ARMISelLowering.cpp revision 027c32a14ee953079e768b84ff329b37c442e208
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Instructions.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Type.h"
34#include "llvm/CodeGen/CallingConvLower.h"
35#include "llvm/CodeGen/IntrinsicLowering.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72namespace {
73  class ARMCCState : public CCState {
74  public:
75    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
76               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
77               LLVMContext &C, ParmContext PC)
78        : CCState(CC, isVarArg, MF, TM, locs, C) {
79      assert(((PC == Call) || (PC == Prologue)) &&
80             "ARMCCState users must specify whether their context is call"
81             "or prologue generation.");
82      CallOrPrologue = PC;
83    }
84  };
85}
86
87// The APCS parameter registers.
88static const uint16_t GPRArgRegs[] = {
89  ARM::R0, ARM::R1, ARM::R2, ARM::R3
90};
91
92void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
93                                       EVT PromotedBitwiseVT) {
94  if (VT != PromotedLdStVT) {
95    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
96    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
97                       PromotedLdStVT.getSimpleVT());
98
99    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102  }
103
104  EVT ElemTy = VT.getVectorElementType();
105  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
106    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
107  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
108  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
109  if (ElemTy == MVT::i32) {
110    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
111    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
112    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
113    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
114  } else {
115    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
116    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
117    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
118    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
119  }
120  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
121  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
122  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
123  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
124  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
125  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
129    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
130    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
136    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
137                       PromotedBitwiseVT.getSimpleVT());
138    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
139    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
140                       PromotedBitwiseVT.getSimpleVT());
141    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
142    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
143                       PromotedBitwiseVT.getSimpleVT());
144  }
145
146  // Neon does not support vector divide/remainder operations.
147  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
148  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
149  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
150  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
153}
154
155void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
156  addRegisterClass(VT, &ARM::DPRRegClass);
157  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
158}
159
160void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
161  addRegisterClass(VT, &ARM::QPRRegClass);
162  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
163}
164
165static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
166  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
167    return new TargetLoweringObjectFileMachO();
168
169  return new ARMElfTargetObjectFile();
170}
171
172ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
173    : TargetLowering(TM, createTLOF(TM)) {
174  Subtarget = &TM.getSubtarget<ARMSubtarget>();
175  RegInfo = TM.getRegisterInfo();
176  Itins = TM.getInstrItineraryData();
177
178  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
179
180  if (Subtarget->isTargetDarwin()) {
181    // Uses VFP for Thumb libfuncs if available.
182    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
183      // Single-precision floating-point arithmetic.
184      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
185      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
186      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
187      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
188
189      // Double-precision floating-point arithmetic.
190      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
191      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
192      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
193      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
194
195      // Single-precision comparisons.
196      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
197      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
198      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
199      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
200      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
201      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
202      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
203      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
204
205      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
212      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
213
214      // Double-precision comparisons.
215      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
216      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
217      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
218      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
219      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
220      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
221      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
222      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
223
224      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
231      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
232
233      // Floating-point to integer conversions.
234      // i64 conversions are done via library routines even when generating VFP
235      // instructions, so use the same ones.
236      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
237      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
238      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
239      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
240
241      // Conversions between floating types.
242      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
243      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
244
245      // Integer to floating-point conversions.
246      // i64 conversions are done via library routines even when generating VFP
247      // instructions, so use the same ones.
248      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
249      // e.g., __floatunsidf vs. __floatunssidfvfp.
250      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
251      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
252      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
253      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
254    }
255  }
256
257  // These libcalls are not available in 32-bit.
258  setLibcallName(RTLIB::SHL_I128, 0);
259  setLibcallName(RTLIB::SRL_I128, 0);
260  setLibcallName(RTLIB::SRA_I128, 0);
261
262  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
263    // Double-precision floating-point arithmetic helper functions
264    // RTABI chapter 4.1.2, Table 2
265    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
266    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
267    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
268    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
269    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
270    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
273
274    // Double-precision floating-point comparison helper functions
275    // RTABI chapter 4.1.2, Table 3
276    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
277    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
278    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
279    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
280    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
281    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
282    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
283    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
284    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
285    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
287    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
288    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
289    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
290    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
291    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
292    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
300
301    // Single-precision floating-point arithmetic helper functions
302    // RTABI chapter 4.1.2, Table 4
303    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
304    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
305    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
306    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
307    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
308    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
311
312    // Single-precision floating-point comparison helper functions
313    // RTABI chapter 4.1.2, Table 5
314    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
315    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
316    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
317    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
318    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
319    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
320    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
321    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
322    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
323    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
325    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
326    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
327    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
328    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
329    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
330    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
338
339    // Floating-point to integer conversions.
340    // RTABI chapter 4.1.2, Table 6
341    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
342    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
343    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
344    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
345    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
346    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
347    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
348    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
349    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
357
358    // Conversions between floating types.
359    // RTABI chapter 4.1.2, Table 7
360    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
361    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
362    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
364
365    // Integer to floating-point conversions.
366    // RTABI chapter 4.1.2, Table 8
367    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
368    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
369    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
370    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
371    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
372    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
373    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
374    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
375    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
383
384    // Long long helper functions
385    // RTABI chapter 4.2, Table 9
386    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
387    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
388    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
389    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
390    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
396
397    // Integer division functions
398    // RTABI chapter 4.3.1
399    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
400    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
401    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
402    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
403    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
404    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
405    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
406    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
407    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
415
416    // Memory operations
417    // RTABI chapter 4.3.4
418    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
419    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
420    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
421    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
422    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
423    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
424  }
425
426  // Use divmod compiler-rt calls for iOS 5.0 and later.
427  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
428      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
429    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
430    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
431  }
432
433  if (Subtarget->isThumb1Only())
434    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
435  else
436    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
437  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
438      !Subtarget->isThumb1Only()) {
439    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
440    if (!Subtarget->isFPOnlySP())
441      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
442
443    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
444  }
445
446  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
447       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
448    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
449         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
450      setTruncStoreAction((MVT::SimpleValueType)VT,
451                          (MVT::SimpleValueType)InnerVT, Expand);
452    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
453    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
454    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
455  }
456
457  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
458
459  if (Subtarget->hasNEON()) {
460    addDRTypeForNEON(MVT::v2f32);
461    addDRTypeForNEON(MVT::v8i8);
462    addDRTypeForNEON(MVT::v4i16);
463    addDRTypeForNEON(MVT::v2i32);
464    addDRTypeForNEON(MVT::v1i64);
465
466    addQRTypeForNEON(MVT::v4f32);
467    addQRTypeForNEON(MVT::v2f64);
468    addQRTypeForNEON(MVT::v16i8);
469    addQRTypeForNEON(MVT::v8i16);
470    addQRTypeForNEON(MVT::v4i32);
471    addQRTypeForNEON(MVT::v2i64);
472
473    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
474    // neither Neon nor VFP support any arithmetic operations on it.
475    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
476    // supported for v4f32.
477    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
478    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
479    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
480    // FIXME: Code duplication: FDIV and FREM are expanded always, see
481    // ARMTargetLowering::addTypeForNEON method for details.
482    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
483    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
484    // FIXME: Create unittest.
485    // In another words, find a way when "copysign" appears in DAG with vector
486    // operands.
487    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
488    // FIXME: Code duplication: SETCC has custom operation action, see
489    // ARMTargetLowering::addTypeForNEON method for details.
490    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
491    // FIXME: Create unittest for FNEG and for FABS.
492    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
493    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
495    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
496    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
497    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
498    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
499    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
500    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
501    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
502    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
503    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
504    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
505    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
506    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
507    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
508    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
509    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
510
511    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
512    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
513    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
514    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
515    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
516    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
517    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
518    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
519    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
520    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
521
522    // Neon does not support some operations on v1i64 and v2i64 types.
523    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
524    // Custom handling for some quad-vector types to detect VMULL.
525    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
526    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
527    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
528    // Custom handling for some vector types to avoid expensive expansions
529    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
530    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
531    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
532    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
533    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
534    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
535    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
536    // a destination type that is wider than the source, and nor does
537    // it have a FP_TO_[SU]INT instruction with a narrower destination than
538    // source.
539    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
540    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
541    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
542    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
543
544    setTargetDAGCombine(ISD::INTRINSIC_VOID);
545    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
546    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
547    setTargetDAGCombine(ISD::SHL);
548    setTargetDAGCombine(ISD::SRL);
549    setTargetDAGCombine(ISD::SRA);
550    setTargetDAGCombine(ISD::SIGN_EXTEND);
551    setTargetDAGCombine(ISD::ZERO_EXTEND);
552    setTargetDAGCombine(ISD::ANY_EXTEND);
553    setTargetDAGCombine(ISD::SELECT_CC);
554    setTargetDAGCombine(ISD::BUILD_VECTOR);
555    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
556    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
557    setTargetDAGCombine(ISD::STORE);
558    setTargetDAGCombine(ISD::FP_TO_SINT);
559    setTargetDAGCombine(ISD::FP_TO_UINT);
560    setTargetDAGCombine(ISD::FDIV);
561
562    // It is legal to extload from v4i8 to v4i16 or v4i32.
563    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
564                  MVT::v4i16, MVT::v2i16,
565                  MVT::v2i32};
566    for (unsigned i = 0; i < 6; ++i) {
567      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
568      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
569      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
570    }
571  }
572
573  computeRegisterProperties();
574
575  // ARM does not have f32 extending load.
576  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
577
578  // ARM does not have i1 sign extending load.
579  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
580
581  // ARM supports all 4 flavors of integer indexed load / store.
582  if (!Subtarget->isThumb1Only()) {
583    for (unsigned im = (unsigned)ISD::PRE_INC;
584         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
585      setIndexedLoadAction(im,  MVT::i1,  Legal);
586      setIndexedLoadAction(im,  MVT::i8,  Legal);
587      setIndexedLoadAction(im,  MVT::i16, Legal);
588      setIndexedLoadAction(im,  MVT::i32, Legal);
589      setIndexedStoreAction(im, MVT::i1,  Legal);
590      setIndexedStoreAction(im, MVT::i8,  Legal);
591      setIndexedStoreAction(im, MVT::i16, Legal);
592      setIndexedStoreAction(im, MVT::i32, Legal);
593    }
594  }
595
596  // i64 operation support.
597  setOperationAction(ISD::MUL,     MVT::i64, Expand);
598  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
599  if (Subtarget->isThumb1Only()) {
600    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
601    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
602  }
603  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
604      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
605    setOperationAction(ISD::MULHS, MVT::i32, Expand);
606
607  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
608  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
609  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
610  setOperationAction(ISD::SRL,       MVT::i64, Custom);
611  setOperationAction(ISD::SRA,       MVT::i64, Custom);
612
613  if (!Subtarget->isThumb1Only()) {
614    // FIXME: We should do this for Thumb1 as well.
615    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
616    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
617    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
618    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
619  }
620
621  // ARM does not have ROTL.
622  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
623  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
624  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
625  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
626    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
627
628  // These just redirect to CTTZ and CTLZ on ARM.
629  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
630  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
631
632  // Only ARMv6 has BSWAP.
633  if (!Subtarget->hasV6Ops())
634    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
635
636  // These are expanded into libcalls.
637  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
638    // v7M has a hardware divider
639    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
640    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
641  }
642  setOperationAction(ISD::SREM,  MVT::i32, Expand);
643  setOperationAction(ISD::UREM,  MVT::i32, Expand);
644  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
645  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
646
647  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
648  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
649  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
650  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
651  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
652
653  setOperationAction(ISD::TRAP, MVT::Other, Legal);
654
655  // Use the default implementation.
656  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
657  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
658  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
659  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
660  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
661  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
662
663  if (!Subtarget->isTargetDarwin()) {
664    // Non-Darwin platforms may return values in these registers via the
665    // personality function.
666    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
667    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
668    setExceptionPointerRegister(ARM::R0);
669    setExceptionSelectorRegister(ARM::R1);
670  }
671
672  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
673  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
674  // the default expansion.
675  // FIXME: This should be checking for v6k, not just v6.
676  if (Subtarget->hasDataBarrier() ||
677      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
678    // membarrier needs custom lowering; the rest are legal and handled
679    // normally.
680    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
681    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
682    // Custom lowering for 64-bit ops
683    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
684    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
685    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
686    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
687    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
688    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
689    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
690    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
691    setInsertFencesForAtomic(true);
692  } else {
693    // Set them all for expansion, which will force libcalls.
694    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
695    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
696    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
697    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
698    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
699    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
700    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
701    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
702    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
703    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
704    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
705    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
706    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
707    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
708    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
709    // Unordered/Monotonic case.
710    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
711    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
712    // Since the libcalls include locking, fold in the fences
713    setShouldFoldAtomicFences(true);
714  }
715
716  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
717
718  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
719  if (!Subtarget->hasV6Ops()) {
720    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
721    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
722  }
723  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
724
725  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
726      !Subtarget->isThumb1Only()) {
727    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
728    // iff target supports vfp2.
729    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
730    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
731  }
732
733  // We want to custom lower some of our intrinsics.
734  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
735  if (Subtarget->isTargetDarwin()) {
736    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
737    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
738    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
739  }
740
741  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
742  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
743  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
744  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
745  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
746  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
747  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
748  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
749  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
750
751  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
752  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
753  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
754  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
755  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
756
757  // We don't support sin/cos/fmod/copysign/pow
758  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
759  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
760  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
761  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
762  setOperationAction(ISD::FREM,      MVT::f64, Expand);
763  setOperationAction(ISD::FREM,      MVT::f32, Expand);
764  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
765      !Subtarget->isThumb1Only()) {
766    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
767    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
768  }
769  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
770  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
771
772  if (!Subtarget->hasVFP4()) {
773    setOperationAction(ISD::FMA, MVT::f64, Expand);
774    setOperationAction(ISD::FMA, MVT::f32, Expand);
775  }
776
777  // Various VFP goodness
778  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
779    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
780    if (Subtarget->hasVFP2()) {
781      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
782      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
783      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
784      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
785    }
786    // Special handling for half-precision FP.
787    if (!Subtarget->hasFP16()) {
788      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
789      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
790    }
791  }
792
793  // We have target-specific dag combine patterns for the following nodes:
794  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
795  setTargetDAGCombine(ISD::ADD);
796  setTargetDAGCombine(ISD::SUB);
797  setTargetDAGCombine(ISD::MUL);
798
799  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON()) {
800    setTargetDAGCombine(ISD::AND);
801    setTargetDAGCombine(ISD::OR);
802    setTargetDAGCombine(ISD::XOR);
803  }
804
805  if (Subtarget->hasV6Ops())
806    setTargetDAGCombine(ISD::SRL);
807
808  setStackPointerRegisterToSaveRestore(ARM::SP);
809
810  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
811      !Subtarget->hasVFP2())
812    setSchedulingPreference(Sched::RegPressure);
813  else
814    setSchedulingPreference(Sched::Hybrid);
815
816  //// temporary - rewrite interface to use type
817  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
818  maxStoresPerMemset = 16;
819  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
820
821  // On ARM arguments smaller than 4 bytes are extended, so all arguments
822  // are at least 4 bytes aligned.
823  setMinStackArgumentAlignment(4);
824
825  benefitFromCodePlacementOpt = true;
826
827  // Prefer likely predicted branches to selects on out-of-order cores.
828  predictableSelectIsExpensive = Subtarget->isCortexA9();
829
830  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
831}
832
833// FIXME: It might make sense to define the representative register class as the
834// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
835// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
836// SPR's representative would be DPR_VFP2. This should work well if register
837// pressure tracking were modified such that a register use would increment the
838// pressure of the register class's representative and all of it's super
839// classes' representatives transitively. We have not implemented this because
840// of the difficulty prior to coalescing of modeling operand register classes
841// due to the common occurrence of cross class copies and subregister insertions
842// and extractions.
843std::pair<const TargetRegisterClass*, uint8_t>
844ARMTargetLowering::findRepresentativeClass(EVT VT) const{
845  const TargetRegisterClass *RRC = 0;
846  uint8_t Cost = 1;
847  switch (VT.getSimpleVT().SimpleTy) {
848  default:
849    return TargetLowering::findRepresentativeClass(VT);
850  // Use DPR as representative register class for all floating point
851  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
852  // the cost is 1 for both f32 and f64.
853  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
854  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
855    RRC = &ARM::DPRRegClass;
856    // When NEON is used for SP, only half of the register file is available
857    // because operations that define both SP and DP results will be constrained
858    // to the VFP2 class (D0-D15). We currently model this constraint prior to
859    // coalescing by double-counting the SP regs. See the FIXME above.
860    if (Subtarget->useNEONForSinglePrecisionFP())
861      Cost = 2;
862    break;
863  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
864  case MVT::v4f32: case MVT::v2f64:
865    RRC = &ARM::DPRRegClass;
866    Cost = 2;
867    break;
868  case MVT::v4i64:
869    RRC = &ARM::DPRRegClass;
870    Cost = 4;
871    break;
872  case MVT::v8i64:
873    RRC = &ARM::DPRRegClass;
874    Cost = 8;
875    break;
876  }
877  return std::make_pair(RRC, Cost);
878}
879
880const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
881  switch (Opcode) {
882  default: return 0;
883  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
884  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
885  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
886  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
887  case ARMISD::CALL:          return "ARMISD::CALL";
888  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
889  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
890  case ARMISD::tCALL:         return "ARMISD::tCALL";
891  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
892  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
893  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
894  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
895  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
896  case ARMISD::CMP:           return "ARMISD::CMP";
897  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
898  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
899  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
900  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
901  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
902
903  case ARMISD::CMOV:          return "ARMISD::CMOV";
904  case ARMISD::CAND:          return "ARMISD::CAND";
905  case ARMISD::COR:           return "ARMISD::COR";
906  case ARMISD::CXOR:          return "ARMISD::CXOR";
907
908  case ARMISD::RBIT:          return "ARMISD::RBIT";
909
910  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
911  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
912  case ARMISD::SITOF:         return "ARMISD::SITOF";
913  case ARMISD::UITOF:         return "ARMISD::UITOF";
914
915  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
916  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
917  case ARMISD::RRX:           return "ARMISD::RRX";
918
919  case ARMISD::ADDC:          return "ARMISD::ADDC";
920  case ARMISD::ADDE:          return "ARMISD::ADDE";
921  case ARMISD::SUBC:          return "ARMISD::SUBC";
922  case ARMISD::SUBE:          return "ARMISD::SUBE";
923
924  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
925  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
926
927  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
928  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
929
930  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
931
932  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
933
934  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
935
936  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
937  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
938
939  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
940
941  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
942  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
943  case ARMISD::VCGE:          return "ARMISD::VCGE";
944  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
945  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
946  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
947  case ARMISD::VCGT:          return "ARMISD::VCGT";
948  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
949  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
950  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
951  case ARMISD::VTST:          return "ARMISD::VTST";
952
953  case ARMISD::VSHL:          return "ARMISD::VSHL";
954  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
955  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
956  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
957  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
958  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
959  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
960  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
961  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
962  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
963  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
964  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
965  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
966  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
967  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
968  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
969  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
970  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
971  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
972  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
973  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
974  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
975  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
976  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
977  case ARMISD::VDUP:          return "ARMISD::VDUP";
978  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
979  case ARMISD::VEXT:          return "ARMISD::VEXT";
980  case ARMISD::VREV64:        return "ARMISD::VREV64";
981  case ARMISD::VREV32:        return "ARMISD::VREV32";
982  case ARMISD::VREV16:        return "ARMISD::VREV16";
983  case ARMISD::VZIP:          return "ARMISD::VZIP";
984  case ARMISD::VUZP:          return "ARMISD::VUZP";
985  case ARMISD::VTRN:          return "ARMISD::VTRN";
986  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
987  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
988  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
989  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
990  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
991  case ARMISD::FMAX:          return "ARMISD::FMAX";
992  case ARMISD::FMIN:          return "ARMISD::FMIN";
993  case ARMISD::BFI:           return "ARMISD::BFI";
994  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
995  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
996  case ARMISD::VBSL:          return "ARMISD::VBSL";
997  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
998  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
999  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1000  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1001  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1002  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1003  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1004  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1005  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1006  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1007  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1008  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1009  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1010  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1011  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1012  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1013  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1014  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1015  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1016  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1017  }
1018}
1019
1020EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1021  if (!VT.isVector()) return getPointerTy();
1022  return VT.changeVectorElementTypeToInteger();
1023}
1024
1025/// getRegClassFor - Return the register class that should be used for the
1026/// specified value type.
1027const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1028  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1029  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1030  // load / store 4 to 8 consecutive D registers.
1031  if (Subtarget->hasNEON()) {
1032    if (VT == MVT::v4i64)
1033      return &ARM::QQPRRegClass;
1034    if (VT == MVT::v8i64)
1035      return &ARM::QQQQPRRegClass;
1036  }
1037  return TargetLowering::getRegClassFor(VT);
1038}
1039
1040// Create a fast isel object.
1041FastISel *
1042ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1043  return ARM::createFastISel(funcInfo);
1044}
1045
1046/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1047/// be used for loads / stores from the global.
1048unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1049  return (Subtarget->isThumb1Only() ? 127 : 4095);
1050}
1051
1052Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1053  unsigned NumVals = N->getNumValues();
1054  if (!NumVals)
1055    return Sched::RegPressure;
1056
1057  for (unsigned i = 0; i != NumVals; ++i) {
1058    EVT VT = N->getValueType(i);
1059    if (VT == MVT::Glue || VT == MVT::Other)
1060      continue;
1061    if (VT.isFloatingPoint() || VT.isVector())
1062      return Sched::ILP;
1063  }
1064
1065  if (!N->isMachineOpcode())
1066    return Sched::RegPressure;
1067
1068  // Load are scheduled for latency even if there instruction itinerary
1069  // is not available.
