MachineCSE.cpp revision e4fd907e72a599eddfa7a81eac4366b5b82523e3
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "machine-cse"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineDominators.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/MachineRegisterInfo.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/ScopedHashTable.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/RecyclingAllocator.h"
29using namespace llvm;
30
31STATISTIC(NumCoalesces, "Number of copies coalesced");
32STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
33STATISTIC(NumPhysCSEs,
34          "Number of physreg referencing common subexpr eliminated");
35STATISTIC(NumCrossBBCSEs,
36          "Number of cross-MBB physreg referencing CS eliminated");
37STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
38
39namespace {
40  class MachineCSE : public MachineFunctionPass {
41    const TargetInstrInfo *TII;
42    const TargetRegisterInfo *TRI;
43    AliasAnalysis *AA;
44    MachineDominatorTree *DT;
45    MachineRegisterInfo *MRI;
46  public:
47    static char ID; // Pass identification
48    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
49      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
50    }
51
52    virtual bool runOnMachineFunction(MachineFunction &MF);
53
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.setPreservesCFG();
56      MachineFunctionPass::getAnalysisUsage(AU);
57      AU.addRequired<AliasAnalysis>();
58      AU.addPreservedID(MachineLoopInfoID);
59      AU.addRequired<MachineDominatorTree>();
60      AU.addPreserved<MachineDominatorTree>();
61    }
62
63    virtual void releaseMemory() {
64      ScopeMap.clear();
65      Exps.clear();
66      AllocatableRegs.clear();
67      ReservedRegs.clear();
68    }
69
70  private:
71    const unsigned LookAheadLimit;
72    typedef RecyclingAllocator<BumpPtrAllocator,
73        ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
74    typedef ScopedHashTable<MachineInstr*, unsigned,
75        MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
76    typedef ScopedHTType::ScopeTy ScopeType;
77    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
78    ScopedHTType VNT;
79    SmallVector<MachineInstr*, 64> Exps;
80    unsigned CurrVN;
81    BitVector AllocatableRegs;
82    BitVector ReservedRegs;
83
84    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
85    bool isPhysDefTriviallyDead(unsigned Reg,
86                                MachineBasicBlock::const_iterator I,
87                                MachineBasicBlock::const_iterator E) const ;
88    bool hasLivePhysRegDefUses(const MachineInstr *MI,
89                               const MachineBasicBlock *MBB,
90                               SmallSet<unsigned,8> &PhysRefs,
91                               SmallVector<unsigned,2> &PhysDefs) const;
92    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
93                          SmallSet<unsigned,8> &PhysRefs,
94                          SmallVector<unsigned,2> &PhysDefs,
95                          bool &NonLocal) const;
96    bool isCSECandidate(MachineInstr *MI);
97    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
98                           MachineInstr *CSMI, MachineInstr *MI);
99    void EnterScope(MachineBasicBlock *MBB);
100    void ExitScope(MachineBasicBlock *MBB);
101    bool ProcessBlock(MachineBasicBlock *MBB);
102    void ExitScopeIfDone(MachineDomTreeNode *Node,
103                 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
104                 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
105    bool PerformCSE(MachineDomTreeNode *Node);
106  };
107} // end anonymous namespace
108
109char MachineCSE::ID = 0;
110char &llvm::MachineCSEID = MachineCSE::ID;
111INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
112                "Machine Common Subexpression Elimination", false, false)
113INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
114INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
115INITIALIZE_PASS_END(MachineCSE, "machine-cse",
116                "Machine Common Subexpression Elimination", false, false)
117
118bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
119                                          MachineBasicBlock *MBB) {
120  bool Changed = false;
121  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
122    MachineOperand &MO = MI->getOperand(i);
123    if (!MO.isReg() || !MO.isUse())
124      continue;
125    unsigned Reg = MO.getReg();
126    if (!TargetRegisterInfo::isVirtualRegister(Reg))
127      continue;
128    if (!MRI->hasOneNonDBGUse(Reg))
129      // Only coalesce single use copies. This ensure the copy will be
130      // deleted.
131      continue;
132    MachineInstr *DefMI = MRI->getVRegDef(Reg);
133    if (DefMI->getParent() != MBB)
134      continue;
135    if (!DefMI->isCopy())
136      continue;
137    unsigned SrcReg = DefMI->getOperand(1).getReg();
138    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
139      continue;
140    if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
141      continue;
142    if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
143      continue;
144    DEBUG(dbgs() << "Coalescing: " << *DefMI);
145    DEBUG(dbgs() << "***     to: " << *MI);
146    MO.setReg(SrcReg);
147    MRI->clearKillFlags(SrcReg);
148    DefMI->eraseFromParent();
149    ++NumCoalesces;
150    Changed = true;
151  }
152
153  return Changed;
154}
155
156bool
157MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
158                                   MachineBasicBlock::const_iterator I,
159                                   MachineBasicBlock::const_iterator E) const {
160  unsigned LookAheadLeft = LookAheadLimit;
161  while (LookAheadLeft) {
162    // Skip over dbg_value's.
