PHIElimination.cpp revision d7a10c8566c1f2e979f8f3abcaab441297a0c44c
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/LiveVariables.h"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/SSARegMap.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25using namespace llvm;
26
27namespace {
28  struct PNE : public MachineFunctionPass {
29    bool runOnMachineFunction(MachineFunction &Fn) {
30      bool Changed = false;
31
32      // Eliminate PHI instructions by inserting copies into predecessor blocks.
33      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
34        Changed |= EliminatePHINodes(Fn, *I);
35
36      return Changed;
37    }
38
39    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
40      AU.addPreserved<LiveVariables>();
41      MachineFunctionPass::getAnalysisUsage(AU);
42    }
43
44  private:
45    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
46    /// in predecessor basic blocks.
47    ///
48    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
49  };
50
51  RegisterPass<PNE> X("phi-node-elimination",
52                      "Eliminate PHI nodes for register allocation");
53}
54
55
56const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
57
58/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
59/// predecessor basic blocks.
60///
61bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
62  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
63    return false;   // Quick exit for normal case...
64
65  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
66  const TargetInstrInfo &MII = *MF.getTarget().getInstrInfo();
67  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
68
69  // VRegPHIUseCount - Keep track of the number of times each virtual register
70  // is used by PHI nodes in successors of this block.
71  DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount;
72  VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg());
73
74  unsigned BBIsSuccOfPreds = 0;  // Number of times MBB is a succ of preds
75  for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(),
76         E = MBB.pred_end(); PI != E; ++PI)
77    for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(),
78           E = (*PI)->succ_end(); SI != E; ++SI) {
79    BBIsSuccOfPreds += *SI == &MBB;
80    for (MachineBasicBlock::iterator BBI = (*SI)->begin(); BBI !=(*SI)->end() &&
81           BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
82      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
83        VRegPHIUseCount[BBI->getOperand(i).getReg()]++;
84  }
85
86  // Get an iterator to the first instruction after the last PHI node (this may
87  // also be the end of the basic block).  While we are scanning the PHIs,
88  // populate the VRegPHIUseCount map.
89  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
90  while (AfterPHIsIt != MBB.end() &&
91         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
92    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
93
94  while (MBB.front().getOpcode() == TargetInstrInfo::PHI) {
95    // Unlink the PHI node from the basic block, but don't delete the PHI yet.
96    MachineInstr *MPhi = MBB.remove(MBB.begin());
97
98    assert(MRegisterInfo::isVirtualRegister(MPhi->getOperand(0).getReg()) &&
99           "PHI node doesn't write virt reg?");
100
101    unsigned DestReg = MPhi->getOperand(0).getReg();
102
103    // Create a new register for the incoming PHI arguments
104    const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
105    unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
106
107    // Insert a register to register copy in the top of the current block (but
108    // after any remaining phi nodes) which copies the new incoming register
109    // into the phi node destination.
110    //
111    RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
112
113    // Update live variable information if there is any...
114    if (LV) {
115      MachineInstr *PHICopy = prior(AfterPHIsIt);
116
117      // Add information to LiveVariables to know that the incoming value is
118      // killed.  Note that because the value is defined in several places (once
119      // each for each incoming block), the "def" block and instruction fields
120      // for the VarInfo is not filled in.
121      //
122      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
123
124      // Since we are going to be deleting the PHI node, if it is the last use
125      // of any registers, or if the value itself is dead, we need to move this
126      // information over to the new copy we just inserted.
127      //
128      std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator>
129        RKs = LV->killed_range(MPhi);
130      std::vector<std::pair<MachineInstr*, unsigned> > Range;
131      if (RKs.first != RKs.second) // Delete the range.
132        LV->removeVirtualRegistersKilled(RKs.first, RKs.second);
133
134      RKs = LV->dead_range(MPhi);
135      if (RKs.first != RKs.second) {
136        // Works as above...