1070  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1071  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1072
1073  if (MCID.getNumDefs() == 0)
1074    return Sched::RegPressure;
1075  if (!Itins->isEmpty() &&
1076      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1077    return Sched::ILP;
1078
1079  return Sched::RegPressure;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083// Lowering Code
1084//===----------------------------------------------------------------------===//
1085
1086/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1087static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1088  switch (CC) {
1089  default: llvm_unreachable("Unknown condition code!");
1090  case ISD::SETNE:  return ARMCC::NE;
1091  case ISD::SETEQ:  return ARMCC::EQ;
1092  case ISD::SETGT:  return ARMCC::GT;
1093  case ISD::SETGE:  return ARMCC::GE;
1094  case ISD::SETLT:  return ARMCC::LT;
1095  case ISD::SETLE:  return ARMCC::LE;
1096  case ISD::SETUGT: return ARMCC::HI;
1097  case ISD::SETUGE: return ARMCC::HS;
1098  case ISD::SETULT: return ARMCC::LO;
1099  case ISD::SETULE: return ARMCC::LS;
1100  }
1101}
1102
1103/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1104static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1105                        ARMCC::CondCodes &CondCode2) {
1106  CondCode2 = ARMCC::AL;
1107  switch (CC) {
1108  default: llvm_unreachable("Unknown FP condition!");
1109  case ISD::SETEQ:
1110  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1111  case ISD::SETGT:
1112  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1113  case ISD::SETGE:
1114  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1115  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1116  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1117  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1118  case ISD::SETO:   CondCode = ARMCC::VC; break;
1119  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1120  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1121  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1122  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1123  case ISD::SETLT:
1124  case ISD::SETULT: CondCode = ARMCC::LT; break;
1125  case ISD::SETLE:
1126  case ISD::SETULE: CondCode = ARMCC::LE; break;
1127  case ISD::SETNE:
1128  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1129  }
1130}
1131
1132//===----------------------------------------------------------------------===//
1133//                      Calling Convention Implementation
1134//===----------------------------------------------------------------------===//
1135
1136#include "ARMGenCallingConv.inc"
1137
1138/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1139/// given CallingConvention value.
1140CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1141                                                 bool Return,
1142                                                 bool isVarArg) const {
1143  switch (CC) {
1144  default:
1145    llvm_unreachable("Unsupported calling convention");
1146  case CallingConv::Fast:
1147    if (Subtarget->hasVFP2() && !isVarArg) {
1148      if (!Subtarget->isAAPCS_ABI())
1149        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1150      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1151      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1152    }
1153    // Fallthrough
1154  case CallingConv::C: {
1155    // Use target triple & subtarget features to do actual dispatch.
1156    if (!Subtarget->isAAPCS_ABI())
1157      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1158    else if (Subtarget->hasVFP2() &&
1159             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1160             !isVarArg)
1161      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1162    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1163  }
1164  case CallingConv::ARM_AAPCS_VFP:
1165    if (!isVarArg)
1166      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1167    // Fallthrough
1168  case CallingConv::ARM_AAPCS:
1169    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1170  case CallingConv::ARM_APCS:
1171    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1172  }
1173}
1174
1175/// LowerCallResult - Lower the result values of a call into the
1176/// appropriate copies out of appropriate physical registers.
1177SDValue
1178ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1179                                   CallingConv::ID CallConv, bool isVarArg,
1180                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1181                                   DebugLoc dl, SelectionDAG &DAG,
1182                                   SmallVectorImpl<SDValue> &InVals) const {
1183
1184  // Assign locations to each value returned by this call.
1185  SmallVector<CCValAssign, 16> RVLocs;
1186  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1187                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1188  CCInfo.AnalyzeCallResult(Ins,
1189                           CCAssignFnForNode(CallConv, /* Return*/ true,
1190                                             isVarArg));
1191
1192  // Copy all of the result registers out of their specified physreg.
1193  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1194    CCValAssign VA = RVLocs[i];
1195
1196    SDValue Val;
1197    if (VA.needsCustom()) {
1198      // Handle f64 or half of a v2f64.
1199      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1200                                      InFlag);
1201      Chain = Lo.getValue(1);
1202      InFlag = Lo.getValue(2);
1203      VA = RVLocs[++i]; // skip ahead to next loc
1204      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1205                                      InFlag);
1206      Chain = Hi.getValue(1);
1207      InFlag = Hi.getValue(2);
1208      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1209
1210      if (VA.getLocVT() == MVT::v2f64) {
1211        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1212        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1213                          DAG.getConstant(0, MVT::i32));
1214
1215        VA = RVLocs[++i]; // skip ahead to next loc
1216        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1217        Chain = Lo.getValue(1);
1218        InFlag = Lo.getValue(2);
1219        VA = RVLocs[++i]; // skip ahead to next loc
1220        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1221        Chain = Hi.getValue(1);
1222        InFlag = Hi.getValue(2);
1223        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1224        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1225                          DAG.getConstant(1, MVT::i32));
1226      }
1227    } else {
1228      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1229                               InFlag);
1230      Chain = Val.getValue(1);
1231      InFlag = Val.getValue(2);
1232    }
1233
1234    switch (VA.getLocInfo()) {
1235    default: llvm_unreachable("Unknown loc info!");
1236    case CCValAssign::Full: break;
1237    case CCValAssign::BCvt:
1238      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1239      break;
1240    }
1241
1242    InVals.push_back(Val);
1243  }
1244
1245  return Chain;
1246}
1247
1248/// LowerMemOpCallTo - Store the argument to the stack.
1249SDValue
1250ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1251                                    SDValue StackPtr, SDValue Arg,
1252                                    DebugLoc dl, SelectionDAG &DAG,
1253                                    const CCValAssign &VA,
1254                                    ISD::ArgFlagsTy Flags) const {
1255  unsigned LocMemOffset = VA.getLocMemOffset();
1256  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1257  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1258  return DAG.getStore(Chain, dl, Arg, PtrOff,
1259                      MachinePointerInfo::getStack(LocMemOffset),
1260                      false, false, 0);
1261}
1262
1263void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1264                                         SDValue Chain, SDValue &Arg,
1265                                         RegsToPassVector &RegsToPass,
1266                                         CCValAssign &VA, CCValAssign &NextVA,
1267                                         SDValue &StackPtr,
1268                                         SmallVector<SDValue, 8> &MemOpChains,
1269                                         ISD::ArgFlagsTy Flags) const {
1270
1271  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1272                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1273  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1274
1275  if (NextVA.isRegLoc())
1276    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1277  else {
1278    assert(NextVA.isMemLoc());
1279    if (StackPtr.getNode() == 0)
1280      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1281
1282    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1283                                           dl, DAG, NextVA,
1284                                           Flags));
1285  }
1286}
1287
1288/// LowerCall - Lowering a call into a callseq_start <-
1289/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1290/// nodes.
1291SDValue
1292ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1293                             CallingConv::ID CallConv, bool isVarArg,
1294                             bool doesNotRet, bool &isTailCall,
1295                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1296                             const SmallVectorImpl<SDValue> &OutVals,
1297                             const SmallVectorImpl<ISD::InputArg> &Ins,
1298                             DebugLoc dl, SelectionDAG &DAG,
1299                             SmallVectorImpl<SDValue> &InVals) const {
1300  MachineFunction &MF = DAG.getMachineFunction();
1301  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1302  bool IsSibCall = false;
1303  // Disable tail calls if they're not supported.
1304  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1305    isTailCall = false;
1306  if (isTailCall) {
1307    // Check if it's really possible to do a tail call.
1308    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1309                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1310                                                   Outs, OutVals, Ins, DAG);
1311    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1312    // detected sibcalls.
1313    if (isTailCall) {
1314      ++NumTailCalls;
1315      IsSibCall = true;
1316    }
1317  }
1318
1319  // Analyze operands of the call, assigning locations to each operand.
1320  SmallVector<CCValAssign, 16> ArgLocs;
1321  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1322                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1323  CCInfo.AnalyzeCallOperands(Outs,
1324                             CCAssignFnForNode(CallConv, /* Return*/ false,
1325                                               isVarArg));
1326
1327  // Get a count of how many bytes are to be pushed on the stack.
1328  unsigned NumBytes = CCInfo.getNextStackOffset();
1329
1330  // For tail calls, memory operands are available in our caller's stack.
1331  if (IsSibCall)
1332    NumBytes = 0;
1333
1334  // Adjust the stack pointer for the new arguments...
1335  // These operations are automatically eliminated by the prolog/epilog pass
1336  if (!IsSibCall)
1337    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1338
1339  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1340
1341  RegsToPassVector RegsToPass;
1342  SmallVector<SDValue, 8> MemOpChains;
1343
1344  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1345  // of tail call optimization, arguments are handled later.
1346  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1347       i != e;
1348       ++i, ++realArgIdx) {
1349    CCValAssign &VA = ArgLocs[i];
1350    SDValue Arg = OutVals[realArgIdx];
1351    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1352    bool isByVal = Flags.isByVal();
1353
1354    // Promote the value if needed.
1355    switch (VA.getLocInfo()) {
1356    default: llvm_unreachable("Unknown loc info!");
1357    case CCValAssign::Full: break;
1358    case CCValAssign::SExt:
1359      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1360      break;
1361    case CCValAssign::ZExt:
1362      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1363      break;
1364    case CCValAssign::AExt:
1365      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1366      break;
1367    case CCValAssign::BCvt:
1368      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1369      break;
1370    }
1371
1372    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1373    if (VA.needsCustom()) {
1374      if (VA.getLocVT() == MVT::v2f64) {
1375        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1376                                  DAG.getConstant(0, MVT::i32));
1377        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1378                                  DAG.getConstant(1, MVT::i32));
1379
1380        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1381                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1382
1383        VA = ArgLocs[++i]; // skip ahead to next loc
1384        if (VA.isRegLoc()) {
1385          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1386                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1387        } else {
1388          assert(VA.isMemLoc());
1389
1390          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1391                                                 dl, DAG, VA, Flags));
1392        }
1393      } else {
1394        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1395                         StackPtr, MemOpChains, Flags);
1396      }
1397    } else if (VA.isRegLoc()) {
1398      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1399    } else if (isByVal) {
1400      assert(VA.isMemLoc());
1401      unsigned offset = 0;
1402
1403      // True if this byval aggregate will be split between registers
1404      // and memory.
1405      if (CCInfo.isFirstByValRegValid()) {
1406        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1407        unsigned int i, j;
1408        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1409          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1410          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1411          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1412                                     MachinePointerInfo(),
1413                                     false, false, false, 0);
1414          MemOpChains.push_back(Load.getValue(1));
1415          RegsToPass.push_back(std::make_pair(j, Load));
1416        }
1417        offset = ARM::R4 - CCInfo.getFirstByValReg();
1418        CCInfo.clearFirstByValReg();
1419      }
1420
1421      unsigned LocMemOffset = VA.getLocMemOffset();
1422      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1423      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1424                                StkPtrOff);
1425      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1426      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1427      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1428                                         MVT::i32);
1429      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1430                                          Flags.getByValAlign(),
1431                                          /*isVolatile=*/false,
1432                                          /*AlwaysInline=*/false,
1433                                          MachinePointerInfo(0),
1434                                          MachinePointerInfo(0)));
1435
1436    } else if (!IsSibCall) {
1437      assert(VA.isMemLoc());
1438
1439      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1440                                             dl, DAG, VA, Flags));
1441    }
1442  }
1443
1444  if (!MemOpChains.empty())
1445    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1446                        &MemOpChains[0], MemOpChains.size());
1447
1448  // Build a sequence of copy-to-reg nodes chained together with token chain
1449  // and flag operands which copy the outgoing args into the appropriate regs.
1450  SDValue InFlag;
1451  // Tail call byval lowering might overwrite argument registers so in case of
1452  // tail call optimization the copies to registers are lowered later.
1453  if (!isTailCall)
1454    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1455      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1456                               RegsToPass[i].second, InFlag);
1457      InFlag = Chain.getValue(1);
1458    }
1459
1460  // For tail calls lower the arguments to the 'real' stack slot.
1461  if (isTailCall) {
1462    // Force all the incoming stack arguments to be loaded from the stack
1463    // before any new outgoing arguments are stored to the stack, because the
1464    // outgoing stack slots may alias the incoming argument stack slots, and
1465    // the alias isn't otherwise explicit. This is slightly more conservative
1466    // than necessary, because it means that each store effectively depends
1467    // on every argument instead of just those arguments it would clobber.
1468
1469    // Do not flag preceding copytoreg stuff together with the following stuff.
1470    InFlag = SDValue();
1471    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1472      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1473                               RegsToPass[i].second, InFlag);
1474      InFlag = Chain.getValue(1);
1475    }
1476    InFlag =SDValue();
1477  }
1478
1479  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1480  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1481  // node so that legalize doesn't hack it.
1482  bool isDirect = false;
1483  bool isARMFunc = false;
1484  bool isLocalARMFunc = false;
1485  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1486
1487  if (EnableARMLongCalls) {
1488    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1489            && "long-calls with non-static relocation model!");
1490    // Handle a global address or an external symbol. If it's not one of
1491    // those, the target's already in a register, so we don't need to do
1492    // anything extra.
1493    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1494      const GlobalValue *GV = G->getGlobal();
1495      // Create a constant pool entry for the callee address
1496      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1497      ARMConstantPoolValue *CPV =
1498        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1499
1500      // Get the address of the callee into a register
1501      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1502      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1503      Callee = DAG.getLoad(getPointerTy(), dl,
1504                           DAG.getEntryNode(), CPAddr,
1505                           MachinePointerInfo::getConstantPool(),
1506                           false, false, false, 0);
1507    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1508      const char *Sym = S->getSymbol();
1509
1510      // Create a constant pool entry for the callee address
1511      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1512      ARMConstantPoolValue *CPV =
1513        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1514                                      ARMPCLabelIndex, 0);
1515      // Get the address of the callee into a register
1516      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1517      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1518      Callee = DAG.getLoad(getPointerTy(), dl,
1519                           DAG.getEntryNode(), CPAddr,
1520                           MachinePointerInfo::getConstantPool(),
1521                           false, false, false, 0);
1522    }
1523  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1524    const GlobalValue *GV = G->getGlobal();
1525    isDirect = true;
1526    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1527    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1528                   getTargetMachine().getRelocationModel() != Reloc::Static;
1529    isARMFunc = !Subtarget->isThumb() || isStub;
1530    // ARM call to a local ARM function is predicable.
1531    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1532    // tBX takes a register source operand.
1533    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1534      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1535      ARMConstantPoolValue *CPV =
1536        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1537      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1538      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1539      Callee = DAG.getLoad(getPointerTy(), dl,
1540                           DAG.getEntryNode(), CPAddr,
1541                           MachinePointerInfo::getConstantPool(),
1542                           false, false, false, 0);
1543      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1544      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1545                           getPointerTy(), Callee, PICLabel);
1546    } else {
1547      // On ELF targets for PIC code, direct calls should go through the PLT
1548      unsigned OpFlags = 0;
1549      if (Subtarget->isTargetELF() &&
1550                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1551        OpFlags = ARMII::MO_PLT;
1552      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1553    }
1554  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1555    isDirect = true;
1556    bool isStub = Subtarget->isTargetDarwin() &&
1557                  getTargetMachine().getRelocationModel() != Reloc::Static;
1558    isARMFunc = !Subtarget->isThumb() || isStub;
1559    // tBX takes a register source operand.
1560    const char *Sym = S->getSymbol();
1561    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1562      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1563      ARMConstantPoolValue *CPV =
1564        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1565                                      ARMPCLabelIndex, 4);
1566      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1567      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1568      Callee = DAG.getLoad(getPointerTy(), dl,
1569                           DAG.getEntryNode(), CPAddr,
1570                           MachinePointerInfo::getConstantPool(),
1571                           false, false, false, 0);
1572      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1573      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1574                           getPointerTy(), Callee, PICLabel);
1575    } else {
1576      unsigned OpFlags = 0;
1577      // On ELF targets for PIC code, direct calls should go through the PLT
1578      if (Subtarget->isTargetELF() &&
1579                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1580        OpFlags = ARMII::MO_PLT;
1581      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1582    }
1583  }
1584
1585  // FIXME: handle tail calls differently.
1586  unsigned CallOpc;
1587  if (Subtarget->isThumb()) {
1588    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1589      CallOpc = ARMISD::CALL_NOLINK;
1590    else if (doesNotRet && isDirect && !isARMFunc &&
1591             Subtarget->hasRAS() && !Subtarget->isThumb1Only())
1592      // "mov lr, pc; b _foo" to avoid confusing the RSP
1593      CallOpc = ARMISD::CALL_NOLINK;
1594    else
1595      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1596  } else {
1597    if (!isDirect && !Subtarget->hasV5TOps()) {
1598      CallOpc = ARMISD::CALL_NOLINK;
1599    } else if (doesNotRet && isDirect && Subtarget->hasRAS())
1600      // "mov lr, pc; b _foo" to avoid confusing the RSP
1601      CallOpc = ARMISD::CALL_NOLINK;
1602    else
1603      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1604  }
1605
1606  std::vector<SDValue> Ops;
1607  Ops.push_back(Chain);
1608  Ops.push_back(Callee);
1609
1610  // Add argument registers to the end of the list so that they are known live
1611  // into the call.
1612  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1613    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1614                                  RegsToPass[i].second.getValueType()));
1615
1616  // Add a register mask operand representing the call-preserved registers.
1617  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1618  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1619  assert(Mask && "Missing call preserved mask for calling convention");
1620  Ops.push_back(DAG.getRegisterMask(Mask));
1621
1622  if (InFlag.getNode())
1623    Ops.push_back(InFlag);
1624
1625  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1626  if (isTailCall)
1627    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1628
1629  // Returns a chain and a flag for retval copy to use.
1630  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1631  InFlag = Chain.getValue(1);
1632
1633  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1634                             DAG.getIntPtrConstant(0, true), InFlag);
1635  if (!Ins.empty())
1636    InFlag = Chain.getValue(1);
1637
1638  // Handle result values, copying them out of physregs into vregs that we
1639  // return.
1640  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1641                         dl, DAG, InVals);
1642}
1643
1644/// HandleByVal - Every parameter *after* a byval parameter is passed
1645/// on the stack.  Remember the next parameter register to allocate,
1646/// and then confiscate the rest of the parameter registers to insure
1647/// this.
1648void
1649ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1650  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1651  assert((State->getCallOrPrologue() == Prologue ||
1652          State->getCallOrPrologue() == Call) &&
1653         "unhandled ParmContext");
1654  if ((!State->isFirstByValRegValid()) &&
1655      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1656    State->setFirstByValReg(reg);
1657    // At a call site, a byval parameter that is split between
1658    // registers and memory needs its size truncated here.  In a
1659    // function prologue, such byval parameters are reassembled in
1660    // memory, and are not truncated.
1661    if (State->getCallOrPrologue() == Call) {
1662      unsigned excess = 4 * (ARM::R4 - reg);
1663      assert(size >= excess && "expected larger existing stack allocation");
1664      size -= excess;
1665    }
1666  }
1667  // Confiscate any remaining parameter registers to preclude their
1668  // assignment to subsequent parameters.
1669  while (State->AllocateReg(GPRArgRegs, 4))
1670    ;
1671}
1672
1673/// MatchingStackOffset - Return true if the given stack call argument is
1674/// already available in the same position (relatively) of the caller's
1675/// incoming argument stack.
1676static
1677bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1678                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1679                         const TargetInstrInfo *TII) {
1680  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1681  int FI = INT_MAX;
1682  if (Arg.getOpcode() == ISD::CopyFromReg) {
1683    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1684    if (!TargetRegisterInfo::isVirtualRegister(VR))
1685      return false;
1686    MachineInstr *Def = MRI->getVRegDef(VR);
1687    if (!Def)
1688      return false;
1689    if (!Flags.isByVal()) {
1690      if (!TII->isLoadFromStackSlot(Def, FI))
1691        return false;
1692    } else {
1693      return false;
1694    }
1695  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1696    if (Flags.isByVal())
1697      // ByVal argument is passed in as a pointer but it's now being
1698      // dereferenced. e.g.
1699      // define @foo(%struct.X* %A) {
1700      //   tail call @bar(%struct.X* byval %A)
1701      // }
1702      return false;
1703    SDValue Ptr = Ld->getBasePtr();
1704    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1705    if (!FINode)
1706      return false;
1707    FI = FINode->getIndex();
1708  } else
1709    return false;
1710
1711  assert(FI != INT_MAX);
1712  if (!MFI->isFixedObjectIndex(FI))
1713    return false;
1714  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1715}
1716
1717/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1718/// for tail call optimization. Targets which want to do tail call
1719/// optimization should implement this function.
1720bool
1721ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1722                                                     CallingConv::ID CalleeCC,
1723                                                     bool isVarArg,
1724                                                     bool isCalleeStructRet,
1725                                                     bool isCallerStructRet,
1726                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1727                                    const SmallVectorImpl<SDValue> &OutVals,
1728                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1729                                                     SelectionDAG& DAG) const {
1730  const Function *CallerF = DAG.getMachineFunction().getFunction();
1731  CallingConv::ID CallerCC = CallerF->getCallingConv();
1732  bool CCMatch = CallerCC == CalleeCC;
1733
1734  // Look for obvious safe cases to perform tail call optimization that do not
1735  // require ABI changes. This is what gcc calls sibcall.
