010    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3011    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3012    }
3013  }
3014  Lex.Lex();
3015  return false;
3016}
3017
3018//===----------------------------------------------------------------------===//
3019// Terminator Instructions.
3020//===----------------------------------------------------------------------===//
3021
3022/// ParseRet - Parse a return instruction.
3023///   ::= 'ret' void (',' !dbg, !1)*
3024///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3025///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3026///         [[obsolete: LLVM 3.0]]
3027int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3028                       PerFunctionState &PFS) {
3029  PATypeHolder Ty(Type::getVoidTy(Context));
3030  if (ParseType(Ty, true /*void allowed*/)) return true;
3031
3032  if (Ty->isVoidTy()) {
3033    Inst = ReturnInst::Create(Context);
3034    return false;
3035  }
3036
3037  Value *RV;
3038  if (ParseValue(Ty, RV, PFS)) return true;
3039
3040  bool ExtraComma = false;
3041  if (EatIfPresent(lltok::comma)) {
3042    // Parse optional custom metadata, e.g. !dbg
3043    if (Lex.getKind() == lltok::MetadataVar) {
3044      ExtraComma = true;
3045    } else {
3046      // The normal case is one return value.
3047      // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3048      // use of 'ret {i32,i32} {i32 1, i32 2}'
3049      SmallVector<Value*, 8> RVs;
3050      RVs.push_back(RV);
3051
3052      do {
3053        // If optional custom metadata, e.g. !dbg is seen then this is the
3054        // end of MRV.
3055        if (Lex.getKind() == lltok::MetadataVar)
3056          break;
3057        if (ParseTypeAndValue(RV, PFS)) return true;
3058        RVs.push_back(RV);
3059      } while (EatIfPresent(lltok::comma));
3060
3061      RV = UndefValue::get(PFS.getFunction().getReturnType());
3062      for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3063        Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3064        BB->getInstList().push_back(I);
3065        RV = I;
3066      }
3067    }
3068  }
3069
3070  Inst = ReturnInst::Create(Context, RV);
3071  return ExtraComma ? InstExtraComma : InstNormal;
3072}
3073
3074
3075/// ParseBr
3076///   ::= 'br' TypeAndValue
3077///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3078bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3079  LocTy Loc, Loc2;
3080  Value *Op0;
3081  BasicBlock *Op1, *Op2;
3082  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3083
3084  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3085    Inst = BranchInst::Create(BB);
3086    return false;
3087  }
3088
3089  if (Op0->getType() != Type::getInt1Ty(Context))
3090    return Error(Loc, "branch condition must have 'i1' type");
3091
3092  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3093      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3094      ParseToken(lltok::comma, "expected ',' after true destination") ||
3095      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3096    return true;
3097
3098  Inst = BranchInst::Create(Op1, Op2, Op0);
3099  return false;
3100}
3101
3102/// ParseSwitch
3103///  Instruction
3104///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3105///  JumpTable
3106///    ::= (TypeAndValue ',' TypeAndValue)*
3107bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3108  LocTy CondLoc, BBLoc;
3109  Value *Cond;
3110  BasicBlock *DefaultBB;
3111  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3112      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3113      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3114      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3115    return true;
3116
3117  if (!isa<IntegerType>(Cond->getType()))
3118    return Error(CondLoc, "switch condition must have integer type");
3119
3120  // Parse the jump table pairs.
3121  SmallPtrSet<Value*, 32> SeenCases;
3122  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3123  while (Lex.getKind() != lltok::rsquare) {
3124    Value *Constant;
3125    BasicBlock *DestBB;
3126
3127    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3128        ParseToken(lltok::comma, "expected ',' after case value") ||
3129        ParseTypeAndBasicBlock(DestBB, PFS))
3130      return true;
3131
3132    if (!SeenCases.insert(Constant))
3133      return Error(CondLoc, "duplicate case value in switch");
3134    if (!isa<ConstantInt>(Constant))
3135      return Error(CondLoc, "case value is not a constant integer");
3136
3137    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3138  }
3139
3140  Lex.Lex();  // Eat the ']'.
3141
3142  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3143  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3144    SI->addCase(Table[i].first, Table[i].second);
3145  Inst = SI;
3146  return false;
3147}
3148
3149/// ParseIndirectBr
3150///  Instruction
3151///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3152bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3153  LocTy AddrLoc;
3154  Value *Address;
3155  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3156      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3157      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3158    return true;
3159
3160  if (!isa<PointerType>(Address->getType()))
3161    return Error(AddrLoc, "indirectbr address must have pointer type");
3162
3163  // Parse the destination list.
