SplitKit.cpp revision 521a453721aeefbb6783b6acc8ea36b3c18b4931
1//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the SplitAnalysis class as well as mutator functions for
11// live range splitting.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "SplitKit.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/CodeGen/CalcSpillWeights.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30
31using namespace llvm;
32
33static cl::opt<bool>
34AllowSplit("spiller-splits-edges",
35           cl::desc("Allow critical edge splitting during spilling"));
36
37//===----------------------------------------------------------------------===//
38//                                 Split Analysis
39//===----------------------------------------------------------------------===//
40
41SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
42                             const LiveIntervals &lis,
43                             const MachineLoopInfo &mli)
44  : mf_(mf),
45    lis_(lis),
46    loops_(mli),
47    tii_(*mf.getTarget().getInstrInfo()),
48    curli_(0) {}
49
50void SplitAnalysis::clear() {
51  usingInstrs_.clear();
52  usingBlocks_.clear();
53  usingLoops_.clear();
54  curli_ = 0;
55}
56
57bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
58  MachineBasicBlock *T, *F;
59  SmallVector<MachineOperand, 4> Cond;
60  return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
61}
62
63/// analyzeUses - Count instructions, basic blocks, and loops using curli.
64void SplitAnalysis::analyzeUses() {
65  const MachineRegisterInfo &MRI = mf_.getRegInfo();
66  for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
67       MachineInstr *MI = I.skipInstruction();) {
68    if (MI->isDebugValue() || !usingInstrs_.insert(MI))
69      continue;
70    MachineBasicBlock *MBB = MI->getParent();
71    if (usingBlocks_[MBB]++)
72      continue;
73    for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
74         Loop = Loop->getParentLoop())
75      usingLoops_[Loop]++;
76  }
77  DEBUG(dbgs() << "  counted "
78               << usingInstrs_.size() << " instrs, "
79               << usingBlocks_.size() << " blocks, "
80               << usingLoops_.size()  << " loops.\n");
81}
82
83void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
84  for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
85    unsigned count = usingBlocks_.lookup(*I);
86    OS << " BB#" << (*I)->getNumber();
87    if (count)
88      OS << '(' << count << ')';
89  }
90}
91
92// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
93// predecessor blocks, and exit blocks.
94void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
95  Blocks.clear();
96
97  // Blocks in the loop.
98  Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
99
100  // Predecessor blocks.
101  const MachineBasicBlock *Header = Loop->getHeader();
102  for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
103       E = Header->pred_end(); I != E; ++I)
104    if (!Blocks.Loop.count(*I))
105      Blocks.Preds.insert(*I);
106
107  // Exit blocks.
108  for (MachineLoop::block_iterator I = Loop->block_begin(),
109       E = Loop->block_end(); I != E; ++I) {
110    const MachineBasicBlock *MBB = *I;
111    for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
112       SE = MBB->succ_end(); SI != SE; ++SI)
113      if (!Blocks.Loop.count(*SI))
114        Blocks.Exits.insert(*SI);
115  }
116}
117
118void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
119  OS << "Loop:";
120  print(B.Loop, OS);
121  OS << ", preds:";
122  print(B.Preds, OS);
123  OS << ", exits:";
124  print(B.Exits, OS);
125}
126
127/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
128/// and around the Loop.
129SplitAnalysis::LoopPeripheralUse SplitAnalysis::
130analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
131  LoopPeripheralUse use = ContainedInLoop;
132  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
133       I != E; ++I) {
134    const MachineBasicBlock *MBB = I->first;
135    // Is this a peripheral block?
136    if (use < MultiPeripheral &&
137        (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
138      if (I->second > 1) use = MultiPeripheral;
139      else               use = SinglePeripheral;
140      continue;
141    }
142    // Is it a loop block?
143    if (Blocks.Loop.count(MBB))
144      continue;
145    // It must be an unrelated block.
146    DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
147    return OutsideLoop;
148  }
149  return use;
150}
151
152/// getCriticalExits - It may be necessary to partially break critical edges
153/// leaving the loop if an exit block has predecessors from outside the loop
154/// periphery.
155void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
156                                     BlockPtrSet &CriticalExits) {
157  CriticalExits.clear();
158
159  // A critical exit block has curli live-in, and has a predecessor that is not
160  // in the loop nor a loop predecessor. For such an exit block, the edges
161  // carrying the new variable must be moved to a new pre-exit block.
162  for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
163       I != E; ++I) {
164    const MachineBasicBlock *Exit = *I;
165    // A single-predecessor exit block is definitely not a critical edge.
166    if (Exit->pred_size() == 1)
167      continue;
168    // This exit may not have curli live in at all. No need to split.
169    if (!lis_.isLiveInToMBB(*curli_, Exit))
170      continue;
171    // Does this exit block have a predecessor that is not a loop block or loop
172    // predecessor?
173    for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
174         PE = Exit->pred_end(); PI != PE; ++PI) {
175      const MachineBasicBlock *Pred = *PI;
176      if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
177        continue;
178      // This is a critical exit block, and we need to split the exit edge.