1736
1737  // Do not sibcall optimize vararg calls unless the call site is not passing
1738  // any arguments.
1739  if (isVarArg && !Outs.empty())
1740    return false;
1741
1742  // Also avoid sibcall optimization if either caller or callee uses struct
1743  // return semantics.
1744  if (isCalleeStructRet || isCallerStructRet)
1745    return false;
1746
1747  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1748  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1749  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1750  // support in the assembler and linker to be used. This would need to be
1751  // fixed to fully support tail calls in Thumb1.
1752  //
1753  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1754  // LR.  This means if we need to reload LR, it takes an extra instructions,
1755  // which outweighs the value of the tail call; but here we don't know yet
1756  // whether LR is going to be used.  Probably the right approach is to
1757  // generate the tail call here and turn it back into CALL/RET in
1758  // emitEpilogue if LR is used.
1759
1760  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1761  // but we need to make sure there are enough registers; the only valid
1762  // registers are the 4 used for parameters.  We don't currently do this
1763  // case.
1764  if (Subtarget->isThumb1Only())
1765    return false;
1766
1767  // If the calling conventions do not match, then we'd better make sure the
1768  // results are returned in the same way as what the caller expects.
1769  if (!CCMatch) {
1770    SmallVector<CCValAssign, 16> RVLocs1;
1771    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1772                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1773    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1774
1775    SmallVector<CCValAssign, 16> RVLocs2;
1776    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1777                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1778    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1779
1780    if (RVLocs1.size() != RVLocs2.size())
1781      return false;
1782    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1783      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1784        return false;
1785      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1786        return false;
1787      if (RVLocs1[i].isRegLoc()) {
1788        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1789          return false;
1790      } else {
1791        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1792          return false;
1793      }
1794    }
1795  }
1796
1797  // If the callee takes no arguments then go on to check the results of the
1798  // call.
1799  if (!Outs.empty()) {
1800    // Check if stack adjustment is needed. For now, do not do this if any
1801    // argument is passed on the stack.
1802    SmallVector<CCValAssign, 16> ArgLocs;
1803    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1804                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1805    CCInfo.AnalyzeCallOperands(Outs,
1806                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1807    if (CCInfo.getNextStackOffset()) {
1808      MachineFunction &MF = DAG.getMachineFunction();
1809
1810      // Check if the arguments are already laid out in the right way as
1811      // the caller's fixed stack objects.
1812      MachineFrameInfo *MFI = MF.getFrameInfo();
1813      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1814      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1815      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1816           i != e;
1817           ++i, ++realArgIdx) {
1818        CCValAssign &VA = ArgLocs[i];
1819        EVT RegVT = VA.getLocVT();
1820        SDValue Arg = OutVals[realArgIdx];
1821        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1822        if (VA.getLocInfo() == CCValAssign::Indirect)
1823          return false;
1824        if (VA.needsCustom()) {
1825          // f64 and vector types are split into multiple registers or
1826          // register/stack-slot combinations.  The types will not match
1827          // the registers; give up on memory f64 refs until we figure
1828          // out what to do about this.
1829          if (!VA.isRegLoc())
1830            return false;
1831          if (!ArgLocs[++i].isRegLoc())
1832            return false;
1833          if (RegVT == MVT::v2f64) {
1834            if (!ArgLocs[++i].isRegLoc())
1835              return false;
1836            if (!ArgLocs[++i].isRegLoc())
1837              return false;
1838          }
1839        } else if (!VA.isRegLoc()) {
1840          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1841                                   MFI, MRI, TII))
1842            return false;
1843        }
1844      }
1845    }
1846  }
1847
1848  return true;
1849}
1850
1851SDValue
1852ARMTargetLowering::LowerReturn(SDValue Chain,
1853                               CallingConv::ID CallConv, bool isVarArg,
1854                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1855                               const SmallVectorImpl<SDValue> &OutVals,
1856                               DebugLoc dl, SelectionDAG &DAG) const {
1857
1858  // CCValAssign - represent the assignment of the return value to a location.
1859  SmallVector<CCValAssign, 16> RVLocs;
1860
1861  // CCState - Info about the registers and stack slots.
1862  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1863                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1864
1865  // Analyze outgoing return values.
1866  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1867                                               isVarArg));
1868
1869  // If this is the first return lowered for this function, add
1870  // the regs to the liveout set for the function.
1871  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1872    for (unsigned i = 0; i != RVLocs.size(); ++i)
1873      if (RVLocs[i].isRegLoc())
1874        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1875  }
1876
1877  SDValue Flag;
1878
1879  // Copy the result values into the output registers.
1880  for (unsigned i = 0, realRVLocIdx = 0;
1881       i != RVLocs.size();
1882       ++i, ++realRVLocIdx) {
1883    CCValAssign &VA = RVLocs[i];
1884    assert(VA.isRegLoc() && "Can only return in registers!");
1885
1886    SDValue Arg = OutVals[realRVLocIdx];
1887
1888    switch (VA.getLocInfo()) {
1889    default: llvm_unreachable("Unknown loc info!");
1890    case CCValAssign::Full: break;
1891    case CCValAssign::BCvt:
1892      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1893      break;
1894    }
1895
1896    if (VA.needsCustom()) {
1897      if (VA.getLocVT() == MVT::v2f64) {
1898        // Extract the first half and return it in two registers.
1899        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1900                                   DAG.getConstant(0, MVT::i32));
1901        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1902                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1903
1904        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1905        Flag = Chain.getValue(1);
1906        VA = RVLocs[++i]; // skip ahead to next loc
1907        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1908                                 HalfGPRs.getValue(1), Flag);
1909        Flag = Chain.getValue(1);
1910        VA = RVLocs[++i]; // skip ahead to next loc
1911
1912        // Extract the 2nd half and fall through to handle it as an f64 value.
1913        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1914                          DAG.getConstant(1, MVT::i32));
1915      }
1916      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1917      // available.
1918      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1919                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1920      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1921      Flag = Chain.getValue(1);
1922      VA = RVLocs[++i]; // skip ahead to next loc
1923      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1924                               Flag);
1925    } else
1926      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1927
1928    // Guarantee that all emitted copies are
1929    // stuck together, avoiding something bad.
1930    Flag = Chain.getValue(1);
1931  }
1932
1933  SDValue result;
1934  if (Flag.getNode())
1935    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1936  else // Return Void
1937    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1938
1939  return result;
1940}
1941
1942bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1943  if (N->getNumValues() != 1)
1944    return false;
1945  if (!N->hasNUsesOfValue(1, 0))
1946    return false;
1947
1948  SDValue TCChain = Chain;
1949  SDNode *Copy = *N->use_begin();
1950  if (Copy->getOpcode() == ISD::CopyToReg) {
1951    // If the copy has a glue operand, we conservatively assume it isn't safe to
1952    // perform a tail call.
1953    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1954      return false;
1955    TCChain = Copy->getOperand(0);
1956  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
1957    SDNode *VMov = Copy;
1958    // f64 returned in a pair of GPRs.
1959    SmallPtrSet<SDNode*, 2> Copies;
1960    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1961         UI != UE; ++UI) {
1962      if (UI->getOpcode() != ISD::CopyToReg)
1963        return false;
1964      Copies.insert(*UI);
1965    }
1966    if (Copies.size() > 2)
1967      return false;
1968
1969    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1970         UI != UE; ++UI) {
1971      SDValue UseChain = UI->getOperand(0);
1972      if (Copies.count(UseChain.getNode()))
1973        // Second CopyToReg
1974        Copy = *UI;
1975      else
1976        // First CopyToReg
1977        TCChain = UseChain;
1978    }
1979  } else if (Copy->getOpcode() == ISD::BITCAST) {
1980    // f32 returned in a single GPR.
1981    if (!Copy->hasOneUse())
1982      return false;
1983    Copy = *Copy->use_begin();
1984    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
1985      return false;
1986    Chain = Copy->getOperand(0);
1987  } else {
1988    return false;
1989  }
1990
1991  bool HasRet = false;
1992  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1993       UI != UE; ++UI) {
1994    if (UI->getOpcode() != ARMISD::RET_FLAG)
1995      return false;
1996    HasRet = true;
1997  }
1998
1999  if (!HasRet)
2000    return false;
2001
2002  Chain = TCChain;
2003  return true;
2004}
2005
2006bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2007  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2008    return false;
2009
2010  if (!CI->isTailCall())
2011    return false;
2012
2013  return !Subtarget->isThumb1Only();
2014}
2015
2016// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2017// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2018// one of the above mentioned nodes. It has to be wrapped because otherwise
2019// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2020// be used to form addressing mode. These wrapped nodes will be selected
2021// into MOVi.
2022static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2023  EVT PtrVT = Op.getValueType();
2024  // FIXME there is no actual debug info here
2025  DebugLoc dl = Op.getDebugLoc();
2026  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2027  SDValue Res;
2028  if (CP->isMachineConstantPoolEntry())
2029    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2030                                    CP->getAlignment());
2031  else
2032    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2033                                    CP->getAlignment());
2034  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2035}
2036
2037unsigned ARMTargetLowering::getJumpTableEncoding() const {
2038  return MachineJumpTableInfo::EK_Inline;
2039}
2040
2041SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2042                                             SelectionDAG &DAG) const {
2043  MachineFunction &MF = DAG.getMachineFunction();
2044  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2045  unsigned ARMPCLabelIndex = 0;
2046  DebugLoc DL = Op.getDebugLoc();
2047  EVT PtrVT = getPointerTy();
2048  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2049  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2050  SDValue CPAddr;
2051  if (RelocM == Reloc::Static) {
2052    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2053  } else {
2054    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2055    ARMPCLabelIndex = AFI->createPICLabelUId();
2056    ARMConstantPoolValue *CPV =
2057      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2058                                      ARMCP::CPBlockAddress, PCAdj);
2059    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2060  }
2061  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2062  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2063                               MachinePointerInfo::getConstantPool(),
2064                               false, false, false, 0);
2065  if (RelocM == Reloc::Static)
2066    return Result;
2067  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2068  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2069}
2070
2071// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2072SDValue
2073ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2074                                                 SelectionDAG &DAG) const {
2075  DebugLoc dl = GA->getDebugLoc();
2076  EVT PtrVT = getPointerTy();
2077  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2078  MachineFunction &MF = DAG.getMachineFunction();
2079  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2080  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2081  ARMConstantPoolValue *CPV =
2082    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2083                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2084  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2085  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2086  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2087                         MachinePointerInfo::getConstantPool(),
2088                         false, false, false, 0);
2089  SDValue Chain = Argument.getValue(1);
2090
2091  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2092  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2093
2094  // call __tls_get_addr.
2095  ArgListTy Args;
2096  ArgListEntry Entry;
2097  Entry.Node = Argument;
2098  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2099  Args.push_back(Entry);
2100  // FIXME: is there useful debug info available here?
2101  std::pair<SDValue, SDValue> CallResult =
2102    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2103                false, false, false, false,
2104                0, CallingConv::C, /*isTailCall=*/false,
2105                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2106                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2107  return CallResult.first;
2108}
2109
2110// Lower ISD::GlobalTLSAddress using the "initial exec" or
2111// "local exec" model.
2112SDValue
2113ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2114                                        SelectionDAG &DAG,
2115                                        TLSModel::Model model) const {
2116  const GlobalValue *GV = GA->getGlobal();
2117  DebugLoc dl = GA->getDebugLoc();
2118  SDValue Offset;
2119  SDValue Chain = DAG.getEntryNode();
2120  EVT PtrVT = getPointerTy();
2121  // Get the Thread Pointer
2122  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2123
2124  if (model == TLSModel::InitialExec) {
2125    MachineFunction &MF = DAG.getMachineFunction();
2126    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2127    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2128    // Initial exec model.
2129    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2130    ARMConstantPoolValue *CPV =
2131      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2132                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2133                                      true);
2134    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2135    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2136    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2137                         MachinePointerInfo::getConstantPool(),
2138                         false, false, false, 0);
2139    Chain = Offset.getValue(1);
2140
2141    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2142    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2143
2144    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2145                         MachinePointerInfo::getConstantPool(),
2146                         false, false, false, 0);
2147  } else {
2148    // local exec model
2149    assert(model == TLSModel::LocalExec);
2150    ARMConstantPoolValue *CPV =
2151      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2152    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2153    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2154    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2155                         MachinePointerInfo::getConstantPool(),
2156                         false, false, false, 0);
2157  }
2158
2159  // The address of the thread local variable is the add of the thread
2160  // pointer with the offset of the variable.
2161  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2162}
2163
2164SDValue
2165ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2166  // TODO: implement the "local dynamic" model
2167  assert(Subtarget->isTargetELF() &&
2168         "TLS not implemented for non-ELF targets");
2169  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2170
2171  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2172
2173  switch (model) {
2174    case TLSModel::GeneralDynamic:
2175    case TLSModel::LocalDynamic:
2176      return LowerToTLSGeneralDynamicModel(GA, DAG);
2177    case TLSModel::InitialExec:
2178    case TLSModel::LocalExec:
2179      return LowerToTLSExecModels(GA, DAG, model);
2180  }
2181  llvm_unreachable("bogus TLS model");
2182}
2183
2184SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2185                                                 SelectionDAG &DAG) const {
2186  EVT PtrVT = getPointerTy();
2187  DebugLoc dl = Op.getDebugLoc();
2188  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2189  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2190  if (RelocM == Reloc::PIC_) {
2191    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2192    ARMConstantPoolValue *CPV =
2193      ARMConstantPoolConstant::Create(GV,
2194                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2195    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2196    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2197    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2198                                 CPAddr,
2199                                 MachinePointerInfo::getConstantPool(),
2200                                 false, false, false, 0);
2201    SDValue Chain = Result.getValue(1);
2202    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2203    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2204    if (!UseGOTOFF)
2205      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2206                           MachinePointerInfo::getGOT(),
2207                           false, false, false, 0);
2208    return Result;
2209  }
2210
2211  // If we have T2 ops, we can materialize the address directly via movt/movw
2212  // pair. This is always cheaper.
2213  if (Subtarget->useMovt()) {
2214    ++NumMovwMovt;
2215    // FIXME: Once remat is capable of dealing with instructions with register
2216    // operands, expand this into two nodes.
2217    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2218                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2219  } else {
2220    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2221    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2222    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2223                       MachinePointerInfo::getConstantPool(),
2224                       false, false, false, 0);
2225  }
2226}
2227
2228SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2229                                                    SelectionDAG &DAG) const {
2230  EVT PtrVT = getPointerTy();
2231  DebugLoc dl = Op.getDebugLoc();
2232  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2233  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2234  MachineFunction &MF = DAG.getMachineFunction();
2235  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2236
2237  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2238  // update ARMFastISel::ARMMaterializeGV.
2239  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2240    ++NumMovwMovt;
2241    // FIXME: Once remat is capable of dealing with instructions with register
2242    // operands, expand this into two nodes.
2243    if (RelocM == Reloc::Static)
2244      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2245                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2246
2247    unsigned Wrapper = (RelocM == Reloc::PIC_)
2248      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2249    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2250                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2251    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2252      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2253                           MachinePointerInfo::getGOT(),
2254                           false, false, false, 0);
2255    return Result;
2256  }
2257
2258  unsigned ARMPCLabelIndex = 0;
2259  SDValue CPAddr;
2260  if (RelocM == Reloc::Static) {
2261    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2262  } else {
2263    ARMPCLabelIndex = AFI->createPICLabelUId();
2264    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2265    ARMConstantPoolValue *CPV =
2266      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2267                                      PCAdj);
2268    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2269  }
2270  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2271
2272  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2273                               MachinePointerInfo::getConstantPool(),
2274                               false, false, false, 0);
2275  SDValue Chain = Result.getValue(1);
2276
2277  if (RelocM == Reloc::PIC_) {
2278    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2279    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2280  }
2281
2282  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2283    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2284                         false, false, false, 0);
2285
2286  return Result;
2287}
2288
2289SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2290                                                    SelectionDAG &DAG) const {
2291  assert(Subtarget->isTargetELF() &&
2292         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2293  MachineFunction &MF = DAG.getMachineFunction();
2294  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2295  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2296  EVT PtrVT = getPointerTy();
2297  DebugLoc dl = Op.getDebugLoc();
2298  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2299  ARMConstantPoolValue *CPV =
2300    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2301                                  ARMPCLabelIndex, PCAdj);
2302  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2303  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2304  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2305                               MachinePointerInfo::getConstantPool(),
2306                               false, false, false, 0);
2307  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2308  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2309}
2310
2311SDValue
2312ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2313  DebugLoc dl = Op.getDebugLoc();
2314  SDValue Val = DAG.getConstant(0, MVT::i32);
2315  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2316                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2317                     Op.getOperand(1), Val);
2318}
2319
2320SDValue
2321ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2322  DebugLoc dl = Op.getDebugLoc();
2323  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2324                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2325}
2326
2327SDValue
2328ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2329                                          const ARMSubtarget *Subtarget) const {
2330  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2331  DebugLoc dl = Op.getDebugLoc();
2332  switch (IntNo) {
2333  default: return SDValue();    // Don't custom lower most intrinsics.
2334  case Intrinsic::arm_thread_pointer: {
2335    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2336    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2337  }
2338  case Intrinsic::eh_sjlj_lsda: {
2339    MachineFunction &MF = DAG.getMachineFunction();
2340    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2341    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2342    EVT PtrVT = getPointerTy();
2343    DebugLoc dl = Op.getDebugLoc();
2344    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2345    SDValue CPAddr;
2346    unsigned PCAdj = (RelocM != Reloc::PIC_)
2347      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2348    ARMConstantPoolValue *CPV =
2349      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2350                                      ARMCP::CPLSDA, PCAdj);
2351    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2352    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2353    SDValue Result =
2354      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2355                  MachinePointerInfo::getConstantPool(),
2356                  false, false, false, 0);
2357
2358    if (RelocM == Reloc::PIC_) {
2359      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2360      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2361    }
2362    return Result;
2363  }
2364  case Intrinsic::arm_neon_vmulls:
2365  case Intrinsic::arm_neon_vmullu: {
2366    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2367      ? ARMISD::VMULLs : ARMISD::VMULLu;
2368    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2369                       Op.getOperand(1), Op.getOperand(2));
2370  }
2371  }
2372}
2373
2374static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2375                               const ARMSubtarget *Subtarget) {
2376  DebugLoc dl = Op.getDebugLoc();
2377  if (!Subtarget->hasDataBarrier()) {
2378    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2379    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2380    // here.
2381    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2382           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2383    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2384                       DAG.getConstant(0, MVT::i32));
2385  }
2386
2387  SDValue Op5 = Op.getOperand(5);
2388  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2389  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2390  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2391  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2392
2393  ARM_MB::MemBOpt DMBOpt;
2394  if (isDeviceBarrier)
2395    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2396  else
2397    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2398  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2399                     DAG.getConstant(DMBOpt, MVT::i32));
2400}
2401
2402
2403static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2404                                 const ARMSubtarget *Subtarget) {
2405  // FIXME: handle "fence singlethread" more efficiently.
2406  DebugLoc dl = Op.getDebugLoc();
2407  if (!Subtarget->hasDataBarrier()) {
2408    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2409    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2410    // here.
2411    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2412           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2413    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2414                       DAG.getConstant(0, MVT::i32));
2415  }
2416
2417  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2418                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2419}
2420
2421static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2422                             const ARMSubtarget *Subtarget) {
2423  // ARM pre v5TE and Thumb1 does not have preload instructions.
2424  if (!(Subtarget->isThumb2() ||
2425        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2426    // Just preserve the chain.
2427    return Op.getOperand(0);
2428
2429  DebugLoc dl = Op.getDebugLoc();
2430  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2431  if (!isRead &&
2432      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2433    // ARMv7 with MP extension has PLDW.
2434    return Op.getOperand(0);
2435
2436  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2437  if (Subtarget->isThumb()) {
2438    // Invert the bits.
2439    isRead = ~isRead & 1;
2440    isData = ~isData & 1;
2441  }
2442
2443  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2444                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2445                     DAG.getConstant(isData, MVT::i32));
2446}
2447
2448static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2449  MachineFunction &MF = DAG.getMachineFunction();
2450  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2451
2452  // vastart just stores the address of the VarArgsFrameIndex slot into the
2453  // memory location argument.
2454  DebugLoc dl = Op.getDebugLoc();
2455  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2456  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2457  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2458  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2459                      MachinePointerInfo(SV), false, false, 0);
2460}
2461
2462SDValue
2463ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2464                                        SDValue &Root, SelectionDAG &DAG,
2465                                        DebugLoc dl) const {
2466  MachineFunction &MF = DAG.getMachineFunction();
2467  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2468
2469  const TargetRegisterClass *RC;
2470  if (AFI->isThumb1OnlyFunction())
2471    RC = &ARM::tGPRRegClass;
2472  else
2473    RC = &ARM::GPRRegClass;
2474
2475  // Transform the arguments stored in physical registers into virtual ones.
2476  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2477  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2478
2479  SDValue ArgValue2;
2480  if (NextVA.isMemLoc()) {
2481    MachineFrameInfo *MFI = MF.getFrameInfo();
2482    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2483
2484    // Create load node to retrieve arguments from the stack.
