InlineSpiller.cpp revision c1655e1a3c3a566b91b0513b56d61b58da1e36ba
1//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The inline spiller modifies the machine function directly instead of
11// inserting spills and restores in VirtRegMap.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "Spiller.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/LiveStackAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace llvm;
33
34namespace {
35class InlineSpiller : public Spiller {
36  MachineFunctionPass &Pass;
37  MachineFunction &MF;
38  LiveIntervals &LIS;
39  LiveStacks &LSS;
40  AliasAnalysis *AA;
41  MachineDominatorTree &MDT;
42  MachineLoopInfo &Loops;
43  VirtRegMap &VRM;
44  MachineFrameInfo &MFI;
45  MachineRegisterInfo &MRI;
46  const TargetInstrInfo &TII;
47  const TargetRegisterInfo &TRI;
48
49  // Variables that are valid during spill(), but used by multiple methods.
50  LiveRangeEdit *Edit;
51  const TargetRegisterClass *RC;
52  int StackSlot;
53  unsigned Original;
54
55  // All registers to spill to StackSlot, including the main register.
56  SmallVector<unsigned, 8> RegsToSpill;
57
58  // All COPY instructions to/from snippets.
59  // They are ignored since both operands refer to the same stack slot.
60  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
61
62  // Values that failed to remat at some point.
63  SmallPtrSet<VNInfo*, 8> UsedValues;
64
65  // Information about a value that was defined by a copy from a sibling
66  // register.
67  struct SibValueInfo {
68    // True when all reaching defs were reloads: No spill is necessary.
69    bool AllDefsAreReloads;
70
71    // The preferred register to spill.
72    unsigned SpillReg;
73
74    // The value of SpillReg that should be spilled.
75    VNInfo *SpillVNI;
76
77    // A defining instruction that is not a sibling copy or a reload, or NULL.
78    // This can be used as a template for rematerialization.
79    MachineInstr *DefMI;
80
81    SibValueInfo(unsigned Reg, VNInfo *VNI)
82      : AllDefsAreReloads(false), SpillReg(Reg), SpillVNI(VNI), DefMI(0) {}
83  };
84
85  // Values in RegsToSpill defined by sibling copies.
86  typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
87  SibValueMap SibValues;
88
89  // Dead defs generated during spilling.
90  SmallVector<MachineInstr*, 8> DeadDefs;
91
92  ~InlineSpiller() {}
93
94public:
95  InlineSpiller(MachineFunctionPass &pass,
96                MachineFunction &mf,
97                VirtRegMap &vrm)
98    : Pass(pass),
99      MF(mf),
100      LIS(pass.getAnalysis<LiveIntervals>()),
101      LSS(pass.getAnalysis<LiveStacks>()),
102      AA(&pass.getAnalysis<AliasAnalysis>()),
103      MDT(pass.getAnalysis<MachineDominatorTree>()),
104      Loops(pass.getAnalysis<MachineLoopInfo>()),
105      VRM(vrm),
106      MFI(*mf.getFrameInfo()),
107      MRI(mf.getRegInfo()),
108      TII(*mf.getTarget().getInstrInfo()),
109      TRI(*mf.getTarget().getRegisterInfo()) {}
110
111  void spill(LiveRangeEdit &);
112
113private:
114  bool isSnippet(const LiveInterval &SnipLI);
115  void collectRegsToSpill();
116
117  bool isRegToSpill(unsigned Reg) {
118    return std::find(RegsToSpill.begin(),
119                     RegsToSpill.end(), Reg) != RegsToSpill.end();
120  }
121
122  bool isSibling(unsigned Reg);
123  void traceSiblingValue(unsigned, VNInfo*, VNInfo*);
124  void analyzeSiblingValues();
125
126  bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
127  void eliminateRedundantSpills(unsigned Reg, VNInfo *VNI);
128
129  bool reMaterializeFor(MachineBasicBlock::iterator MI);
130  void reMaterializeAll();
131
132  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
133  bool foldMemoryOperand(MachineBasicBlock::iterator MI,
134                         const SmallVectorImpl<unsigned> &Ops,
135                         MachineInstr *LoadMI = 0);
136  void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
137  void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
138                   MachineBasicBlock::iterator MI);
139
140  void spillAroundUses(unsigned Reg);
141};
142}
143
144namespace llvm {
145Spiller *createInlineSpiller(MachineFunctionPass &pass,
146                             MachineFunction &mf,
147                             VirtRegMap &vrm) {
148  return new InlineSpiller(pass, mf, vrm);
149}
150}
151
152//===----------------------------------------------------------------------===//
153//                                Snippets
154//===----------------------------------------------------------------------===//
155
156// When spilling a virtual register, we also spill any snippets it is connected
157// to. The snippets are small live ranges that only have a single real use,
158// leftovers from live range splitting. Spilling them enables memory operand
159// folding or tightens the live range around the single use.