179      CriticalExits.insert(Exit);
180      break;
181    }
182  }
183}
184
185void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
186                                     BlockPtrSet &CriticalPreds) {
187  CriticalPreds.clear();
188
189  // A critical predecessor block has curli live-out, and has a successor that
190  // has curli live-in and is not in the loop nor a loop exit block. For such a
191  // predecessor block, we must carry the value in both the 'inside' and
192  // 'outside' registers.
193  for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
194       I != E; ++I) {
195    const MachineBasicBlock *Pred = *I;
196    // Definitely not a critical edge.
197    if (Pred->succ_size() == 1)
198      continue;
199    // This block may not have curli live out at all if there is a PHI.
200    if (!lis_.isLiveOutOfMBB(*curli_, Pred))
201      continue;
202    // Does this block have a successor outside the loop?
203    for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
204         SE = Pred->succ_end(); SI != SE; ++SI) {
205      const MachineBasicBlock *Succ = *SI;
206      if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
207        continue;
208      if (!lis_.isLiveInToMBB(*curli_, Succ))
209        continue;
210      // This is a critical predecessor block.
211      CriticalPreds.insert(Pred);
212      break;
213    }
214  }
215}
216
217/// canSplitCriticalExits - Return true if it is possible to insert new exit
218/// blocks before the blocks in CriticalExits.
219bool
220SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
221                                     BlockPtrSet &CriticalExits) {
222  // If we don't allow critical edge splitting, require no critical exits.
223  if (!AllowSplit)
224    return CriticalExits.empty();
225
226  for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
227       I != E; ++I) {
228    const MachineBasicBlock *Succ = *I;
229    // We want to insert a new pre-exit MBB before Succ, and change all the
230    // in-loop blocks to branch to the pre-exit instead of Succ.
231    // Check that all the in-loop predecessors can be changed.
232    for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
233         PE = Succ->pred_end(); PI != PE; ++PI) {
234      const MachineBasicBlock *Pred = *PI;
235      // The external predecessors won't be altered.
236      if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
237        continue;
238      if (!canAnalyzeBranch(Pred))
239        return false;
240    }
241
242    // If Succ's layout predecessor falls through, that too must be analyzable.
243    // We need to insert the pre-exit block in the gap.
244    MachineFunction::const_iterator MFI = Succ;
245    if (MFI == mf_.begin())
246      continue;
247    if (!canAnalyzeBranch(--MFI))
248      return false;
249  }
250  // No problems found.
251  return true;
252}
253
254void SplitAnalysis::analyze(const LiveInterval *li) {
255  clear();
256  curli_ = li;
257  analyzeUses();
258}
259
260void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
261  assert(curli_ && "Call analyze() before getSplitLoops");
262  if (usingLoops_.empty())
263    return;
264
265  LoopBlocks Blocks;
266  BlockPtrSet CriticalExits;
267
268  // We split around loops where curli is used outside the periphery.
269  for (LoopCountMap::const_iterator I = usingLoops_.begin(),
270       E = usingLoops_.end(); I != E; ++I) {
271    const MachineLoop *Loop = I->first;
272    getLoopBlocks(Loop, Blocks);
273    DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
274
275    switch(analyzeLoopPeripheralUse(Blocks)) {
276    case OutsideLoop:
277      break;
278    case MultiPeripheral:
279      // FIXME: We could split a live range with multiple uses in a peripheral
280      // block and still make progress. However, it is possible that splitting
281      // another live range will insert copies into a peripheral block, and
282      // there is a small chance we can enter an infinite loop, inserting copies
283      // forever.
284      // For safety, stick to splitting live ranges with uses outside the
285      // periphery.
286      DEBUG(dbgs() << ": multiple peripheral uses");
287      break;
288    case ContainedInLoop:
289      DEBUG(dbgs() << ": fully contained\n");
290      continue;
291    case SinglePeripheral:
292      DEBUG(dbgs() << ": single peripheral use\n");
293      continue;
294    }
295    // Will it be possible to split around this loop?
296    getCriticalExits(Blocks, CriticalExits);
297    DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
298    if (!canSplitCriticalExits(Blocks, CriticalExits))
299      continue;
300    // This is a possible split.
301    Loops.insert(Loop);
302  }
303
304  DEBUG(dbgs() << "  getSplitLoops found " << Loops.size()
305               << " candidate loops.\n");
306}
307
308const MachineLoop *SplitAnalysis::getBestSplitLoop() {
309  LoopPtrSet Loops;
310  getSplitLoops(Loops);
311  if (Loops.empty())
312    return 0;
313
314  // Pick the earliest loop.
315  // FIXME: Are there other heuristics to consider?
316  const MachineLoop *Best = 0;
317  SlotIndex BestIdx;
318  for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
319       ++I) {
320    SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
321    if (!Best || Idx < BestIdx)
322      Best = *I, BestIdx = Idx;
323  }
324  DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
325  return Best;
326}
327
328//===----------------------------------------------------------------------===//
329//                               LiveIntervalMap
330//===----------------------------------------------------------------------===//
331
332// Work around the fact that the std::pair constructors are broken for pointer
333// pairs in some implementations. makeVV(x, 0) works.
