InlineSpiller.cpp revision 8a06af96698537377275dd7848db69915638dd26
1//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The inline spiller modifies the machine function directly instead of
11// inserting spills and restores in VirtRegMap.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "Spiller.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/TinyPtrVector.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveStackAnalysis.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineInstrBundle.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/raw_ostream.h"
35
36using namespace llvm;
37
38STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
39STATISTIC(NumSnippets,        "Number of spilled snippets");
40STATISTIC(NumSpills,          "Number of spills inserted");
41STATISTIC(NumSpillsRemoved,   "Number of spills removed");
42STATISTIC(NumReloads,         "Number of reloads inserted");
43STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
44STATISTIC(NumFolded,          "Number of folded stack accesses");
45STATISTIC(NumFoldedLoads,     "Number of folded loads");
46STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
47STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
48STATISTIC(NumHoists,          "Number of hoisted spills");
49
50static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
51                                     cl::desc("Disable inline spill hoisting"));
52
53namespace {
54class InlineSpiller : public Spiller {
55  MachineFunctionPass &Pass;
56  MachineFunction &MF;
57  LiveIntervals &LIS;
58  LiveStacks &LSS;
59  AliasAnalysis *AA;
60  MachineDominatorTree &MDT;
61  MachineLoopInfo &Loops;
62  VirtRegMap &VRM;
63  MachineFrameInfo &MFI;
64  MachineRegisterInfo &MRI;
65  const TargetInstrInfo &TII;
66  const TargetRegisterInfo &TRI;
67
68  // Variables that are valid during spill(), but used by multiple methods.
69  LiveRangeEdit *Edit;
70  LiveInterval *StackInt;
71  int StackSlot;
72  unsigned Original;
73
74  // All registers to spill to StackSlot, including the main register.
75  SmallVector<unsigned, 8> RegsToSpill;
76
77  // All COPY instructions to/from snippets.
78  // They are ignored since both operands refer to the same stack slot.
79  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
80
81  // Values that failed to remat at some point.
82  SmallPtrSet<VNInfo*, 8> UsedValues;
83
84public:
85  // Information about a value that was defined by a copy from a sibling
86  // register.
87  struct SibValueInfo {
88    // True when all reaching defs were reloads: No spill is necessary.
89    bool AllDefsAreReloads;
90
91    // True when value is defined by an original PHI not from splitting.
92    bool DefByOrigPHI;
93
94    // True when the COPY defining this value killed its source.
95    bool KillsSource;
96
97    // The preferred register to spill.
98    unsigned SpillReg;
99
100    // The value of SpillReg that should be spilled.
101    VNInfo *SpillVNI;
102
103    // The block where SpillVNI should be spilled. Currently, this must be the
104    // block containing SpillVNI->def.
105    MachineBasicBlock *SpillMBB;
106
107    // A defining instruction that is not a sibling copy or a reload, or NULL.
108    // This can be used as a template for rematerialization.
109    MachineInstr *DefMI;
110
111    // List of values that depend on this one.  These values are actually the
112    // same, but live range splitting has placed them in different registers,
113    // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
114    // copies of the current value and phi-kills.  Usually only phi-kills cause
115    // more than one dependent value.
116    TinyPtrVector<VNInfo*> Deps;
117
118    SibValueInfo(unsigned Reg, VNInfo *VNI)
119      : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
120        SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
121
122    // Returns true when a def has been found.
123    bool hasDef() const { return DefByOrigPHI || DefMI; }
124  };
125
126private:
127  // Values in RegsToSpill defined by sibling copies.
128  typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
129  SibValueMap SibValues;
130
131  // Dead defs generated during spilling.
132  SmallVector<MachineInstr*, 8> DeadDefs;
133
134  ~InlineSpiller() {}
135
136public:
137  InlineSpiller(MachineFunctionPass &pass,
138                MachineFunction &mf,
139                VirtRegMap &vrm)
140    : Pass(pass),
141      MF(mf),
142      LIS(pass.getAnalysis<LiveIntervals>()),
143      LSS(pass.getAnalysis<LiveStacks>()),
144      AA(&pass.getAnalysis<AliasAnalysis>()),
145      MDT(pass.getAnalysis<MachineDominatorTree>()),
146      Loops(pass.getAnalysis<MachineLoopInfo>()),
147      VRM(vrm),
148      MFI(*mf.getFrameInfo()),
149      MRI(mf.getRegInfo()),
150      TII(*mf.getTarget().getInstrInfo()),
151      TRI(*mf.getTarget().getRegisterInfo()) {}
152
153  void spill(LiveRangeEdit &);
154
155private:
156  bool isSnippet(const LiveInterval &SnipLI);
157  void collectRegsToSpill();
158
159  bool isRegToSpill(unsigned Reg) {
160    return std::find(RegsToSpill.begin(),
161                     RegsToSpill.end(), Reg) != RegsToSpill.end();
162  }
163
164  bool isSibling(unsigned Reg);
165  MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
166  void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
167  void analyzeSiblingValues();
168
169  bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
170  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
171
172  void markValueUsed(LiveInterval*, VNInfo*);
173  bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
174  void reMaterializeAll();
175
176  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
177  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
178                         MachineInstr *LoadMI = 0);
179  void insertReload(LiveInterval &NewLI, SlotIndex,
180                    MachineBasicBlock::iterator MI);
181  void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
182                   SlotIndex, MachineBasicBlock::iterator MI);
183
184  void spillAroundUses(unsigned Reg);
185  void spillAll();
186};
187}
188
189namespace llvm {
190Spiller *createInlineSpiller(MachineFunctionPass &pass,
191                             MachineFunction &mf,
192                             VirtRegMap &vrm) {
193  return new InlineSpiller(pass, mf, vrm);
194}
195}
196
197//===----------------------------------------------------------------------===//
198//                                Snippets
199//===----------------------------------------------------------------------===//
200
201// When spilling a virtual register, we also spill any snippets it is connected
202// to. The snippets are small live ranges that only have a single real use,
203// leftovers from live range splitting. Spilling them enables memory operand
204// folding or tightens the live range around the single use.