160//
161// This minimizes register pressure and maximizes the store-to-load distance for
162// spill slots which can be important in tight loops.
163
164/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
165/// otherwise return 0.
166static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
167  if (!MI->isCopy())
168    return 0;
169  if (MI->getOperand(0).getSubReg() != 0)
170    return 0;
171  if (MI->getOperand(1).getSubReg() != 0)
172    return 0;
173  if (MI->getOperand(0).getReg() == Reg)
174      return MI->getOperand(1).getReg();
175  if (MI->getOperand(1).getReg() == Reg)
176      return MI->getOperand(0).getReg();
177  return 0;
178}
179
180/// isSnippet - Identify if a live interval is a snippet that should be spilled.
181/// It is assumed that SnipLI is a virtual register with the same original as
182/// Edit->getReg().
183bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
184  unsigned Reg = Edit->getReg();
185
186  // A snippet is a tiny live range with only a single instruction using it
187  // besides copies to/from Reg or spills/fills. We accept:
188  //
189  //   %snip = COPY %Reg / FILL fi#
190  //   %snip = USE %snip
191  //   %Reg = COPY %snip / SPILL %snip, fi#
192  //
193  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
194    return false;
195
196  MachineInstr *UseMI = 0;
197
198  // Check that all uses satisfy our criteria.
199  for (MachineRegisterInfo::reg_nodbg_iterator
200         RI = MRI.reg_nodbg_begin(SnipLI.reg);
201       MachineInstr *MI = RI.skipInstruction();) {
202
203    // Allow copies to/from Reg.
204    if (isFullCopyOf(MI, Reg))
205      continue;
206
207    // Allow stack slot loads.
208    int FI;
209    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
210      continue;
211
212    // Allow stack slot stores.
213    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
214      continue;
215
216    // Allow a single additional instruction.
217    if (UseMI && MI != UseMI)
218      return false;
219    UseMI = MI;
220  }
221  return true;
222}
223
224/// collectRegsToSpill - Collect live range snippets that only have a single
225/// real use.
226void InlineSpiller::collectRegsToSpill() {
227  unsigned Reg = Edit->getReg();
228
229  // Main register always spills.
230  RegsToSpill.assign(1, Reg);
231  SnippetCopies.clear();
232
233  // Snippets all have the same original, so there can't be any for an original
234  // register.
235  if (Original == Reg)
236    return;
237
238  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
239       MachineInstr *MI = RI.skipInstruction();) {
240    unsigned SnipReg = isFullCopyOf(MI, Reg);
241    if (!isSibling(SnipReg))
242      continue;
243    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
244    if (!isSnippet(SnipLI))
245      continue;
246    SnippetCopies.insert(MI);
247    if (!isRegToSpill(SnipReg))
248      RegsToSpill.push_back(SnipReg);
249
250    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
251  }
252}
253
254
255//===----------------------------------------------------------------------===//
256//                            Sibling Values
257//===----------------------------------------------------------------------===//
258
259// After live range splitting, some values to be spilled may be defined by
260// copies from sibling registers. We trace the sibling copies back to the
261// original value if it still exists. We need it for rematerialization.