334static inline std::pair<const VNInfo*, VNInfo*>
335makeVV(const VNInfo *a, VNInfo *b) {
336  return std::make_pair(a, b);
337}
338
339void LiveIntervalMap::reset(LiveInterval *li) {
340  li_ = li;
341  valueMap_.clear();
342  liveOutCache_.clear();
343}
344
345bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
346  ValueMap::const_iterator i = valueMap_.find(ParentVNI);
347  return i != valueMap_.end() && i->second == 0;
348}
349
350// defValue - Introduce a li_ def for ParentVNI that could be later than
351// ParentVNI->def.
352VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
353  assert(li_ && "call reset first");
354  assert(ParentVNI && "Mapping  NULL value");
355  assert(Idx.isValid() && "Invalid SlotIndex");
356  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
357
358  // Create a new value.
359  VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
360
361  // Preserve the PHIDef bit.
362  if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
363    VNI->setIsPHIDef(true);
364
365  // Use insert for lookup, so we can add missing values with a second lookup.
366  std::pair<ValueMap::iterator,bool> InsP =
367    valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
368
369  // This is now a complex def. Mark with a NULL in valueMap.
370  if (!InsP.second)
371    InsP.first->second = 0;
372
373  return VNI;
374}
375
376
377// mapValue - Find the mapped value for ParentVNI at Idx.
378// Potentially create phi-def values.
379VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
380                                  bool *simple) {
381  assert(li_ && "call reset first");
382  assert(ParentVNI && "Mapping  NULL value");
383  assert(Idx.isValid() && "Invalid SlotIndex");
384  assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
385
386  // Use insert for lookup, so we can add missing values with a second lookup.
387  std::pair<ValueMap::iterator,bool> InsP =
388    valueMap_.insert(makeVV(ParentVNI, 0));
389
390  // This was an unknown value. Create a simple mapping.
391  if (InsP.second) {
392    if (simple) *simple = true;
393    return InsP.first->second = li_->createValueCopy(ParentVNI,
394                                                     lis_.getVNInfoAllocator());
395  }
396
397  // This was a simple mapped value.
398  if (InsP.first->second) {
399    if (simple) *simple = true;
400    return InsP.first->second;
401  }
402
403  // This is a complex mapped value. There may be multiple defs, and we may need
404  // to create phi-defs.
405  if (simple) *simple = false;
406  MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
407  assert(IdxMBB && "No MBB at Idx");
408
409  // Is there a def in the same MBB we can extend?
410  if (VNInfo *VNI = extendTo(IdxMBB, Idx))
411    return VNI;
412
413  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
414  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
415  // Perform a search for all predecessor blocks where we know the dominating
416  // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
417  DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
418               << " at " << Idx << " in " << *li_ << '\n');
419
420  // Blocks where li_ should be live-in.
421  SmallVector<MachineDomTreeNode*, 16> LiveIn;
422  LiveIn.push_back(mdt_[IdxMBB]);
423
424  // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
425  for (unsigned i = 0; i != LiveIn.size(); ++i) {
426    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
427    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
428           PE = MBB->pred_end(); PI != PE; ++PI) {
429       MachineBasicBlock *Pred = *PI;
430       // Is this a known live-out block?
431       std::pair<LiveOutMap::iterator,bool> LOIP =
432         liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
433       // Yes, we have been here before.
434       if (!LOIP.second) {
435         DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
436                 dbgs() << "    known valno #" << VNI->id
437                        << " at BB#" << Pred->getNumber() << '\n');
438         continue;
439       }
440
441       // Does Pred provide a live-out value?
442       SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
443       if (VNInfo *VNI = extendTo(Pred, Last)) {
444         MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
445         DEBUG(dbgs() << "    found valno #" << VNI->id
446                      << " from BB#" << DefMBB->getNumber()
447                      << " at BB#" << Pred->getNumber() << '\n');
448         LiveOutPair &LOP = LOIP.first->second;
449         LOP.first = VNI;
450         LOP.second = mdt_[DefMBB];
451         continue;
452       }
453       // No, we need a live-in value for Pred as well
454       if (Pred != IdxMBB)
455         LiveIn.push_back(mdt_[Pred]);
456    }
457  }
458
459  // We may need to add phi-def values to preserve the SSA form.
460  // This is essentially the same iterative algorithm that SSAUpdater uses,
461  // except we already have a dominator tree, so we don't have to recompute it.
462  VNInfo *IdxVNI = 0;
463  unsigned Changes;
464  do {
465    Changes = 0;
466    DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
467    // Propagate live-out values down the dominator tree, inserting phi-defs when
468    // necessary. Since LiveIn was created by a BFS, going backwards makes it more
469    // likely for us to visit immediate dominators before their children.