2485    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2486    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2487                            MachinePointerInfo::getFixedStack(FI),
2488                            false, false, false, 0);
2489  } else {
2490    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2491    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2492  }
2493
2494  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2495}
2496
2497void
2498ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2499                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2500  const {
2501  unsigned NumGPRs;
2502  if (CCInfo.isFirstByValRegValid())
2503    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2504  else {
2505    unsigned int firstUnalloced;
2506    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2507                                                sizeof(GPRArgRegs) /
2508                                                sizeof(GPRArgRegs[0]));
2509    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2510  }
2511
2512  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2513  VARegSize = NumGPRs * 4;
2514  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2515}
2516
2517// The remaining GPRs hold either the beginning of variable-argument
2518// data, or the beginning of an aggregate passed by value (usuall
2519// byval).  Either way, we allocate stack slots adjacent to the data
2520// provided by our caller, and store the unallocated registers there.
2521// If this is a variadic function, the va_list pointer will begin with
2522// these values; otherwise, this reassembles a (byval) structure that
2523// was split between registers and memory.
2524void
2525ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2526                                        DebugLoc dl, SDValue &Chain,
2527                                        unsigned ArgOffset) const {
2528  MachineFunction &MF = DAG.getMachineFunction();
2529  MachineFrameInfo *MFI = MF.getFrameInfo();
2530  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2531  unsigned firstRegToSaveIndex;
2532  if (CCInfo.isFirstByValRegValid())
2533    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2534  else {
2535    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2536      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2537  }
2538
2539  unsigned VARegSize, VARegSaveSize;
2540  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2541  if (VARegSaveSize) {
2542    // If this function is vararg, store any remaining integer argument regs
2543    // to their spots on the stack so that they may be loaded by deferencing
2544    // the result of va_next.
2545    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2546    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2547                                                     ArgOffset + VARegSaveSize
2548                                                     - VARegSize,
2549                                                     false));
2550    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2551                                    getPointerTy());
2552
2553    SmallVector<SDValue, 4> MemOps;
2554    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2555      const TargetRegisterClass *RC;
2556      if (AFI->isThumb1OnlyFunction())
2557        RC = &ARM::tGPRRegClass;
2558      else
2559        RC = &ARM::GPRRegClass;
2560
2561      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2562      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2563      SDValue Store =
2564        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2565                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2566                     false, false, 0);
2567      MemOps.push_back(Store);
2568      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2569                        DAG.getConstant(4, getPointerTy()));
2570    }
2571    if (!MemOps.empty())
2572      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2573                          &MemOps[0], MemOps.size());
2574  } else
2575    // This will point to the next argument passed via stack.
2576    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2577}
2578
2579SDValue
2580ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2581                                        CallingConv::ID CallConv, bool isVarArg,
2582                                        const SmallVectorImpl<ISD::InputArg>
2583                                          &Ins,
2584                                        DebugLoc dl, SelectionDAG &DAG,
2585                                        SmallVectorImpl<SDValue> &InVals)
2586                                          const {
2587  MachineFunction &MF = DAG.getMachineFunction();
2588  MachineFrameInfo *MFI = MF.getFrameInfo();
2589
2590  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2591
2592  // Assign locations to all of the incoming arguments.
2593  SmallVector<CCValAssign, 16> ArgLocs;
2594  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2595                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2596  CCInfo.AnalyzeFormalArguments(Ins,
2597                                CCAssignFnForNode(CallConv, /* Return*/ false,
2598                                                  isVarArg));
2599
2600  SmallVector<SDValue, 16> ArgValues;
2601  int lastInsIndex = -1;
2602
2603  SDValue ArgValue;
2604  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2605    CCValAssign &VA = ArgLocs[i];
2606
2607    // Arguments stored in registers.
2608    if (VA.isRegLoc()) {
2609      EVT RegVT = VA.getLocVT();
2610
2611      if (VA.needsCustom()) {
2612        // f64 and vector types are split up into multiple registers or
2613        // combinations of registers and stack slots.
2614        if (VA.getLocVT() == MVT::v2f64) {
2615          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2616                                                   Chain, DAG, dl);
2617          VA = ArgLocs[++i]; // skip ahead to next loc
2618          SDValue ArgValue2;
2619          if (VA.isMemLoc()) {
2620            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2621            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2622            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2623                                    MachinePointerInfo::getFixedStack(FI),
2624                                    false, false, false, 0);
2625          } else {
2626            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2627                                             Chain, DAG, dl);
2628          }
2629          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2630          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2631                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2632          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2633                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2634        } else
2635          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2636
2637      } else {
2638        const TargetRegisterClass *RC;
2639
2640        if (RegVT == MVT::f32)
2641          RC = &ARM::SPRRegClass;
2642        else if (RegVT == MVT::f64)
2643          RC = &ARM::DPRRegClass;
2644        else if (RegVT == MVT::v2f64)
2645          RC = &ARM::QPRRegClass;
2646        else if (RegVT == MVT::i32)
2647          RC = AFI->isThumb1OnlyFunction() ?
2648            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2649            (const TargetRegisterClass*)&ARM::GPRRegClass;
2650        else
2651          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2652
2653        // Transform the arguments in physical registers into virtual ones.
2654        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2655        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2656      }
2657
2658      // If this is an 8 or 16-bit value, it is really passed promoted
2659      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2660      // truncate to the right size.
2661      switch (VA.getLocInfo()) {
2662      default: llvm_unreachable("Unknown loc info!");
2663      case CCValAssign::Full: break;
2664      case CCValAssign::BCvt:
2665        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2666        break;
2667      case CCValAssign::SExt:
2668        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2669                               DAG.getValueType(VA.getValVT()));
2670        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2671        break;
2672      case CCValAssign::ZExt:
2673        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2674                               DAG.getValueType(VA.getValVT()));
2675        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2676        break;
2677      }
2678
2679      InVals.push_back(ArgValue);
2680
2681    } else { // VA.isRegLoc()
2682
2683      // sanity check
2684      assert(VA.isMemLoc());
2685      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2686
2687      int index = ArgLocs[i].getValNo();
2688
2689      // Some Ins[] entries become multiple ArgLoc[] entries.
2690      // Process them only once.
2691      if (index != lastInsIndex)
2692        {
2693          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2694          // FIXME: For now, all byval parameter objects are marked mutable.
2695          // This can be changed with more analysis.
2696          // In case of tail call optimization mark all arguments mutable.
2697          // Since they could be overwritten by lowering of arguments in case of
2698          // a tail call.
2699          if (Flags.isByVal()) {
2700            unsigned VARegSize, VARegSaveSize;
2701            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2702            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2703            unsigned Bytes = Flags.getByValSize() - VARegSize;
2704            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2705            int FI = MFI->CreateFixedObject(Bytes,
2706                                            VA.getLocMemOffset(), false);
2707            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2708          } else {
2709            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2710                                            VA.getLocMemOffset(), true);
2711
2712            // Create load nodes to retrieve arguments from the stack.
2713            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2714            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2715                                         MachinePointerInfo::getFixedStack(FI),
2716                                         false, false, false, 0));
2717          }
2718          lastInsIndex = index;
2719        }
2720    }
2721  }
2722
2723  // varargs
2724  if (isVarArg)
2725    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2726
2727  return Chain;
2728}
2729
2730/// isFloatingPointZero - Return true if this is +0.0.
2731static bool isFloatingPointZero(SDValue Op) {
2732  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2733    return CFP->getValueAPF().isPosZero();
2734  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2735    // Maybe this has already been legalized into the constant pool?
2736    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2737      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2738      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2739        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2740          return CFP->getValueAPF().isPosZero();
2741    }
2742  }
2743  return false;
2744}
2745
2746/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2747/// the given operands.
2748SDValue
2749ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2750                             SDValue &ARMcc, SelectionDAG &DAG,
2751                             DebugLoc dl) const {
2752  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2753    unsigned C = RHSC->getZExtValue();
2754    if (!isLegalICmpImmediate(C)) {
2755      // Constant does not fit, try adjusting it by one?
2756      switch (CC) {
2757      default: break;
2758      case ISD::SETLT:
2759      case ISD::SETGE:
2760        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2761          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2762          RHS = DAG.getConstant(C-1, MVT::i32);
2763        }
2764        break;
2765      case ISD::SETULT:
2766      case ISD::SETUGE:
2767        if (C != 0 && isLegalICmpImmediate(C-1)) {
2768          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2769          RHS = DAG.getConstant(C-1, MVT::i32);
2770        }
2771        break;
2772      case ISD::SETLE:
2773      case ISD::SETGT:
2774        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2775          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2776          RHS = DAG.getConstant(C+1, MVT::i32);
2777        }
2778        break;
2779      case ISD::SETULE:
2780      case ISD::SETUGT:
2781        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2782          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2783          RHS = DAG.getConstant(C+1, MVT::i32);
2784        }
2785        break;
2786      }
2787    }
2788  }
2789
2790  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2791  ARMISD::NodeType CompareType;
2792  switch (CondCode) {
2793  default:
2794    CompareType = ARMISD::CMP;
2795    break;
2796  case ARMCC::EQ:
2797  case ARMCC::NE:
2798    // Uses only Z Flag
2799    CompareType = ARMISD::CMPZ;
2800    break;
2801  }
2802  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2803  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2804}
2805
2806/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2807SDValue
2808ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2809                             DebugLoc dl) const {
2810  SDValue Cmp;
2811  if (!isFloatingPointZero(RHS))
2812    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2813  else
2814    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2815  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2816}
2817
2818/// duplicateCmp - Glue values can have only one use, so this function
2819/// duplicates a comparison node.
2820SDValue
2821ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2822  unsigned Opc = Cmp.getOpcode();
2823  DebugLoc DL = Cmp.getDebugLoc();
2824  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2825    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2826
2827  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2828  Cmp = Cmp.getOperand(0);
2829  Opc = Cmp.getOpcode();
2830  if (Opc == ARMISD::CMPFP)
2831    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2832  else {
2833    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2834    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2835  }
2836  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2837}
2838
2839SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2840  SDValue Cond = Op.getOperand(0);
2841  SDValue SelectTrue = Op.getOperand(1);
2842  SDValue SelectFalse = Op.getOperand(2);
2843  DebugLoc dl = Op.getDebugLoc();
2844
2845  // Convert:
2846  //
2847  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2848  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2849  //
2850  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2851    const ConstantSDNode *CMOVTrue =
2852      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2853    const ConstantSDNode *CMOVFalse =
2854      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2855
2856    if (CMOVTrue && CMOVFalse) {
2857      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2858      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2859
2860      SDValue True;
2861      SDValue False;
2862      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2863        True = SelectTrue;
2864        False = SelectFalse;
2865      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2866        True = SelectFalse;
2867        False = SelectTrue;
2868      }
2869
2870      if (True.getNode() && False.getNode()) {
2871        EVT VT = Op.getValueType();
2872        SDValue ARMcc = Cond.getOperand(2);
2873        SDValue CCR = Cond.getOperand(3);
2874        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2875        assert(True.getValueType() == VT);
2876        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2877      }
2878    }
2879  }
2880
2881  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2882  // undefined bits before doing a full-word comparison with zero.
2883  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2884                     DAG.getConstant(1, Cond.getValueType()));
2885
2886  return DAG.getSelectCC(dl, Cond,
2887                         DAG.getConstant(0, Cond.getValueType()),
2888                         SelectTrue, SelectFalse, ISD::SETNE);
2889}
2890
2891SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2892  EVT VT = Op.getValueType();
2893  SDValue LHS = Op.getOperand(0);
2894  SDValue RHS = Op.getOperand(1);
2895  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2896  SDValue TrueVal = Op.getOperand(2);
2897  SDValue FalseVal = Op.getOperand(3);
2898  DebugLoc dl = Op.getDebugLoc();
2899
2900  if (LHS.getValueType() == MVT::i32) {
2901    SDValue ARMcc;
2902    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2903    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2904    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2905  }
2906
2907  ARMCC::CondCodes CondCode, CondCode2;
2908  FPCCToARMCC(CC, CondCode, CondCode2);
2909
2910  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2911  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2912  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2913  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2914                               ARMcc, CCR, Cmp);
2915  if (CondCode2 != ARMCC::AL) {
2916    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2917    // FIXME: Needs another CMP because flag can have but one use.
2918    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2919    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2920                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2921  }
2922  return Result;
2923}
2924
2925/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2926/// to morph to an integer compare sequence.
2927static bool canChangeToInt(SDValue Op, bool &SeenZero,
2928                           const ARMSubtarget *Subtarget) {
2929  SDNode *N = Op.getNode();
2930  if (!N->hasOneUse())
2931    // Otherwise it requires moving the value from fp to integer registers.
2932    return false;
2933  if (!N->getNumValues())
2934    return false;
2935  EVT VT = Op.getValueType();
2936  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2937    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2938    // vmrs are very slow, e.g. cortex-a8.
2939    return false;
2940
2941  if (isFloatingPointZero(Op)) {
2942    SeenZero = true;
2943    return true;
2944  }
2945  return ISD::isNormalLoad(N);
2946}
2947
2948static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2949  if (isFloatingPointZero(Op))
2950    return DAG.getConstant(0, MVT::i32);
2951
2952  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2953    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2954                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2955                       Ld->isVolatile(), Ld->isNonTemporal(),
2956                       Ld->isInvariant(), Ld->getAlignment());
2957
2958  llvm_unreachable("Unknown VFP cmp argument!");
2959}
2960
2961static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2962                           SDValue &RetVal1, SDValue &RetVal2) {
2963  if (isFloatingPointZero(Op)) {
2964    RetVal1 = DAG.getConstant(0, MVT::i32);
2965    RetVal2 = DAG.getConstant(0, MVT::i32);
2966    return;
2967  }
2968
2969  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2970    SDValue Ptr = Ld->getBasePtr();
2971    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2972                          Ld->getChain(), Ptr,
2973                          Ld->getPointerInfo(),
2974                          Ld->isVolatile(), Ld->isNonTemporal(),
2975                          Ld->isInvariant(), Ld->getAlignment());
2976
2977    EVT PtrType = Ptr.getValueType();
2978    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2979    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2980                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2981    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2982                          Ld->getChain(), NewPtr,
2983                          Ld->getPointerInfo().getWithOffset(4),
2984                          Ld->isVolatile(), Ld->isNonTemporal(),
2985                          Ld->isInvariant(), NewAlign);
2986    return;
2987  }
2988
2989  llvm_unreachable("Unknown VFP cmp argument!");
2990}
2991
2992/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2993/// f32 and even f64 comparisons to integer ones.
2994SDValue
2995ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2996  SDValue Chain = Op.getOperand(0);
2997  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2998  SDValue LHS = Op.getOperand(2);
2999  SDValue RHS = Op.getOperand(3);
3000  SDValue Dest = Op.getOperand(4);
3001  DebugLoc dl = Op.getDebugLoc();
3002
3003  bool LHSSeenZero = false;
3004  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3005  bool RHSSeenZero = false;
3006  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3007  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3008    // If unsafe fp math optimization is enabled and there are no other uses of
3009    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3010    // to an integer comparison.
3011    if (CC == ISD::SETOEQ)
3012      CC = ISD::SETEQ;
3013    else if (CC == ISD::SETUNE)
3014      CC = ISD::SETNE;
3015
3016    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3017    SDValue ARMcc;
3018    if (LHS.getValueType() == MVT::f32) {
3019      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3020                        bitcastf32Toi32(LHS, DAG), Mask);
3021      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3022                        bitcastf32Toi32(RHS, DAG), Mask);
3023      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3024      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3025      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3026                         Chain, Dest, ARMcc, CCR, Cmp);
3027    }
3028
3029    SDValue LHS1, LHS2;
3030    SDValue RHS1, RHS2;
3031    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3032    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3033    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3034    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3035    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3036    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3037    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3038    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3039    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3040  }
3041
3042  return SDValue();
3043}
3044
3045SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3046  SDValue Chain = Op.getOperand(0);
3047  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3048  SDValue LHS = Op.getOperand(2);
3049  SDValue RHS = Op.getOperand(3);
3050  SDValue Dest = Op.getOperand(4);
3051  DebugLoc dl = Op.getDebugLoc();
3052
3053  if (LHS.getValueType() == MVT::i32) {
3054    SDValue ARMcc;
3055    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3056    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3057    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3058                       Chain, Dest, ARMcc, CCR, Cmp);
3059  }
3060
3061  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3062
3063  if (getTargetMachine().Options.UnsafeFPMath &&
3064      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3065       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3066    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3067    if (Result.getNode())
3068      return Result;
3069  }
3070
3071  ARMCC::CondCodes CondCode, CondCode2;
3072  FPCCToARMCC(CC, CondCode, CondCode2);
3073
3074  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3075  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3076  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3077  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3078  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3079  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3080  if (CondCode2 != ARMCC::AL) {
3081    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3082    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3083    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3084  }
3085  return Res;
3086}
3087
3088SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3089  SDValue Chain = Op.getOperand(0);
3090  SDValue Table = Op.getOperand(1);
3091  SDValue Index = Op.getOperand(2);
3092  DebugLoc dl = Op.getDebugLoc();
3093
3094  EVT PTy = getPointerTy();
3095  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3096  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3097  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3098  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3099  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3100  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3101  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3102  if (Subtarget->isThumb2()) {
3103    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3104    // which does another jump to the destination. This also makes it easier
3105    // to translate it to TBB / TBH later.
3106    // FIXME: This might not work if the function is extremely large.
3107    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3108                       Addr, Op.getOperand(2), JTI, UId);
3109  }
3110  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3111    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3112                       MachinePointerInfo::getJumpTable(),
3113                       false, false, false, 0);
3114    Chain = Addr.getValue(1);
3115    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3116    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3117  } else {
3118    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3119                       MachinePointerInfo::getJumpTable(),
3120                       false, false, false, 0);
3121    Chain = Addr.getValue(1);
3122    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3123  }
3124}
3125
3126static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3127  EVT VT = Op.getValueType();
3128  DebugLoc dl = Op.getDebugLoc();
3129
3130  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3131    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3132      return Op;
3133    return DAG.UnrollVectorOp(Op.getNode());
3134  }
3135
3136  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3137         "Invalid type for custom lowering!");
3138  if (VT != MVT::v4i16)
3139    return DAG.UnrollVectorOp(Op.getNode());
3140
3141  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3142  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3143}
3144
3145static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3146  EVT VT = Op.getValueType();
3147  if (VT.isVector())
3148    return LowerVectorFP_TO_INT(Op, DAG);
3149
3150  DebugLoc dl = Op.getDebugLoc();
3151  unsigned Opc;
3152
3153  switch (Op.getOpcode()) {
3154  default: llvm_unreachable("Invalid opcode!");
3155  case ISD::FP_TO_SINT:
3156    Opc = ARMISD::FTOSI;
3157    break;
3158  case ISD::FP_TO_UINT:
3159    Opc = ARMISD::FTOUI;
3160    break;
3161  }
3162  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3163  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3164}
3165
3166static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3167  EVT VT = Op.getValueType();
3168  DebugLoc dl = Op.getDebugLoc();
3169
3170  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3171    if (VT.getVectorElementType() == MVT::f32)
3172      return Op;
3173    return DAG.UnrollVectorOp(Op.getNode());
3174  }
3175
3176  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3177         "Invalid type for custom lowering!");
3178  if (VT != MVT::v4f32)
3179    return DAG.UnrollVectorOp(Op.getNode());
3180
3181  unsigned CastOpc;
3182  unsigned Opc;
3183  switch (Op.getOpcode()) {
3184  default: llvm_unreachable("Invalid opcode!");
3185  case ISD::SINT_TO_FP:
3186    CastOpc = ISD::SIGN_EXTEND;
3187    Opc = ISD::SINT_TO_FP;
3188    break;
3189  case ISD::UINT_TO_FP:
3190    CastOpc = ISD::ZERO_EXTEND;
3191    Opc = ISD::UINT_TO_FP;
3192    break;
3193  }
3194
3195  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3196  return DAG.getNode(Opc, dl, VT, Op);
3197}
3198
3199static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3200  EVT VT = Op.getValueType();
3201  if (VT.isVector())
3202    return LowerVectorINT_TO_FP(Op, DAG);
3203
3204  DebugLoc dl = Op.getDebugLoc();
3205  unsigned Opc;
3206
3207  switch (Op.getOpcode()) {
3208  default: llvm_unreachable("Invalid opcode!");
3209  case ISD::SINT_TO_FP:
3210    Opc = ARMISD::SITOF;
3211    break;
3212  case ISD::UINT_TO_FP:
3213    Opc = ARMISD::UITOF;
3214    break;
3215  }
3216
3217  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3218  return DAG.getNode(Opc, dl, VT, Op);
3219}
3220
3221SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3222  // Implement fcopysign with a fabs and a conditional fneg.
3223  SDValue Tmp0 = Op.getOperand(0);
3224  SDValue Tmp1 = Op.getOperand(1);
3225  DebugLoc dl = Op.getDebugLoc();
3226  EVT VT = Op.getValueType();
3227  EVT SrcVT = Tmp1.getValueType();
3228  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3229    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3230  bool UseNEON = !InGPR && Subtarget->hasNEON();
3231
3232  if (UseNEON) {
3233    // Use VBSL to copy the sign bit.