3164  SmallVector<BasicBlock*, 16> DestList;
3165
3166  if (Lex.getKind() != lltok::rsquare) {
3167    BasicBlock *DestBB;
3168    if (ParseTypeAndBasicBlock(DestBB, PFS))
3169      return true;
3170    DestList.push_back(DestBB);
3171
3172    while (EatIfPresent(lltok::comma)) {
3173      if (ParseTypeAndBasicBlock(DestBB, PFS))
3174        return true;
3175      DestList.push_back(DestBB);
3176    }
3177  }
3178
3179  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3180    return true;
3181
3182  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3183  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3184    IBI->addDestination(DestList[i]);
3185  Inst = IBI;
3186  return false;
3187}
3188
3189
3190/// ParseInvoke
3191///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3192///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3193bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3194  LocTy CallLoc = Lex.getLoc();
3195  unsigned RetAttrs, FnAttrs;
3196  CallingConv::ID CC;
3197  PATypeHolder RetType(Type::getVoidTy(Context));
3198  LocTy RetTypeLoc;
3199  ValID CalleeID;
3200  SmallVector<ParamInfo, 16> ArgList;
3201
3202  BasicBlock *NormalBB, *UnwindBB;
3203  if (ParseOptionalCallingConv(CC) ||
3204      ParseOptionalAttrs(RetAttrs, 1) ||
3205      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3206      ParseValID(CalleeID) ||
3207      ParseParameterList(ArgList, PFS) ||
3208      ParseOptionalAttrs(FnAttrs, 2) ||
3209      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3210      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3211      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3212      ParseTypeAndBasicBlock(UnwindBB, PFS))
3213    return true;
3214
3215  // If RetType is a non-function pointer type, then this is the short syntax
3216  // for the call, which means that RetType is just the return type.  Infer the
3217  // rest of the function argument types from the arguments that are present.
3218  const PointerType *PFTy = 0;
3219  const FunctionType *Ty = 0;
3220  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3221      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3222    // Pull out the types of all of the arguments...
3223    std::vector<const Type*> ParamTypes;
3224    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3225      ParamTypes.push_back(ArgList[i].V->getType());
3226
3227    if (!FunctionType::isValidReturnType(RetType))
3228      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3229
3230    Ty = FunctionType::get(RetType, ParamTypes, false);
3231    PFTy = PointerType::getUnqual(Ty);
3232  }
3233
3234  // Look up the callee.
3235  Value *Callee;
3236  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3237
3238  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3239  // function attributes.
3240  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3241  if (FnAttrs & ObsoleteFuncAttrs) {
3242    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3243    FnAttrs &= ~ObsoleteFuncAttrs;
3244  }
3245
3246  // Set up the Attributes for the function.
3247  SmallVector<AttributeWithIndex, 8> Attrs;
3248  if (RetAttrs != Attribute::None)
3249    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3250
3251  SmallVector<Value*, 8> Args;
3252
3253  // Loop through FunctionType's arguments and ensure they are specified
3254  // correctly.  Also, gather any parameter attributes.
3255  FunctionType::param_iterator I = Ty->param_begin();
3256  FunctionType::param_iterator E = Ty->param_end();
3257  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3258    const Type *ExpectedTy = 0;
3259    if (I != E) {
3260      ExpectedTy = *I++;
3261    } else if (!Ty->isVarArg()) {
3262      return Error(ArgList[i].Loc, "too many arguments specified");
3263    }
3264
3265    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3266      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3267                   ExpectedTy->getDescription() + "'");
3268    Args.push_back(ArgList[i].V);
3269    if (ArgList[i].Attrs != Attribute::None)
3270      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3271  }
3272
3273  if (I != E)
3274    return Error(CallLoc, "not enough parameters specified for call");
3275
3276  if (FnAttrs != Attribute::None)
3277    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3278
3279  // Finish off the Attributes and check them
3280  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3281
3282  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3283                                      Args.begin(), Args.end());
3284  II->setCallingConv(CC);
3285  II->setAttributes(PAL);
3286  Inst = II;
3287  return false;
3288}
3289
3290
3291
3292//===----------------------------------------------------------------------===//
3293// Binary Operators.