470    for (unsigned i = LiveIn.size(); i; --i) {
471      MachineDomTreeNode *Node = LiveIn[i-1];
472      MachineBasicBlock *MBB = Node->getBlock();
473      MachineDomTreeNode *IDom = Node->getIDom();
474      LiveOutPair IDomValue;
475      // We need a live-in value to a block with no immediate dominator?
476      // This is probably an unreachable block that has survived somehow.
477      bool needPHI = !IDom;
478
479      // Get the IDom live-out value.
480      if (!needPHI) {
481        LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
482        if (I != liveOutCache_.end())
483          IDomValue = I->second;
484        else
485          // If IDom is outside our set of live-out blocks, there must be new
486          // defs, and we need a phi-def here.
487          needPHI = true;
488      }
489
490      // IDom dominates all of our predecessors, but it may not be the immediate
491      // dominator. Check if any of them have live-out values that are properly
492      // dominated by IDom. If so, we need a phi-def here.
493      if (!needPHI) {
494        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
495               PE = MBB->pred_end(); PI != PE; ++PI) {
496          LiveOutPair Value = liveOutCache_[*PI];
497          if (!Value.first || Value.first == IDomValue.first)
498            continue;
499          // This predecessor is carrying something other than IDomValue.
500          // It could be because IDomValue hasn't propagated yet, or it could be
501          // because MBB is in the dominance frontier of that value.
502          if (mdt_.dominates(IDom, Value.second)) {
503            needPHI = true;
504            break;
505          }
506        }
507      }
508
509      // Create a phi-def if required.
510      if (needPHI) {
511        ++Changes;
512        SlotIndex Start = lis_.getMBBStartIdx(MBB);
513        VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
514        VNI->setIsPHIDef(true);
515        DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
516                     << " phi-def #" << VNI->id << " at " << Start << '\n');
517        // We no longer need li_ to be live-in.
518        LiveIn.erase(LiveIn.begin()+(i-1));
519        // Blocks in LiveIn are either IdxMBB, or have a value live-through.
520        if (MBB == IdxMBB)
521          IdxVNI = VNI;
522        // Check if we need to update live-out info.
523        LiveOutMap::iterator I = liveOutCache_.find(MBB);
524        if (I == liveOutCache_.end() || I->second.second == Node) {
525          // We already have a live-out defined in MBB, so this must be IdxMBB.
526          assert(MBB == IdxMBB && "Adding phi-def to known live-out");
527          li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
528        } else {
529          // This phi-def is also live-out, so color the whole block.
530          li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
531          I->second = LiveOutPair(VNI, Node);
532        }
533      } else if (IDomValue.first) {
534        // No phi-def here. Remember incoming value for IdxMBB.
535        if (MBB == IdxMBB)
536          IdxVNI = IDomValue.first;
537        // Propagate IDomValue if needed:
538        // MBB is live-out and doesn't define its own value.
539        LiveOutMap::iterator I = liveOutCache_.find(MBB);
540        if (I != liveOutCache_.end() && I->second.second != Node &&
541            I->second.first != IDomValue.first) {
542          ++Changes;
543          I->second = IDomValue;
544          DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
545                       << " idom valno #" << IDomValue.first->id
546                       << " from BB#" << IDom->getBlock()->getNumber() << '\n');
547        }
548      }
549    }
550    DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
551  } while (Changes);
552
553  assert(IdxVNI && "Didn't find value for Idx");
554
555#ifndef NDEBUG
556  // Check the liveOutCache_ invariants.
557  for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
558         I != E; ++I) {
559    assert(I->first && "Null MBB entry in cache");
560    assert(I->second.first && "Null VNInfo in cache");
561    assert(I->second.second && "Null DomTreeNode in cache");
562    if (I->second.second->getBlock() == I->first)
563      continue;
564    for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
565           PE = I->first->pred_end(); PI != PE; ++PI)
566      assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
567  }
568#endif
569
570  // Since we went through the trouble of a full BFS visiting all reaching defs,
571  // the values in LiveIn are now accurate. No more phi-defs are needed
572  // for these blocks, so we can color the live ranges.
573  // This makes the next mapValue call much faster.
574  for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
575    MachineBasicBlock *MBB = LiveIn[i]->getBlock();
576    SlotIndex Start = lis_.getMBBStartIdx(MBB);
577    if (MBB == IdxMBB) {
578      li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
579      continue;
580    }
581    // Anything in LiveIn other than IdxMBB is live-through.
582    VNInfo *VNI = liveOutCache_.lookup(MBB).first;
583    assert(VNI && "Missing block value");
584    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
585  }
586
587  return IdxVNI;
588}
589
590// extendTo - Find the last li_ value defined in MBB at or before Idx. The
591// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
592// Return the found VNInfo, or NULL.
593VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
594  assert(li_ && "call reset first");
595  LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
596  if (I == li_->begin())
597    return 0;
598  --I;
599  if (I->end <= lis_.getMBBStartIdx(MBB))
600    return 0;
601  if (I->end <= Idx)
602    I->end = Idx.getNextSlot();
603  return I->valno;
604}
605
606// addSimpleRange - Add a simple range from parentli_ to li_.