205//
206// This minimizes register pressure and maximizes the store-to-load distance for
207// spill slots which can be important in tight loops.
208
209/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
210/// otherwise return 0.
211static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
212  if (!MI->isFullCopy())
213    return 0;
214  if (MI->getOperand(0).getReg() == Reg)
215      return MI->getOperand(1).getReg();
216  if (MI->getOperand(1).getReg() == Reg)
217      return MI->getOperand(0).getReg();
218  return 0;
219}
220
221/// isSnippet - Identify if a live interval is a snippet that should be spilled.
222/// It is assumed that SnipLI is a virtual register with the same original as
223/// Edit->getReg().
224bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
225  unsigned Reg = Edit->getReg();
226
227  // A snippet is a tiny live range with only a single instruction using it
228  // besides copies to/from Reg or spills/fills. We accept:
229  //
230  //   %snip = COPY %Reg / FILL fi#
231  //   %snip = USE %snip
232  //   %Reg = COPY %snip / SPILL %snip, fi#
233  //
234  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
235    return false;
236
237  MachineInstr *UseMI = 0;
238
239  // Check that all uses satisfy our criteria.
240  for (MachineRegisterInfo::reg_nodbg_iterator
241         RI = MRI.reg_nodbg_begin(SnipLI.reg);
242       MachineInstr *MI = RI.skipInstruction();) {
243
244    // Allow copies to/from Reg.
245    if (isFullCopyOf(MI, Reg))
246      continue;
247
248    // Allow stack slot loads.
249    int FI;
250    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
251      continue;
252
253    // Allow stack slot stores.
254    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
255      continue;
256
257    // Allow a single additional instruction.
258    if (UseMI && MI != UseMI)
259      return false;
260    UseMI = MI;
261  }
262  return true;
263}
264
265/// collectRegsToSpill - Collect live range snippets that only have a single
266/// real use.
267void InlineSpiller::collectRegsToSpill() {
268  unsigned Reg = Edit->getReg();
269
270  // Main register always spills.
271  RegsToSpill.assign(1, Reg);
272  SnippetCopies.clear();
273
274  // Snippets all have the same original, so there can't be any for an original
275  // register.
276  if (Original == Reg)
277    return;
278
279  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
280       MachineInstr *MI = RI.skipInstruction();) {
281    unsigned SnipReg = isFullCopyOf(MI, Reg);
282    if (!isSibling(SnipReg))
283      continue;
284    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
285    if (!isSnippet(SnipLI))
286      continue;
287    SnippetCopies.insert(MI);
288    if (isRegToSpill(SnipReg))
289      continue;
290    RegsToSpill.push_back(SnipReg);
291    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
292    ++NumSnippets;
293  }
294}
295
296
297//===----------------------------------------------------------------------===//
298//                            Sibling Values
299//===----------------------------------------------------------------------===//
300
301// After live range splitting, some values to be spilled may be defined by
302// copies from sibling registers. We trace the sibling copies back to the
303// original value if it still exists. We need it for rematerialization.
304//
305// Even when the value can't be rematerialized, we still want to determine if
306// the value has already been spilled, or we may want to hoist the spill from a
307// loop.
308
309bool InlineSpiller::isSibling(unsigned Reg) {
310  return TargetRegisterInfo::isVirtualRegister(Reg) &&
311           VRM.getOriginal(Reg) == Original;
312}
313
314#ifndef NDEBUG
315static raw_ostream &operator<<(raw_ostream &OS,
316                               const InlineSpiller::SibValueInfo &SVI) {
317  OS << "spill " << PrintReg(SVI.SpillReg) << ':'
318     << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
319  if (SVI.SpillMBB)
320    OS << " in BB#" << SVI.SpillMBB->getNumber();
321  if (SVI.AllDefsAreReloads)
322    OS << " all-reloads";
323  if (SVI.DefByOrigPHI)
324    OS << " orig-phi";
325  if (SVI.KillsSource)
326    OS << " kill";
327  OS << " deps[";
328  for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
329    OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
330  OS << " ]";
331  if (SVI.DefMI)
332    OS << " def: " << *SVI.DefMI;
333  else
334    OS << '\n';
335  return OS;
336}
337#endif
338
339/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
340/// known.  Otherwise remember the dependency for later.