3294//===----------------------------------------------------------------------===//
3295
3296/// ParseArithmetic
3297///  ::= ArithmeticOps TypeAndValue ',' Value
3298///
3299/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3300/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3301bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3302                               unsigned Opc, unsigned OperandType) {
3303  LocTy Loc; Value *LHS, *RHS;
3304  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3305      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3306      ParseValue(LHS->getType(), RHS, PFS))
3307    return true;
3308
3309  bool Valid;
3310  switch (OperandType) {
3311  default: llvm_unreachable("Unknown operand type!");
3312  case 0: // int or FP.
3313    Valid = LHS->getType()->isIntOrIntVector() ||
3314            LHS->getType()->isFPOrFPVector();
3315    break;
3316  case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
3317  case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
3318  }
3319
3320  if (!Valid)
3321    return Error(Loc, "invalid operand type for instruction");
3322
3323  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3324  return false;
3325}
3326
3327/// ParseLogical
3328///  ::= ArithmeticOps TypeAndValue ',' Value {
3329bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3330                            unsigned Opc) {
3331  LocTy Loc; Value *LHS, *RHS;
3332  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3333      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3334      ParseValue(LHS->getType(), RHS, PFS))
3335    return true;
3336
3337  if (!LHS->getType()->isIntOrIntVector())
3338    return Error(Loc,"instruction requires integer or integer vector operands");
3339
3340  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3341  return false;
3342}
3343
3344
3345/// ParseCompare
3346///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3347///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3348bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3349                            unsigned Opc) {
3350  // Parse the integer/fp comparison predicate.
3351  LocTy Loc;
3352  unsigned Pred;
3353  Value *LHS, *RHS;
3354  if (ParseCmpPredicate(Pred, Opc) ||
3355      ParseTypeAndValue(LHS, Loc, PFS) ||
3356      ParseToken(lltok::comma, "expected ',' after compare value") ||
3357      ParseValue(LHS->getType(), RHS, PFS))
3358    return true;
3359
3360  if (Opc == Instruction::FCmp) {
3361    if (!LHS->getType()->isFPOrFPVector())
3362      return Error(Loc, "fcmp requires floating point operands");
3363    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3364  } else {
3365    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3366    if (!LHS->getType()->isIntOrIntVector() &&
3367        !isa<PointerType>(LHS->getType()))
3368      return Error(Loc, "icmp requires integer operands");
3369    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3370  }
3371  return false;
3372}
3373
3374//===----------------------------------------------------------------------===//
3375// Other Instructions.
3376//===----------------------------------------------------------------------===//
3377
3378
3379/// ParseCast
3380///   ::= CastOpc TypeAndValue 'to' Type
3381bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3382                         unsigned Opc) {
3383  LocTy Loc;  Value *Op;
3384  PATypeHolder DestTy(Type::getVoidTy(Context));
3385  if (ParseTypeAndValue(Op, Loc, PFS) ||
3386      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3387      ParseType(DestTy))
3388    return true;
3389
3390  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3391    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3392    return Error(Loc, "invalid cast opcode for cast from '" +
3393                 Op->getType()->getDescription() + "' to '" +
3394                 DestTy->getDescription() + "'");
3395  }
3396  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3397  return false;
3398}
3399
3400/// ParseSelect
3401///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3402bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3403  LocTy Loc;
3404  Value *Op0, *Op1, *Op2;
3405  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3406      ParseToken(lltok::comma, "expected ',' after select condition") ||
3407      ParseTypeAndValue(Op1, PFS) ||
3408      ParseToken(lltok::comma, "expected ',' after select value") ||
3409      ParseTypeAndValue(Op2, PFS))
3410    return true;
3411
3412  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3413    return Error(Loc, Reason);
3414
3415  Inst = SelectInst::Create(Op0, Op1, Op2);
3416  return false;
3417}
3418
3419/// ParseVA_Arg
3420///   ::= 'va_arg' TypeAndValue ',' Type
3421bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3422  Value *Op;
3423  PATypeHolder EltTy(Type::getVoidTy(Context));
3424  LocTy TypeLoc;
3425  if (ParseTypeAndValue(Op, PFS) ||
3426      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3427      ParseType(EltTy, TypeLoc))
3428    return true;
3429
3430  if (!EltTy->isFirstClassType())
3431    return Error(TypeLoc, "va_arg requires operand with first class type");
3432
3433  Inst = new VAArgInst(Op, EltTy);
3434  return false;
3435}
3436
3437/// ParseExtractElement
3438///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3439bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3440  LocTy Loc;
3441  Value *Op0, *Op1;
3442  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3443      ParseToken(lltok::comma, "expected ',' after extract value") ||
3444      ParseTypeAndValue(Op1, PFS))
3445    return true;
3446
3447  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3448    return Error(Loc, "invalid extractelement operands");
