MachineCSE.cpp revision 9d709a8edb696e89b33cd3c2886c8db735b02318
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopedHashTable.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28
29using namespace llvm;
30
31STATISTIC(NumCoalesces, "Number of copies coalesced");
32STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33
34namespace {
35  class MachineCSE : public MachineFunctionPass {
36    const TargetInstrInfo *TII;
37    const TargetRegisterInfo *TRI;
38    AliasAnalysis *AA;
39    MachineDominatorTree *DT;
40    MachineRegisterInfo *MRI;
41  public:
42    static char ID; // Pass identification
43    MachineCSE() : MachineFunctionPass(&ID), LookAheadLimit(5), CurrVN(0) {}
44
45    virtual bool runOnMachineFunction(MachineFunction &MF);
46
47    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
48      AU.setPreservesCFG();
49      MachineFunctionPass::getAnalysisUsage(AU);
50      AU.addRequired<AliasAnalysis>();
51      AU.addRequired<MachineDominatorTree>();
52      AU.addPreserved<MachineDominatorTree>();
53    }
54
55  private:
56    const unsigned LookAheadLimit;
57    typedef ScopedHashTableScope<MachineInstr*, unsigned,
58                                 MachineInstrExpressionTrait> ScopeType;
59    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
60    ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
61    SmallVector<MachineInstr*, 64> Exps;
62    unsigned CurrVN;
63
64    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
65    bool isPhysDefTriviallyDead(unsigned Reg,
66                                MachineBasicBlock::const_iterator I,
67                                MachineBasicBlock::const_iterator E) const ;
68    bool hasLivePhysRegDefUse(const MachineInstr *MI,
69                              const MachineBasicBlock *MBB,
70                              unsigned &PhysDef) const;
71    bool PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
72                           unsigned PhysDef) const;
73    bool isCSECandidate(MachineInstr *MI);
74    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
75                           MachineInstr *CSMI, MachineInstr *MI);
76    void EnterScope(MachineBasicBlock *MBB);
77    void ExitScope(MachineBasicBlock *MBB);
78    bool ProcessBlock(MachineBasicBlock *MBB);
79    void ExitScopeIfDone(MachineDomTreeNode *Node,
80                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
81                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
82    bool PerformCSE(MachineDomTreeNode *Node);
83  };
84} // end anonymous namespace
85
86char MachineCSE::ID = 0;
87static RegisterPass<MachineCSE>
88X("machine-cse", "Machine Common Subexpression Elimination");
89
90FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
91
92bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
93                                          MachineBasicBlock *MBB) {
94  bool Changed = false;
95  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
96    MachineOperand &MO = MI->getOperand(i);
97    if (!MO.isReg() || !MO.isUse())
98      continue;
99    unsigned Reg = MO.getReg();
100    if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
101      continue;
102    if (!MRI->hasOneUse(Reg))
103      // Only coalesce single use copies. This ensure the copy will be
104      // deleted.
105      continue;
106    MachineInstr *DefMI = MRI->getVRegDef(Reg);
107    if (DefMI->getParent() != MBB)
108      continue;
109    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
110    if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
111        TargetRegisterInfo::isVirtualRegister(SrcReg) &&
112        !SrcSubIdx && !DstSubIdx) {
113      const TargetRegisterClass *SRC   = MRI->getRegClass(SrcReg);
114      const TargetRegisterClass *RC    = MRI->getRegClass(Reg);
115      const TargetRegisterClass *NewRC = getCommonSubClass(RC, SRC);
116      if (!NewRC)
117        continue;
118      DEBUG(dbgs() << "Coalescing: " << *DefMI);
119      DEBUG(dbgs() << "*** to: " << *MI);
120      MO.setReg(SrcReg);
121      MRI->clearKillFlags(SrcReg);
122      if (NewRC != SRC)
123        MRI->setRegClass(SrcReg, NewRC);
124      DefMI->eraseFromParent();
125      ++NumCoalesces;
126      Changed = true;
127    }
128  }
129
130  return Changed;
131}
132
133bool
134MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
135                                   MachineBasicBlock::const_iterator I,
136                                   MachineBasicBlock::const_iterator E) const {
137  unsigned LookAheadLeft = LookAheadLimit;
138  while (LookAheadLeft) {
139    // Skip over dbg_value's.