341///
342/// @param SVI SibValues entry to propagate.
343/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
344void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
345                                          VNInfo *VNI) {
346  // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
347  TinyPtrVector<VNInfo*> FirstDeps;
348  if (VNI) {
349    FirstDeps.push_back(VNI);
350    SVI->second.Deps.push_back(VNI);
351  }
352
353  // Has the value been completely determined yet?  If not, defer propagation.
354  if (!SVI->second.hasDef())
355    return;
356
357  // Work list of values to propagate.  It would be nice to use a SetVector
358  // here, but then we would be forced to use a SmallSet.
359  SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
360  SmallPtrSet<VNInfo*, 8> WorkSet;
361
362  do {
363    SVI = WorkList.pop_back_val();
364    WorkSet.erase(SVI->first);
365    TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
366    VNI = 0;
367
368    SibValueInfo &SV = SVI->second;
369    if (!SV.SpillMBB)
370      SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
371
372    DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
373                 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
374
375    assert(SV.hasDef() && "Propagating undefined value");
376
377    // Should this value be propagated as a preferred spill candidate?  We don't
378    // propagate values of registers that are about to spill.
379    bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
380    unsigned SpillDepth = ~0u;
381
382    for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
383         DepE = Deps->end(); DepI != DepE; ++DepI) {
384      SibValueMap::iterator DepSVI = SibValues.find(*DepI);
385      assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
386      SibValueInfo &DepSV = DepSVI->second;
387      if (!DepSV.SpillMBB)
388        DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
389
390      bool Changed = false;
391
392      // Propagate defining instruction.
393      if (!DepSV.hasDef()) {
394        Changed = true;
395        DepSV.DefMI = SV.DefMI;
396        DepSV.DefByOrigPHI = SV.DefByOrigPHI;
397      }
398
399      // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
400      // all predecessors.
401      if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
402        Changed = true;
403        DepSV.AllDefsAreReloads = false;
404      }
405
406      // Propagate best spill value.
407      if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
408        if (SV.SpillMBB == DepSV.SpillMBB) {
409          // DepSV is in the same block.  Hoist when dominated.
410          if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
411            // This is an alternative def earlier in the same MBB.
412            // Hoist the spill as far as possible in SpillMBB. This can ease
413            // register pressure:
414            //
415            //   x = def
416            //   y = use x
417            //   s = copy x
418            //
419            // Hoisting the spill of s to immediately after the def removes the
420            // interference between x and y:
421            //
422            //   x = def
423            //   spill x
424            //   y = use x<kill>
425            //
426            // This hoist only helps when the DepSV copy kills its source.
427            Changed = true;
428            DepSV.SpillReg = SV.SpillReg;
429            DepSV.SpillVNI = SV.SpillVNI;
430            DepSV.SpillMBB = SV.SpillMBB;
431          }
432        } else {
433          // DepSV is in a different block.
434          if (SpillDepth == ~0u)
435            SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
436
437          // Also hoist spills to blocks with smaller loop depth, but make sure
438          // that the new value dominates.  Non-phi dependents are always
439          // dominated, phis need checking.
440          if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
441              (!DepSVI->first->isPHIDef() ||
442               MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
443            Changed = true;
444            DepSV.SpillReg = SV.SpillReg;
445            DepSV.SpillVNI = SV.SpillVNI;
446            DepSV.SpillMBB = SV.SpillMBB;
447          }
448        }
449      }
450
451      if (!Changed)
452        continue;
453
454      // Something changed in DepSVI. Propagate to dependents.
455      if (WorkSet.insert(DepSVI->first))
456        WorkList.push_back(DepSVI);
457
458      DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
459            << DepSVI->first->def << " to:\t" << DepSV);
460    }
461  } while (!WorkList.empty());
462}
463
464/// traceSiblingValue - Trace a value that is about to be spilled back to the
465/// real defining instructions by looking through sibling copies. Always stay
466/// within the range of OrigVNI so the registers are known to carry the same
467/// value.
468///
469/// Determine if the value is defined by all reloads, so spilling isn't
470/// necessary - the value is already in the stack slot.
471///
472/// Return a defining instruction that may be a candidate for rematerialization.
473///
474MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
475                                               VNInfo *OrigVNI) {
476  // Check if a cached value already exists.
477  SibValueMap::iterator SVI;
478  bool Inserted;
479  tie(SVI, Inserted) =
480    SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
481  if (!Inserted) {
482    DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
483                 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
484    return SVI->second.DefMI;
485  }
486
487  DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
488               << UseVNI->id << '@' << UseVNI->def << '\n');
489
490  // List of (Reg, VNI) that have been inserted into SibValues, but need to be
491  // processed.
492  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
493  WorkList.push_back(std::make_pair(UseReg, UseVNI));
494
495  do {
496    unsigned Reg;
497    VNInfo *VNI;
498    tie(Reg, VNI) = WorkList.pop_back_val();
499    DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
500                 << ":\t");
501
502    // First check if this value has already been computed.