3449
3450  Inst = ExtractElementInst::Create(Op0, Op1);
3451  return false;
3452}
3453
3454/// ParseInsertElement
3455///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3456bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3457  LocTy Loc;
3458  Value *Op0, *Op1, *Op2;
3459  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3460      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3461      ParseTypeAndValue(Op1, PFS) ||
3462      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3463      ParseTypeAndValue(Op2, PFS))
3464    return true;
3465
3466  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3467    return Error(Loc, "invalid insertelement operands");
3468
3469  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3470  return false;
3471}
3472
3473/// ParseShuffleVector
3474///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3475bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3476  LocTy Loc;
3477  Value *Op0, *Op1, *Op2;
3478  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3479      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3480      ParseTypeAndValue(Op1, PFS) ||
3481      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3482      ParseTypeAndValue(Op2, PFS))
3483    return true;
3484
3485  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3486    return Error(Loc, "invalid extractelement operands");
3487
3488  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3489  return false;
3490}
3491
3492/// ParsePHI
3493///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3494bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3495  PATypeHolder Ty(Type::getVoidTy(Context));
3496  Value *Op0, *Op1;
3497  LocTy TypeLoc = Lex.getLoc();
3498
3499  if (ParseType(Ty) ||
3500      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3501      ParseValue(Ty, Op0, PFS) ||
3502      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3503      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3504      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3505    return true;
3506
3507  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3508  while (1) {
3509    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3510
3511    if (!EatIfPresent(lltok::comma))
3512      break;
3513
3514    if (Lex.getKind() == lltok::MetadataVar)
3515      break;
3516
3517    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3518        ParseValue(Ty, Op0, PFS) ||
3519        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3520        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3521        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3522      return true;
3523  }
3524
3525  if (Lex.getKind() == lltok::MetadataVar)
3526    if (ParseOptionalCustomMetadata()) return true;
3527
3528  if (!Ty->isFirstClassType())
3529    return Error(TypeLoc, "phi node must have first class type");
3530
3531  PHINode *PN = PHINode::Create(Ty);
3532  PN->reserveOperandSpace(PHIVals.size());
3533  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3534    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3535  Inst = PN;
3536  return false;
3537}
3538
3539/// ParseCall
3540///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3541///       ParameterList OptionalAttrs
3542bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3543                         bool isTail) {
3544  unsigned RetAttrs, FnAttrs;
3545  CallingConv::ID CC;
3546  PATypeHolder RetType(Type::getVoidTy(Context));
3547  LocTy RetTypeLoc;
3548  ValID CalleeID;
3549  SmallVector<ParamInfo, 16> ArgList;
3550  LocTy CallLoc = Lex.getLoc();
3551
3552  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3553      ParseOptionalCallingConv(CC) ||
3554      ParseOptionalAttrs(RetAttrs, 1) ||
3555      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3556      ParseValID(CalleeID) ||
3557      ParseParameterList(ArgList, PFS) ||
3558      ParseOptionalAttrs(FnAttrs, 2))
3559    return true;
3560
3561  // If RetType is a non-function pointer type, then this is the short syntax
3562  // for the call, which means that RetType is just the return type.  Infer the
3563  // rest of the function argument types from the arguments that are present.
3564  const PointerType *PFTy = 0;
3565  const FunctionType *Ty = 0;
3566  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3567      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3568    // Pull out the types of all of the arguments...
3569    std::vector<const Type*> ParamTypes;
3570    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3571      ParamTypes.push_back(ArgList[i].V->getType());
3572
3573    if (!FunctionType::isValidReturnType(RetType))
3574      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3575
3576    Ty = FunctionType::get(RetType, ParamTypes, false);
3577    PFTy = PointerType::getUnqual(Ty);
3578  }
3579
3580  // Look up the callee.
3581  Value *Callee;
3582  if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
3583
3584  // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3585  // function attributes.
3586  unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3587  if (FnAttrs & ObsoleteFuncAttrs) {
3588    RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3589    FnAttrs &= ~ObsoleteFuncAttrs;
3590  }
3591
3592  // Set up the Attributes for the function.
3593  SmallVector<AttributeWithIndex, 8> Attrs;
3594  if (RetAttrs != Attribute::None)
3595    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3596
3597  SmallVector<Value*, 8> Args;
3598
3599  // Loop through FunctionType's arguments and ensure they are specified
3600  // correctly.  Also, gather any parameter attributes.