262//
263// Even when the value can't be rematerialized, we still want to determine if
264// the value has already been spilled, or we may want to hoist the spill from a
265// loop.
266
267bool InlineSpiller::isSibling(unsigned Reg) {
268  return TargetRegisterInfo::isVirtualRegister(Reg) &&
269           VRM.getOriginal(Reg) == Original;
270}
271
272/// traceSiblingValue - Trace a value that is about to be spilled back to the
273/// real defining instructions by looking through sibling copies. Always stay
274/// within the range of OrigVNI so the registers are known to carry the same
275/// value.
276///
277/// Determine if the value is defined by all reloads, so spilling isn't
278/// necessary - the value is already in the stack slot.
279///
280/// Find a defining instruction that may be a candidate for rematerialization.
281///
282void InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
283                                      VNInfo *OrigVNI) {
284  DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
285               << UseVNI->id << '@' << UseVNI->def << '\n');
286  SmallPtrSet<VNInfo*, 8> Visited;
287  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
288  WorkList.push_back(std::make_pair(UseReg, UseVNI));
289
290  // Best spill candidate seen so far. This must dominate UseVNI.
291  SibValueInfo SVI(UseReg, UseVNI);
292  MachineBasicBlock *UseMBB = LIS.getMBBFromIndex(UseVNI->def);
293  unsigned SpillDepth = Loops.getLoopDepth(UseMBB);
294  bool SeenOrigPHI = false; // Original PHI met.
295
296  do {
297    unsigned Reg;
298    VNInfo *VNI;
299    tie(Reg, VNI) = WorkList.pop_back_val();
300    if (!Visited.insert(VNI))
301      continue;
302
303    // Is this value a better spill candidate?
304    if (!isRegToSpill(Reg)) {
305      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
306      if (MBB != UseMBB && MDT.dominates(MBB, UseMBB)) {
307        // This is a valid spill location dominating UseVNI.
308        // Prefer to spill at a smaller loop depth.
309        unsigned Depth = Loops.getLoopDepth(MBB);
310        if (Depth < SpillDepth) {
311          DEBUG(dbgs() << "  spill depth " << Depth << ": " << PrintReg(Reg)
312                       << ':' << VNI->id << '@' << VNI->def << '\n');
313          SVI.SpillReg = Reg;
314          SVI.SpillVNI = VNI;
315          SpillDepth = Depth;
316        }
317      }
318    }
319
320    // Trace through PHI-defs created by live range splitting.
321    if (VNI->isPHIDef()) {
322      if (VNI->def == OrigVNI->def) {
323        DEBUG(dbgs() << "  orig phi value " << PrintReg(Reg) << ':'
324                     << VNI->id << '@' << VNI->def << '\n');
325        SeenOrigPHI = true;
326        continue;
327      }
328      // Get values live-out of predecessors.
329      LiveInterval &LI = LIS.getInterval(Reg);
330      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
331      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
332             PE = MBB->pred_end(); PI != PE; ++PI) {
333        VNInfo *PVNI = LI.getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot());
334        if (PVNI)
335          WorkList.push_back(std::make_pair(Reg, PVNI));
336      }
337      continue;
338    }
339
340    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
341    assert(MI && "Missing def");
342
343    // Trace through sibling copies.
344    if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
345      if (isSibling(SrcReg)) {
346        LiveInterval &SrcLI = LIS.getInterval(SrcReg);
347        VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex());
348        assert(SrcVNI && "Copy from non-existing value");
349        DEBUG(dbgs() << "  copy of " << PrintReg(SrcReg) << ':'
350                     << SrcVNI->id << '@' << SrcVNI->def << '\n');
351        WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
352        continue;
353      }
354    }
355
356    // Track reachable reloads.