3234    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3235    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3236                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3237    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3238    if (VT == MVT::f64)
3239      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3240                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3241                         DAG.getConstant(32, MVT::i32));
3242    else /*if (VT == MVT::f32)*/
3243      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3244    if (SrcVT == MVT::f32) {
3245      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3246      if (VT == MVT::f64)
3247        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3248                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3249                           DAG.getConstant(32, MVT::i32));
3250    } else if (VT == MVT::f32)
3251      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3252                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3253                         DAG.getConstant(32, MVT::i32));
3254    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3255    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3256
3257    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3258                                            MVT::i32);
3259    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3260    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3261                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3262
3263    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3264                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3265                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3266    if (VT == MVT::f32) {
3267      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3268      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3269                        DAG.getConstant(0, MVT::i32));
3270    } else {
3271      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3272    }
3273
3274    return Res;
3275  }
3276
3277  // Bitcast operand 1 to i32.
3278  if (SrcVT == MVT::f64)
3279    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3280                       &Tmp1, 1).getValue(1);
3281  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3282
3283  // Or in the signbit with integer operations.
3284  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3285  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3286  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3287  if (VT == MVT::f32) {
3288    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3289                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3290    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3291                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3292  }
3293
3294  // f64: Or the high part with signbit and then combine two parts.
3295  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3296                     &Tmp0, 1);
3297  SDValue Lo = Tmp0.getValue(0);
3298  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3299  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3300  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3301}
3302
3303SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3304  MachineFunction &MF = DAG.getMachineFunction();
3305  MachineFrameInfo *MFI = MF.getFrameInfo();
3306  MFI->setReturnAddressIsTaken(true);
3307
3308  EVT VT = Op.getValueType();
3309  DebugLoc dl = Op.getDebugLoc();
3310  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3311  if (Depth) {
3312    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3313    SDValue Offset = DAG.getConstant(4, MVT::i32);
3314    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3315                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3316                       MachinePointerInfo(), false, false, false, 0);
3317  }
3318
3319  // Return LR, which contains the return address. Mark it an implicit live-in.
3320  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3321  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3322}
3323
3324SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3325  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3326  MFI->setFrameAddressIsTaken(true);
3327
3328  EVT VT = Op.getValueType();
3329  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3330  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3331  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3332    ? ARM::R7 : ARM::R11;
3333  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3334  while (Depth--)
3335    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3336                            MachinePointerInfo(),
3337                            false, false, false, 0);
3338  return FrameAddr;
3339}
3340
3341/// ExpandBITCAST - If the target supports VFP, this function is called to
3342/// expand a bit convert where either the source or destination type is i64 to
3343/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3344/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3345/// vectors), since the legalizer won't know what to do with that.
3346static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3348  DebugLoc dl = N->getDebugLoc();
3349  SDValue Op = N->getOperand(0);
3350
3351  // This function is only supposed to be called for i64 types, either as the
3352  // source or destination of the bit convert.
3353  EVT SrcVT = Op.getValueType();
3354  EVT DstVT = N->getValueType(0);
3355  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3356         "ExpandBITCAST called for non-i64 type");
3357
3358  // Turn i64->f64 into VMOVDRR.
3359  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3360    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3361                             DAG.getConstant(0, MVT::i32));
3362    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3363                             DAG.getConstant(1, MVT::i32));
3364    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3365                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3366  }
3367
3368  // Turn f64->i64 into VMOVRRD.
3369  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3370    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3371                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3372    // Merge the pieces into a single i64 value.
3373    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3374  }
3375
3376  return SDValue();
3377}
3378
3379/// getZeroVector - Returns a vector of specified type with all zero elements.
3380/// Zero vectors are used to represent vector negation and in those cases
3381/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3382/// not support i64 elements, so sometimes the zero vectors will need to be
3383/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3384/// zero vector.
3385static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3386  assert(VT.isVector() && "Expected a vector type");
3387  // The canonical modified immediate encoding of a zero vector is....0!
3388  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3389  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3390  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3391  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3392}
3393
3394/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3395/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3396SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3397                                                SelectionDAG &DAG) const {
3398  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3399  EVT VT = Op.getValueType();
3400  unsigned VTBits = VT.getSizeInBits();
3401  DebugLoc dl = Op.getDebugLoc();
3402  SDValue ShOpLo = Op.getOperand(0);
3403  SDValue ShOpHi = Op.getOperand(1);
3404  SDValue ShAmt  = Op.getOperand(2);
3405  SDValue ARMcc;
3406  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3407
3408  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3409
3410  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3411                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3412  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3413  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3414                                   DAG.getConstant(VTBits, MVT::i32));
3415  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3416  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3417  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3418
3419  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3420  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3421                          ARMcc, DAG, dl);
3422  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3423  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3424                           CCR, Cmp);
3425
3426  SDValue Ops[2] = { Lo, Hi };
3427  return DAG.getMergeValues(Ops, 2, dl);
3428}
3429
3430/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3431/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3432SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3433                                               SelectionDAG &DAG) const {
3434  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3435  EVT VT = Op.getValueType();
3436  unsigned VTBits = VT.getSizeInBits();
3437  DebugLoc dl = Op.getDebugLoc();
3438  SDValue ShOpLo = Op.getOperand(0);
3439  SDValue ShOpHi = Op.getOperand(1);
3440  SDValue ShAmt  = Op.getOperand(2);
3441  SDValue ARMcc;
3442
3443  assert(Op.getOpcode() == ISD::SHL_PARTS);
3444  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3445                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3446  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3447  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3448                                   DAG.getConstant(VTBits, MVT::i32));
3449  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3450  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3451
3452  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3453  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3454  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3455                          ARMcc, DAG, dl);
3456  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3457  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3458                           CCR, Cmp);
3459
3460  SDValue Ops[2] = { Lo, Hi };
3461  return DAG.getMergeValues(Ops, 2, dl);
3462}
3463
3464SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3465                                            SelectionDAG &DAG) const {
3466  // The rounding mode is in bits 23:22 of the FPSCR.
3467  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3468  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3469  // so that the shift + and get folded into a bitfield extract.
3470  DebugLoc dl = Op.getDebugLoc();
3471  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3472                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3473                                              MVT::i32));
3474  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3475                                  DAG.getConstant(1U << 22, MVT::i32));
3476  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3477                              DAG.getConstant(22, MVT::i32));
3478  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3479                     DAG.getConstant(3, MVT::i32));
3480}
3481
3482static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3483                         const ARMSubtarget *ST) {
3484  EVT VT = N->getValueType(0);
3485  DebugLoc dl = N->getDebugLoc();
3486
3487  if (!ST->hasV6T2Ops())
3488    return SDValue();
3489
3490  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3491  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3492}
3493
3494static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3495                          const ARMSubtarget *ST) {
3496  EVT VT = N->getValueType(0);
3497  DebugLoc dl = N->getDebugLoc();
3498
3499  if (!VT.isVector())
3500    return SDValue();
3501
3502  // Lower vector shifts on NEON to use VSHL.
3503  assert(ST->hasNEON() && "unexpected vector shift");
3504
3505  // Left shifts translate directly to the vshiftu intrinsic.
3506  if (N->getOpcode() == ISD::SHL)
3507    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3508                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3509                       N->getOperand(0), N->getOperand(1));
3510
3511  assert((N->getOpcode() == ISD::SRA ||
3512          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3513
3514  // NEON uses the same intrinsics for both left and right shifts.  For
3515  // right shifts, the shift amounts are negative, so negate the vector of
3516  // shift amounts.
3517  EVT ShiftVT = N->getOperand(1).getValueType();
3518  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3519                                     getZeroVector(ShiftVT, DAG, dl),
3520                                     N->getOperand(1));
3521  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3522                             Intrinsic::arm_neon_vshifts :
3523                             Intrinsic::arm_neon_vshiftu);
3524  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3525                     DAG.getConstant(vshiftInt, MVT::i32),
3526                     N->getOperand(0), NegatedCount);
3527}
3528
3529static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3530                                const ARMSubtarget *ST) {
3531  EVT VT = N->getValueType(0);
3532  DebugLoc dl = N->getDebugLoc();
3533
3534  // We can get here for a node like i32 = ISD::SHL i32, i64
3535  if (VT != MVT::i64)
3536    return SDValue();
3537
3538  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3539         "Unknown shift to lower!");
3540
3541  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3542  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3543      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3544    return SDValue();
3545
3546  // If we are in thumb mode, we don't have RRX.
3547  if (ST->isThumb1Only()) return SDValue();
3548
3549  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3550  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3551                           DAG.getConstant(0, MVT::i32));
3552  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3553                           DAG.getConstant(1, MVT::i32));
3554
3555  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3556  // captures the result into a carry flag.
3557  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3558  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3559
3560  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3561  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3562
3563  // Merge the pieces into a single i64 value.
3564 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3565}
3566
3567static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3568  SDValue TmpOp0, TmpOp1;
3569  bool Invert = false;
3570  bool Swap = false;
3571  unsigned Opc = 0;
3572
3573  SDValue Op0 = Op.getOperand(0);
3574  SDValue Op1 = Op.getOperand(1);
3575  SDValue CC = Op.getOperand(2);
3576  EVT VT = Op.getValueType();
3577  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3578  DebugLoc dl = Op.getDebugLoc();
3579
3580  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3581    switch (SetCCOpcode) {
3582    default: llvm_unreachable("Illegal FP comparison");
3583    case ISD::SETUNE:
3584    case ISD::SETNE:  Invert = true; // Fallthrough
3585    case ISD::SETOEQ:
3586    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3587    case ISD::SETOLT:
3588    case ISD::SETLT: Swap = true; // Fallthrough
3589    case ISD::SETOGT:
3590    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3591    case ISD::SETOLE:
3592    case ISD::SETLE:  Swap = true; // Fallthrough
3593    case ISD::SETOGE:
3594    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3595    case ISD::SETUGE: Swap = true; // Fallthrough
3596    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3597    case ISD::SETUGT: Swap = true; // Fallthrough
3598    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3599    case ISD::SETUEQ: Invert = true; // Fallthrough
3600    case ISD::SETONE:
3601      // Expand this to (OLT | OGT).
3602      TmpOp0 = Op0;
3603      TmpOp1 = Op1;
3604      Opc = ISD::OR;
3605      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3606      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3607      break;
3608    case ISD::SETUO: Invert = true; // Fallthrough
3609    case ISD::SETO:
3610      // Expand this to (OLT | OGE).
3611      TmpOp0 = Op0;
3612      TmpOp1 = Op1;
3613      Opc = ISD::OR;
3614      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3615      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3616      break;
3617    }
3618  } else {
3619    // Integer comparisons.
3620    switch (SetCCOpcode) {
3621    default: llvm_unreachable("Illegal integer comparison");
3622    case ISD::SETNE:  Invert = true;
3623    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3624    case ISD::SETLT:  Swap = true;
3625    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3626    case ISD::SETLE:  Swap = true;
3627    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3628    case ISD::SETULT: Swap = true;
3629    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3630    case ISD::SETULE: Swap = true;
3631    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3632    }
3633
3634    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3635    if (Opc == ARMISD::VCEQ) {
3636
3637      SDValue AndOp;
3638      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3639        AndOp = Op0;
3640      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3641        AndOp = Op1;
3642
3643      // Ignore bitconvert.
3644      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3645        AndOp = AndOp.getOperand(0);
3646
3647      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3648        Opc = ARMISD::VTST;
3649        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3650        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3651        Invert = !Invert;
3652      }
3653    }
3654  }
3655
3656  if (Swap)
3657    std::swap(Op0, Op1);
3658
3659  // If one of the operands is a constant vector zero, attempt to fold the
3660  // comparison to a specialized compare-against-zero form.
3661  SDValue SingleOp;
3662  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3663    SingleOp = Op0;
3664  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3665    if (Opc == ARMISD::VCGE)
3666      Opc = ARMISD::VCLEZ;
3667    else if (Opc == ARMISD::VCGT)
3668      Opc = ARMISD::VCLTZ;
3669    SingleOp = Op1;
3670  }
3671
3672  SDValue Result;
3673  if (SingleOp.getNode()) {
3674    switch (Opc) {
3675    case ARMISD::VCEQ:
3676      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3677    case ARMISD::VCGE:
3678      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3679    case ARMISD::VCLEZ:
3680      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3681    case ARMISD::VCGT:
3682      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3683    case ARMISD::VCLTZ:
3684      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3685    default:
3686      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3687    }
3688  } else {
3689     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3690  }
3691
3692  if (Invert)
3693    Result = DAG.getNOT(dl, Result, VT);
3694
3695  return Result;
3696}
3697
3698/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3699/// valid vector constant for a NEON instruction with a "modified immediate"
3700/// operand (e.g., VMOV).  If so, return the encoded value.
3701static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3702                                 unsigned SplatBitSize, SelectionDAG &DAG,
3703                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3704  unsigned OpCmode, Imm;
3705
3706  // SplatBitSize is set to the smallest size that splats the vector, so a
3707  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3708  // immediate instructions others than VMOV do not support the 8-bit encoding
3709  // of a zero vector, and the default encoding of zero is supposed to be the
3710  // 32-bit version.
3711  if (SplatBits == 0)
3712    SplatBitSize = 32;
3713
3714  switch (SplatBitSize) {
3715  case 8:
3716    if (type != VMOVModImm)
3717      return SDValue();
3718    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3719    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3720    OpCmode = 0xe;
3721    Imm = SplatBits;
3722    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3723    break;
3724
3725  case 16:
3726    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3727    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3728    if ((SplatBits & ~0xff) == 0) {
3729      // Value = 0x00nn: Op=x, Cmode=100x.
3730      OpCmode = 0x8;
3731      Imm = SplatBits;
3732      break;
3733    }
3734    if ((SplatBits & ~0xff00) == 0) {
3735      // Value = 0xnn00: Op=x, Cmode=101x.
3736      OpCmode = 0xa;
3737      Imm = SplatBits >> 8;
3738      break;
3739    }
3740    return SDValue();
3741
3742  case 32:
3743    // NEON's 32-bit VMOV supports splat values where:
3744    // * only one byte is nonzero, or
3745    // * the least significant byte is 0xff and the second byte is nonzero, or
3746    // * the least significant 2 bytes are 0xff and the third is nonzero.
3747    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3748    if ((SplatBits & ~0xff) == 0) {
3749      // Value = 0x000000nn: Op=x, Cmode=000x.
3750      OpCmode = 0;
3751      Imm = SplatBits;
3752      break;
3753    }
3754    if ((SplatBits & ~0xff00) == 0) {
3755      // Value = 0x0000nn00: Op=x, Cmode=001x.
3756      OpCmode = 0x2;
3757      Imm = SplatBits >> 8;
3758      break;
3759    }
3760    if ((SplatBits & ~0xff0000) == 0) {
3761      // Value = 0x00nn0000: Op=x, Cmode=010x.
3762      OpCmode = 0x4;
3763      Imm = SplatBits >> 16;
3764      break;
3765    }
3766    if ((SplatBits & ~0xff000000) == 0) {
3767      // Value = 0xnn000000: Op=x, Cmode=011x.
3768      OpCmode = 0x6;
3769      Imm = SplatBits >> 24;
3770      break;
3771    }
3772
3773    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3774    if (type == OtherModImm) return SDValue();
3775
3776    if ((SplatBits & ~0xffff) == 0 &&
3777        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3778      // Value = 0x0000nnff: Op=x, Cmode=1100.
3779      OpCmode = 0xc;
3780      Imm = SplatBits >> 8;
3781      SplatBits |= 0xff;
3782      break;
3783    }
3784
3785    if ((SplatBits & ~0xffffff) == 0 &&
3786        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3787      // Value = 0x00nnffff: Op=x, Cmode=1101.
3788      OpCmode = 0xd;
3789      Imm = SplatBits >> 16;
3790      SplatBits |= 0xffff;
3791      break;
3792    }
3793
3794    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3795    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3796    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3797    // and fall through here to test for a valid 64-bit splat.  But, then the
3798    // caller would also need to check and handle the change in size.
3799    return SDValue();
3800
3801  case 64: {
3802    if (type != VMOVModImm)
3803      return SDValue();
3804    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3805    uint64_t BitMask = 0xff;
3806    uint64_t Val = 0;
3807    unsigned ImmMask = 1;
3808    Imm = 0;
3809    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3810      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3811        Val |= BitMask;
3812        Imm |= ImmMask;
3813      } else if ((SplatBits & BitMask) != 0) {
3814        return SDValue();
3815      }
3816      BitMask <<= 8;
3817      ImmMask <<= 1;
3818    }
3819    // Op=1, Cmode=1110.
3820    OpCmode = 0x1e;
3821    SplatBits = Val;
3822    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3823    break;
3824  }
3825
3826  default:
3827    llvm_unreachable("unexpected size for isNEONModifiedImm");
3828  }
3829
3830  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3831  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3832}
3833
3834SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3835                                           const ARMSubtarget *ST) const {
3836  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3837    return SDValue();
3838
3839  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3840  assert(Op.getValueType() == MVT::f32 &&
3841         "ConstantFP custom lowering should only occur for f32.");
3842
3843  // Try splatting with a VMOV.f32...
3844  APFloat FPVal = CFP->getValueAPF();
3845  int ImmVal = ARM_AM::getFP32Imm(FPVal);
3846  if (ImmVal != -1) {
3847    DebugLoc DL = Op.getDebugLoc();
3848    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3849    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3850                                      NewVal);
3851    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3852                       DAG.getConstant(0, MVT::i32));
3853  }
3854
3855  // If that fails, try a VMOV.i32
3856  EVT VMovVT;
3857  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3858  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3859                                     VMOVModImm);
3860  if (NewVal != SDValue()) {
3861    DebugLoc DL = Op.getDebugLoc();
3862    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3863                                      NewVal);
3864    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3865                                       VecConstant);
3866    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3867                       DAG.getConstant(0, MVT::i32));
3868  }
3869
3870  // Finally, try a VMVN.i32
3871  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3872                             VMVNModImm);
3873  if (NewVal != SDValue()) {
3874    DebugLoc DL = Op.getDebugLoc();
3875    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3876    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3877                                       VecConstant);
3878    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3879                       DAG.getConstant(0, MVT::i32));
3880  }
3881
3882  return SDValue();
3883}
3884
3885
3886static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3887                       bool &ReverseVEXT, unsigned &Imm) {
3888  unsigned NumElts = VT.getVectorNumElements();
3889  ReverseVEXT = false;
3890
3891  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3892  if (M[0] < 0)
3893    return false;
3894
3895  Imm = M[0];
3896
3897  // If this is a VEXT shuffle, the immediate value is the index of the first
3898  // element.  The other shuffle indices must be the successive elements after
3899  // the first one.
3900  unsigned ExpectedElt = Imm;
3901  for (unsigned i = 1; i < NumElts; ++i) {
3902    // Increment the expected index.  If it wraps around, it may still be
3903    // a VEXT but the source vectors must be swapped.
3904    ExpectedElt += 1;
3905    if (ExpectedElt == NumElts * 2) {
3906      ExpectedElt = 0;
3907      ReverseVEXT = true;
3908    }
3909
3910    if (M[i] < 0) continue; // ignore UNDEF indices
3911    if (ExpectedElt != static_cast<unsigned>(M[i]))
3912      return false;
3913  }
3914
3915  // Adjust the index value if the source operands will be swapped.
3916  if (ReverseVEXT)
3917    Imm -= NumElts;
3918
3919  return true;
3920}
3921
3922/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3923/// instruction with the specified blocksize.  (The order of the elements
3924/// within each block of the vector is reversed.)
3925static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3926  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3927         "Only possible block sizes for VREV are: 16, 32, 64");
3928
3929  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3930  if (EltSz == 64)
3931    return false;
3932
3933  unsigned NumElts = VT.getVectorNumElements();
3934  unsigned BlockElts = M[0] + 1;
3935  // If the first shuffle index is UNDEF, be optimistic.
3936  if (M[0] < 0)
3937    BlockElts = BlockSize / EltSz;
3938
3939  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3940    return false;
3941
3942  for (unsigned i = 0; i < NumElts; ++i) {
3943    if (M[i] < 0) continue; // ignore UNDEF indices
3944    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3945      return false;
3946  }
3947
3948  return true;
3949}
3950
3951static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3952  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3953  // range, then 0 is placed into the resulting vector. So pretty much any mask
3954  // of 8 elements can work here.