137        Range.assign(RKs.first, RKs.second);
138        LV->removeVirtualRegistersDead(RKs.first, RKs.second);
139        for (unsigned i = 0, e = Range.size(); i != e; ++i)
140          LV->addVirtualRegisterDead(Range[i].second, PHICopy);
141      }
142    }
143
144    // Adjust the VRegPHIUseCount map to account for the removal of this PHI
145    // node.
146    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
147      VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= BBIsSuccOfPreds;
148
149    // Now loop over all of the incoming arguments, changing them to copy into
150    // the IncomingReg register in the corresponding predecessor basic block.
151    //
152    for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
153      MachineOperand &opVal = MPhi->getOperand(i-1);
154
155      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
156      // source path the PHI.
157      MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
158
159      MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
160
161      // Check to make sure we haven't already emitted the copy for this block.
162      // This can happen because PHI nodes may have multiple entries for the
163      // same basic block.  It doesn't matter which entry we use though, because
164      // all incoming values are guaranteed to be the same for a particular bb.
165      //
166      // If we emitted a copy for this basic block already, it will be right
167      // where we want to insert one now.  Just check for a definition of the
168      // register we are interested in!
169      //
170      bool HaveNotEmitted = true;
171
172      if (I != opBlock.begin()) {
173        MachineBasicBlock::iterator PrevInst = prior(I);
174        for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
175          MachineOperand &MO = PrevInst->getOperand(i);
176          if (MO.isRegister() && MO.getReg() == IncomingReg)
177            if (MO.isDef()) {
178              HaveNotEmitted = false;
179              break;
180            }
181        }
182      }
183
184      if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
185        assert(MRegisterInfo::isVirtualRegister(opVal.getReg()) &&
186               "Machine PHI Operands must all be virtual registers!");
187        unsigned SrcReg = opVal.getReg();
188        RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
189
190        // Now update live variable information if we have it.
191        if (LV) {
192          // We want to be able to insert a kill of the register if this PHI
193          // (aka, the copy we just inserted) is the last use of the source
194          // value.  Live variable analysis conservatively handles this by
195          // saying that the value is live until the end of the block the PHI
196          // entry lives in.  If the value really is dead at the PHI copy, there
197          // will be no successor blocks which have the value live-in.
198          //
199          // Check to see if the copy is the last use, and if so, update the
200          // live variables information so that it knows the copy source
201          // instruction kills the incoming value.
202          //
203          LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
204
205          // Loop over all of the successors of the basic block, checking to see
206          // if the value is either live in the block, or if it is killed in the
207          // block.  Also check to see if this register is in use by another PHI
208          // node which has not yet been eliminated.  If so, it will be killed
209          // at an appropriate point later.
210          //
211          bool ValueIsLive = false;
212          for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
213                 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
214            MachineBasicBlock *SuccMBB = *SI;
215
216            // Is it alive in this successor?
217            unsigned SuccIdx = SuccMBB->getNumber();
218            if (SuccIdx < InRegVI.AliveBlocks.size() &&
219                InRegVI.AliveBlocks[SuccIdx]) {
220              ValueIsLive = true;
221              break;
222            }
223
224            // Is it killed in this successor?
225            for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
226              if (InRegVI.Kills[i]->getParent() == SuccMBB) {
227                ValueIsLive = true;
228                break;
229              }
230
231            // Is it used by any PHI instructions in this block?
232            if (!ValueIsLive)
233              ValueIsLive = VRegPHIUseCount[SrcReg] != 0;
234          }
235
236          // Okay, if we now know that the value is not live out of the block,
237          // we can add a kill marker to the copy we inserted saying that it
238          // kills the incoming value!
239          //
240          if (!ValueIsLive) {
241            MachineBasicBlock::iterator Prev = prior(I);
242            LV->addVirtualRegisterKilled(SrcReg, Prev);
243
244            // This vreg no longer lives all of the way through opBlock.
245            unsigned opBlockNum = opBlock.getNumber();
246            if (opBlockNum < InRegVI.AliveBlocks.size())
247              InRegVI.AliveBlocks[opBlockNum] = false;
248          }
249        }
250      }
251    }
252
253    // Really delete the PHI instruction now!
254    delete MPhi;
255  }
256  return true;
257}
258