357    int FI;
358    if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
359      DEBUG(dbgs() << "  reload " << PrintReg(Reg) << ':'
360                   << VNI->id << "@" << VNI->def << '\n');
361      SVI.AllDefsAreReloads = true;
362      continue;
363    }
364
365    // We have an 'original' def. Don't record trivial cases.
366    if (VNI == UseVNI) {
367      DEBUG(dbgs() << "Not a sibling copy.\n");
368      return;
369    }
370
371    // Potential remat candidate.
372    DEBUG(dbgs() << "  def " << PrintReg(Reg) << ':'
373                 << VNI->id << '@' << VNI->def << '\t' << *MI);
374    SVI.DefMI = MI;
375  } while (!WorkList.empty());
376
377  if (SeenOrigPHI || SVI.DefMI)
378    SVI.AllDefsAreReloads = false;
379
380  DEBUG({
381    if (SVI.AllDefsAreReloads)
382      dbgs() << "All defs are reloads.\n";
383    else
384      dbgs() << "Prefer to spill " << PrintReg(SVI.SpillReg) << ':'
385             << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def << '\n';
386  });
387  SibValues.insert(std::make_pair(UseVNI, SVI));
388}
389
390/// analyzeSiblingValues - Trace values defined by sibling copies back to
391/// something that isn't a sibling copy.
392void InlineSpiller::analyzeSiblingValues() {
393  SibValues.clear();
394
395  // No siblings at all?
396  if (Edit->getReg() == Original)
397    return;
398
399  LiveInterval &OrigLI = LIS.getInterval(Original);
400  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
401    unsigned Reg = RegsToSpill[i];
402    LiveInterval &LI = LIS.getInterval(Reg);
403    for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
404         VE = LI.vni_end(); VI != VE; ++VI) {
405      VNInfo *VNI = *VI;
406      if (VNI->isUnused() || !(VNI->isPHIDef() || VNI->getCopy()))
407        continue;
408      VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
409      if (OrigVNI->def != VNI->def)
410        traceSiblingValue(Reg, VNI, OrigVNI);
411    }
412  }
413}
414
415/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
416/// a spill at a better location.
417bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
418  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
419  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex());
420  assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy");
421  SibValueMap::const_iterator I = SibValues.find(VNI);
422  if (I == SibValues.end())
423    return false;
424
425  const SibValueInfo &SVI = I->second;
426
427  // Let the normal folding code deal with the boring case.
428  if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
429    return false;
430
431  // Conservatively extend the stack slot range to the range of the original
432  // value. We may be able to do better with stack slot coloring by being more
433  // careful here.
434  LiveInterval &StackInt = LSS.getInterval(StackSlot);
435  LiveInterval &OrigLI = LIS.getInterval(Original);
436  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
437  StackInt.MergeValueInAsValue(OrigLI, OrigVNI, StackInt.getValNumInfo(0));
438  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
439               << StackInt << '\n');
440
441  // Already spilled everywhere.
442  if (SVI.AllDefsAreReloads)
443    return true;
444
445  // We are going to spill SVI.SpillVNI immediately after its def, so clear out
446  // any later spills of the same value.
447  eliminateRedundantSpills(SVI.SpillReg, SVI.SpillVNI);
448
449  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
450  MachineBasicBlock::iterator MII;
451  if (SVI.SpillVNI->isPHIDef())
452    MII = MBB->SkipPHIsAndLabels(MBB->begin());
453  else {
454    MII = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
455    ++MII;
456  }
457  // Insert spill without kill flag immediately after def.
458  TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, RC, &TRI);
459  --MII; // Point to store instruction.
460  LIS.InsertMachineInstrInMaps(MII);
461  VRM.addSpillSlotUse(StackSlot, MII);
462  DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
463  return true;
464}
465
466/// eliminateRedundantSpills - Reg:VNI is known to be on the stack. Remove any
467/// redundant spills of this value in Reg and sibling copies.