3955  return VT == MVT::v8i8 && M.size() == 8;
3956}
3957
3958static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3959  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3960  if (EltSz == 64)
3961    return false;
3962
3963  unsigned NumElts = VT.getVectorNumElements();
3964  WhichResult = (M[0] == 0 ? 0 : 1);
3965  for (unsigned i = 0; i < NumElts; i += 2) {
3966    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3967        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3968      return false;
3969  }
3970  return true;
3971}
3972
3973/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3974/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3975/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3976static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3977  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3978  if (EltSz == 64)
3979    return false;
3980
3981  unsigned NumElts = VT.getVectorNumElements();
3982  WhichResult = (M[0] == 0 ? 0 : 1);
3983  for (unsigned i = 0; i < NumElts; i += 2) {
3984    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3985        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3986      return false;
3987  }
3988  return true;
3989}
3990
3991static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3992  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3993  if (EltSz == 64)
3994    return false;
3995
3996  unsigned NumElts = VT.getVectorNumElements();
3997  WhichResult = (M[0] == 0 ? 0 : 1);
3998  for (unsigned i = 0; i != NumElts; ++i) {
3999    if (M[i] < 0) continue; // ignore UNDEF indices
4000    if ((unsigned) M[i] != 2 * i + WhichResult)
4001      return false;
4002  }
4003
4004  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4005  if (VT.is64BitVector() && EltSz == 32)
4006    return false;
4007
4008  return true;
4009}
4010
4011/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4012/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4013/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4014static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4015  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4016  if (EltSz == 64)
4017    return false;
4018
4019  unsigned Half = VT.getVectorNumElements() / 2;
4020  WhichResult = (M[0] == 0 ? 0 : 1);
4021  for (unsigned j = 0; j != 2; ++j) {
4022    unsigned Idx = WhichResult;
4023    for (unsigned i = 0; i != Half; ++i) {
4024      int MIdx = M[i + j * Half];
4025      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4026        return false;
4027      Idx += 2;
4028    }
4029  }
4030
4031  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4032  if (VT.is64BitVector() && EltSz == 32)
4033    return false;
4034
4035  return true;
4036}
4037
4038static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4039  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4040  if (EltSz == 64)
4041    return false;
4042
4043  unsigned NumElts = VT.getVectorNumElements();
4044  WhichResult = (M[0] == 0 ? 0 : 1);
4045  unsigned Idx = WhichResult * NumElts / 2;
4046  for (unsigned i = 0; i != NumElts; i += 2) {
4047    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4048        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4049      return false;
4050    Idx += 1;
4051  }
4052
4053  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4054  if (VT.is64BitVector() && EltSz == 32)
4055    return false;
4056
4057  return true;
4058}
4059
4060/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4061/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4062/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4063static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4064  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4065  if (EltSz == 64)
4066    return false;
4067
4068  unsigned NumElts = VT.getVectorNumElements();
4069  WhichResult = (M[0] == 0 ? 0 : 1);
4070  unsigned Idx = WhichResult * NumElts / 2;
4071  for (unsigned i = 0; i != NumElts; i += 2) {
4072    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4073        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4074      return false;
4075    Idx += 1;
4076  }
4077
4078  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4079  if (VT.is64BitVector() && EltSz == 32)
4080    return false;
4081
4082  return true;
4083}
4084
4085// If N is an integer constant that can be moved into a register in one
4086// instruction, return an SDValue of such a constant (will become a MOV
4087// instruction).  Otherwise return null.
4088static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4089                                     const ARMSubtarget *ST, DebugLoc dl) {
4090  uint64_t Val;
4091  if (!isa<ConstantSDNode>(N))
4092    return SDValue();
4093  Val = cast<ConstantSDNode>(N)->getZExtValue();
4094
4095  if (ST->isThumb1Only()) {
4096    if (Val <= 255 || ~Val <= 255)
4097      return DAG.getConstant(Val, MVT::i32);
4098  } else {
4099    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4100      return DAG.getConstant(Val, MVT::i32);
4101  }
4102  return SDValue();
4103}
4104
4105// If this is a case we can't handle, return null and let the default
4106// expansion code take care of it.
4107SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4108                                             const ARMSubtarget *ST) const {
4109  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4110  DebugLoc dl = Op.getDebugLoc();
4111  EVT VT = Op.getValueType();
4112
4113  APInt SplatBits, SplatUndef;
4114  unsigned SplatBitSize;
4115  bool HasAnyUndefs;
4116  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4117    if (SplatBitSize <= 64) {
4118      // Check if an immediate VMOV works.
4119      EVT VmovVT;
4120      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4121                                      SplatUndef.getZExtValue(), SplatBitSize,
4122                                      DAG, VmovVT, VT.is128BitVector(),
4123                                      VMOVModImm);
4124      if (Val.getNode()) {
4125        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4126        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4127      }
4128
4129      // Try an immediate VMVN.
4130      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4131      Val = isNEONModifiedImm(NegatedImm,
4132                                      SplatUndef.getZExtValue(), SplatBitSize,
4133                                      DAG, VmovVT, VT.is128BitVector(),
4134                                      VMVNModImm);
4135      if (Val.getNode()) {
4136        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4137        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4138      }
4139
4140      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4141      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4142        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4143        if (ImmVal != -1) {
4144          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4145          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4146        }
4147      }
4148    }
4149  }
4150
4151  // Scan through the operands to see if only one value is used.
4152  unsigned NumElts = VT.getVectorNumElements();
4153  bool isOnlyLowElement = true;
4154  bool usesOnlyOneValue = true;
4155  bool isConstant = true;
4156  SDValue Value;
4157  for (unsigned i = 0; i < NumElts; ++i) {
4158    SDValue V = Op.getOperand(i);
4159    if (V.getOpcode() == ISD::UNDEF)
4160      continue;
4161    if (i > 0)
4162      isOnlyLowElement = false;
4163    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4164      isConstant = false;
4165
4166    if (!Value.getNode())
4167      Value = V;
4168    else if (V != Value)
4169      usesOnlyOneValue = false;
4170  }
4171
4172  if (!Value.getNode())
4173    return DAG.getUNDEF(VT);
4174
4175  if (isOnlyLowElement)
4176    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4177
4178  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4179
4180  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4181  // i32 and try again.
4182  if (usesOnlyOneValue && EltSize <= 32) {
4183    if (!isConstant)
4184      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4185    if (VT.getVectorElementType().isFloatingPoint()) {
4186      SmallVector<SDValue, 8> Ops;
4187      for (unsigned i = 0; i < NumElts; ++i)
4188        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4189                                  Op.getOperand(i)));
4190      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4191      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4192      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4193      if (Val.getNode())
4194        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4195    }
4196    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4197    if (Val.getNode())
4198      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4199  }
4200
4201  // If all elements are constants and the case above didn't get hit, fall back
4202  // to the default expansion, which will generate a load from the constant
4203  // pool.
4204  if (isConstant)
4205    return SDValue();
4206
4207  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4208  if (NumElts >= 4) {
4209    SDValue shuffle = ReconstructShuffle(Op, DAG);
4210    if (shuffle != SDValue())
4211      return shuffle;
4212  }
4213
4214  // Vectors with 32- or 64-bit elements can be built by directly assigning
4215  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4216  // will be legalized.
4217  if (EltSize >= 32) {
4218    // Do the expansion with floating-point types, since that is what the VFP
4219    // registers are defined to use, and since i64 is not legal.
4220    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4221    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4222    SmallVector<SDValue, 8> Ops;
4223    for (unsigned i = 0; i < NumElts; ++i)
4224      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4225    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4226    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4227  }
4228
4229  return SDValue();
4230}
4231
4232// Gather data to see if the operation can be modelled as a
4233// shuffle in combination with VEXTs.
4234SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4235                                              SelectionDAG &DAG) const {
4236  DebugLoc dl = Op.getDebugLoc();
4237  EVT VT = Op.getValueType();
4238  unsigned NumElts = VT.getVectorNumElements();
4239
4240  SmallVector<SDValue, 2> SourceVecs;
4241  SmallVector<unsigned, 2> MinElts;
4242  SmallVector<unsigned, 2> MaxElts;
4243
4244  for (unsigned i = 0; i < NumElts; ++i) {
4245    SDValue V = Op.getOperand(i);
4246    if (V.getOpcode() == ISD::UNDEF)
4247      continue;
4248    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4249      // A shuffle can only come from building a vector from various
4250      // elements of other vectors.
4251      return SDValue();
4252    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4253               VT.getVectorElementType()) {
4254      // This code doesn't know how to handle shuffles where the vector
4255      // element types do not match (this happens because type legalization
4256      // promotes the return type of EXTRACT_VECTOR_ELT).
4257      // FIXME: It might be appropriate to extend this code to handle
4258      // mismatched types.
4259      return SDValue();
4260    }
4261
4262    // Record this extraction against the appropriate vector if possible...
4263    SDValue SourceVec = V.getOperand(0);
4264    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4265    bool FoundSource = false;
4266    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4267      if (SourceVecs[j] == SourceVec) {
4268        if (MinElts[j] > EltNo)
4269          MinElts[j] = EltNo;
4270        if (MaxElts[j] < EltNo)
4271          MaxElts[j] = EltNo;
4272        FoundSource = true;
4273        break;
4274      }
4275    }
4276
4277    // Or record a new source if not...
4278    if (!FoundSource) {
4279      SourceVecs.push_back(SourceVec);
4280      MinElts.push_back(EltNo);
4281      MaxElts.push_back(EltNo);
4282    }
4283  }
4284
4285  // Currently only do something sane when at most two source vectors
4286  // involved.
4287  if (SourceVecs.size() > 2)
4288    return SDValue();
4289
4290  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4291  int VEXTOffsets[2] = {0, 0};
4292
4293  // This loop extracts the usage patterns of the source vectors
4294  // and prepares appropriate SDValues for a shuffle if possible.
4295  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4296    if (SourceVecs[i].getValueType() == VT) {
4297      // No VEXT necessary
4298      ShuffleSrcs[i] = SourceVecs[i];
4299      VEXTOffsets[i] = 0;
4300      continue;
4301    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4302      // It probably isn't worth padding out a smaller vector just to
4303      // break it down again in a shuffle.
4304      return SDValue();
4305    }
4306
4307    // Since only 64-bit and 128-bit vectors are legal on ARM and
4308    // we've eliminated the other cases...
4309    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4310           "unexpected vector sizes in ReconstructShuffle");
4311
4312    if (MaxElts[i] - MinElts[i] >= NumElts) {
4313      // Span too large for a VEXT to cope
4314      return SDValue();
4315    }
4316
4317    if (MinElts[i] >= NumElts) {
4318      // The extraction can just take the second half
4319      VEXTOffsets[i] = NumElts;
4320      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4321                                   SourceVecs[i],
4322                                   DAG.getIntPtrConstant(NumElts));
4323    } else if (MaxElts[i] < NumElts) {
4324      // The extraction can just take the first half
4325      VEXTOffsets[i] = 0;
4326      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4327                                   SourceVecs[i],
4328                                   DAG.getIntPtrConstant(0));
4329    } else {
4330      // An actual VEXT is needed
4331      VEXTOffsets[i] = MinElts[i];
4332      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4333                                     SourceVecs[i],
4334                                     DAG.getIntPtrConstant(0));
4335      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4336                                     SourceVecs[i],
4337                                     DAG.getIntPtrConstant(NumElts));
4338      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4339                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4340    }
4341  }
4342
4343  SmallVector<int, 8> Mask;
4344
4345  for (unsigned i = 0; i < NumElts; ++i) {
4346    SDValue Entry = Op.getOperand(i);
4347    if (Entry.getOpcode() == ISD::UNDEF) {
4348      Mask.push_back(-1);
4349      continue;
4350    }
4351
4352    SDValue ExtractVec = Entry.getOperand(0);
4353    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4354                                          .getOperand(1))->getSExtValue();
4355    if (ExtractVec == SourceVecs[0]) {
4356      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4357    } else {
4358      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4359    }
4360  }
4361
4362  // Final check before we try to produce nonsense...
4363  if (isShuffleMaskLegal(Mask, VT))
4364    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4365                                &Mask[0]);
4366
4367  return SDValue();
4368}
4369
4370/// isShuffleMaskLegal - Targets can use this to indicate that they only
4371/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4372/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4373/// are assumed to be legal.
4374bool
4375ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4376                                      EVT VT) const {
4377  if (VT.getVectorNumElements() == 4 &&
4378      (VT.is128BitVector() || VT.is64BitVector())) {
4379    unsigned PFIndexes[4];
4380    for (unsigned i = 0; i != 4; ++i) {
4381      if (M[i] < 0)
4382        PFIndexes[i] = 8;
4383      else
4384        PFIndexes[i] = M[i];
4385    }
4386
4387    // Compute the index in the perfect shuffle table.
4388    unsigned PFTableIndex =
4389      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4390    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4391    unsigned Cost = (PFEntry >> 30);
4392
4393    if (Cost <= 4)
4394      return true;
4395  }
4396
4397  bool ReverseVEXT;
4398  unsigned Imm, WhichResult;
4399
4400  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4401  return (EltSize >= 32 ||
4402          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4403          isVREVMask(M, VT, 64) ||
4404          isVREVMask(M, VT, 32) ||
4405          isVREVMask(M, VT, 16) ||
4406          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4407          isVTBLMask(M, VT) ||
4408          isVTRNMask(M, VT, WhichResult) ||
4409          isVUZPMask(M, VT, WhichResult) ||
4410          isVZIPMask(M, VT, WhichResult) ||
4411          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4412          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4413          isVZIP_v_undef_Mask(M, VT, WhichResult));
4414}
4415
4416/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4417/// the specified operations to build the shuffle.
4418static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4419                                      SDValue RHS, SelectionDAG &DAG,
4420                                      DebugLoc dl) {
4421  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4422  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4423  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4424
4425  enum {
4426    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4427    OP_VREV,
4428    OP_VDUP0,
4429    OP_VDUP1,
4430    OP_VDUP2,
4431    OP_VDUP3,
4432    OP_VEXT1,
4433    OP_VEXT2,
4434    OP_VEXT3,
4435    OP_VUZPL, // VUZP, left result
4436    OP_VUZPR, // VUZP, right result
4437    OP_VZIPL, // VZIP, left result
4438    OP_VZIPR, // VZIP, right result
4439    OP_VTRNL, // VTRN, left result
4440    OP_VTRNR  // VTRN, right result
4441  };
4442
4443  if (OpNum == OP_COPY) {
4444    if (LHSID == (1*9+2)*9+3) return LHS;
4445    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4446    return RHS;
4447  }
4448
4449  SDValue OpLHS, OpRHS;
4450  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4451  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4452  EVT VT = OpLHS.getValueType();
4453
4454  switch (OpNum) {
4455  default: llvm_unreachable("Unknown shuffle opcode!");
4456  case OP_VREV:
4457    // VREV divides the vector in half and swaps within the half.
4458    if (VT.getVectorElementType() == MVT::i32 ||
4459        VT.getVectorElementType() == MVT::f32)
4460      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4461    // vrev <4 x i16> -> VREV32
4462    if (VT.getVectorElementType() == MVT::i16)
4463      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4464    // vrev <4 x i8> -> VREV16
4465    assert(VT.getVectorElementType() == MVT::i8);
4466    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4467  case OP_VDUP0:
4468  case OP_VDUP1:
4469  case OP_VDUP2:
4470  case OP_VDUP3:
4471    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4472                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4473  case OP_VEXT1:
4474  case OP_VEXT2:
4475  case OP_VEXT3:
4476    return DAG.getNode(ARMISD::VEXT, dl, VT,
4477                       OpLHS, OpRHS,
4478                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4479  case OP_VUZPL:
4480  case OP_VUZPR:
4481    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4482                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4483  case OP_VZIPL:
4484  case OP_VZIPR:
4485    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4486                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4487  case OP_VTRNL:
4488  case OP_VTRNR:
4489    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4490                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4491  }
4492}
4493
4494static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4495                                       ArrayRef<int> ShuffleMask,
4496                                       SelectionDAG &DAG) {
4497  // Check to see if we can use the VTBL instruction.
4498  SDValue V1 = Op.getOperand(0);
4499  SDValue V2 = Op.getOperand(1);
4500  DebugLoc DL = Op.getDebugLoc();
4501
4502  SmallVector<SDValue, 8> VTBLMask;
4503  for (ArrayRef<int>::iterator
4504         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4505    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4506
4507  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4508    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4509                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4510                                   &VTBLMask[0], 8));
4511
4512  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4513                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4514                                 &VTBLMask[0], 8));
4515}
4516
4517static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4518  SDValue V1 = Op.getOperand(0);
4519  SDValue V2 = Op.getOperand(1);
4520  DebugLoc dl = Op.getDebugLoc();
4521  EVT VT = Op.getValueType();
4522  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4523
4524  // Convert shuffles that are directly supported on NEON to target-specific
4525  // DAG nodes, instead of keeping them as shuffles and matching them again
4526  // during code selection.  This is more efficient and avoids the possibility
4527  // of inconsistencies between legalization and selection.
4528  // FIXME: floating-point vectors should be canonicalized to integer vectors
4529  // of the same time so that they get CSEd properly.
4530  ArrayRef<int> ShuffleMask = SVN->getMask();
4531
4532  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4533  if (EltSize <= 32) {
4534    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4535      int Lane = SVN->getSplatIndex();
4536      // If this is undef splat, generate it via "just" vdup, if possible.
4537      if (Lane == -1) Lane = 0;
4538
4539      // Test if V1 is a SCALAR_TO_VECTOR.
4540      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4541        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4542      }
4543      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4544      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4545      // reaches it).
4546      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4547          !isa<ConstantSDNode>(V1.getOperand(0))) {
4548        bool IsScalarToVector = true;
4549        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4550          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4551            IsScalarToVector = false;
4552            break;
4553          }
4554        if (IsScalarToVector)
4555          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4556      }
4557      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4558                         DAG.getConstant(Lane, MVT::i32));
4559    }
4560
4561    bool ReverseVEXT;
4562    unsigned Imm;
4563    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4564      if (ReverseVEXT)
4565        std::swap(V1, V2);
4566      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4567                         DAG.getConstant(Imm, MVT::i32));
4568    }
4569
4570    if (isVREVMask(ShuffleMask, VT, 64))
4571      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4572    if (isVREVMask(ShuffleMask, VT, 32))
4573      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4574    if (isVREVMask(ShuffleMask, VT, 16))
4575      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4576
4577    // Check for Neon shuffles that modify both input vectors in place.
4578    // If both results are used, i.e., if there are two shuffles with the same
4579    // source operands and with masks corresponding to both results of one of
4580    // these operations, DAG memoization will ensure that a single node is
4581    // used for both shuffles.
4582    unsigned WhichResult;
4583    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4584      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4585                         V1, V2).getValue(WhichResult);
4586    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4587      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4588                         V1, V2).getValue(WhichResult);
4589    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4590      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4591                         V1, V2).getValue(WhichResult);
4592
4593    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4594      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4595                         V1, V1).getValue(WhichResult);
4596    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4597      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4598                         V1, V1).getValue(WhichResult);
4599    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4600      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4601                         V1, V1).getValue(WhichResult);
4602  }
4603
4604  // If the shuffle is not directly supported and it has 4 elements, use
4605  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4606  unsigned NumElts = VT.getVectorNumElements();
4607  if (NumElts == 4) {
4608    unsigned PFIndexes[4];
4609    for (unsigned i = 0; i != 4; ++i) {
4610      if (ShuffleMask[i] < 0)
4611        PFIndexes[i] = 8;
4612      else
4613        PFIndexes[i] = ShuffleMask[i];
4614    }
4615
4616    // Compute the index in the perfect shuffle table.
4617    unsigned PFTableIndex =
4618      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4619    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4620    unsigned Cost = (PFEntry >> 30);
4621
4622    if (Cost <= 4)
4623      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4624  }
4625
4626  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4627  if (EltSize >= 32) {
4628    // Do the expansion with floating-point types, since that is what the VFP
4629    // registers are defined to use, and since i64 is not legal.
4630    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4631    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4632    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4633    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4634    SmallVector<SDValue, 8> Ops;
4635    for (unsigned i = 0; i < NumElts; ++i) {
4636      if (ShuffleMask[i] < 0)
4637        Ops.push_back(DAG.getUNDEF(EltVT));
4638      else
4639        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4640                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4641                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4642                                                  MVT::i32)));
4643    }
4644    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4645    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4646  }
4647
4648  if (VT == MVT::v8i8) {
4649    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4650    if (NewOp.getNode())
4651      return NewOp;
4652  }
4653
4654  return SDValue();
4655}
4656
4657static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4658  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4659  SDValue Lane = Op.getOperand(2);
4660  if (!isa<ConstantSDNode>(Lane))
4661    return SDValue();
4662
4663  return Op;
4664}
4665
4666static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4667  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4668  SDValue Lane = Op.getOperand(1);
4669  if (!isa<ConstantSDNode>(Lane))
4670    return SDValue();
4671
4672  SDValue Vec = Op.getOperand(0);
4673  if (Op.getValueType() == MVT::i32 &&
4674      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4675    DebugLoc dl = Op.getDebugLoc();
4676    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4677  }
4678
4679  return Op;
4680}
4681
4682static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4683  // The only time a CONCAT_VECTORS operation can have legal types is when
4684  // two 64-bit vectors are concatenated to a 128-bit vector.
4685  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4686         "unexpected CONCAT_VECTORS");
4687  DebugLoc dl = Op.getDebugLoc();
4688  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4689  SDValue Op0 = Op.getOperand(0);
4690  SDValue Op1 = Op.getOperand(1);
4691  if (Op0.getOpcode() != ISD::UNDEF)
4692    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4693                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4694                      DAG.getIntPtrConstant(0));
4695  if (Op1.getOpcode() != ISD::UNDEF)
4696    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4697                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4698                      DAG.getIntPtrConstant(1));
4699  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4700}
4701
4702/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4703/// element has been zero/sign-extended, depending on the isSigned parameter,
4704/// from an integer type half its size.
4705static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4706                                   bool isSigned) {
4707  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4708  EVT VT = N->getValueType(0);
4709  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4710    SDNode *BVN = N->getOperand(0).getNode();
4711    if (BVN->getValueType(0) != MVT::v4i32 ||
4712        BVN->getOpcode() != ISD::BUILD_VECTOR)
4713      return false;
4714    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4715    unsigned HiElt = 1 - LoElt;
4716    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4717    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4718    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4719    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4720    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4721      return false;
4722    if (isSigned) {
4723      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4724          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4725        return true;
4726    } else {
4727      if (Hi0->isNullValue() && Hi1->isNullValue())
4728        return true;
4729    }
4730    return false;
4731  }
4732
4733  if (N->getOpcode() != ISD::BUILD_VECTOR)
4734    return false;
4735
4736  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4737    SDNode *Elt = N->getOperand(i).getNode();
4738    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4739      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4740      unsigned HalfSize = EltSize / 2;
4741      if (isSigned) {
4742        if (!isIntN(HalfSize, C->getSExtValue()))
4743          return false;
4744      } else {
4745        if (!isUIntN(HalfSize, C->getZExtValue()))
4746          return false;
4747      }
4748      continue;
4749    }
4750    return false;
4751  }
4752
4753  return true;
4754}
4755
4756/// isSignExtended - Check if a node is a vector value that is sign-extended
4757/// or a constant BUILD_VECTOR with sign-extended elements.