163    while (I != E && I->isDebugValue())
164      ++I;
165
166    if (I == E)
167      // Reached end of block, register is obviously dead.
168      return true;
169
170    bool SeenDef = false;
171    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
172      const MachineOperand &MO = I->getOperand(i);
173      if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
174        SeenDef = true;
175      if (!MO.isReg() || !MO.getReg())
176        continue;
177      if (!TRI->regsOverlap(MO.getReg(), Reg))
178        continue;
179      if (MO.isUse())
180        // Found a use!
181        return false;
182      SeenDef = true;
183    }
184    if (SeenDef)
185      // See a def of Reg (or an alias) before encountering any use, it's
186      // trivially dead.
187      return true;
188
189    --LookAheadLeft;
190    ++I;
191  }
192  return false;
193}
194
195/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
196/// physical registers (except for dead defs of physical registers). It also
197/// returns the physical register def by reference if it's the only one and the
198/// instruction does not uses a physical register.
199bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
200                                       const MachineBasicBlock *MBB,
201                                       SmallSet<unsigned,8> &PhysRefs,
202                                       SmallVector<unsigned,2> &PhysDefs) const{
203  MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
204  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
205    const MachineOperand &MO = MI->getOperand(i);
206    if (!MO.isReg())
207      continue;
208    unsigned Reg = MO.getReg();
209    if (!Reg)
210      continue;
211    if (TargetRegisterInfo::isVirtualRegister(Reg))
212      continue;
213    // If the def is dead, it's ok. But the def may not marked "dead". That's
214    // common since this pass is run before livevariables. We can scan
215    // forward a few instructions and check if it is obviously dead.
216    if (MO.isDef() &&
217        (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
218      continue;
219    PhysRefs.insert(Reg);
220    if (MO.isDef())
221      PhysDefs.push_back(Reg);
222    for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
223      PhysRefs.insert(*Alias);
224  }
225
226  return !PhysRefs.empty();
227}
228
229bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
230                                  SmallSet<unsigned,8> &PhysRefs,
231                                  SmallVector<unsigned,2> &PhysDefs,
232                                  bool &NonLocal) const {
233  // For now conservatively returns false if the common subexpression is
234  // not in the same basic block as the given instruction. The only exception
235  // is if the common subexpression is in the sole predecessor block.
236  const MachineBasicBlock *MBB = MI->getParent();
237  const MachineBasicBlock *CSMBB = CSMI->getParent();
238
239  bool CrossMBB = false;
240  if (CSMBB != MBB) {
241    if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
242      return false;
243
244    for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
245      if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i]))
246        // Avoid extending live range of physical registers if they are
247        //allocatable or reserved.
248        return false;
249    }
250    CrossMBB = true;
251  }
252  MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
253  MachineBasicBlock::const_iterator E = MI;
254  MachineBasicBlock::const_iterator EE = CSMBB->end();
255  unsigned LookAheadLeft = LookAheadLimit;
256  while (LookAheadLeft) {
257    // Skip over dbg_value's.
258    while (I != E && I != EE && I->isDebugValue())
259      ++I;
260
261    if (I == EE) {
262      assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
263      (void)CrossMBB;
264      CrossMBB = false;
265      NonLocal = true;
266      I = MBB->begin();
267      EE = MBB->end();
268      continue;
269    }
270
271    if (I == E)
272      return true;
273
274    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
275      const MachineOperand &MO = I->getOperand(i);
276      // RegMasks go on instructions like calls that clobber lots of physregs.
277      // Don't attempt to CSE across such an instruction.
278      if (MO.isRegMask())
279        return false;
280      if (!MO.isReg() || !MO.isDef())
281        continue;
282      unsigned MOReg = MO.getReg();
283      if (TargetRegisterInfo::isVirtualRegister(MOReg))
284        continue;
285      if (PhysRefs.count(MOReg))
286        return false;
287    }
288
289    --LookAheadLeft;
290    ++I;
291  }
292
293  return false;
294}
295
296bool MachineCSE::isCSECandidate(MachineInstr *MI) {
297  if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
298      MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
299    return false;
300
301  // Ignore copies.
302  if (MI->isCopyLike())
303    return false;
304
305  // Ignore stuff that we obviously can't move.
