PHIElimination.cpp revision a018540807775703d630e9c92f9d8013d545599e
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/SSARegMap.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Support/Compiler.h"
27#include <set>
28#include <algorithm>
29using namespace llvm;
30
31STATISTIC(NumAtomic, "Number of atomic phis lowered");
32//STATISTIC(NumSimple, "Number of simple phis lowered");
33
34namespace {
35  struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
36    static char ID; // Pass identification, replacement for typeid
37    PNE() : MachineFunctionPass((intptr_t)&ID) {}
38
39    bool runOnMachineFunction(MachineFunction &Fn) {
40      analyzePHINodes(Fn);
41
42      bool Changed = false;
43
44      // Eliminate PHI instructions by inserting copies into predecessor blocks.
45      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
46        Changed |= EliminatePHINodes(Fn, *I);
47
48      VRegPHIUseCount.clear();
49      return Changed;
50    }
51
52    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53      AU.addPreserved<LiveVariables>();
54      MachineFunctionPass::getAnalysisUsage(AU);
55    }
56
57  private:
58    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
59    /// in predecessor basic blocks.
60    ///
61    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
62    void LowerAtomicPHINode(MachineBasicBlock &MBB,
63                            MachineBasicBlock::iterator AfterPHIsIt);
64
65    /// analyzePHINodes - Gather information about the PHI nodes in
66    /// here. In particular, we want to map the number of uses of a virtual
67    /// register which is used in a PHI node. We map that to the BB the
68    /// vreg is coming from. This is used later to determine when the vreg
69    /// is killed in the BB.
70    ///
71    void analyzePHINodes(const MachineFunction& Fn);
72
73    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
74    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
75
76    VRegPHIUse VRegPHIUseCount;
77  };
78
79  char PNE::ID = 0;
80  RegisterPass<PNE> X("phi-node-elimination",
81                      "Eliminate PHI nodes for register allocation");
82}
83
84const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
85
86/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
87/// predecessor basic blocks.
88///
89bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
90  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
91    return false;   // Quick exit for basic blocks without PHIs.
92
93  // Get an iterator to the first instruction after the last PHI node (this may
94  // also be the end of the basic block).
95  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
96  while (AfterPHIsIt != MBB.end() &&
97         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
98    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
99
100  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
101    LowerAtomicPHINode(MBB, AfterPHIsIt);
102
103  return true;
104}
105
106/// InstructionUsesRegister - Return true if the specified machine instr has a
107/// use of the specified register.
108static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
109  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
110    if (MI->getOperand(i).isRegister() &&
111        MI->getOperand(i).getReg() == SrcReg &&
112        MI->getOperand(i).isUse())
113      return true;
114  return false;
115}
116
117/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
118/// under the assuption that it needs to be lowered in a way that supports
119/// atomic execution of PHIs.  This lowering method is always correct all of the
120/// time.
121void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
122                             MachineBasicBlock::iterator AfterPHIsIt) {
123  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
124  MachineInstr *MPhi = MBB.remove(MBB.begin());
125
126  unsigned DestReg = MPhi->getOperand(0).getReg();
127
128  // Create a new register for the incoming PHI arguments.
129  MachineFunction &MF = *MBB.getParent();
130  const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
131  unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
132
133  // Insert a register to register copy in the top of the current block (but
134  // after any remaining phi nodes) which copies the new incoming register
135  // into the phi node destination.
136  //
137  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
138  RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
139
140  // Update live variable information if there is any...
141  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
142  if (LV) {
143    MachineInstr *PHICopy = prior(AfterPHIsIt);
144
145    // Increment use count of the newly created virtual register.
146    LV->getVarInfo(IncomingReg).NumUses++;
147
148    // Add information to LiveVariables to know that the incoming value is
149    // killed.  Note that because the value is defined in several places (once
150    // each for each incoming block), the "def" block and instruction fields
151    // for the VarInfo is not filled in.
152    //
153    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
154
155    // Since we are going to be deleting the PHI node, if it is the last use
156    // of any registers, or if the value itself is dead, we need to move this
157    // information over to the new copy we just inserted.
158    //
159    LV->removeVirtualRegistersKilled(MPhi);
160
161    // If the result is dead, update LV.
162    if (LV->RegisterDefIsDead(MPhi, DestReg)) {
163      LV->addVirtualRegisterDead(DestReg, PHICopy);
164      LV->removeVirtualRegistersDead(MPhi);
165    }
166
167    // Realize that the destination register is defined by the PHI copy now, not
168    // the PHI itself.
169    LV->getVarInfo(DestReg).DefInst = PHICopy;
170
171    LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
172  }
173
174  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
175  // node.
176  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
177    --VRegPHIUseCount[BBVRegPair(
178                        MPhi->getOperand(i + 1).getMachineBasicBlock(),
179                        MPhi->getOperand(i).getReg())];
180
181  // Now loop over all of the incoming arguments, changing them to copy into
182  // the IncomingReg register in the corresponding predecessor basic block.
183  //
184  std::set<MachineBasicBlock*> MBBsInsertedInto;
185  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
186    unsigned SrcReg = MPhi->getOperand(i-1).getReg();
187    assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
188           "Machine PHI Operands must all be virtual registers!");
189
190    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
191    // source path the PHI.