503    SVI = SibValues.find(VNI);
504    assert(SVI != SibValues.end() && "Missing SibValues entry");
505
506    // Trace through PHI-defs created by live range splitting.
507    if (VNI->isPHIDef()) {
508      // Stop at original PHIs.  We don't know the value at the predecessors.
509      if (VNI->def == OrigVNI->def) {
510        DEBUG(dbgs() << "orig phi value\n");
511        SVI->second.DefByOrigPHI = true;
512        SVI->second.AllDefsAreReloads = false;
513        propagateSiblingValue(SVI);
514        continue;
515      }
516
517      // This is a PHI inserted by live range splitting.  We could trace the
518      // live-out value from predecessor blocks, but that search can be very
519      // expensive if there are many predecessors and many more PHIs as
520      // generated by tail-dup when it sees an indirectbr.  Instead, look at
521      // all the non-PHI defs that have the same value as OrigVNI.  They must
522      // jointly dominate VNI->def.  This is not optimal since VNI may actually
523      // be jointly dominated by a smaller subset of defs, so there is a change
524      // we will miss a AllDefsAreReloads optimization.
525
526      // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
527      SmallVector<VNInfo*, 8> PHIs, NonPHIs;
528      LiveInterval &LI = LIS.getInterval(Reg);
529      LiveInterval &OrigLI = LIS.getInterval(Original);
530
531      for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
532           VI != VE; ++VI) {
533        VNInfo *VNI2 = *VI;
534        if (VNI2->isUnused())
535          continue;
536        if (!OrigLI.containsOneValue() &&
537            OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
538          continue;
539        if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
540          PHIs.push_back(VNI2);
541        else
542          NonPHIs.push_back(VNI2);
543      }
544      DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
545                   << " phi-defs, and " << NonPHIs.size()
546                   << " non-phi/orig defs\n");
547
548      // Create entries for all the PHIs.  Don't add them to the worklist, we
549      // are processing all of them in one go here.
550      for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
551        SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
552
553      // Add every PHI as a dependent of all the non-PHIs.
554      for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
555        VNInfo *NonPHI = NonPHIs[i];
556        // Known value? Try an insertion.
557        tie(SVI, Inserted) =
558          SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
559        // Add all the PHIs as dependents of NonPHI.
560        for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
561          SVI->second.Deps.push_back(PHIs[pi]);
562        // This is the first time we see NonPHI, add it to the worklist.
563        if (Inserted)
564          WorkList.push_back(std::make_pair(Reg, NonPHI));
565        else
566          // Propagate to all inserted PHIs, not just VNI.
567          propagateSiblingValue(SVI);
568      }
569
570      // Next work list item.
571      continue;
572    }
573
574    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
575    assert(MI && "Missing def");
576
577    // Trace through sibling copies.
578    if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
579      if (isSibling(SrcReg)) {
580        LiveInterval &SrcLI = LIS.getInterval(SrcReg);
581        LiveRange *SrcLR = SrcLI.getLiveRangeContaining(VNI->def.getRegSlot(true));
582        assert(SrcLR && "Copy from non-existing value");
583        // Check if this COPY kills its source.
584        SVI->second.KillsSource = (SrcLR->end == VNI->def);
585        VNInfo *SrcVNI = SrcLR->valno;
586        DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
587                     << SrcVNI->id << '@' << SrcVNI->def
588                     << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
589        // Known sibling source value? Try an insertion.
590        tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
591                                                 SibValueInfo(SrcReg, SrcVNI)));
592        // This is the first time we see Src, add it to the worklist.
593        if (Inserted)
594          WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
595        propagateSiblingValue(SVI, VNI);
596        // Next work list item.
597        continue;
598      }
599    }
600
601    // Track reachable reloads.
602    SVI->second.DefMI = MI;
603    SVI->second.SpillMBB = MI->getParent();
604    int FI;
605    if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
606      DEBUG(dbgs() << "reload\n");
607      propagateSiblingValue(SVI);
608      // Next work list item.
609      continue;
610    }
611
612    // Potential remat candidate.
613    DEBUG(dbgs() << "def " << *MI);
614    SVI->second.AllDefsAreReloads = false;
615    propagateSiblingValue(SVI);
616  } while (!WorkList.empty());
617
618  // Look up the value we were looking for.  We already did this lokup at the
619  // top of the function, but SibValues may have been invalidated.
620  SVI = SibValues.find(UseVNI);
621  assert(SVI != SibValues.end() && "Didn't compute requested info");
622  DEBUG(dbgs() << "  traced to:\t" << SVI->second);
623  return SVI->second.DefMI;
624}
625
626/// analyzeSiblingValues - Trace values defined by sibling copies back to
627/// something that isn't a sibling copy.
628///
629/// Keep track of values that may be rematerializable.
630void InlineSpiller::analyzeSiblingValues() {
631  SibValues.clear();
632
633  // No siblings at all?