306  if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
307      MI->hasUnmodeledSideEffects())
308    return false;
309
310  if (MI->mayLoad()) {
311    // Okay, this instruction does a load. As a refinement, we allow the target
312    // to decide whether the loaded value is actually a constant. If so, we can
313    // actually use it as a load.
314    if (!MI->isInvariantLoad(AA))
315      // FIXME: we should be able to hoist loads with no other side effects if
316      // there are no other instructions which can change memory in this loop.
317      // This is a trivial form of alias analysis.
318      return false;
319  }
320  return true;
321}
322
323/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
324/// common expression that defines Reg.
325bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
326                                   MachineInstr *CSMI, MachineInstr *MI) {
327  // FIXME: Heuristics that works around the lack the live range splitting.
328
329  // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
330  // an immediate predecessor. We don't want to increase register pressure and
331  // end up causing other computation to be spilled.
332  if (MI->isAsCheapAsAMove()) {
333    MachineBasicBlock *CSBB = CSMI->getParent();
334    MachineBasicBlock *BB = MI->getParent();
335    if (CSBB != BB && !CSBB->isSuccessor(BB))
336      return false;
337  }
338
339  // Heuristics #2: If the expression doesn't not use a vr and the only use
340  // of the redundant computation are copies, do not cse.
341  bool HasVRegUse = false;
342  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
343    const MachineOperand &MO = MI->getOperand(i);
344    if (MO.isReg() && MO.isUse() &&
345        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
346      HasVRegUse = true;
347      break;
348    }
349  }
350  if (!HasVRegUse) {
351    bool HasNonCopyUse = false;
352    for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(Reg),
353           E = MRI->use_nodbg_end(); I != E; ++I) {
354      MachineInstr *Use = &*I;
355      // Ignore copies.
356      if (!Use->isCopyLike()) {
357        HasNonCopyUse = true;
358        break;
359      }
360    }
361    if (!HasNonCopyUse)
362      return false;
363  }
364
365  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
366  // it unless the defined value is already used in the BB of the new use.
367  bool HasPHI = false;
368  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
369  for (MachineRegisterInfo::use_nodbg_iterator I =  MRI->use_nodbg_begin(CSReg),
370       E = MRI->use_nodbg_end(); I != E; ++I) {
371    MachineInstr *Use = &*I;
372    HasPHI |= Use->isPHI();
373    CSBBs.insert(Use->getParent());
374  }
375
376  if (!HasPHI)
377    return true;
378  return CSBBs.count(MI->getParent());
379}
380
381void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
382  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
383  ScopeType *Scope = new ScopeType(VNT);
384  ScopeMap[MBB] = Scope;
385}
386
387void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
388  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
389  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
390  assert(SI != ScopeMap.end());
391  ScopeMap.erase(SI);
392  delete SI->second;
393}
394
395bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
396  bool Changed = false;
397
398  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
399  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
400    MachineInstr *MI = &*I;
401    ++I;
402
403    if (!isCSECandidate(MI))
404      continue;
405
406    bool FoundCSE = VNT.count(MI);
407    if (!FoundCSE) {
408      // Look for trivial copy coalescing opportunities.
409      if (PerformTrivialCoalescing(MI, MBB)) {
410        Changed = true;
411
412        // After coalescing MI itself may become a copy.
413        if (MI->isCopyLike())
414          continue;
415        FoundCSE = VNT.count(MI);
416      }
417    }
418
419    // Commute commutable instructions.
420    bool Commuted = false;
421    if (!FoundCSE && MI->isCommutable()) {
422      MachineInstr *NewMI = TII->commuteInstruction(MI);
423      if (NewMI) {
424        Commuted = true;
425        FoundCSE = VNT.count(NewMI);
426        if (NewMI != MI) {
427          // New instruction. It doesn't need to be kept.
428          NewMI->eraseFromParent();
429          Changed = true;
430        } else if (!FoundCSE)
431          // MI was changed but it didn't help, commute it back!
432          (void)TII->commuteInstruction(MI);
433      }
434    }
435
436    // If the instruction defines physical registers and the values *may* be
437    // used, then it's not safe to replace it with a common subexpression.
438    // It's also not safe if the instruction uses physical registers.
439    bool CrossMBBPhysDef = false;
440    SmallSet<unsigned,8> PhysRefs;
441    SmallVector<unsigned, 2> PhysDefs;
442    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) {
443      FoundCSE = false;
444
445      // ... Unless the CS is local or is in the sole predecessor block
446      // and it also defines the physical register which is not clobbered
447      // in between and the physical register uses were not clobbered.