607// ParentVNI must be live in the [Start;End) interval.
608void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
609                                     const VNInfo *ParentVNI) {
610  assert(li_ && "call reset first");
611  bool simple;
612  VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
613  // A simple mapping is easy.
614  if (simple) {
615    li_->addRange(LiveRange(Start, End, VNI));
616    return;
617  }
618
619  // ParentVNI is a complex value. We must map per MBB.
620  MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
621  MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
622
623  if (MBB == MBBE) {
624    li_->addRange(LiveRange(Start, End, VNI));
625    return;
626  }
627
628  // First block.
629  li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
630
631  // Run sequence of full blocks.
632  for (++MBB; MBB != MBBE; ++MBB) {
633    Start = lis_.getMBBStartIdx(MBB);
634    li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
635                            mapValue(ParentVNI, Start)));
636  }
637
638  // Final block.
639  Start = lis_.getMBBStartIdx(MBB);
640  if (Start != End)
641    li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
642}
643
644/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
645/// All needed values whose def is not inside [Start;End) must be defined
646/// beforehand so mapValue will work.
647void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
648  assert(li_ && "call reset first");
649  LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
650  LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
651
652  // Check if --I begins before Start and overlaps.
653  if (I != B) {
654    --I;
655    if (I->end > Start)
656      addSimpleRange(Start, std::min(End, I->end), I->valno);
657    ++I;
658  }
659
660  // The remaining ranges begin after Start.
661  for (;I != E && I->start < End; ++I)
662    addSimpleRange(I->start, std::min(End, I->end), I->valno);
663}
664
665
666//===----------------------------------------------------------------------===//
667//                               Split Editor
668//===----------------------------------------------------------------------===//
669
670/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
671SplitEditor::SplitEditor(SplitAnalysis &sa,
672                         LiveIntervals &lis,
673                         VirtRegMap &vrm,
674                         MachineDominatorTree &mdt,
675                         LiveRangeEdit &edit)
676  : sa_(sa), lis_(lis), vrm_(vrm),
677    mri_(vrm.getMachineFunction().getRegInfo()),
678    tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
679    tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
680    edit_(edit),
681    dupli_(lis_, mdt, edit.getParent()),
682    openli_(lis_, mdt, edit.getParent())
683{
684  // We don't need an AliasAnalysis since we will only be performing
685  // cheap-as-a-copy remats anyway.
686  edit_.anyRematerializable(lis_, tii_, 0);
687}
688
689bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
690  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
691    if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
692      return true;
693  return false;
694}
695
696VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
697                                   VNInfo *ParentVNI,
698                                   SlotIndex UseIdx,
699                                   MachineBasicBlock &MBB,
700                                   MachineBasicBlock::iterator I) {
701  VNInfo *VNI = 0;
702  MachineInstr *CopyMI = 0;
703  SlotIndex Def;
704
705  // Attempt cheap-as-a-copy rematerialization.
706  LiveRangeEdit::Remat RM(ParentVNI);
707  if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) {
708    Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
709                                          lis_, tii_, tri_);
710  } else {
711    // Can't remat, just insert a copy from parent.
712    CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
713                     Reg.getLI()->reg).addReg(edit_.getReg());
714    Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex();
715  }
716
717  // Define the value in Reg.
718  VNI = Reg.defValue(ParentVNI, Def);
719  VNI->setCopy(CopyMI);
720
721  // Add minimal liveness for the new value.
722  if (UseIdx < Def)
723    UseIdx = Def;
724  Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI));
725  return VNI;
726}
727
728/// Create a new virtual register and live interval.
729void SplitEditor::openIntv() {
730  assert(!openli_.getLI() && "Previous LI not closed before openIntv");
731  if (!dupli_.getLI())
732    dupli_.reset(&edit_.create(mri_, lis_, vrm_));
733
734  openli_.reset(&edit_.create(mri_, lis_, vrm_));
735}
736
737/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
738/// not live before Idx, a COPY is not inserted.
739void SplitEditor::enterIntvBefore(SlotIndex Idx) {
740  assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
741  Idx = Idx.getUseIndex();
742  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
743  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
744  if (!ParentVNI) {
745    DEBUG(dbgs() << ": not live\n");
746    return;
747  }
748  DEBUG(dbgs() << ": valno " << ParentVNI->id);
749  truncatedValues.insert(ParentVNI);
750  MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
751  assert(MI && "enterIntvBefore called with invalid index");
752
753  defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI);
754
755  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
756}
757
758/// enterIntvAtEnd - Enter openli at the end of MBB.
759void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
760  assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
761  SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot();
762  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
763  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End);
764  if (!ParentVNI) {
765    DEBUG(dbgs() << ": not live\n");
766    return;
767  }
768  DEBUG(dbgs() << ": valno " << ParentVNI->id);
769  truncatedValues.insert(ParentVNI);
770  defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator());
771  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
772}
773
774/// useIntv - indicate that all instructions in MBB should use openli.