634  if (Edit->getReg() == Original)
635    return;
636
637  LiveInterval &OrigLI = LIS.getInterval(Original);
638  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
639    unsigned Reg = RegsToSpill[i];
640    LiveInterval &LI = LIS.getInterval(Reg);
641    for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
642         VE = LI.vni_end(); VI != VE; ++VI) {
643      VNInfo *VNI = *VI;
644      if (VNI->isUnused())
645        continue;
646      MachineInstr *DefMI = 0;
647      if (!VNI->isPHIDef()) {
648       DefMI = LIS.getInstructionFromIndex(VNI->def);
649       assert(DefMI && "No defining instruction");
650      }
651      // Check possible sibling copies.
652      if (VNI->isPHIDef() || DefMI->isCopy()) {
653        VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
654        assert(OrigVNI && "Def outside original live range");
655        if (OrigVNI->def != VNI->def)
656          DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
657      }
658      if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
659        DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
660                     << VNI->def << " may remat from " << *DefMI);
661      }
662    }
663  }
664}
665
666/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
667/// a spill at a better location.
668bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
669  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
670  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
671  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
672  SibValueMap::iterator I = SibValues.find(VNI);
673  if (I == SibValues.end())
674    return false;
675
676  const SibValueInfo &SVI = I->second;
677
678  // Let the normal folding code deal with the boring case.
679  if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
680    return false;
681
682  // SpillReg may have been deleted by remat and DCE.
683  if (!LIS.hasInterval(SVI.SpillReg)) {
684    DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
685    SibValues.erase(I);
686    return false;
687  }
688
689  LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
690  if (!SibLI.containsValue(SVI.SpillVNI)) {
691    DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
692    SibValues.erase(I);
693    return false;
694  }
695
696  // Conservatively extend the stack slot range to the range of the original
697  // value. We may be able to do better with stack slot coloring by being more
698  // careful here.
699  assert(StackInt && "No stack slot assigned yet.");
700  LiveInterval &OrigLI = LIS.getInterval(Original);
701  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
702  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
703  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
704               << *StackInt << '\n');
705
706  // Already spilled everywhere.
707  if (SVI.AllDefsAreReloads) {
708    DEBUG(dbgs() << "\tno spill needed: " << SVI);
709    ++NumOmitReloadSpill;
710    return true;
711  }
712  // We are going to spill SVI.SpillVNI immediately after its def, so clear out
713  // any later spills of the same value.
714  eliminateRedundantSpills(SibLI, SVI.SpillVNI);
715
716  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
717  MachineBasicBlock::iterator MII;
718  if (SVI.SpillVNI->isPHIDef())
719    MII = MBB->SkipPHIsAndLabels(MBB->begin());
720  else {
721    MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
722    assert(DefMI && "Defining instruction disappeared");
723    MII = DefMI;
724    ++MII;
725  }
726  // Insert spill without kill flag immediately after def.
727  TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
728                          MRI.getRegClass(SVI.SpillReg), &TRI);
729  --MII; // Point to store instruction.
730  LIS.InsertMachineInstrInMaps(MII);
731  DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
732
733  ++NumSpills;
734  ++NumHoists;
735  return true;
736}
737
738/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
739/// redundant spills of this value in SLI.reg and sibling copies.
740void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
741  assert(VNI && "Missing value");
742  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
743  WorkList.push_back(std::make_pair(&SLI, VNI));
744  assert(StackInt && "No stack slot assigned yet.");
745
746  do {
747    LiveInterval *LI;
748    tie(LI, VNI) = WorkList.pop_back_val();
749    unsigned Reg = LI->reg;
750    DEBUG(dbgs() << "Checking redundant spills for "
751                 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
752
753    // Regs to spill are taken care of.
754    if (isRegToSpill(Reg))
755      continue;
756
757    // Add all of VNI's live range to StackInt.
758    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
759    DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
760
761    // Find all spills and copies of VNI.
762    for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
763         MachineInstr *MI = UI.skipInstruction();) {
764      if (!MI->isCopy() && !MI->mayStore())
765        continue;
766      SlotIndex Idx = LIS.getInstructionIndex(MI);
767      if (LI->getVNInfoAt(Idx) != VNI)
768        continue;
769
770      // Follow sibling copies down the dominator tree.
771      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
772        if (isSibling(DstReg)) {
773           LiveInterval &DstLI = LIS.getInterval(DstReg);
774           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
775           assert(DstVNI && "Missing defined value");
776           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
777           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
778        }
779        continue;
780      }
781
782      // Erase spills.
783      int FI;
784      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
785        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
786        // eliminateDeadDefs won't normally remove stores, so switch opcode.
787        MI->setDesc(TII.get(TargetOpcode::KILL));
788        DeadDefs.push_back(MI);
789        ++NumSpillsRemoved;
790        --NumSpills;
791      }
792    }
793  } while (!WorkList.empty());
794}
795
796
797//===----------------------------------------------------------------------===//
798//                            Rematerialization
799//===----------------------------------------------------------------------===//
800
801/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
802/// instruction cannot be eliminated. See through snippet copies
803void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
804  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
805  WorkList.push_back(std::make_pair(LI, VNI));
806  do {
807    tie(LI, VNI) = WorkList.pop_back_val();
808    if (!UsedValues.insert(VNI))
809      continue;
810
811    if (VNI->isPHIDef()) {
812      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
813      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
814             PE = MBB->pred_end(); PI != PE; ++PI) {
815        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
816        if (PVNI)
817          WorkList.push_back(std::make_pair(LI, PVNI));
818      }
819      continue;
820    }
821
822    // Follow snippet copies.