448      unsigned CSVN = VNT.lookup(MI);
449      MachineInstr *CSMI = Exps[CSVN];
450      if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
451        FoundCSE = true;
452    }
453
454    if (!FoundCSE) {
455      VNT.insert(MI, CurrVN++);
456      Exps.push_back(MI);
457      continue;
458    }
459
460    // Found a common subexpression, eliminate it.
461    unsigned CSVN = VNT.lookup(MI);
462    MachineInstr *CSMI = Exps[CSVN];
463    DEBUG(dbgs() << "Examining: " << *MI);
464    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
465
466    // Check if it's profitable to perform this CSE.
467    bool DoCSE = true;
468    unsigned NumDefs = MI->getDesc().getNumDefs();
469    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
470      MachineOperand &MO = MI->getOperand(i);
471      if (!MO.isReg() || !MO.isDef())
472        continue;
473      unsigned OldReg = MO.getReg();
474      unsigned NewReg = CSMI->getOperand(i).getReg();
475      if (OldReg == NewReg)
476        continue;
477
478      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
479             TargetRegisterInfo::isVirtualRegister(NewReg) &&
480             "Do not CSE physical register defs!");
481
482      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
483        DoCSE = false;
484        break;
485      }
486
487      // Don't perform CSE if the result of the old instruction cannot exist
488      // within the register class of the new instruction.
489      const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
490      if (!MRI->constrainRegClass(NewReg, OldRC)) {
491        DoCSE = false;
492        break;
493      }
494
495      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
496      --NumDefs;
497    }
498
499    // Actually perform the elimination.
500    if (DoCSE) {
501      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
502        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
503        MRI->clearKillFlags(CSEPairs[i].second);
504      }
505
506      if (CrossMBBPhysDef) {
507        // Add physical register defs now coming in from a predecessor to MBB
508        // livein list.
509        while (!PhysDefs.empty()) {
510          unsigned LiveIn = PhysDefs.pop_back_val();
511          if (!MBB->isLiveIn(LiveIn))
512            MBB->addLiveIn(LiveIn);
513        }
514        ++NumCrossBBCSEs;
515      }
516
517      MI->eraseFromParent();
518      ++NumCSEs;
519      if (!PhysRefs.empty())
520        ++NumPhysCSEs;
521      if (Commuted)
522        ++NumCommutes;
523      Changed = true;
524    } else {
525      DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
526      VNT.insert(MI, CurrVN++);
527      Exps.push_back(MI);
528    }
529    CSEPairs.clear();
530  }
531
532  return Changed;
533}
534
535/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
536/// dominator tree node if its a leaf or all of its children are done. Walk
537/// up the dominator tree to destroy ancestors which are now done.
538void
539MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
540                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
541                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
542  if (OpenChildren[Node])
543    return;
544
545  // Pop scope.
546  ExitScope(Node->getBlock());
547
548  // Now traverse upwards to pop ancestors whose offsprings are all done.
549  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
550    unsigned Left = --OpenChildren[Parent];
551    if (Left != 0)
552      break;
553    ExitScope(Parent->getBlock());
554    Node = Parent;
555  }
556}
557
558bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
559  SmallVector<MachineDomTreeNode*, 32> Scopes;
560  SmallVector<MachineDomTreeNode*, 8> WorkList;
561  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
562  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
563
564  CurrVN = 0;
565
566  // Perform a DFS walk to determine the order of visit.
567  WorkList.push_back(Node);
568  do {
569    Node = WorkList.pop_back_val();
570    Scopes.push_back(Node);
571    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
572    unsigned NumChildren = Children.size();
573    OpenChildren[Node] = NumChildren;
574    for (unsigned i = 0; i != NumChildren; ++i) {
575      MachineDomTreeNode *Child = Children[i];
576      ParentMap[Child] = Node;
577      WorkList.push_back(Child);
578    }
579  } while (!WorkList.empty());
580
581  // Now perform CSE.
582  bool Changed = false;
583  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
584    MachineDomTreeNode *Node = Scopes[i];
585    MachineBasicBlock *MBB = Node->getBlock();
586    EnterScope(MBB);
587    Changed |= ProcessBlock(MBB);
588    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
589    ExitScopeIfDone(Node, OpenChildren, ParentMap);
590  }
591
592  return Changed;
593}
594
595bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
596  TII = MF.getTarget().getInstrInfo();
597  TRI = MF.getTarget().getRegisterInfo();
598  MRI = &MF.getRegInfo();
599  AA = &getAnalysis<AliasAnalysis>();
600  DT = &getAnalysis<MachineDominatorTree>();
601  AllocatableRegs = TRI->getAllocatableSet(MF);
602  ReservedRegs = TRI->getReservedRegs(MF);
603  return PerformCSE(DT->getRootNode());
604}
605