775void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
776  useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
777}
778
779void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
780  assert(openli_.getLI() && "openIntv not called before useIntv");
781  openli_.addRange(Start, End);
782  DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
783               << *openli_.getLI() << '\n');
784}
785
786/// leaveIntvAfter - Leave openli after the instruction at Idx.
787void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
788  assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
789  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
790
791  // The interval must be live beyond the instruction at Idx.
792  Idx = Idx.getBoundaryIndex();
793  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
794  if (!ParentVNI) {
795    DEBUG(dbgs() << ": not live\n");
796    return;
797  }
798  DEBUG(dbgs() << ": valno " << ParentVNI->id);
799
800  MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
801  VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx,
802                              *MII->getParent(), llvm::next(MII));
803
804  // Make sure that openli is properly extended from Idx to the new copy.
805  // FIXME: This shouldn't be necessary for remats.
806  openli_.addSimpleRange(Idx, VNI->def, ParentVNI);
807
808  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
809}
810
811/// leaveIntvAtTop - Leave the interval at the top of MBB.
812/// Currently, only one value can leave the interval.
813void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
814  assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
815  SlotIndex Start = lis_.getMBBStartIdx(&MBB);
816  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
817
818  VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
819  if (!ParentVNI) {
820    DEBUG(dbgs() << ": not live\n");
821    return;
822  }
823
824  VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB,
825                              MBB.SkipPHIsAndLabels(MBB.begin()));
826
827  // Finally we must make sure that openli is properly extended from Start to
828  // the new copy.
829  openli_.addSimpleRange(Start, VNI->def, ParentVNI);
830  DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
831}
832
833/// closeIntv - Indicate that we are done editing the currently open
834/// LiveInterval, and ranges can be trimmed.
835void SplitEditor::closeIntv() {
836  assert(openli_.getLI() && "openIntv not called before closeIntv");
837
838  DEBUG(dbgs() << "    closeIntv cleaning up\n");
839  DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
840  openli_.reset(0);
841}
842
843/// rewrite - Rewrite all uses of reg to use the new registers.
844void SplitEditor::rewrite(unsigned reg) {
845  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
846       RE = mri_.reg_end(); RI != RE;) {
847    MachineOperand &MO = RI.getOperand();
848    unsigned OpNum = RI.getOperandNo();
849    MachineInstr *MI = MO.getParent();
850    ++RI;
851    if (MI->isDebugValue()) {
852      DEBUG(dbgs() << "Zapping " << *MI);
853      // FIXME: We can do much better with debug values.
854      MO.setReg(0);
855      continue;
856    }
857    SlotIndex Idx = lis_.getInstructionIndex(MI);
858    Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
859    LiveInterval *LI = 0;
860    for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
861         ++I) {
862      LiveInterval *testli = *I;
863      if (testli->liveAt(Idx)) {
864        LI = testli;
865        break;
866      }
867    }
868    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
869    assert(LI && "No register was live at use");
870    MO.setReg(LI->reg);
871    if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
872      MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
873    DEBUG(dbgs() << '\t' << *MI);
874  }
875}
876
877void
878SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
879  // Build vector of iterator pairs from the intervals.
880  typedef std::pair<LiveInterval::const_iterator,
881                    LiveInterval::const_iterator> IIPair;
882  SmallVector<IIPair, 8> Iters;
883  for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
884       ++LI) {
885    if (*LI == dupli_.getLI())
886      continue;
887    LiveInterval::const_iterator I = (*LI)->find(Start);
888    LiveInterval::const_iterator E = (*LI)->end();
889    if (I != E)
890      Iters.push_back(std::make_pair(I, E));
891  }
892
893  SlotIndex sidx = Start;
894  // Break [Start;End) into segments that don't overlap any intervals.
895  for (;;) {
896    SlotIndex next = sidx, eidx = End;
897    // Find overlapping intervals.
898    for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
899      LiveInterval::const_iterator I = Iters[i].first;
900      // Interval I is overlapping [sidx;eidx). Trim sidx.
901      if (I->start <= sidx) {
902        sidx = I->end;
903        // Move to the next run, remove iters when all are consumed.
904        I = ++Iters[i].first;
905        if (I == Iters[i].second) {
906          Iters.erase(Iters.begin() + i);
907          --i;
908          continue;
909        }
910      }
911      // Trim eidx too if needed.
912      if (I->start >= eidx)
913        continue;
914      eidx = I->start;
915      next = I->end;
916    }
917    // Now, [sidx;eidx) doesn't overlap anything in intervals_.
918    if (sidx < eidx)
919      dupli_.addSimpleRange(sidx, eidx, VNI);
920    // If the interval end was truncated, we can try again from next.
921    if (next <= sidx)
922      break;
923    sidx = next;
924  }
925}
926
927void SplitEditor::computeRemainder() {
928  // First we need to fill in the live ranges in dupli.
929  // If values were redefined, we need a full recoloring with SSA update.
930  // If values were truncated, we only need to truncate the ranges.
931  // If values were partially rematted, we should shrink to uses.