468void InlineSpiller::eliminateRedundantSpills(unsigned Reg, VNInfo *VNI) {
469  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
470  WorkList.push_back(std::make_pair(Reg, VNI));
471  LiveInterval &StackInt = LSS.getInterval(StackSlot);
472
473  do {
474    tie(Reg, VNI) = WorkList.pop_back_val();
475    DEBUG(dbgs() << "Checking redundant spills for " << PrintReg(Reg) << ':'
476                 << VNI->id << '@' << VNI->def << '\n');
477
478    // Regs to spill are taken care of.
479    if (isRegToSpill(Reg))
480      continue;
481
482    // Add all of VNI's live range to StackInt.
483    LiveInterval &LI = LIS.getInterval(Reg);
484    StackInt.MergeValueInAsValue(LI, VNI, StackInt.getValNumInfo(0));
485    DEBUG(dbgs() << "Merged to stack int: " << StackInt << '\n');
486
487    // Find all spills and copies of VNI.
488    for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
489         MachineInstr *MI = UI.skipInstruction();) {
490      if (!MI->isCopy() && !MI->getDesc().mayStore())
491        continue;
492      SlotIndex Idx = LIS.getInstructionIndex(MI);
493      if (LI.getVNInfoAt(Idx) != VNI)
494        continue;
495
496      // Follow sibling copies down the dominator tree.
497      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
498        if (isSibling(DstReg)) {
499           LiveInterval &DstLI = LIS.getInterval(DstReg);
500           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex());
501           assert(DstVNI && "Missing defined value");
502           assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot");
503           WorkList.push_back(std::make_pair(DstReg, DstVNI));
504        }
505        continue;
506      }
507
508      // Erase spills.
509      int FI;
510      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
511        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
512        // eliminateDeadDefs won't normally remove stores, so switch opcode.
513        MI->setDesc(TII.get(TargetOpcode::KILL));
514        DeadDefs.push_back(MI);
515      }
516    }
517  } while (!WorkList.empty());
518}
519
520/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
521bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
522  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex();
523  VNInfo *OrigVNI = Edit->getParent().getVNInfoAt(UseIdx);
524
525  if (!OrigVNI) {
526    DEBUG(dbgs() << "\tadding <undef> flags: ");
527    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
528      MachineOperand &MO = MI->getOperand(i);
529      if (MO.isReg() && MO.isUse() && MO.getReg() == Edit->getReg())
530        MO.setIsUndef();
531    }
532    DEBUG(dbgs() << UseIdx << '\t' << *MI);
533    return true;
534  }
535
536  // FIXME: Properly remat for snippets as well.
537  if (SnippetCopies.count(MI)) {
538    UsedValues.insert(OrigVNI);
539    return false;
540  }
541
542  LiveRangeEdit::Remat RM(OrigVNI);
543  if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) {
544    UsedValues.insert(OrigVNI);
545    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
546    return false;
547  }
548
549  // If the instruction also writes Edit->getReg(), it had better not require
550  // the same register for uses and defs.
551  bool Reads, Writes;
552  SmallVector<unsigned, 8> Ops;
553  tie(Reads, Writes) = MI->readsWritesVirtualRegister(Edit->getReg(), &Ops);
554  if (Writes) {
555    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
556      MachineOperand &MO = MI->getOperand(Ops[i]);
557      if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
558        UsedValues.insert(OrigVNI);
559        DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
560        return false;
561      }
562    }
563  }
564
565  // Before rematerializing into a register for a single instruction, try to
566  // fold a load into the instruction. That avoids allocating a new register.
567  if (RM.OrigMI->getDesc().canFoldAsLoad() &&
568      foldMemoryOperand(MI, Ops, RM.OrigMI)) {
569    Edit->markRematerialized(RM.ParentVNI);
570    return true;
571  }
572
573  // Alocate a new register for the remat.