3601  FunctionType::param_iterator I = Ty->param_begin();
3602  FunctionType::param_iterator E = Ty->param_end();
3603  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3604    const Type *ExpectedTy = 0;
3605    if (I != E) {
3606      ExpectedTy = *I++;
3607    } else if (!Ty->isVarArg()) {
3608      return Error(ArgList[i].Loc, "too many arguments specified");
3609    }
3610
3611    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3612      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3613                   ExpectedTy->getDescription() + "'");
3614    Args.push_back(ArgList[i].V);
3615    if (ArgList[i].Attrs != Attribute::None)
3616      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3617  }
3618
3619  if (I != E)
3620    return Error(CallLoc, "not enough parameters specified for call");
3621
3622  if (FnAttrs != Attribute::None)
3623    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3624
3625  // Finish off the Attributes and check them
3626  AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3627
3628  CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3629  CI->setTailCall(isTail);
3630  CI->setCallingConv(CC);
3631  CI->setAttributes(PAL);
3632  Inst = CI;
3633  return false;
3634}
3635
3636//===----------------------------------------------------------------------===//
3637// Memory Instructions.
3638//===----------------------------------------------------------------------===//
3639
3640/// ParseAlloc
3641///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3642///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3643bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3644                          BasicBlock* BB, bool isAlloca) {
3645  PATypeHolder Ty(Type::getVoidTy(Context));
3646  Value *Size = 0;
3647  LocTy SizeLoc;
3648  unsigned Alignment = 0;
3649  if (ParseType(Ty)) return true;
3650
3651  if (EatIfPresent(lltok::comma)) {
3652    if (Lex.getKind() == lltok::kw_align
3653        || Lex.getKind() == lltok::MetadataVar) {
3654      if (ParseOptionalInfo(Alignment)) return true;
3655    } else {
3656      if (ParseTypeAndValue(Size, SizeLoc, PFS)) return true;
3657      if (EatIfPresent(lltok::comma))
3658        if (ParseOptionalInfo(Alignment)) return true;
3659    }
3660  }
3661
3662  if (Size && Size->getType() != Type::getInt32Ty(Context))
3663    return Error(SizeLoc, "element count must be i32");
3664
3665  if (isAlloca) {
3666    Inst = new AllocaInst(Ty, Size, Alignment);
3667    return false;
3668  }
3669
3670  // Autoupgrade old malloc instruction to malloc call.
3671  // FIXME: Remove in LLVM 3.0.
3672  const Type *IntPtrTy = Type::getInt32Ty(Context);
3673  Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3674  AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3675  if (!MallocF)
3676    // Prototype malloc as "void *(int32)".
3677    // This function is renamed as "malloc" in ValidateEndOfModule().
3678    MallocF = cast<Function>(
3679       M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3680  Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3681  return false;
3682}
3683
3684/// ParseFree
3685///   ::= 'free' TypeAndValue
3686bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3687                         BasicBlock* BB) {
3688  Value *Val; LocTy Loc;
3689  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3690  if (!isa<PointerType>(Val->getType()))
3691    return Error(Loc, "operand to free must be a pointer");
3692  Inst = CallInst::CreateFree(Val, BB);
3693  return false;
3694}
3695
3696/// ParseLoad
3697///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3698bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3699                         bool isVolatile) {
3700  Value *Val; LocTy Loc;
3701  unsigned Alignment = 0;
3702  if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3703
3704  if (EatIfPresent(lltok::comma))
3705    if (ParseOptionalInfo(Alignment)) return true;
3706
3707  if (!isa<PointerType>(Val->getType()) ||
3708      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3709    return Error(Loc, "load operand must be a pointer to a first class type");
3710
3711  Inst = new LoadInst(Val, "", isVolatile, Alignment);
3712  return false;
3713}
3714
3715/// ParseStore
3716///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3717bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3718                          bool isVolatile) {
3719  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3720  unsigned Alignment = 0;
3721  if (ParseTypeAndValue(Val, Loc, PFS) ||
3722      ParseToken(lltok::comma, "expected ',' after store operand") ||
3723      ParseTypeAndValue(Ptr, PtrLoc, PFS))
3724    return true;
3725
3726  if (EatIfPresent(lltok::comma))
3727    if (ParseOptionalInfo(Alignment)) return true;
3728
3729  if (!isa<PointerType>(Ptr->getType()))
3730    return Error(PtrLoc, "store operand must be a pointer");
3731  if (!Val->getType()->isFirstClassType())
3732    return Error(Loc, "store operand must be a first class value");
3733  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3734    return Error(Loc, "stored value and pointer type do not match");
