PHIElimination.cpp revision 20354634ebb64023d322919633f8bd348a63891d
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/BasicBlock.h"
19#include "llvm/Instructions.h"
20#include "llvm/CodeGen/LiveVariables.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Compiler.h"
31#include <algorithm>
32#include <map>
33using namespace llvm;
34
35STATISTIC(NumAtomic, "Number of atomic phis lowered");
36
37char PHIElimination::ID = 0;
38static RegisterPass<PHIElimination>
39X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
40
41const PassInfo *const llvm::PHIEliminationID = &X;
42
43void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
44   AU.addPreserved<LiveVariables>();
45   AU.addPreservedID(MachineLoopInfoID);
46   AU.addPreservedID(MachineDominatorsID);
47   MachineFunctionPass::getAnalysisUsage(AU);
48 }
49
50bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
51  MRI = &Fn.getRegInfo();
52
53  PHIDefs.clear();
54  PHIKills.clear();
55  analyzePHINodes(Fn);
56
57  bool Changed = false;
58
59  // Eliminate PHI instructions by inserting copies into predecessor blocks.
60  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
61    Changed |= EliminatePHINodes(Fn, *I);
62
63  // Remove dead IMPLICIT_DEF instructions.
64  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
65         E = ImpDefs.end(); I != E; ++I) {
66    MachineInstr *DefMI = *I;
67    unsigned DefReg = DefMI->getOperand(0).getReg();
68    if (MRI->use_empty(DefReg))
69      DefMI->eraseFromParent();
70  }
71
72  ImpDefs.clear();
73  VRegPHIUseCount.clear();
74  return Changed;
75}
76
77
78/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
79/// predecessor basic blocks.
80///
81bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
82                                             MachineBasicBlock &MBB) {
83  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
84    return false;   // Quick exit for basic blocks without PHIs.
85
86  // Get an iterator to the first instruction after the last PHI node (this may
87  // also be the end of the basic block).
88  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
89
90  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
91    LowerAtomicPHINode(MBB, AfterPHIsIt);
92
93  return true;
94}
95
96/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
97/// are implicit_def's.
98static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
99                                         const MachineRegisterInfo *MRI) {
100  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
101    unsigned SrcReg = MPhi->getOperand(i).getReg();
102    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
103    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
104      return false;
105  }
106  return true;
107}
108
109// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
110// This needs to be after any def or uses of SrcReg, but before any subsequent
111// point where control flow might jump out of the basic block.
112MachineBasicBlock::iterator
113llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
114                                          unsigned SrcReg) {
115  // Handle the trivial case trivially.
116  if (MBB.empty())
117    return MBB.begin();
118
119  // If this basic block does not contain an invoke, then control flow always
120  // reaches the end of it, so place the copy there.  The logic below works in
121  // this case too, but is more expensive.
122  if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator()))
123    return MBB.getFirstTerminator();
124
125  // Discover any definition/uses in this basic block.
126  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
127  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
128       RE = MRI->reg_end(); RI != RE; ++RI) {
129    MachineInstr *DefUseMI = &*RI;
130    if (DefUseMI->getParent() == &MBB)
131      DefUsesInMBB.insert(DefUseMI);
132  }
133
134  MachineBasicBlock::iterator InsertPoint;
135  if (DefUsesInMBB.empty()) {
136    // No def/uses.  Insert the copy at the start of the basic block.
137    InsertPoint = MBB.begin();
138  } else if (DefUsesInMBB.size() == 1) {
139    // Insert the copy immediately after the definition/use.
140    InsertPoint = *DefUsesInMBB.begin();
141    ++InsertPoint;
142  } else {
143    // Insert the copy immediately after the last definition/use.
144    InsertPoint = MBB.end();
145    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
146    ++InsertPoint;
147  }
148
149  // Make sure the copy goes after any phi nodes however.
150  return SkipPHIsAndLabels(MBB, InsertPoint);
151}
152
153/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
154/// under the assuption that it needs to be lowered in a way that supports
155/// atomic execution of PHIs.  This lowering method is always correct all of the
156/// time.
157///
158void llvm::PHIElimination::LowerAtomicPHINode(
159                                      MachineBasicBlock &MBB,
160                                      MachineBasicBlock::iterator AfterPHIsIt) {
161  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
162  MachineInstr *MPhi = MBB.remove(MBB.begin());
163
164  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
165  unsigned DestReg = MPhi->getOperand(0).getReg();
166  bool isDead = MPhi->getOperand(0).isDead();
167
168  // Create a new register for the incoming PHI arguments.
169  MachineFunction &MF = *MBB.getParent();
170  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
171  unsigned IncomingReg = 0;
172
173  // Insert a register to register copy at the top of the current block (but
174  // after any remaining phi nodes) which copies the new incoming register
175  // into the phi node destination.
176  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
177  if (isSourceDefinedByImplicitDef(MPhi, MRI))
178    // If all sources of a PHI node are implicit_def, just emit an
179    // implicit_def instead of a copy.
180    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
181            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
182  else {
183    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
184    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
185  }
186
187  // Record PHI def.
188  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
189  PHIDefs[DestReg] = &MBB;
190
191  // Update live variable information if there is any.
192  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
193  if (LV) {
194    MachineInstr *PHICopy = prior(AfterPHIsIt);
195
196    if (IncomingReg) {
197      // Increment use count of the newly created virtual register.
198      LV->getVarInfo(IncomingReg).NumUses++;
199
200      // Add information to LiveVariables to know that the incoming value is
201      // killed.  Note that because the value is defined in several places (once
202      // each for each incoming block), the "def" block and instruction fields
203      // for the VarInfo is not filled in.