574  LiveInterval &NewLI = Edit->create(LIS, VRM);
575  NewLI.markNotSpillable();
576
577  // Rematting for a copy: Set allocation hint to be the destination register.
578  if (MI->isCopy())
579    MRI.setRegAllocationHint(NewLI.reg, 0, MI->getOperand(0).getReg());
580
581  // Finally we can rematerialize OrigMI before MI.
582  SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
583                                           LIS, TII, TRI);
584  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
585               << *LIS.getInstructionFromIndex(DefIdx));
586
587  // Replace operands
588  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
589    MachineOperand &MO = MI->getOperand(Ops[i]);
590    if (MO.isReg() && MO.isUse() && MO.getReg() == Edit->getReg()) {
591      MO.setReg(NewLI.reg);
592      MO.setIsKill();
593    }
594  }
595  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
596
597  VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator());
598  NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
599  DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
600  return true;
601}
602
603/// reMaterializeAll - Try to rematerialize as many uses as possible,
604/// and trim the live ranges after.
605void InlineSpiller::reMaterializeAll() {
606  // Do a quick scan of the interval values to find if any are remattable.
607  if (!Edit->anyRematerializable(LIS, TII, AA))
608    return;
609
610  UsedValues.clear();
611
612  // Try to remat before all uses of Edit->getReg().
613  bool anyRemat = false;
614  for (MachineRegisterInfo::use_nodbg_iterator
615       RI = MRI.use_nodbg_begin(Edit->getReg());
616       MachineInstr *MI = RI.skipInstruction();)
617     anyRemat |= reMaterializeFor(MI);
618
619  if (!anyRemat)
620    return;
621
622  // Remove any values that were completely rematted.
623  bool anyRemoved = false;
624  for (LiveInterval::vni_iterator I = Edit->getParent().vni_begin(),
625       E = Edit->getParent().vni_end(); I != E; ++I) {
626    VNInfo *VNI = *I;
627    if (VNI->hasPHIKill() || !Edit->didRematerialize(VNI) ||
628        UsedValues.count(VNI))
629      continue;
630    MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
631    DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
632    LIS.RemoveMachineInstrFromMaps(DefMI);
633    VRM.RemoveMachineInstrFromMaps(DefMI);
634    DefMI->eraseFromParent();
635    VNI->def = SlotIndex();
636    anyRemoved = true;
637  }
638
639  if (!anyRemoved)
640    return;
641
642  // Removing values may cause debug uses where parent is not live.
643  for (MachineRegisterInfo::use_iterator RI = MRI.use_begin(Edit->getReg());
644       MachineInstr *MI = RI.skipInstruction();) {
645    if (!MI->isDebugValue())
646      continue;
647    // Try to preserve the debug value if parent is live immediately after it.
648    MachineBasicBlock::iterator NextMI = MI;
649    ++NextMI;
650    if (NextMI != MI->getParent()->end() && !LIS.isNotInMIMap(NextMI)) {
651      SlotIndex Idx = LIS.getInstructionIndex(NextMI);
652      VNInfo *VNI = Edit->getParent().getVNInfoAt(Idx);
653      if (VNI && (VNI->hasPHIKill() || UsedValues.count(VNI)))
654        continue;
655    }
656    DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
657    MI->eraseFromParent();
658  }
659}
660
661/// If MI is a load or store of StackSlot, it can be removed.
662bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
663  int FI = 0;
664  unsigned InstrReg;
665  if (!(InstrReg = TII.isLoadFromStackSlot(MI, FI)) &&
666      !(InstrReg = TII.isStoreToStackSlot(MI, FI)))
667    return false;
668
669  // We have a stack access. Is it the right register and slot?
670  if (InstrReg != Reg || FI != StackSlot)
671    return false;
672
673  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
674  LIS.RemoveMachineInstrFromMaps(MI);
675  MI->eraseFromParent();
676  return true;
677}
678
679/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
680/// @param MI     Instruction using or defining the current register.