4758static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4759  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4760    return true;
4761  if (isExtendedBUILD_VECTOR(N, DAG, true))
4762    return true;
4763  return false;
4764}
4765
4766/// isZeroExtended - Check if a node is a vector value that is zero-extended
4767/// or a constant BUILD_VECTOR with zero-extended elements.
4768static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4769  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4770    return true;
4771  if (isExtendedBUILD_VECTOR(N, DAG, false))
4772    return true;
4773  return false;
4774}
4775
4776/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4777/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4778static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4779  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4780    return N->getOperand(0);
4781  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4782    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4783                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4784                       LD->isNonTemporal(), LD->isInvariant(),
4785                       LD->getAlignment());
4786  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4787  // have been legalized as a BITCAST from v4i32.
4788  if (N->getOpcode() == ISD::BITCAST) {
4789    SDNode *BVN = N->getOperand(0).getNode();
4790    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4791           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4792    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4793    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4794                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4795  }
4796  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4797  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4798  EVT VT = N->getValueType(0);
4799  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4800  unsigned NumElts = VT.getVectorNumElements();
4801  MVT TruncVT = MVT::getIntegerVT(EltSize);
4802  SmallVector<SDValue, 8> Ops;
4803  for (unsigned i = 0; i != NumElts; ++i) {
4804    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4805    const APInt &CInt = C->getAPIntValue();
4806    // Element types smaller than 32 bits are not legal, so use i32 elements.
4807    // The values are implicitly truncated so sext vs. zext doesn't matter.
4808    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
4809  }
4810  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4811                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4812}
4813
4814static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4815  unsigned Opcode = N->getOpcode();
4816  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4817    SDNode *N0 = N->getOperand(0).getNode();
4818    SDNode *N1 = N->getOperand(1).getNode();
4819    return N0->hasOneUse() && N1->hasOneUse() &&
4820      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4821  }
4822  return false;
4823}
4824
4825static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4826  unsigned Opcode = N->getOpcode();
4827  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4828    SDNode *N0 = N->getOperand(0).getNode();
4829    SDNode *N1 = N->getOperand(1).getNode();
4830    return N0->hasOneUse() && N1->hasOneUse() &&
4831      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4832  }
4833  return false;
4834}
4835
4836static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4837  // Multiplications are only custom-lowered for 128-bit vectors so that
4838  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4839  EVT VT = Op.getValueType();
4840  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4841  SDNode *N0 = Op.getOperand(0).getNode();
4842  SDNode *N1 = Op.getOperand(1).getNode();
4843  unsigned NewOpc = 0;
4844  bool isMLA = false;
4845  bool isN0SExt = isSignExtended(N0, DAG);
4846  bool isN1SExt = isSignExtended(N1, DAG);
4847  if (isN0SExt && isN1SExt)
4848    NewOpc = ARMISD::VMULLs;
4849  else {
4850    bool isN0ZExt = isZeroExtended(N0, DAG);
4851    bool isN1ZExt = isZeroExtended(N1, DAG);
4852    if (isN0ZExt && isN1ZExt)
4853      NewOpc = ARMISD::VMULLu;
4854    else if (isN1SExt || isN1ZExt) {
4855      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4856      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4857      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4858        NewOpc = ARMISD::VMULLs;
4859        isMLA = true;
4860      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4861        NewOpc = ARMISD::VMULLu;
4862        isMLA = true;
4863      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4864        std::swap(N0, N1);
4865        NewOpc = ARMISD::VMULLu;
4866        isMLA = true;
4867      }
4868    }
4869
4870    if (!NewOpc) {
4871      if (VT == MVT::v2i64)
4872        // Fall through to expand this.  It is not legal.
4873        return SDValue();
4874      else
4875        // Other vector multiplications are legal.
4876        return Op;
4877    }
4878  }
4879
4880  // Legalize to a VMULL instruction.
4881  DebugLoc DL = Op.getDebugLoc();
4882  SDValue Op0;
4883  SDValue Op1 = SkipExtension(N1, DAG);
4884  if (!isMLA) {
4885    Op0 = SkipExtension(N0, DAG);
4886    assert(Op0.getValueType().is64BitVector() &&
4887           Op1.getValueType().is64BitVector() &&
4888           "unexpected types for extended operands to VMULL");
4889    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4890  }
4891
4892  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4893  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4894  //   vmull q0, d4, d6
4895  //   vmlal q0, d5, d6
4896  // is faster than
4897  //   vaddl q0, d4, d5
4898  //   vmovl q1, d6
4899  //   vmul  q0, q0, q1
4900  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4901  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4902  EVT Op1VT = Op1.getValueType();
4903  return DAG.getNode(N0->getOpcode(), DL, VT,
4904                     DAG.getNode(NewOpc, DL, VT,
4905                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4906                     DAG.getNode(NewOpc, DL, VT,
4907                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4908}
4909
4910static SDValue
4911LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4912  // Convert to float
4913  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4914  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4915  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4916  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4917  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4918  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4919  // Get reciprocal estimate.
4920  // float4 recip = vrecpeq_f32(yf);
4921  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4922                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4923  // Because char has a smaller range than uchar, we can actually get away
4924  // without any newton steps.  This requires that we use a weird bias
4925  // of 0xb000, however (again, this has been exhaustively tested).
4926  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4927  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4928  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4929  Y = DAG.getConstant(0xb000, MVT::i32);
4930  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4931  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4932  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4933  // Convert back to short.
4934  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4935  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4936  return X;
4937}
4938
4939static SDValue
4940LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4941  SDValue N2;
4942  // Convert to float.
4943  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4944  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4945  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4946  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4947  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4948  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4949
4950  // Use reciprocal estimate and one refinement step.
4951  // float4 recip = vrecpeq_f32(yf);
4952  // recip *= vrecpsq_f32(yf, recip);
4953  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4954                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4955  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4956                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4957                   N1, N2);
4958  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4959  // Because short has a smaller range than ushort, we can actually get away
4960  // with only a single newton step.  This requires that we use a weird bias
4961  // of 89, however (again, this has been exhaustively tested).
4962  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4963  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4964  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4965  N1 = DAG.getConstant(0x89, MVT::i32);
4966  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4967  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4968  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4969  // Convert back to integer and return.
4970  // return vmovn_s32(vcvt_s32_f32(result));
4971  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4972  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4973  return N0;
4974}
4975
4976static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4977  EVT VT = Op.getValueType();
4978  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4979         "unexpected type for custom-lowering ISD::SDIV");
4980
4981  DebugLoc dl = Op.getDebugLoc();
4982  SDValue N0 = Op.getOperand(0);
4983  SDValue N1 = Op.getOperand(1);
4984  SDValue N2, N3;
4985
4986  if (VT == MVT::v8i8) {
4987    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4988    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4989
4990    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4991                     DAG.getIntPtrConstant(4));
4992    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4993                     DAG.getIntPtrConstant(4));
4994    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4995                     DAG.getIntPtrConstant(0));
4996    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4997                     DAG.getIntPtrConstant(0));
4998
4999    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5000    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5001
5002    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5003    N0 = LowerCONCAT_VECTORS(N0, DAG);
5004
5005    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5006    return N0;
5007  }
5008  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5009}
5010
5011static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5012  EVT VT = Op.getValueType();
5013  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5014         "unexpected type for custom-lowering ISD::UDIV");
5015
5016  DebugLoc dl = Op.getDebugLoc();
5017  SDValue N0 = Op.getOperand(0);
5018  SDValue N1 = Op.getOperand(1);
5019  SDValue N2, N3;
5020
5021  if (VT == MVT::v8i8) {
5022    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5023    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5024
5025    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5026                     DAG.getIntPtrConstant(4));
5027    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5028                     DAG.getIntPtrConstant(4));
5029    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5030                     DAG.getIntPtrConstant(0));
5031    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5032                     DAG.getIntPtrConstant(0));
5033
5034    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5035    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5036
5037    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5038    N0 = LowerCONCAT_VECTORS(N0, DAG);
5039
5040    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5041                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5042                     N0);
5043    return N0;
5044  }
5045
5046  // v4i16 sdiv ... Convert to float.
5047  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5048  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5049  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5050  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5051  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5052  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5053
5054  // Use reciprocal estimate and two refinement steps.
5055  // float4 recip = vrecpeq_f32(yf);
5056  // recip *= vrecpsq_f32(yf, recip);
5057  // recip *= vrecpsq_f32(yf, recip);
5058  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5059                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5060  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5061                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5062                   BN1, N2);
5063  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5064  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5065                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5066                   BN1, N2);
5067  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5068  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5069  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5070  // and that it will never cause us to return an answer too large).
5071  // float4 result = as_float4(as_int4(xf*recip) + 2);
5072  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5073  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5074  N1 = DAG.getConstant(2, MVT::i32);
5075  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5076  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5077  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5078  // Convert back to integer and return.
5079  // return vmovn_u32(vcvt_s32_f32(result));
5080  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5081  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5082  return N0;
5083}
5084
5085static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5086  EVT VT = Op.getNode()->getValueType(0);
5087  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5088
5089  unsigned Opc;
5090  bool ExtraOp = false;
5091  switch (Op.getOpcode()) {
5092  default: llvm_unreachable("Invalid code");
5093  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5094  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5095  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5096  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5097  }
5098
5099  if (!ExtraOp)
5100    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5101                       Op.getOperand(1));
5102  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5103                     Op.getOperand(1), Op.getOperand(2));
5104}
5105
5106static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5107  // Monotonic load/store is legal for all targets
5108  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5109    return Op;
5110
5111  // Aquire/Release load/store is not legal for targets without a
5112  // dmb or equivalent available.
5113  return SDValue();
5114}
5115
5116
5117static void
5118ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5119                    SelectionDAG &DAG, unsigned NewOp) {
5120  DebugLoc dl = Node->getDebugLoc();
5121  assert (Node->getValueType(0) == MVT::i64 &&
5122          "Only know how to expand i64 atomics");
5123
5124  SmallVector<SDValue, 6> Ops;
5125  Ops.push_back(Node->getOperand(0)); // Chain
5126  Ops.push_back(Node->getOperand(1)); // Ptr
5127  // Low part of Val1
5128  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5129                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5130  // High part of Val1
5131  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5132                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5133  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5134    // High part of Val1
5135    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5136                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5137    // High part of Val2
5138    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5139                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5140  }
5141  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5142  SDValue Result =
5143    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5144                            cast<MemSDNode>(Node)->getMemOperand());
5145  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5146  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5147  Results.push_back(Result.getValue(2));
5148}
5149
5150SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5151  switch (Op.getOpcode()) {
5152  default: llvm_unreachable("Don't know how to custom lower this!");
5153  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5154  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5155  case ISD::GlobalAddress:
5156    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5157      LowerGlobalAddressELF(Op, DAG);
5158  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5159  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5160  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5161  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5162  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5163  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5164  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5165  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5166  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5167  case ISD::SINT_TO_FP:
5168  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5169  case ISD::FP_TO_SINT:
5170  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5171  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5172  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5173  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5174  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5175  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5176  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5177  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5178                                                               Subtarget);
5179  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5180  case ISD::SHL:
5181  case ISD::SRL:
5182  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5183  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5184  case ISD::SRL_PARTS:
5185  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5186  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5187  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5188  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5189  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5190  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5191  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5192  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5193  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5194  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5195  case ISD::MUL:           return LowerMUL(Op, DAG);
5196  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5197  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5198  case ISD::ADDC:
5199  case ISD::ADDE:
5200  case ISD::SUBC:
5201  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5202  case ISD::ATOMIC_LOAD:
5203  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5204  }
5205}
5206
5207/// ReplaceNodeResults - Replace the results of node with an illegal result
5208/// type with new values built out of custom code.
5209void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5210                                           SmallVectorImpl<SDValue>&Results,
5211                                           SelectionDAG &DAG) const {
5212  SDValue Res;
5213  switch (N->getOpcode()) {
5214  default:
5215    llvm_unreachable("Don't know how to custom expand this!");
5216  case ISD::BITCAST:
5217    Res = ExpandBITCAST(N, DAG);
5218    break;
5219  case ISD::SRL:
5220  case ISD::SRA:
5221    Res = Expand64BitShift(N, DAG, Subtarget);
5222    break;
5223  case ISD::ATOMIC_LOAD_ADD:
5224    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5225    return;
5226  case ISD::ATOMIC_LOAD_AND:
5227    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5228    return;
5229  case ISD::ATOMIC_LOAD_NAND:
5230    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5231    return;
5232  case ISD::ATOMIC_LOAD_OR:
5233    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5234    return;
5235  case ISD::ATOMIC_LOAD_SUB:
5236    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5237    return;
5238  case ISD::ATOMIC_LOAD_XOR:
5239    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5240    return;
5241  case ISD::ATOMIC_SWAP:
5242    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5243    return;
5244  case ISD::ATOMIC_CMP_SWAP:
5245    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5246    return;
5247  }
5248  if (Res.getNode())
5249    Results.push_back(Res);
5250}
5251
5252//===----------------------------------------------------------------------===//
5253//                           ARM Scheduler Hooks
5254//===----------------------------------------------------------------------===//
5255
5256MachineBasicBlock *
5257ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5258                                     MachineBasicBlock *BB,
5259                                     unsigned Size) const {
5260  unsigned dest    = MI->getOperand(0).getReg();
5261  unsigned ptr     = MI->getOperand(1).getReg();
5262  unsigned oldval  = MI->getOperand(2).getReg();
5263  unsigned newval  = MI->getOperand(3).getReg();
5264  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5265  DebugLoc dl = MI->getDebugLoc();
5266  bool isThumb2 = Subtarget->isThumb2();
5267
5268  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5269  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5270    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5271    (const TargetRegisterClass*)&ARM::GPRRegClass);
5272
5273  if (isThumb2) {
5274    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5275    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5276    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5277  }
5278
5279  unsigned ldrOpc, strOpc;
5280  switch (Size) {
5281  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5282  case 1:
5283    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5284    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5285    break;
5286  case 2:
5287    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5288    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5289    break;
5290  case 4:
5291    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5292    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5293    break;
5294  }
5295
5296  MachineFunction *MF = BB->getParent();
5297  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5298  MachineFunction::iterator It = BB;
5299  ++It; // insert the new blocks after the current block
5300
5301  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5302  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5303  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5304  MF->insert(It, loop1MBB);
5305  MF->insert(It, loop2MBB);
5306  MF->insert(It, exitMBB);
5307
5308  // Transfer the remainder of BB and its successor edges to exitMBB.
5309  exitMBB->splice(exitMBB->begin(), BB,
5310                  llvm::next(MachineBasicBlock::iterator(MI)),
5311                  BB->end());
5312  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5313
5314  //  thisMBB:
5315  //   ...
5316  //   fallthrough --> loop1MBB
5317  BB->addSuccessor(loop1MBB);
5318
5319  // loop1MBB:
5320  //   ldrex dest, [ptr]
5321  //   cmp dest, oldval
5322  //   bne exitMBB
5323  BB = loop1MBB;
5324  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5325  if (ldrOpc == ARM::t2LDREX)
5326    MIB.addImm(0);
5327  AddDefaultPred(MIB);
5328  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5329                 .addReg(dest).addReg(oldval));
5330  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5331    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5332  BB->addSuccessor(loop2MBB);
5333  BB->addSuccessor(exitMBB);
5334
5335  // loop2MBB:
5336  //   strex scratch, newval, [ptr]
5337  //   cmp scratch, #0
5338  //   bne loop1MBB
5339  BB = loop2MBB;
5340  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5341  if (strOpc == ARM::t2STREX)
5342    MIB.addImm(0);
5343  AddDefaultPred(MIB);
5344  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5345                 .addReg(scratch).addImm(0));
5346  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5347    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5348  BB->addSuccessor(loop1MBB);
5349  BB->addSuccessor(exitMBB);
5350
5351  //  exitMBB:
5352  //   ...
5353  BB = exitMBB;
5354
5355  MI->eraseFromParent();   // The instruction is gone now.
5356
5357  return BB;
5358}
5359
5360MachineBasicBlock *
5361ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5362                                    unsigned Size, unsigned BinOpcode) const {
5363  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5364  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5365
5366  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5367  MachineFunction *MF = BB->getParent();
5368  MachineFunction::iterator It = BB;
5369  ++It;
5370
5371  unsigned dest = MI->getOperand(0).getReg();
5372  unsigned ptr = MI->getOperand(1).getReg();
5373  unsigned incr = MI->getOperand(2).getReg();
5374  DebugLoc dl = MI->getDebugLoc();
5375  bool isThumb2 = Subtarget->isThumb2();
5376
5377  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5378  if (isThumb2) {
5379    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5380    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5381  }
5382
5383  unsigned ldrOpc, strOpc;
5384  switch (Size) {
5385  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5386  case 1:
5387    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5388    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5389    break;
5390  case 2:
5391    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5392    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5393    break;
5394  case 4:
5395    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5396    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5397    break;
5398  }
5399
5400  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5401  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5402  MF->insert(It, loopMBB);
5403  MF->insert(It, exitMBB);
5404
5405  // Transfer the remainder of BB and its successor edges to exitMBB.
5406  exitMBB->splice(exitMBB->begin(), BB,
5407                  llvm::next(MachineBasicBlock::iterator(MI)),
5408                  BB->end());
5409  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5410
5411  const TargetRegisterClass *TRC = isThumb2 ?
5412    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5413    (const TargetRegisterClass*)&ARM::GPRRegClass;
5414  unsigned scratch = MRI.createVirtualRegister(TRC);
5415  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5416
5417  //  thisMBB:
5418  //   ...
5419  //   fallthrough --> loopMBB
5420  BB->addSuccessor(loopMBB);
5421
5422  //  loopMBB:
5423  //   ldrex dest, ptr
5424  //   <binop> scratch2, dest, incr
5425  //   strex scratch, scratch2, ptr
5426  //   cmp scratch, #0
5427  //   bne- loopMBB
5428  //   fallthrough --> exitMBB
5429  BB = loopMBB;
5430  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5431  if (ldrOpc == ARM::t2LDREX)
5432    MIB.addImm(0);
5433  AddDefaultPred(MIB);
5434  if (BinOpcode) {
5435    // operand order needs to go the other way for NAND
5436    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5437      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5438                     addReg(incr).addReg(dest)).addReg(0);
5439    else
5440      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5441                     addReg(dest).addReg(incr)).addReg(0);
5442  }
5443
5444  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5445  if (strOpc == ARM::t2STREX)
5446    MIB.addImm(0);
5447  AddDefaultPred(MIB);
5448  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5449                 .addReg(scratch).addImm(0));
5450  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5451    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5452
5453  BB->addSuccessor(loopMBB);
5454  BB->addSuccessor(exitMBB);
5455
5456  //  exitMBB:
5457  //   ...
5458  BB = exitMBB;
5459
5460  MI->eraseFromParent();   // The instruction is gone now.
5461
5462  return BB;
5463}
5464
5465MachineBasicBlock *
5466ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5467                                          MachineBasicBlock *BB,
5468                                          unsigned Size,
5469                                          bool signExtend,
5470                                          ARMCC::CondCodes Cond) const {
5471  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5472
5473  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5474  MachineFunction *MF = BB->getParent();
5475  MachineFunction::iterator It = BB;
5476  ++It;
5477
5478  unsigned dest = MI->getOperand(0).getReg();
5479  unsigned ptr = MI->getOperand(1).getReg();
5480  unsigned incr = MI->getOperand(2).getReg();
5481  unsigned oldval = dest;
5482  DebugLoc dl = MI->getDebugLoc();
5483  bool isThumb2 = Subtarget->isThumb2();
5484
5485  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5486  if (isThumb2) {
5487    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5488    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5489  }
5490
5491  unsigned ldrOpc, strOpc, extendOpc;
5492  switch (Size) {
5493  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5494  case 1:
5495    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5496    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5497    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5498    break;
5499  case 2:
5500    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5501    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5502    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5503    break;
5504  case 4:
5505    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5506    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5507    extendOpc = 0;
5508    break;
5509  }
5510
5511  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5512  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5513  MF->insert(It, loopMBB);
5514  MF->insert(It, exitMBB);
5515
5516  // Transfer the remainder of BB and its successor edges to exitMBB.
5517  exitMBB->splice(exitMBB->begin(), BB,
5518                  llvm::next(MachineBasicBlock::iterator(MI)),
5519                  BB->end());
5520  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5521
5522  const TargetRegisterClass *TRC = isThumb2 ?
5523    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5524    (const TargetRegisterClass*)&ARM::GPRRegClass;
5525  unsigned scratch = MRI.createVirtualRegister(TRC);
5526  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5527
5528  //  thisMBB:
5529  //   ...