140    while (I != E && I->isDebugValue())
141      ++I;
142
143    if (I == E)
144      // Reached end of block, register is obviously dead.
145      return true;
146
147    bool SeenDef = false;
148    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
149      const MachineOperand &MO = I->getOperand(i);
150      if (!MO.isReg() || !MO.getReg())
151        continue;
152      if (!TRI->regsOverlap(MO.getReg(), Reg))
153        continue;
154      if (MO.isUse())
155        // Found a use!
156        return false;
157      SeenDef = true;
158    }
159    if (SeenDef)
160      // See a def of Reg (or an alias) before encountering any use, it's
161      // trivially dead.
162      return true;
163
164    --LookAheadLeft;
165    ++I;
166  }
167  return false;
168}
169
170/// hasLivePhysRegDefUse - Return true if the specified instruction read / write
171/// physical registers (except for dead defs of physical registers). It also
172/// returns the physical register def by reference if it's the only one.
173bool MachineCSE::hasLivePhysRegDefUse(const MachineInstr *MI,
174                                      const MachineBasicBlock *MBB,
175                                      unsigned &PhysDef) const {
176  PhysDef = 0;
177  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178    const MachineOperand &MO = MI->getOperand(i);
179    if (!MO.isReg())
180      continue;
181    unsigned Reg = MO.getReg();
182    if (!Reg)
183      continue;
184    if (TargetRegisterInfo::isVirtualRegister(Reg))
185      continue;
186    if (MO.isUse())
187      // Can't touch anything to read a physical register.
188      return true;
189    if (MO.isDead())
190      // If the def is dead, it's ok.
191      continue;
192    // Ok, this is a physical register def that's not marked "dead". That's
193    // common since this pass is run before livevariables. We can scan
194    // forward a few instructions and check if it is obviously dead.
195    if (PhysDef) {
196      // Multiple physical register defs. These are rare, forget about it.
197      PhysDef = 0;
198      return true;
199    }
200    PhysDef = Reg;
201  }
202
203  if (PhysDef) {
204    MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
205    if (!isPhysDefTriviallyDead(PhysDef, I, MBB->end()))
206      return true;
207  }
208  return false;
209}
210
211bool MachineCSE::PhysRegDefReaches(MachineInstr *CSMI, MachineInstr *MI,
212                                  unsigned PhysDef) const {
213  // For now conservatively returns false if the common subexpression is
214  // not in the same basic block as the given instruction.
215  MachineBasicBlock *MBB = MI->getParent();
216  if (CSMI->getParent() != MBB)
217    return false;
218  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
219  MachineBasicBlock::const_iterator E = MI;
220  unsigned LookAheadLeft = LookAheadLimit;
221  while (LookAheadLeft) {
222    // Skip over dbg_value's.
223    while (I != E && I->isDebugValue())
224      ++I;
225
226    if (I == E)
227      return true;
228    if (I->modifiesRegister(PhysDef, TRI))
229      return false;
230
231    --LookAheadLeft;
232    ++I;
233  }
234
235  return false;
236}
237
238static bool isCopy(const MachineInstr *MI, const TargetInstrInfo *TII) {
239  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
240  return TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
241    MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg();
242}
243
244bool MachineCSE::isCSECandidate(MachineInstr *MI) {
245  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
246      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
247    return false;
248
249  // Ignore copies.
250  if (isCopy(MI, TII))
251    return false;
252
253  // Ignore stuff that we obviously can't move.