932  // If values were fully rematted, they should be omitted.
933  // FIXME: If a single value is redefined, just move the def and truncate.
934  LiveInterval &parent = edit_.getParent();
935
936  // Values that are fully contained in the split intervals.
937  SmallPtrSet<const VNInfo*, 8> deadValues;
938  // Map all curli values that should have live defs in dupli.
939  for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
940       E = parent.vni_end(); I != E; ++I) {
941    const VNInfo *VNI = *I;
942    // Don't transfer unused values to the new intervals.
943    if (VNI->isUnused())
944      continue;
945    // Original def is contained in the split intervals.
946    if (intervalsLiveAt(VNI->def)) {
947      // Did this value escape?
948      if (dupli_.isMapped(VNI))
949        truncatedValues.insert(VNI);
950      else
951        deadValues.insert(VNI);
952      continue;
953    }
954    // Add minimal live range at the definition.
955    VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
956    dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
957  }
958
959  // Add all ranges to dupli.
960  for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
961       I != E; ++I) {
962    const LiveRange &LR = *I;
963    if (truncatedValues.count(LR.valno)) {
964      // recolor after removing intervals_.
965      addTruncSimpleRange(LR.start, LR.end, LR.valno);
966    } else if (!deadValues.count(LR.valno)) {
967      // recolor without truncation.
968      dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
969    }
970  }
971
972  // Extend dupli_ to be live out of any critical loop predecessors.
973  // This means we have multiple registers live out of those blocks.
974  // The alternative would be to split the critical edges.
975  if (criticalPreds_.empty())
976    return;
977  for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
978       E = criticalPreds_.end(); I != E; ++I)
979     dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
980   criticalPreds_.clear();
981}
982
983void SplitEditor::finish() {
984  assert(!openli_.getLI() && "Previous LI not closed before rewrite");
985  assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
986
987  // Complete dupli liveness.
988  computeRemainder();
989
990  // Get rid of unused values and set phi-kill flags.
991  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
992    (*I)->RenumberValues(lis_);
993
994  // Rewrite instructions.
995  rewrite(edit_.getReg());
996
997  // Now check if any registers were separated into multiple components.
998  ConnectedVNInfoEqClasses ConEQ(lis_);
999  for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
1000    // Don't use iterators, they are invalidated by create() below.
1001    LiveInterval *li = edit_.get(i);
1002    unsigned NumComp = ConEQ.Classify(li);
1003    if (NumComp <= 1)
1004      continue;
1005    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1006    SmallVector<LiveInterval*, 8> dups;
1007    dups.push_back(li);
1008    for (unsigned i = 1; i != NumComp; ++i)
1009      dups.push_back(&edit_.create(mri_, lis_, vrm_));
1010    ConEQ.Distribute(&dups[0]);
1011    // Rewrite uses to the new regs.
1012    rewrite(li->reg);
1013  }
1014
1015  // Calculate spill weight and allocation hints for new intervals.
1016  VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
1017  for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
1018    LiveInterval &li = **I;
1019    vrai.CalculateRegClass(li.reg);
1020    vrai.CalculateWeightAndHint(li);
1021    DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
1022                 << ":" << li << '\n');
1023  }
1024}
1025
1026
1027//===----------------------------------------------------------------------===//
1028//                               Loop Splitting
1029//===----------------------------------------------------------------------===//
1030
1031void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
1032  SplitAnalysis::LoopBlocks Blocks;
1033  sa_.getLoopBlocks(Loop, Blocks);
1034
1035  DEBUG({
1036    dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
1037  });
1038
1039  // Break critical edges as needed.
1040  SplitAnalysis::BlockPtrSet CriticalExits;
1041  sa_.getCriticalExits(Blocks, CriticalExits);
1042  assert(CriticalExits.empty() && "Cannot break critical exits yet");
1043
1044  // Get critical predecessors so computeRemainder can deal with them.
1045  sa_.getCriticalPreds(Blocks, criticalPreds_);
1046
1047  // Create new live interval for the loop.
1048  openIntv();
1049
1050  // Insert copies in the predecessors.
1051  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
1052       E = Blocks.Preds.end(); I != E; ++I) {
1053    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1054    enterIntvAtEnd(MBB);
1055  }
1056
1057  // Switch all loop blocks.
1058  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
1059       E = Blocks.Loop.end(); I != E; ++I)
1060     useIntv(**I);
1061
1062  // Insert back copies in the exit blocks.
1063  for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
1064       E = Blocks.Exits.end(); I != E; ++I) {
1065    MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
1066    leaveIntvAtTop(MBB);
1067  }
1068
1069  // Done.
1070  closeIntv();
1071  finish();
1072}
1073
1074
1075//===----------------------------------------------------------------------===//
1076//                            Single Block Splitting
1077//===----------------------------------------------------------------------===//
1078
1079/// getMultiUseBlocks - if curli has more than one use in a basic block, it
1080/// may be an advantage to split curli for the duration of the block.
1081bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
1082  // If curli is local to one block, there is no point to splitting it.