204      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
205    }
206
207    // Since we are going to be deleting the PHI node, if it is the last use of
208    // any registers, or if the value itself is dead, we need to move this
209    // information over to the new copy we just inserted.
210    LV->removeVirtualRegistersKilled(MPhi);
211
212    // If the result is dead, update LV.
213    if (isDead) {
214      LV->addVirtualRegisterDead(DestReg, PHICopy);
215      LV->removeVirtualRegisterDead(DestReg, MPhi);
216    }
217  }
218
219  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
220  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
221    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
222                                 MPhi->getOperand(i).getReg())];
223
224  // Now loop over all of the incoming arguments, changing them to copy into the
225  // IncomingReg register in the corresponding predecessor basic block.
226  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
227  for (int i = NumSrcs - 1; i >= 0; --i) {
228    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
229    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
230           "Machine PHI Operands must all be virtual registers!");
231
232    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
233    // path the PHI.
234    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
235
236    // Record the kill.
237    PHIKills[SrcReg].insert(&opBlock);
238
239    // If source is defined by an implicit def, there is no need to insert a
240    // copy.
241    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
242    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
243      ImpDefs.insert(DefMI);
244      continue;
245    }
246
247    // Check to make sure we haven't already emitted the copy for this block.
248    // This can happen because PHI nodes may have multiple entries for the same
249    // basic block.
250    if (!MBBsInsertedInto.insert(&opBlock))
251      continue;  // If the copy has already been emitted, we're done.
252
253    // Find a safe location to insert the copy, this may be the first terminator
254    // in the block (or end()).
255    MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
256
257    // Insert the copy.
258    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
259
260    // Now update live variable information if we have it.  Otherwise we're done
261    if (!LV) continue;
262
263    // We want to be able to insert a kill of the register if this PHI (aka, the
264    // copy we just inserted) is the last use of the source value.  Live
265    // variable analysis conservatively handles this by saying that the value is
266    // live until the end of the block the PHI entry lives in.  If the value
267    // really is dead at the PHI copy, there will be no successor blocks which
268    // have the value live-in.
269    //
270    // Check to see if the copy is the last use, and if so, update the live
271    // variables information so that it knows the copy source instruction kills
272    // the incoming value.
273    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
274
275    // Loop over all of the successors of the basic block, checking to see if
276    // the value is either live in the block, or if it is killed in the block.
277    // Also check to see if this register is in use by another PHI node which
278    // has not yet been eliminated.  If so, it will be killed at an appropriate
279    // point later.
280
281    // Is it used by any PHI instructions in this block?
282    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
283
284    std::vector<MachineBasicBlock*> OpSuccBlocks;
285
286    // Otherwise, scan successors, including the BB the PHI node lives in.
287    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
288           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
289      MachineBasicBlock *SuccMBB = *SI;
290
291      // Is it alive in this successor?
292      unsigned SuccIdx = SuccMBB->getNumber();
293      if (InRegVI.AliveBlocks.test(SuccIdx)) {
294        ValueIsLive = true;
295        break;
296      }
297
298      OpSuccBlocks.push_back(SuccMBB);
299    }
300
301    // Check to see if this value is live because there is a use in a successor
302    // that kills it.
303    if (!ValueIsLive) {
304      switch (OpSuccBlocks.size()) {
305      case 1: {
306        MachineBasicBlock *MBB = OpSuccBlocks[0];
307        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
308          if (InRegVI.Kills[i]->getParent() == MBB) {
309            ValueIsLive = true;
310            break;
311          }
312        break;
313      }
314      case 2: {
315        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
316        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
317          if (InRegVI.Kills[i]->getParent() == MBB1 ||
318              InRegVI.Kills[i]->getParent() == MBB2) {
319            ValueIsLive = true;
320            break;
321          }
322        break;
323      }
324      default:
325        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
326        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
327          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
328                                 InRegVI.Kills[i]->getParent())) {
329            ValueIsLive = true;
330            break;
331          }
332      }
333    }
334
335    // Okay, if we now know that the value is not live out of the block, we can
336    // add a kill marker in this block saying that it kills the incoming value!
337    if (!ValueIsLive) {
338      // In our final twist, we have to decide which instruction kills the
339      // register.  In most cases this is the copy, however, the first
340      // terminator instruction at the end of the block may also use the value.
341      // In this case, we should mark *it* as being the killing block, not the
342      // copy.
343      MachineBasicBlock::iterator KillInst = prior(InsertPos);
344      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
345      if (Term != opBlock.end()) {
346        if (Term->readsRegister(SrcReg))
347          KillInst = Term;
348
349        // Check that no other terminators use values.
350#ifndef NDEBUG
351        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
352             ++TI) {
353          assert(!TI->readsRegister(SrcReg) &&
354                 "Terminator instructions cannot use virtual registers unless"
355                 "they are the first terminator in a block!");
356        }
357#endif
358      }
359
360      // Finally, mark it killed.
361      LV->addVirtualRegisterKilled(SrcReg, KillInst);
362
363      // This vreg no longer lives all of the way through opBlock.
364      unsigned opBlockNum = opBlock.getNumber();
365      InRegVI.AliveBlocks.reset(opBlockNum);
366    }
367  }
368
369  // Really delete the PHI instruction now!
370  MF.DeleteMachineInstr(MPhi);
371  ++NumAtomic;
372}
373
374/// analyzePHINodes - Gather information about the PHI nodes in here. In
375/// particular, we want to map the number of uses of a virtual register which is
376/// used in a PHI node. We map that to the BB the vreg is coming from. This is
377/// used later to determine when the vreg is killed in the BB.
378///
379void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
380  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
381       I != E; ++I)
382    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
383         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
384      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
385        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
386                                     BBI->getOperand(i).getReg())];
387}
388