681/// @param Ops    Operand indices from readsWritesVirtualRegister().
682/// @param LoadMI Load instruction to use instead of stack slot when non-null.
683/// @return       True on success, and MI will be erased.
684bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
685                                      const SmallVectorImpl<unsigned> &Ops,
686                                      MachineInstr *LoadMI) {
687  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
688  // operands.
689  SmallVector<unsigned, 8> FoldOps;
690  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
691    unsigned Idx = Ops[i];
692    MachineOperand &MO = MI->getOperand(Idx);
693    if (MO.isImplicit())
694      continue;
695    // FIXME: Teach targets to deal with subregs.
696    if (MO.getSubReg())
697      return false;
698    // We cannot fold a load instruction into a def.
699    if (LoadMI && MO.isDef())
700      return false;
701    // Tied use operands should not be passed to foldMemoryOperand.
702    if (!MI->isRegTiedToDefOperand(Idx))
703      FoldOps.push_back(Idx);
704  }
705
706  MachineInstr *FoldMI =
707                LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
708                       : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
709  if (!FoldMI)
710    return false;
711  LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
712  if (!LoadMI)
713    VRM.addSpillSlotUse(StackSlot, FoldMI);
714  MI->eraseFromParent();
715  DEBUG(dbgs() << "\tfolded: " << *FoldMI);
716  return true;
717}
718
719/// insertReload - Insert a reload of NewLI.reg before MI.
720void InlineSpiller::insertReload(LiveInterval &NewLI,
721                                 MachineBasicBlock::iterator MI) {
722  MachineBasicBlock &MBB = *MI->getParent();
723  SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
724  TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, RC, &TRI);
725  --MI; // Point to load instruction.
726  SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
727  VRM.addSpillSlotUse(StackSlot, MI);
728  DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
729  VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
730                                       LIS.getVNInfoAllocator());
731  NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
732}
733
734/// insertSpill - Insert a spill of NewLI.reg after MI.
735void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
736                                MachineBasicBlock::iterator MI) {
737  MachineBasicBlock &MBB = *MI->getParent();
738
739  // Get the defined value. It could be an early clobber so keep the def index.
740  SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex();
741  VNInfo *VNI = OldLI.getVNInfoAt(Idx);
742  assert(VNI && VNI->def.getDefIndex() == Idx && "Inconsistent VNInfo");
743  Idx = VNI->def;
744
745  TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, RC, &TRI);
746  --MI; // Point to store instruction.
747  SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex();
748  VRM.addSpillSlotUse(StackSlot, MI);
749  DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
750  VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
751  NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
752}
753
754/// spillAroundUses - insert spill code around each use of Reg.
755void InlineSpiller::spillAroundUses(unsigned Reg) {
756  LiveInterval &OldLI = LIS.getInterval(Reg);
757
758  // Iterate over instructions using Reg.
759  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
760       MachineInstr *MI = RI.skipInstruction();) {
761
762    // Debug values are not allowed to affect codegen.
763    if (MI->isDebugValue()) {
764      // Modify DBG_VALUE now that the value is in a spill slot.
765      uint64_t Offset = MI->getOperand(1).getImm();
766      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
767      DebugLoc DL = MI->getDebugLoc();
768      if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
769                                                           Offset, MDPtr, DL)) {
770        DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
771        MachineBasicBlock *MBB = MI->getParent();
772        MBB->insert(MBB->erase(MI), NewDV);
773      } else {
774        DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
775        MI->eraseFromParent();
776      }
777      continue;
778    }
779
780    // Ignore copies to/from snippets. We'll delete them.
781    if (SnippetCopies.count(MI))
782      continue;
783
784    // Stack slot accesses may coalesce away.
785    if (coalesceStackAccess(MI, Reg))
786      continue;
787
788    // Analyze instruction.
789    bool Reads, Writes;
790    SmallVector<unsigned, 8> Ops;
791    tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops);
792
793    // Check for a sibling copy.