823    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
824    if (!SnippetCopies.count(MI))
825      continue;
826    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
827    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
828    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
829    assert(SnipVNI && "Snippet undefined before copy");
830    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
831  } while (!WorkList.empty());
832}
833
834/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
835bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
836                                     MachineBasicBlock::iterator MI) {
837  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
838  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
839
840  if (!ParentVNI) {
841    DEBUG(dbgs() << "\tadding <undef> flags: ");
842    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
843      MachineOperand &MO = MI->getOperand(i);
844      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
845        MO.setIsUndef();
846    }
847    DEBUG(dbgs() << UseIdx << '\t' << *MI);
848    return true;
849  }
850
851  if (SnippetCopies.count(MI))
852    return false;
853
854  // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
855  LiveRangeEdit::Remat RM(ParentVNI);
856  SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
857  if (SibI != SibValues.end())
858    RM.OrigMI = SibI->second.DefMI;
859  if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
860    markValueUsed(&VirtReg, ParentVNI);
861    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
862    return false;
863  }
864
865  // If the instruction also writes VirtReg.reg, it had better not require the
866  // same register for uses and defs.
867  SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
868  MIBundleOperands::RegInfo RI =
869    MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
870  if (RI.Tied) {
871    markValueUsed(&VirtReg, ParentVNI);
872    DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
873    return false;
874  }
875
876  // Before rematerializing into a register for a single instruction, try to
877  // fold a load into the instruction. That avoids allocating a new register.
878  if (RM.OrigMI->canFoldAsLoad() &&
879      foldMemoryOperand(Ops, RM.OrigMI)) {
880    Edit->markRematerialized(RM.ParentVNI);
881    ++NumFoldedLoads;
882    return true;
883  }
884
885  // Alocate a new register for the remat.
886  LiveInterval &NewLI = Edit->createFrom(Original);
887  NewLI.markNotSpillable();
888
889  // Finally we can rematerialize OrigMI before MI.
890  SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
891                                           TRI);
892  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
893               << *LIS.getInstructionFromIndex(DefIdx));
894
895  // Replace operands
896  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
897    MachineOperand &MO = MI->getOperand(Ops[i].second);
898    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
899      MO.setReg(NewLI.reg);
900      MO.setIsKill();
901    }
902  }
903  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
904
905  VNInfo *DefVNI = NewLI.getNextValue(DefIdx, LIS.getVNInfoAllocator());
906  NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
907  DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
908  ++NumRemats;
909  return true;
910}
911
912/// reMaterializeAll - Try to rematerialize as many uses as possible,
913/// and trim the live ranges after.
914void InlineSpiller::reMaterializeAll() {
915  // analyzeSiblingValues has already tested all relevant defining instructions.
916  if (!Edit->anyRematerializable(AA))
917    return;
918
919  UsedValues.clear();
920
921  // Try to remat before all uses of snippets.
922  bool anyRemat = false;
923  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
924    unsigned Reg = RegsToSpill[i];
925    LiveInterval &LI = LIS.getInterval(Reg);
926    for (MachineRegisterInfo::use_nodbg_iterator
927         RI = MRI.use_nodbg_begin(Reg);
928         MachineInstr *MI = RI.skipBundle();)
929      anyRemat |= reMaterializeFor(LI, MI);
930  }
931  if (!anyRemat)
932    return;
933
934  // Remove any values that were completely rematted.
935  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
936    unsigned Reg = RegsToSpill[i];
937    LiveInterval &LI = LIS.getInterval(Reg);
938    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
939         I != E; ++I) {
940      VNInfo *VNI = *I;
941      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
942        continue;
943      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
944      MI->addRegisterDead(Reg, &TRI);
945      if (!MI->allDefsAreDead())
946        continue;
947      DEBUG(dbgs() << "All defs dead: " << *MI);
948      DeadDefs.push_back(MI);
949    }
950  }
951
952  // Eliminate dead code after remat. Note that some snippet copies may be
953  // deleted here.
954  if (DeadDefs.empty())
955    return;
956  DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
957  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
958
959  // Get rid of deleted and empty intervals.
960  for (unsigned i = RegsToSpill.size(); i != 0; --i) {
961    unsigned Reg = RegsToSpill[i-1];
962    if (!LIS.hasInterval(Reg)) {
963      RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
964      continue;
965    }
966    LiveInterval &LI = LIS.getInterval(Reg);
967    if (!LI.empty())
968      continue;
969    Edit->eraseVirtReg(Reg);
970    RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
971  }
972  DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
973}
974
975
976//===----------------------------------------------------------------------===//
977//                                 Spilling
978//===----------------------------------------------------------------------===//
979
980/// If MI is a load or store of StackSlot, it can be removed.
981bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
982  int FI = 0;
983  unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
984  bool IsLoad = InstrReg;
985  if (!IsLoad)
986    InstrReg = TII.isStoreToStackSlot(MI, FI);
987
988  // We have a stack access. Is it the right register and slot?