1083  if (usingBlocks_.size() <= 1)
1084    return false;
1085  // Add blocks with multiple uses.
1086  for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
1087       I != E; ++I)
1088    switch (I->second) {
1089    case 0:
1090    case 1:
1091      continue;
1092    case 2: {
1093      // When there are only two uses and curli is both live in and live out,
1094      // we don't really win anything by isolating the block since we would be
1095      // inserting two copies.
1096      // The remaing register would still have two uses in the block. (Unless it
1097      // separates into disconnected components).
1098      if (lis_.isLiveInToMBB(*curli_, I->first) &&
1099          lis_.isLiveOutOfMBB(*curli_, I->first))
1100        continue;
1101    } // Fall through.
1102    default:
1103      Blocks.insert(I->first);
1104    }
1105  return !Blocks.empty();
1106}
1107
1108/// splitSingleBlocks - Split curli into a separate live interval inside each
1109/// basic block in Blocks.
1110void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
1111  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
1112  // Determine the first and last instruction using curli in each block.
1113  typedef std::pair<SlotIndex,SlotIndex> IndexPair;
1114  typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
1115  IndexPairMap MBBRange;
1116  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1117       E = sa_.usingInstrs_.end(); I != E; ++I) {
1118    const MachineBasicBlock *MBB = (*I)->getParent();
1119    if (!Blocks.count(MBB))
1120      continue;
1121    SlotIndex Idx = lis_.getInstructionIndex(*I);
1122    DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
1123    IndexPair &IP = MBBRange[MBB];
1124    if (!IP.first.isValid() || Idx < IP.first)
1125      IP.first = Idx;
1126    if (!IP.second.isValid() || Idx > IP.second)
1127      IP.second = Idx;
1128  }
1129
1130  // Create a new interval for each block.
1131  for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
1132       E = Blocks.end(); I != E; ++I) {
1133    IndexPair &IP = MBBRange[*I];
1134    DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
1135                 << IP.first << ';' << IP.second << ")\n");
1136    assert(IP.first.isValid() && IP.second.isValid());
1137
1138    openIntv();
1139    enterIntvBefore(IP.first);
1140    useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
1141    leaveIntvAfter(IP.second);
1142    closeIntv();
1143  }
1144  finish();
1145}
1146
1147
1148//===----------------------------------------------------------------------===//
1149//                            Sub Block Splitting
1150//===----------------------------------------------------------------------===//
1151
1152/// getBlockForInsideSplit - If curli is contained inside a single basic block,
1153/// and it wou pay to subdivide the interval inside that block, return it.
1154/// Otherwise return NULL. The returned block can be passed to
1155/// SplitEditor::splitInsideBlock.
1156const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
1157  // The interval must be exclusive to one block.
1158  if (usingBlocks_.size() != 1)
1159    return 0;
1160  // Don't to this for less than 4 instructions. We want to be sure that
1161  // splitting actually reduces the instruction count per interval.
1162  if (usingInstrs_.size() < 4)
1163    return 0;
1164  return usingBlocks_.begin()->first;
1165}
1166
1167/// splitInsideBlock - Split curli into multiple intervals inside MBB.
1168void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
1169  SmallVector<SlotIndex, 32> Uses;
1170  Uses.reserve(sa_.usingInstrs_.size());
1171  for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
1172       E = sa_.usingInstrs_.end(); I != E; ++I)
1173    if ((*I)->getParent() == MBB)
1174      Uses.push_back(lis_.getInstructionIndex(*I));
1175  DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
1176               << Uses.size() << " instructions.\n");
1177  assert(Uses.size() >= 3 && "Need at least 3 instructions");
1178  array_pod_sort(Uses.begin(), Uses.end());
1179
1180  // Simple algorithm: Find the largest gap between uses as determined by slot
1181  // indices. Create new intervals for instructions before the gap and after the
1182  // gap.
1183  unsigned bestPos = 0;
1184  int bestGap = 0;
1185  DEBUG(dbgs() << "    dist (" << Uses[0]);
1186  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
1187    int g = Uses[i-1].distance(Uses[i]);
1188    DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
1189    if (g > bestGap)
1190      bestPos = i, bestGap = g;
1191  }
1192  DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
1193
1194  // bestPos points to the first use after the best gap.
1195  assert(bestPos > 0 && "Invalid gap");
1196
1197  // FIXME: Don't create intervals for low densities.
1198
1199  // First interval before the gap. Don't create single-instr intervals.
1200  if (bestPos > 1) {
1201    openIntv();
1202    enterIntvBefore(Uses.front());
1203    useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
1204    leaveIntvAfter(Uses[bestPos-1]);
1205    closeIntv();
1206  }
1207
1208  // Second interval after the gap.
1209  if (bestPos < Uses.size()-1) {
1210    openIntv();
1211    enterIntvBefore(Uses[bestPos]);
1212    useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
1213    leaveIntvAfter(Uses.back());
1214    closeIntv();
1215  }
1216
1217  finish();
1218}
1219