794    unsigned SibReg = isFullCopyOf(MI, Reg);
795    if (!isSibling(SibReg))
796      SibReg = 0;
797
798    // Hoist the spill of a sib-reg copy.
799    if (SibReg && Writes && !Reads && hoistSpill(OldLI, MI)) {
800      // This COPY is now dead, the value is already in the stack slot.
801      MI->getOperand(0).setIsDead();
802      DeadDefs.push_back(MI);
803      continue;
804    }
805
806    // Attempt to fold memory ops.
807    if (foldMemoryOperand(MI, Ops))
808      continue;
809
810    // Allocate interval around instruction.
811    // FIXME: Infer regclass from instruction alone.
812    LiveInterval &NewLI = Edit->create(LIS, VRM);
813    NewLI.markNotSpillable();
814
815    if (Reads)
816      insertReload(NewLI, MI);
817
818    // Rewrite instruction operands.
819    bool hasLiveDef = false;
820    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
821      MachineOperand &MO = MI->getOperand(Ops[i]);
822      MO.setReg(NewLI.reg);
823      if (MO.isUse()) {
824        if (!MI->isRegTiedToDefOperand(Ops[i]))
825          MO.setIsKill();
826      } else {
827        if (!MO.isDead())
828          hasLiveDef = true;
829      }
830    }
831
832    // FIXME: Use a second vreg if instruction has no tied ops.
833    if (Writes && hasLiveDef)
834      insertSpill(NewLI, OldLI, MI);
835
836    DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
837  }
838}
839
840void InlineSpiller::spill(LiveRangeEdit &edit) {
841  Edit = &edit;
842  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
843         && "Trying to spill a stack slot.");
844
845  // Share a stack slot among all descendants of Original.
846  Original = VRM.getOriginal(edit.getReg());
847  StackSlot = VRM.getStackSlot(Original);
848
849  DEBUG(dbgs() << "Inline spilling "
850               << MRI.getRegClass(edit.getReg())->getName()
851               << ':' << edit.getParent() << "\nFrom original "
852               << LIS.getInterval(Original) << '\n');
853  assert(edit.getParent().isSpillable() &&
854         "Attempting to spill already spilled value.");
855  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
856
857  collectRegsToSpill();
858  analyzeSiblingValues();
859  reMaterializeAll();
860
861  // Remat may handle everything.
862  if (Edit->getParent().empty())
863    return;
864
865  RC = MRI.getRegClass(edit.getReg());
866
867  if (StackSlot == VirtRegMap::NO_STACK_SLOT)
868    StackSlot = VRM.assignVirt2StackSlot(Original);
869
870  if (Original != edit.getReg())
871    VRM.assignVirt2StackSlot(edit.getReg(), StackSlot);
872
873  // Update LiveStacks now that we are committed to spilling.
874  LiveInterval &stacklvr = LSS.getOrCreateInterval(StackSlot, RC);
875  if (!stacklvr.hasAtLeastOneValue())
876    stacklvr.getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator());
877  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
878    stacklvr.MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
879                                  stacklvr.getValNumInfo(0));
880  DEBUG(dbgs() << "Merged spilled regs: " << stacklvr << '\n');
881
882  // Spill around uses of all RegsToSpill.
883  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
884    spillAroundUses(RegsToSpill[i]);
885
886  // Hoisted spills may cause dead code.
887  if (!DeadDefs.empty()) {
888    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
889    Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
890  }
891
892  // Finally delete the SnippetCopies.
893  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(edit.getReg());
894       MachineInstr *MI = RI.skipInstruction();) {
895    assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
896    // FIXME: Do this with a LiveRangeEdit callback.
897    VRM.RemoveMachineInstrFromMaps(MI);
898    LIS.RemoveMachineInstrFromMaps(MI);
899    MI->eraseFromParent();
900  }
901
902  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
903    edit.eraseVirtReg(RegsToSpill[i], LIS);
904}
905