192    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
193
194    // Check to make sure we haven't already emitted the copy for this block.
195    // This can happen because PHI nodes may have multiple entries for the
196    // same basic block.
197    if (!MBBsInsertedInto.insert(&opBlock).second)
198      continue;  // If the copy has already been emitted, we're done.
199
200    // Get an iterator pointing to the first terminator in the block (or end()).
201    // This is the point where we can insert a copy if we'd like to.
202    MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
203
204    // Insert the copy.
205    RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC, RC);
206
207    // Now update live variable information if we have it.  Otherwise we're done
208    if (!LV) continue;
209
210    // We want to be able to insert a kill of the register if this PHI
211    // (aka, the copy we just inserted) is the last use of the source
212    // value.  Live variable analysis conservatively handles this by
213    // saying that the value is live until the end of the block the PHI
214    // entry lives in.  If the value really is dead at the PHI copy, there
215    // will be no successor blocks which have the value live-in.
216    //
217    // Check to see if the copy is the last use, and if so, update the
218    // live variables information so that it knows the copy source
219    // instruction kills the incoming value.
220    //
221    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
222    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
223
224    // Loop over all of the successors of the basic block, checking to see
225    // if the value is either live in the block, or if it is killed in the
226    // block.  Also check to see if this register is in use by another PHI
227    // node which has not yet been eliminated.  If so, it will be killed
228    // at an appropriate point later.
229    //
230
231    // Is it used by any PHI instructions in this block?
232    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
233
234    std::vector<MachineBasicBlock*> OpSuccBlocks;
235
236    // Otherwise, scan successors, including the BB the PHI node lives in.
237    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
238           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
239      MachineBasicBlock *SuccMBB = *SI;
240
241      // Is it alive in this successor?
242      unsigned SuccIdx = SuccMBB->getNumber();
243      if (SuccIdx < InRegVI.AliveBlocks.size() &&
244          InRegVI.AliveBlocks[SuccIdx]) {
245        ValueIsLive = true;
246        break;
247      }
248
249      OpSuccBlocks.push_back(SuccMBB);
250    }
251
252    // Check to see if this value is live because there is a use in a successor
253    // that kills it.
254    if (!ValueIsLive) {
255      switch (OpSuccBlocks.size()) {
256      case 1: {
257        MachineBasicBlock *MBB = OpSuccBlocks[0];
258        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
259          if (InRegVI.Kills[i]->getParent() == MBB) {
260            ValueIsLive = true;
261            break;
262          }
263        break;
264      }
265      case 2: {
266        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
267        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
268          if (InRegVI.Kills[i]->getParent() == MBB1 ||
269              InRegVI.Kills[i]->getParent() == MBB2) {
270            ValueIsLive = true;
271            break;
272          }
273        break;
274      }
275      default:
276        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
277        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
278          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
279                                 InRegVI.Kills[i]->getParent())) {
280            ValueIsLive = true;
281            break;
282          }
283      }
284    }
285
286    // Okay, if we now know that the value is not live out of the block,
287    // we can add a kill marker in this block saying that it kills the incoming
288    // value!
289    if (!ValueIsLive) {
290      // In our final twist, we have to decide which instruction kills the
291      // register.  In most cases this is the copy, however, the first
292      // terminator instruction at the end of the block may also use the value.
293      // In this case, we should mark *it* as being the killing block, not the
294      // copy.
295      bool FirstTerminatorUsesValue = false;
296      if (I != opBlock.end()) {
297        FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
298
299        // Check that no other terminators use values.
300#ifndef NDEBUG
301        for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
302             ++TI) {
303          assert(!InstructionUsesRegister(TI, SrcReg) &&
304                 "Terminator instructions cannot use virtual registers unless"
305                 "they are the first terminator in a block!");
306        }
307#endif
308      }
309
310      MachineBasicBlock::iterator KillInst;
311      if (!FirstTerminatorUsesValue)
312        KillInst = prior(I);
313      else
314        KillInst = I;
315
316      // Finally, mark it killed.
317      LV->addVirtualRegisterKilled(SrcReg, KillInst);
318
319      // This vreg no longer lives all of the way through opBlock.
320      unsigned opBlockNum = opBlock.getNumber();
321      if (opBlockNum < InRegVI.AliveBlocks.size())
322        InRegVI.AliveBlocks[opBlockNum] = false;
323    }
324  }
325
326  // Really delete the PHI instruction now!
327  delete MPhi;
328  ++NumAtomic;
329}
330
331/// analyzePHINodes - Gather information about the PHI nodes in here. In
332/// particular, we want to map the number of uses of a virtual register which is
333/// used in a PHI node. We map that to the BB the vreg is coming from. This is
334/// used later to determine when the vreg is killed in the BB.
335///
336void PNE::analyzePHINodes(const MachineFunction& Fn) {
337  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
338       I != E; ++I)
339    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
340         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
341      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
342        ++VRegPHIUseCount[BBVRegPair(
343                            BBI->getOperand(i + 1).getMachineBasicBlock(),
344                            BBI->getOperand(i).getReg())];
345}
346