989  if (InstrReg != Reg || FI != StackSlot)
990    return false;
991
992  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
993  LIS.RemoveMachineInstrFromMaps(MI);
994  MI->eraseFromParent();
995
996  if (IsLoad) {
997    ++NumReloadsRemoved;
998    --NumReloads;
999  } else {
1000    ++NumSpillsRemoved;
1001    --NumSpills;
1002  }
1003
1004  return true;
1005}
1006
1007/// foldMemoryOperand - Try folding stack slot references in Ops into their
1008/// instructions.
1009///
1010/// @param Ops    Operand indices from analyzeVirtReg().
1011/// @param LoadMI Load instruction to use instead of stack slot when non-null.
1012/// @return       True on success.
1013bool InlineSpiller::
1014foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1015                  MachineInstr *LoadMI) {
1016  if (Ops.empty())
1017    return false;
1018  // Don't attempt folding in bundles.
1019  MachineInstr *MI = Ops.front().first;
1020  if (Ops.back().first != MI || MI->isBundled())
1021    return false;
1022
1023  bool WasCopy = MI->isCopy();
1024  unsigned ImpReg = 0;
1025
1026  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1027  // operands.
1028  SmallVector<unsigned, 8> FoldOps;
1029  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1030    unsigned Idx = Ops[i].second;
1031    MachineOperand &MO = MI->getOperand(Idx);
1032    if (MO.isImplicit()) {
1033      ImpReg = MO.getReg();
1034      continue;
1035    }
1036    // FIXME: Teach targets to deal with subregs.
1037    if (MO.getSubReg())
1038      return false;
1039    // We cannot fold a load instruction into a def.
1040    if (LoadMI && MO.isDef())
1041      return false;
1042    // Tied use operands should not be passed to foldMemoryOperand.
1043    if (!MI->isRegTiedToDefOperand(Idx))
1044      FoldOps.push_back(Idx);
1045  }
1046
1047  MachineInstr *FoldMI =
1048                LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1049                       : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1050  if (!FoldMI)
1051    return false;
1052  LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1053  MI->eraseFromParent();
1054
1055  // TII.foldMemoryOperand may have left some implicit operands on the
1056  // instruction.  Strip them.
1057  if (ImpReg)
1058    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1059      MachineOperand &MO = FoldMI->getOperand(i - 1);
1060      if (!MO.isReg() || !MO.isImplicit())
1061        break;
1062      if (MO.getReg() == ImpReg)
1063        FoldMI->RemoveOperand(i - 1);
1064    }
1065
1066  DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
1067               << *FoldMI);
1068  if (!WasCopy)
1069    ++NumFolded;
1070  else if (Ops.front().second == 0)
1071    ++NumSpills;
1072  else
1073    ++NumReloads;
1074  return true;
1075}
1076
1077/// insertReload - Insert a reload of NewLI.reg before MI.
1078void InlineSpiller::insertReload(LiveInterval &NewLI,
1079                                 SlotIndex Idx,
1080                                 MachineBasicBlock::iterator MI) {
1081  MachineBasicBlock &MBB = *MI->getParent();
1082  TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
1083                           MRI.getRegClass(NewLI.reg), &TRI);
1084  --MI; // Point to load instruction.
1085  SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1086  DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
1087  VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, LIS.getVNInfoAllocator());
1088  NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
1089  ++NumReloads;
1090}
1091
1092/// insertSpill - Insert a spill of NewLI.reg after MI.
1093void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
1094                                SlotIndex Idx, MachineBasicBlock::iterator MI) {
1095  MachineBasicBlock &MBB = *MI->getParent();
1096  TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
1097                          MRI.getRegClass(NewLI.reg), &TRI);
1098  --MI; // Point to store instruction.
1099  SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1100  DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
1101  VNInfo *StoreVNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
1102  NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
1103  ++NumSpills;
1104}
1105
1106/// spillAroundUses - insert spill code around each use of Reg.
1107void InlineSpiller::spillAroundUses(unsigned Reg) {
1108  DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1109  LiveInterval &OldLI = LIS.getInterval(Reg);
1110
1111  // Iterate over instructions using Reg.
1112  for (MachineRegisterInfo::reg_iterator RegI = MRI.reg_begin(Reg);
1113       MachineInstr *MI = RegI.skipBundle();) {
1114
1115    // Debug values are not allowed to affect codegen.
1116    if (MI->isDebugValue()) {
1117      // Modify DBG_VALUE now that the value is in a spill slot.
1118      uint64_t Offset = MI->getOperand(1).getImm();
1119      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1120      DebugLoc DL = MI->getDebugLoc();
1121      if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
1122                                                           Offset, MDPtr, DL)) {
1123        DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1124        MachineBasicBlock *MBB = MI->getParent();
1125        MBB->insert(MBB->erase(MI), NewDV);
1126      } else {
1127        DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
1128        MI->eraseFromParent();
1129      }
1130      continue;
1131    }
1132
1133    // Ignore copies to/from snippets. We'll delete them.
1134    if (SnippetCopies.count(MI))
1135      continue;
1136
1137    // Stack slot accesses may coalesce away.