3735
3736  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3737  return false;
3738}
3739
3740/// ParseGetResult
3741///   ::= 'getresult' TypeAndValue ',' i32
3742/// FIXME: Remove support for getresult in LLVM 3.0
3743bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3744  Value *Val; LocTy ValLoc, EltLoc;
3745  unsigned Element;
3746  if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3747      ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3748      ParseUInt32(Element, EltLoc))
3749    return true;
3750
3751  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3752    return Error(ValLoc, "getresult inst requires an aggregate operand");
3753  if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3754    return Error(EltLoc, "invalid getresult index for value");
3755  Inst = ExtractValueInst::Create(Val, Element);
3756  return false;
3757}
3758
3759/// ParseGetElementPtr
3760///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3761bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3762  Value *Ptr, *Val; LocTy Loc, EltLoc;
3763
3764  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3765
3766  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3767
3768  if (!isa<PointerType>(Ptr->getType()))
3769    return Error(Loc, "base of getelementptr must be a pointer");
3770
3771  SmallVector<Value*, 16> Indices;
3772  while (EatIfPresent(lltok::comma)) {
3773    if (Lex.getKind() == lltok::MetadataVar)
3774      break;
3775    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3776    if (!isa<IntegerType>(Val->getType()))
3777      return Error(EltLoc, "getelementptr index must be an integer");
3778    Indices.push_back(Val);
3779  }
3780  if (Lex.getKind() == lltok::MetadataVar)
3781    if (ParseOptionalCustomMetadata()) return true;
3782
3783  if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3784                                         Indices.begin(), Indices.end()))
3785    return Error(Loc, "invalid getelementptr indices");
3786  Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3787  if (InBounds)
3788    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3789  return false;
3790}
3791
3792/// ParseExtractValue
3793///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3794bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3795  Value *Val; LocTy Loc;
3796  SmallVector<unsigned, 4> Indices;
3797  bool ParsedExtraComma;
3798  if (ParseTypeAndValue(Val, Loc, PFS) ||
3799      ParseIndexList(Indices, ParsedExtraComma))
3800    return true;
3801  if (ParsedExtraComma) {
3802    assert(Lex.getKind() == lltok::MetadataVar && "Should only happen for md");
3803    if (ParseOptionalCustomMetadata()) return true;
3804  }
3805
3806  if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
3807    return Error(Loc, "extractvalue operand must be array or struct");
3808
3809  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3810                                        Indices.end()))
3811    return Error(Loc, "invalid indices for extractvalue");
3812  Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3813  return false;
3814}
3815
3816/// ParseInsertValue
3817///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3818bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3819  Value *Val0, *Val1; LocTy Loc0, Loc1;
3820  SmallVector<unsigned, 4> Indices;
3821  bool ParsedExtraComma;
3822  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3823      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3824      ParseTypeAndValue(Val1, Loc1, PFS) ||
3825      ParseIndexList(Indices, ParsedExtraComma))
3826    return true;
3827  if (ParsedExtraComma) {
3828    assert(Lex.getKind() == lltok::MetadataVar && "Should only happen for md");
3829    if (ParseOptionalCustomMetadata()) return true;
3830  }
3831
3832  if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
3833    return Error(Loc0, "extractvalue operand must be array or struct");
3834
3835  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3836                                        Indices.end()))
3837    return Error(Loc0, "invalid indices for insertvalue");
3838  Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3839  return false;
3840}
3841
3842//===----------------------------------------------------------------------===//
3843// Embedded metadata.
3844//===----------------------------------------------------------------------===//
3845
3846/// ParseMDNodeVector
3847///   ::= Element (',' Element)*
3848/// Element
3849///   ::= 'null' | TypeAndValue
3850bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
3851  do {
3852    // Null is a special case since it is typeless.
3853    if (EatIfPresent(lltok::kw_null)) {
3854      Elts.push_back(0);
3855      continue;
3856    }
3857
3858    Value *V = 0;
3859    PATypeHolder Ty(Type::getVoidTy(Context));
3860    ValID ID;
3861    if (ParseType(Ty) || ParseValID(ID) ||
3862        ConvertGlobalOrMetadataValIDToValue(Ty, ID, V))
3863      return true;
3864
3865    Elts.push_back(V);
3866  } while (EatIfPresent(lltok::comma));
3867
3868  return false;
3869}
3870