254  const TargetInstrDesc &TID = MI->getDesc();
255  if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
256      TID.hasUnmodeledSideEffects())
257    return false;
258
259  if (TID.mayLoad()) {
260    // Okay, this instruction does a load. As a refinement, we allow the target
261    // to decide whether the loaded value is actually a constant. If so, we can
262    // actually use it as a load.
263    if (!MI->isInvariantLoad(AA))
264      // FIXME: we should be able to hoist loads with no other side effects if
265      // there are no other instructions which can change memory in this loop.
266      // This is a trivial form of alias analysis.
267      return false;
268  }
269  return true;
270}
271
272/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
273/// common expression that defines Reg.
274bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
275                                   MachineInstr *CSMI, MachineInstr *MI) {
276  // FIXME: Heuristics that works around the lack the live range splitting.
277
278  // Heuristics #1: Don't cse "cheap" computating if the def is not local or in an
279  // immediate predecessor. We don't want to increase register pressure and end up
280  // causing other computation to be spilled.
281  if (MI->getDesc().isAsCheapAsAMove()) {
282    MachineBasicBlock *CSBB = CSMI->getParent();
283    MachineBasicBlock *BB = MI->getParent();
284    if (CSBB != BB &&
285        find(CSBB->succ_begin(), CSBB->succ_end(), BB) == CSBB->succ_end())
286      return false;
287  }
288
289  // Heuristics #2: If the expression doesn't not use a vr and the only use
290  // of the redundant computation are copies, do not cse.
291  bool HasVRegUse = false;
292  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
293    const MachineOperand &MO = MI->getOperand(i);
294    if (MO.isReg() && MO.isUse() && MO.getReg() &&
295        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
296      HasVRegUse = true;
297      break;
298    }
299  }
300  if (!HasVRegUse) {
301    bool HasNonCopyUse = false;
302    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
303           E = MRI->use_nodbg_end(); I != E; ++I) {
304      MachineInstr *Use = &*I;
305      // Ignore copies.
306      if (!isCopy(Use, TII)) {
307        HasNonCopyUse = true;
308        break;
309      }
310    }
311    if (!HasNonCopyUse)
312      return false;
313  }
314
315  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
316  // it unless the defined value is already used in the BB of the new use.
317  bool HasPHI = false;
318  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
319  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
320       E = MRI->use_nodbg_end(); I != E; ++I) {
321    MachineInstr *Use = &*I;
322    HasPHI |= Use->isPHI();
323    CSBBs.insert(Use->getParent());
324  }
325
326  if (!HasPHI)
327    return true;
328  return CSBBs.count(MI->getParent());
329}
330
331void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
332  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
333  ScopeType *Scope = new ScopeType(VNT);
334  ScopeMap[MBB] = Scope;
335}
336
337void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
338  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
339  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
340  assert(SI != ScopeMap.end());
341  ScopeMap.erase(SI);
342  delete SI->second;
343}
344
345bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
346  bool Changed = false;
347
348  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
349  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
350    MachineInstr *MI = &*I;
351    ++I;
352
353    if (!isCSECandidate(MI))
354      continue;
355
356    bool FoundCSE = VNT.count(MI);
357    if (!FoundCSE) {
358      // Look for trivial copy coalescing opportunities.
359      if (PerformTrivialCoalescing(MI, MBB)) {
360        // After coalescing MI itself may become a copy.
361        if (isCopy(MI, TII))
362          continue;
363        FoundCSE = VNT.count(MI);
364      }
365    }
366    // FIXME: commute commutable instructions?
367
368    // If the instruction defines a physical register and the value *may* be
369    // used, then it's not safe to replace it with a common subexpression.
370    unsigned PhysDef = 0;
371    if (FoundCSE && hasLivePhysRegDefUse(MI, MBB, PhysDef)) {
372      FoundCSE = false;
373
374      // ... Unless the CS is local and it also defines the physical register
375      // which is not clobbered in between.