1138    if (coalesceStackAccess(MI, Reg))
1139      continue;
1140
1141    // Analyze instruction.
1142    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1143    MIBundleOperands::RegInfo RI =
1144      MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
1145
1146    // Find the slot index where this instruction reads and writes OldLI.
1147    // This is usually the def slot, except for tied early clobbers.
1148    SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1149    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1150      if (SlotIndex::isSameInstr(Idx, VNI->def))
1151        Idx = VNI->def;
1152
1153    // Check for a sibling copy.
1154    unsigned SibReg = isFullCopyOf(MI, Reg);
1155    if (SibReg && isSibling(SibReg)) {
1156      // This may actually be a copy between snippets.
1157      if (isRegToSpill(SibReg)) {
1158        DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1159        SnippetCopies.insert(MI);
1160        continue;
1161      }
1162      if (RI.Writes) {
1163        // Hoist the spill of a sib-reg copy.
1164        if (hoistSpill(OldLI, MI)) {
1165          // This COPY is now dead, the value is already in the stack slot.
1166          MI->getOperand(0).setIsDead();
1167          DeadDefs.push_back(MI);
1168          continue;
1169        }
1170      } else {
1171        // This is a reload for a sib-reg copy. Drop spills downstream.
1172        LiveInterval &SibLI = LIS.getInterval(SibReg);
1173        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1174        // The COPY will fold to a reload below.
1175      }
1176    }
1177
1178    // Attempt to fold memory ops.
1179    if (foldMemoryOperand(Ops))
1180      continue;
1181
1182    // Allocate interval around instruction.
1183    // FIXME: Infer regclass from instruction alone.
1184    LiveInterval &NewLI = Edit->createFrom(Reg);
1185    NewLI.markNotSpillable();
1186
1187    if (RI.Reads)
1188      insertReload(NewLI, Idx, MI);
1189
1190    // Rewrite instruction operands.
1191    bool hasLiveDef = false;
1192    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1193      MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
1194      MO.setReg(NewLI.reg);
1195      if (MO.isUse()) {
1196        if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
1197          MO.setIsKill();
1198      } else {
1199        if (!MO.isDead())
1200          hasLiveDef = true;
1201      }
1202    }
1203    DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
1204
1205    // FIXME: Use a second vreg if instruction has no tied ops.
1206    if (RI.Writes) {
1207      if (hasLiveDef)
1208        insertSpill(NewLI, OldLI, Idx, MI);
1209      else {
1210        // This instruction defines a dead value.  We don't need to spill it,
1211        // but do create a live range for the dead value.
1212        VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
1213        NewLI.addRange(LiveRange(Idx, Idx.getDeadSlot(), VNI));
1214      }
1215    }
1216
1217    DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
1218  }
1219}
1220
1221/// spillAll - Spill all registers remaining after rematerialization.
1222void InlineSpiller::spillAll() {
1223  // Update LiveStacks now that we are committed to spilling.
1224  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1225    StackSlot = VRM.assignVirt2StackSlot(Original);
1226    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1227    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1228  } else
1229    StackInt = &LSS.getInterval(StackSlot);
1230
1231  if (Original != Edit->getReg())
1232    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1233
1234  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1235  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1236    StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
1237                                   StackInt->getValNumInfo(0));
1238  DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1239
1240  // Spill around uses of all RegsToSpill.
1241  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1242    spillAroundUses(RegsToSpill[i]);
1243
1244  // Hoisted spills may cause dead code.
1245  if (!DeadDefs.empty()) {
1246    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1247    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1248  }
1249
1250  // Finally delete the SnippetCopies.
1251  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1252    for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1253         MachineInstr *MI = RI.skipInstruction();) {
1254      assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1255      // FIXME: Do this with a LiveRangeEdit callback.
1256      LIS.RemoveMachineInstrFromMaps(MI);
1257      MI->eraseFromParent();
1258    }
1259  }
1260
1261  // Delete all spilled registers.
1262  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1263    Edit->eraseVirtReg(RegsToSpill[i]);
1264}
1265
1266void InlineSpiller::spill(LiveRangeEdit &edit) {
1267  ++NumSpilledRanges;
1268  Edit = &edit;
1269  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1270         && "Trying to spill a stack slot.");
1271  // Share a stack slot among all descendants of Original.
1272  Original = VRM.getOriginal(edit.getReg());
1273  StackSlot = VRM.getStackSlot(Original);
1274  StackInt = 0;
1275
1276  DEBUG(dbgs() << "Inline spilling "
1277               << MRI.getRegClass(edit.getReg())->getName()
1278               << ':' << edit.getParent() << "\nFrom original "
1279               << LIS.getInterval(Original) << '\n');
1280  assert(edit.getParent().isSpillable() &&
1281         "Attempting to spill already spilled value.");
1282  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1283
1284  collectRegsToSpill();
1285  analyzeSiblingValues();
1286  reMaterializeAll();
1287
1288  // Remat may handle everything.
1289  if (!RegsToSpill.empty())
1290    spillAll();
1291
1292  Edit->calculateRegClassAndHint(MF, Loops);
1293}
1294