PHIElimination.cpp revision dedf2bd5a34dac25e4245f58bb902ced6b64edd9
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/CodeGen/MachineFunctionPass.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/CodeGen/SSARegMap.h"
20#include "llvm/CodeGen/LiveVariables.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25using namespace llvm;
26
27namespace {
28  struct PNE : public MachineFunctionPass {
29    bool runOnMachineFunction(MachineFunction &Fn) {
30      bool Changed = false;
31
32      // Eliminate PHI instructions by inserting copies into predecessor blocks.
33      //
34      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
35        Changed |= EliminatePHINodes(Fn, *I);
36
37      //std::cerr << "AFTER PHI NODE ELIM:\n";
38      //Fn.dump();
39      return Changed;
40    }
41
42    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
43      AU.addPreserved<LiveVariables>();
44      MachineFunctionPass::getAnalysisUsage(AU);
45    }
46
47  private:
48    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
49    /// in predecessor basic blocks.
50    ///
51    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
52  };
53
54  RegisterPass<PNE> X("phi-node-elimination",
55                      "Eliminate PHI nodes for register allocation");
56}
57
58
59const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
60
61/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
62/// predecessor basic blocks.
63///
64bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
65  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
66    return false;   // Quick exit for normal case...
67
68  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
69  const TargetInstrInfo &MII = *MF.getTarget().getInstrInfo();
70  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
71
72  // VRegPHIUseCount - Keep track of the number of times each virtual register
73  // is used by PHI nodes in successors of this block.
74  DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount;
75  VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg());
76
77  unsigned BBIsSuccOfPreds = 0;  // Number of times MBB is a succ of preds
78  for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(),
79         E = MBB.pred_end(); PI != E; ++PI)
80    for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(),
81           E = (*PI)->succ_end(); SI != E; ++SI) {
82    BBIsSuccOfPreds += *SI == &MBB;
83    for (MachineBasicBlock::iterator BBI = (*SI)->begin(); BBI !=(*SI)->end() &&
84           BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
85      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
86        VRegPHIUseCount[BBI->getOperand(i).getReg()]++;
87  }
88
89  // Get an iterator to the first instruction after the last PHI node (this may
90  // also be the end of the basic block).  While we are scanning the PHIs,
91  // populate the VRegPHIUseCount map.
92  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
93  while (AfterPHIsIt != MBB.end() &&
94         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
95    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
96
97  while (MBB.front().getOpcode() == TargetInstrInfo::PHI) {
98    // Unlink the PHI node from the basic block, but don't delete the PHI yet.
99    MachineInstr *MPhi = MBB.remove(MBB.begin());
100
101    assert(MRegisterInfo::isVirtualRegister(MPhi->getOperand(0).getReg()) &&
102           "PHI node doesn't write virt reg?");
103
104    unsigned DestReg = MPhi->getOperand(0).getReg();
105
106    // Create a new register for the incoming PHI arguments
107    const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
108    unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
109
110    // Insert a register to register copy in the top of the current block (but
111    // after any remaining phi nodes) which copies the new incoming register
112    // into the phi node destination.
113    //
114    RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
115
116    // Update live variable information if there is any...
117    if (LV) {
118      MachineInstr *PHICopy = prior(AfterPHIsIt);
119
120      // Add information to LiveVariables to know that the incoming value is
121      // killed.  Note that because the value is defined in several places (once
122      // each for each incoming block), the "def" block and instruction fields
123      // for the VarInfo is not filled in.
124      //
125      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
126
127      // Since we are going to be deleting the PHI node, if it is the last use
128      // of any registers, or if the value itself is dead, we need to move this
129      // information over to the new copy we just inserted.
130      //
131      std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator>
132        RKs = LV->killed_range(MPhi);
133      std::vector<std::pair<MachineInstr*, unsigned> > Range;
134      if (RKs.first != RKs.second) // Delete the range.
135        LV->removeVirtualRegistersKilled(RKs.first, RKs.second);
136
137      RKs = LV->dead_range(MPhi);
138      if (RKs.first != RKs.second) {
139        // Works as above...