376      if (PhysDef) {
377        unsigned CSVN = VNT.lookup(MI);
378        MachineInstr *CSMI = Exps[CSVN];
379        if (PhysRegDefReaches(CSMI, MI, PhysDef))
380          FoundCSE = true;
381      }
382    }
383
384    if (!FoundCSE) {
385      VNT.insert(MI, CurrVN++);
386      Exps.push_back(MI);
387      continue;
388    }
389
390    // Found a common subexpression, eliminate it.
391    unsigned CSVN = VNT.lookup(MI);
392    MachineInstr *CSMI = Exps[CSVN];
393    DEBUG(dbgs() << "Examining: " << *MI);
394    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
395
396    // Check if it's profitable to perform this CSE.
397    bool DoCSE = true;
398    unsigned NumDefs = MI->getDesc().getNumDefs();
399    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
400      MachineOperand &MO = MI->getOperand(i);
401      if (!MO.isReg() || !MO.isDef())
402        continue;
403      unsigned OldReg = MO.getReg();
404      unsigned NewReg = CSMI->getOperand(i).getReg();
405      if (OldReg == NewReg)
406        continue;
407      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
408             TargetRegisterInfo::isVirtualRegister(NewReg) &&
409             "Do not CSE physical register defs!");
410      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
411        DoCSE = false;
412        break;
413      }
414      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
415      --NumDefs;
416    }
417
418    // Actually perform the elimination.
419    if (DoCSE) {
420      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
421        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
422        MRI->clearKillFlags(CSEPairs[i].second);
423      }
424      MI->eraseFromParent();
425      ++NumCSEs;
426    } else {
427      DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
428      VNT.insert(MI, CurrVN++);
429      Exps.push_back(MI);
430    }
431    CSEPairs.clear();
432  }
433
434  return Changed;
435}
436
437/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
438/// dominator tree node if its a leaf or all of its children are done. Walk
439/// up the dominator tree to destroy ancestors which are now done.
440void
441MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
442                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
443                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
444  if (OpenChildren[Node])
445    return;
446
447  // Pop scope.
448  ExitScope(Node->getBlock());
449
450  // Now traverse upwards to pop ancestors whose offsprings are all done.
451  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
452    unsigned Left = --OpenChildren[Parent];
453    if (Left != 0)
454      break;
455    ExitScope(Parent->getBlock());
456    Node = Parent;
457  }
458}
459
460bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
461  SmallVector<MachineDomTreeNode*, 32> Scopes;
462  SmallVector<MachineDomTreeNode*, 8> WorkList;
463  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
464  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
465
466  // Perform a DFS walk to determine the order of visit.
467  WorkList.push_back(Node);
468  do {
469    Node = WorkList.pop_back_val();
470    Scopes.push_back(Node);
471    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
472    unsigned NumChildren = Children.size();
473    OpenChildren[Node] = NumChildren;
474    for (unsigned i = 0; i != NumChildren; ++i) {
475      MachineDomTreeNode *Child = Children[i];
476      ParentMap[Child] = Node;
477      WorkList.push_back(Child);
478    }
479  } while (!WorkList.empty());
480
481  // Now perform CSE.
482  bool Changed = false;
483  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
484    MachineDomTreeNode *Node = Scopes[i];
485    MachineBasicBlock *MBB = Node->getBlock();
486    EnterScope(MBB);
487    Changed |= ProcessBlock(MBB);
488    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
489    ExitScopeIfDone(Node, OpenChildren, ParentMap);
490  }
491
492  return Changed;
493}
494
495bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
496  TII = MF.getTarget().getInstrInfo();
497  TRI = MF.getTarget().getRegisterInfo();
498  MRI = &MF.getRegInfo();
499  AA = &getAnalysis<AliasAnalysis>();
500  DT = &getAnalysis<MachineDominatorTree>();
501  return PerformCSE(DT->getRootNode());
502}
503