140        Range.assign(RKs.first, RKs.second);
141        LV->removeVirtualRegistersDead(RKs.first, RKs.second);
142        for (unsigned i = 0, e = Range.size(); i != e; ++i)
143          LV->addVirtualRegisterDead(Range[i].second, PHICopy);
144      }
145    }
146
147    // Adjust the VRegPHIUseCount map to account for the removal of this PHI
148    // node.
149    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
150      VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= BBIsSuccOfPreds;
151
152    // Now loop over all of the incoming arguments, changing them to copy into
153    // the IncomingReg register in the corresponding predecessor basic block.
154    //
155    for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
156      MachineOperand &opVal = MPhi->getOperand(i-1);
157
158      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
159      // source path the PHI.
160      MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
161
162      MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
163
164      // Check to make sure we haven't already emitted the copy for this block.
165      // This can happen because PHI nodes may have multiple entries for the
166      // same basic block.  It doesn't matter which entry we use though, because
167      // all incoming values are guaranteed to be the same for a particular bb.
168      //
169      // If we emitted a copy for this basic block already, it will be right
170      // where we want to insert one now.  Just check for a definition of the
171      // register we are interested in!
172      //
173      bool HaveNotEmitted = true;
174
175      if (I != opBlock.begin()) {
176        MachineBasicBlock::iterator PrevInst = prior(I);
177        for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
178          MachineOperand &MO = PrevInst->getOperand(i);
179          if (MO.isRegister() && MO.getReg() == IncomingReg)
180            if (MO.isDef()) {
181              HaveNotEmitted = false;
182              break;
183            }
184        }
185      }
186
187      if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
188        assert(MRegisterInfo::isVirtualRegister(opVal.getReg()) &&
189               "Machine PHI Operands must all be virtual registers!");
190        unsigned SrcReg = opVal.getReg();
191        RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
192
193        // Now update live variable information if we have it.
194        if (LV) {
195          // We want to be able to insert a kill of the register if this PHI
196          // (aka, the copy we just inserted) is the last use of the source
197          // value.  Live variable analysis conservatively handles this by
198          // saying that the value is live until the end of the block the PHI
199          // entry lives in.  If the value really is dead at the PHI copy, there
200          // will be no successor blocks which have the value live-in.
201          //
202          // Check to see if the copy is the last use, and if so, update the
203          // live variables information so that it knows the copy source
204          // instruction kills the incoming value.
205          //
206          LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
207
208          // Loop over all of the successors of the basic block, checking to see
209          // if the value is either live in the block, or if it is killed in the
210          // block.  Also check to see if this register is in use by another PHI
211          // node which has not yet been eliminated.  If so, it will be killed
212          // at an appropriate point later.
213          //
214          bool ValueIsLive = false;
215          for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
216                 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
217            MachineBasicBlock *SuccMBB = *SI;
218
219            // Is it alive in this successor?
220            unsigned SuccIdx = SuccMBB->getNumber();
221            if (SuccIdx < InRegVI.AliveBlocks.size() &&
222                InRegVI.AliveBlocks[SuccIdx]) {
223              ValueIsLive = true;
224              break;
225            }
226
227            // Is it killed in this successor?
228            for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
229              if (InRegVI.Kills[i]->getParent() == SuccMBB) {
230                ValueIsLive = true;
231                break;
232              }
233
234            // Is it used by any PHI instructions in this block?
235            if (!ValueIsLive)
236              ValueIsLive = VRegPHIUseCount[SrcReg] != 0;
237          }
238
239          // Okay, if we now know that the value is not live out of the block,
240          // we can add a kill marker to the copy we inserted saying that it
241          // kills the incoming value!
242          //
243          if (!ValueIsLive) {
244            MachineBasicBlock::iterator Prev = prior(I);
245            LV->addVirtualRegisterKilled(SrcReg, Prev);
246
247            // This vreg no longer lives all of the way through opBlock.
248            unsigned opBlockNum = opBlock.getNumber();
249            if (opBlockNum < InRegVI.AliveBlocks.size())
250              InRegVI.AliveBlocks[opBlockNum] = false;
251          }
252        }
253      }
254    }
255
256    // Really delete the PHI instruction now!
257    delete MPhi;
258  }
259  return true;
260}
261