5530  //   fallthrough --> loopMBB
5531  BB->addSuccessor(loopMBB);
5532
5533  //  loopMBB:
5534  //   ldrex dest, ptr
5535  //   (sign extend dest, if required)
5536  //   cmp dest, incr
5537  //   cmov.cond scratch2, dest, incr
5538  //   strex scratch, scratch2, ptr
5539  //   cmp scratch, #0
5540  //   bne- loopMBB
5541  //   fallthrough --> exitMBB
5542  BB = loopMBB;
5543  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5544  if (ldrOpc == ARM::t2LDREX)
5545    MIB.addImm(0);
5546  AddDefaultPred(MIB);
5547
5548  // Sign extend the value, if necessary.
5549  if (signExtend && extendOpc) {
5550    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5551    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5552                     .addReg(dest)
5553                     .addImm(0));
5554  }
5555
5556  // Build compare and cmov instructions.
5557  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5558                 .addReg(oldval).addReg(incr));
5559  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5560         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5561
5562  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5563  if (strOpc == ARM::t2STREX)
5564    MIB.addImm(0);
5565  AddDefaultPred(MIB);
5566  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5567                 .addReg(scratch).addImm(0));
5568  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5569    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5570
5571  BB->addSuccessor(loopMBB);
5572  BB->addSuccessor(exitMBB);
5573
5574  //  exitMBB:
5575  //   ...
5576  BB = exitMBB;
5577
5578  MI->eraseFromParent();   // The instruction is gone now.
5579
5580  return BB;
5581}
5582
5583MachineBasicBlock *
5584ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5585                                      unsigned Op1, unsigned Op2,
5586                                      bool NeedsCarry, bool IsCmpxchg) const {
5587  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5588  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5589
5590  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5591  MachineFunction *MF = BB->getParent();
5592  MachineFunction::iterator It = BB;
5593  ++It;
5594
5595  unsigned destlo = MI->getOperand(0).getReg();
5596  unsigned desthi = MI->getOperand(1).getReg();
5597  unsigned ptr = MI->getOperand(2).getReg();
5598  unsigned vallo = MI->getOperand(3).getReg();
5599  unsigned valhi = MI->getOperand(4).getReg();
5600  DebugLoc dl = MI->getDebugLoc();
5601  bool isThumb2 = Subtarget->isThumb2();
5602
5603  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5604  if (isThumb2) {
5605    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5606    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5607    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5608  }
5609
5610  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5611  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5612
5613  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5614  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5615  if (IsCmpxchg) {
5616    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5617    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5618  }
5619  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5620  MF->insert(It, loopMBB);
5621  if (IsCmpxchg) {
5622    MF->insert(It, contBB);
5623    MF->insert(It, cont2BB);
5624  }
5625  MF->insert(It, exitMBB);
5626
5627  // Transfer the remainder of BB and its successor edges to exitMBB.
5628  exitMBB->splice(exitMBB->begin(), BB,
5629                  llvm::next(MachineBasicBlock::iterator(MI)),
5630                  BB->end());
5631  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5632
5633  const TargetRegisterClass *TRC = isThumb2 ?
5634    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5635    (const TargetRegisterClass*)&ARM::GPRRegClass;
5636  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5637
5638  //  thisMBB:
5639  //   ...
5640  //   fallthrough --> loopMBB
5641  BB->addSuccessor(loopMBB);
5642
5643  //  loopMBB:
5644  //   ldrexd r2, r3, ptr
5645  //   <binopa> r0, r2, incr
5646  //   <binopb> r1, r3, incr
5647  //   strexd storesuccess, r0, r1, ptr
5648  //   cmp storesuccess, #0
5649  //   bne- loopMBB
5650  //   fallthrough --> exitMBB
5651  //
5652  // Note that the registers are explicitly specified because there is not any
5653  // way to force the register allocator to allocate a register pair.
5654  //
5655  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5656  // need to properly enforce the restriction that the two output registers
5657  // for ldrexd must be different.
5658  BB = loopMBB;
5659  // Load
5660  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5661                 .addReg(ARM::R2, RegState::Define)
5662                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5663  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5664  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5665  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5666
5667  if (IsCmpxchg) {
5668    // Add early exit
5669    for (unsigned i = 0; i < 2; i++) {
5670      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5671                                                         ARM::CMPrr))
5672                     .addReg(i == 0 ? destlo : desthi)
5673                     .addReg(i == 0 ? vallo : valhi));
5674      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5675        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5676      BB->addSuccessor(exitMBB);
5677      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5678      BB = (i == 0 ? contBB : cont2BB);
5679    }
5680
5681    // Copy to physregs for strexd
5682    unsigned setlo = MI->getOperand(5).getReg();
5683    unsigned sethi = MI->getOperand(6).getReg();
5684    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5685    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5686  } else if (Op1) {
5687    // Perform binary operation
5688    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5689                   .addReg(destlo).addReg(vallo))
5690        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5691    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5692                   .addReg(desthi).addReg(valhi)).addReg(0);
5693  } else {
5694    // Copy to physregs for strexd
5695    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5696    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5697  }
5698
5699  // Store
5700  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5701                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5702  // Cmp+jump
5703  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5704                 .addReg(storesuccess).addImm(0));
5705  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5706    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5707
5708  BB->addSuccessor(loopMBB);
5709  BB->addSuccessor(exitMBB);
5710
5711  //  exitMBB:
5712  //   ...
5713  BB = exitMBB;
5714
5715  MI->eraseFromParent();   // The instruction is gone now.
5716
5717  return BB;
5718}
5719
5720/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5721/// registers the function context.
5722void ARMTargetLowering::
5723SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5724                       MachineBasicBlock *DispatchBB, int FI) const {
5725  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5726  DebugLoc dl = MI->getDebugLoc();
5727  MachineFunction *MF = MBB->getParent();
5728  MachineRegisterInfo *MRI = &MF->getRegInfo();
5729  MachineConstantPool *MCP = MF->getConstantPool();
5730  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5731  const Function *F = MF->getFunction();
5732
5733  bool isThumb = Subtarget->isThumb();
5734  bool isThumb2 = Subtarget->isThumb2();
5735
5736  unsigned PCLabelId = AFI->createPICLabelUId();
5737  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5738  ARMConstantPoolValue *CPV =
5739    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5740  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5741
5742  const TargetRegisterClass *TRC = isThumb ?
5743    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5744    (const TargetRegisterClass*)&ARM::GPRRegClass;
5745
5746  // Grab constant pool and fixed stack memory operands.
5747  MachineMemOperand *CPMMO =
5748    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5749                             MachineMemOperand::MOLoad, 4, 4);
5750
5751  MachineMemOperand *FIMMOSt =
5752    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5753                             MachineMemOperand::MOStore, 4, 4);
5754
5755  // Load the address of the dispatch MBB into the jump buffer.
5756  if (isThumb2) {
5757    // Incoming value: jbuf
5758    //   ldr.n  r5, LCPI1_1
5759    //   orr    r5, r5, #1
5760    //   add    r5, pc
5761    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5762    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5763    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5764                   .addConstantPoolIndex(CPI)
5765                   .addMemOperand(CPMMO));
5766    // Set the low bit because of thumb mode.
5767    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5768    AddDefaultCC(
5769      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5770                     .addReg(NewVReg1, RegState::Kill)
5771                     .addImm(0x01)));
5772    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5773    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5774      .addReg(NewVReg2, RegState::Kill)
5775      .addImm(PCLabelId);
5776    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5777                   .addReg(NewVReg3, RegState::Kill)
5778                   .addFrameIndex(FI)
5779                   .addImm(36)  // &jbuf[1] :: pc
5780                   .addMemOperand(FIMMOSt));
5781  } else if (isThumb) {
5782    // Incoming value: jbuf
5783    //   ldr.n  r1, LCPI1_4
5784    //   add    r1, pc
5785    //   mov    r2, #1
5786    //   orrs   r1, r2
5787    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5788    //   str    r1, [r2]
5789    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5790    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5791                   .addConstantPoolIndex(CPI)
5792                   .addMemOperand(CPMMO));
5793    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5794    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5795      .addReg(NewVReg1, RegState::Kill)
5796      .addImm(PCLabelId);
5797    // Set the low bit because of thumb mode.
5798    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5799    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5800                   .addReg(ARM::CPSR, RegState::Define)
5801                   .addImm(1));
5802    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5803    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5804                   .addReg(ARM::CPSR, RegState::Define)
5805                   .addReg(NewVReg2, RegState::Kill)
5806                   .addReg(NewVReg3, RegState::Kill));
5807    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5808    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5809                   .addFrameIndex(FI)
5810                   .addImm(36)); // &jbuf[1] :: pc
5811    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5812                   .addReg(NewVReg4, RegState::Kill)
5813                   .addReg(NewVReg5, RegState::Kill)
5814                   .addImm(0)
5815                   .addMemOperand(FIMMOSt));
5816  } else {
5817    // Incoming value: jbuf
5818    //   ldr  r1, LCPI1_1
5819    //   add  r1, pc, r1
5820    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5821    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5822    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5823                   .addConstantPoolIndex(CPI)
5824                   .addImm(0)
5825                   .addMemOperand(CPMMO));
5826    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5827    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5828                   .addReg(NewVReg1, RegState::Kill)
5829                   .addImm(PCLabelId));
5830    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5831                   .addReg(NewVReg2, RegState::Kill)
5832                   .addFrameIndex(FI)
5833                   .addImm(36)  // &jbuf[1] :: pc
5834                   .addMemOperand(FIMMOSt));
5835  }
5836}
5837
5838MachineBasicBlock *ARMTargetLowering::
5839EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5840  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5841  DebugLoc dl = MI->getDebugLoc();
5842  MachineFunction *MF = MBB->getParent();
5843  MachineRegisterInfo *MRI = &MF->getRegInfo();
5844  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5845  MachineFrameInfo *MFI = MF->getFrameInfo();
5846  int FI = MFI->getFunctionContextIndex();
5847
5848  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
5849    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5850    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
5851
5852  // Get a mapping of the call site numbers to all of the landing pads they're
5853  // associated with.
5854  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5855  unsigned MaxCSNum = 0;
5856  MachineModuleInfo &MMI = MF->getMMI();
5857  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
5858       ++BB) {
5859    if (!BB->isLandingPad()) continue;
5860
5861    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5862    // pad.
5863    for (MachineBasicBlock::iterator
5864           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5865      if (!II->isEHLabel()) continue;
5866
5867      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5868      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5869
5870      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5871      for (SmallVectorImpl<unsigned>::iterator
5872             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5873           CSI != CSE; ++CSI) {
5874        CallSiteNumToLPad[*CSI].push_back(BB);
5875        MaxCSNum = std::max(MaxCSNum, *CSI);
5876      }
5877      break;
5878    }
5879  }
5880
5881  // Get an ordered list of the machine basic blocks for the jump table.
5882  std::vector<MachineBasicBlock*> LPadList;
5883  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5884  LPadList.reserve(CallSiteNumToLPad.size());
5885  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5886    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5887    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5888           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5889      LPadList.push_back(*II);
5890      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5891    }
5892  }
5893
5894  assert(!LPadList.empty() &&
5895         "No landing pad destinations for the dispatch jump table!");
5896
5897  // Create the jump table and associated information.
5898  MachineJumpTableInfo *JTI =
5899    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5900  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5901  unsigned UId = AFI->createJumpTableUId();
5902
5903  // Create the MBBs for the dispatch code.
5904
5905  // Shove the dispatch's address into the return slot in the function context.
5906  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5907  DispatchBB->setIsLandingPad();
5908
5909  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5910  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5911  DispatchBB->addSuccessor(TrapBB);
5912
5913  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5914  DispatchBB->addSuccessor(DispContBB);
5915
5916  // Insert and MBBs.
5917  MF->insert(MF->end(), DispatchBB);
5918  MF->insert(MF->end(), DispContBB);
5919  MF->insert(MF->end(), TrapBB);
5920
5921  // Insert code into the entry block that creates and registers the function
5922  // context.
5923  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5924
5925  MachineMemOperand *FIMMOLd =
5926    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5927                             MachineMemOperand::MOLoad |
5928                             MachineMemOperand::MOVolatile, 4, 4);
5929
5930  if (AFI->isThumb1OnlyFunction())
5931    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5932  else if (!Subtarget->hasVFP2())
5933    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5934  else
5935    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5936
5937  unsigned NumLPads = LPadList.size();
5938  if (Subtarget->isThumb2()) {
5939    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5940    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5941                   .addFrameIndex(FI)
5942                   .addImm(4)
5943                   .addMemOperand(FIMMOLd));
5944
5945    if (NumLPads < 256) {
5946      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5947                     .addReg(NewVReg1)
5948                     .addImm(LPadList.size()));
5949    } else {
5950      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5951      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5952                     .addImm(NumLPads & 0xFFFF));
5953
5954      unsigned VReg2 = VReg1;
5955      if ((NumLPads & 0xFFFF0000) != 0) {
5956        VReg2 = MRI->createVirtualRegister(TRC);
5957        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5958                       .addReg(VReg1)
5959                       .addImm(NumLPads >> 16));
5960      }
5961
5962      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5963                     .addReg(NewVReg1)
5964                     .addReg(VReg2));
5965    }
5966
5967    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5968      .addMBB(TrapBB)
5969      .addImm(ARMCC::HI)
5970      .addReg(ARM::CPSR);
5971
5972    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5973    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5974                   .addJumpTableIndex(MJTI)
5975                   .addImm(UId));
5976
5977    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5978    AddDefaultCC(
5979      AddDefaultPred(
5980        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5981        .addReg(NewVReg3, RegState::Kill)
5982        .addReg(NewVReg1)
5983        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5984
5985    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5986      .addReg(NewVReg4, RegState::Kill)
5987      .addReg(NewVReg1)
5988      .addJumpTableIndex(MJTI)
5989      .addImm(UId);
5990  } else if (Subtarget->isThumb()) {
5991    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5992    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5993                   .addFrameIndex(FI)
5994                   .addImm(1)
5995                   .addMemOperand(FIMMOLd));
5996
5997    if (NumLPads < 256) {
5998      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5999                     .addReg(NewVReg1)
6000                     .addImm(NumLPads));
6001    } else {
6002      MachineConstantPool *ConstantPool = MF->getConstantPool();
6003      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6004      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6005
6006      // MachineConstantPool wants an explicit alignment.
6007      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6008      if (Align == 0)
6009        Align = getTargetData()->getTypeAllocSize(C->getType());
6010      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6011
6012      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6013      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6014                     .addReg(VReg1, RegState::Define)
6015                     .addConstantPoolIndex(Idx));
6016      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6017                     .addReg(NewVReg1)
6018                     .addReg(VReg1));
6019    }
6020
6021    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6022      .addMBB(TrapBB)
6023      .addImm(ARMCC::HI)
6024      .addReg(ARM::CPSR);
6025
6026    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6027    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6028                   .addReg(ARM::CPSR, RegState::Define)
6029                   .addReg(NewVReg1)
6030                   .addImm(2));
6031
6032    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6033    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6034                   .addJumpTableIndex(MJTI)
6035                   .addImm(UId));
6036
6037    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6038    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6039                   .addReg(ARM::CPSR, RegState::Define)
6040                   .addReg(NewVReg2, RegState::Kill)
6041                   .addReg(NewVReg3));
6042
6043    MachineMemOperand *JTMMOLd =
6044      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6045                               MachineMemOperand::MOLoad, 4, 4);
6046
6047    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6048    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6049                   .addReg(NewVReg4, RegState::Kill)
6050                   .addImm(0)
6051                   .addMemOperand(JTMMOLd));
6052
6053    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6054    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6055                   .addReg(ARM::CPSR, RegState::Define)
6056                   .addReg(NewVReg5, RegState::Kill)
6057                   .addReg(NewVReg3));
6058
6059    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6060      .addReg(NewVReg6, RegState::Kill)
6061      .addJumpTableIndex(MJTI)
6062      .addImm(UId);
6063  } else {
6064    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6065    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6066                   .addFrameIndex(FI)
6067                   .addImm(4)
6068                   .addMemOperand(FIMMOLd));
6069
6070    if (NumLPads < 256) {
6071      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6072                     .addReg(NewVReg1)
6073                     .addImm(NumLPads));
6074    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6075      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6076      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6077                     .addImm(NumLPads & 0xFFFF));
6078
6079      unsigned VReg2 = VReg1;
6080      if ((NumLPads & 0xFFFF0000) != 0) {
6081        VReg2 = MRI->createVirtualRegister(TRC);
6082        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6083                       .addReg(VReg1)
6084                       .addImm(NumLPads >> 16));
6085      }
6086
6087      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6088                     .addReg(NewVReg1)
6089                     .addReg(VReg2));
6090    } else {
6091      MachineConstantPool *ConstantPool = MF->getConstantPool();
6092      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6093      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6094
6095      // MachineConstantPool wants an explicit alignment.
6096      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6097      if (Align == 0)
6098        Align = getTargetData()->getTypeAllocSize(C->getType());
6099      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6100
6101      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6102      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6103                     .addReg(VReg1, RegState::Define)
6104                     .addConstantPoolIndex(Idx)
6105                     .addImm(0));
6106      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6107                     .addReg(NewVReg1)
6108                     .addReg(VReg1, RegState::Kill));
6109    }
6110
6111    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6112      .addMBB(TrapBB)
6113      .addImm(ARMCC::HI)
6114      .addReg(ARM::CPSR);
6115
6116    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6117    AddDefaultCC(
6118      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6119                     .addReg(NewVReg1)
6120                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6121    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6122    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6123                   .addJumpTableIndex(MJTI)
6124                   .addImm(UId));
6125
6126    MachineMemOperand *JTMMOLd =
6127      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6128                               MachineMemOperand::MOLoad, 4, 4);
6129    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6130    AddDefaultPred(
6131      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6132      .addReg(NewVReg3, RegState::Kill)
6133      .addReg(NewVReg4)
6134      .addImm(0)
6135      .addMemOperand(JTMMOLd));
6136
6137    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6138      .addReg(NewVReg5, RegState::Kill)
6139      .addReg(NewVReg4)
6140      .addJumpTableIndex(MJTI)
6141      .addImm(UId);
6142  }
6143
6144  // Add the jump table entries as successors to the MBB.
6145  MachineBasicBlock *PrevMBB = 0;
6146  for (std::vector<MachineBasicBlock*>::iterator
6147         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6148    MachineBasicBlock *CurMBB = *I;
6149    if (PrevMBB != CurMBB)
6150      DispContBB->addSuccessor(CurMBB);
6151    PrevMBB = CurMBB;
6152  }
6153
6154  // N.B. the order the invoke BBs are processed in doesn't matter here.
6155  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6156  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6157  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6158  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6159  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6160         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6161    MachineBasicBlock *BB = *I;
6162
6163    // Remove the landing pad successor from the invoke block and replace it
6164    // with the new dispatch block.
6165    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6166                                                  BB->succ_end());
6167    while (!Successors.empty()) {
6168      MachineBasicBlock *SMBB = Successors.pop_back_val();
6169      if (SMBB->isLandingPad()) {
6170        BB->removeSuccessor(SMBB);
6171        MBBLPads.push_back(SMBB);
6172      }
6173    }
6174
6175    BB->addSuccessor(DispatchBB);
6176
6177    // Find the invoke call and mark all of the callee-saved registers as
6178    // 'implicit defined' so that they're spilled. This prevents code from
6179    // moving instructions to before the EH block, where they will never be
6180    // executed.
6181    for (MachineBasicBlock::reverse_iterator
6182           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6183      if (!II->isCall()) continue;
6184
6185      DenseMap<unsigned, bool> DefRegs;
6186      for (MachineInstr::mop_iterator
6187             OI = II->operands_begin(), OE = II->operands_end();
6188           OI != OE; ++OI) {
6189        if (!OI->isReg()) continue;
6190        DefRegs[OI->getReg()] = true;
6191      }
6192
6193      MachineInstrBuilder MIB(&*II);
6194
6195      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6196        unsigned Reg = SavedRegs[i];
6197        if (Subtarget->isThumb2() &&
6198            !ARM::tGPRRegClass.contains(Reg) &&
6199            !ARM::hGPRRegClass.contains(Reg))
6200          continue;
6201        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6202          continue;
6203        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6204          continue;
6205        if (!DefRegs[Reg])
6206          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6207      }
6208
6209      break;
6210    }
6211  }
6212
6213  // Mark all former landing pads as non-landing pads. The dispatch is the only
6214  // landing pad now.
6215  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6216         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6217    (*I)->setIsLandingPad(false);
6218
6219  // The instruction is gone now.
6220  MI->eraseFromParent();
6221
6222  return MBB;
6223}
6224
6225static
6226MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6227  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6228       E = MBB->succ_end(); I != E; ++I)
6229    if (*I != Succ)
6230      return *I;
6231  llvm_unreachable("Expecting a BB with two successors!");
6232}
6233
6234MachineBasicBlock *
6235ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6236                                               MachineBasicBlock *BB) const {
6237  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6238  DebugLoc dl = MI->getDebugLoc();
6239  bool isThumb2 = Subtarget->isThumb2();
6240  switch (MI->getOpcode()) {
6241  default: {
6242    MI->dump();
6243    llvm_unreachable("Unexpected instr type to insert");
6244  }
6245  // The Thumb2 pre-indexed stores have the same MI operands, they just
6246  // define them differently in the .td files from the isel patterns, so
6247  // they need pseudos.
6248  case ARM::t2STR_preidx:
6249    MI->setDesc(TII->get(ARM::t2STR_PRE));
6250    return BB;
6251  case ARM::t2STRB_preidx:
6252    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6253    return BB;
6254  case ARM::t2STRH_preidx:
6255    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6256    return BB;
6257
6258  case ARM::STRi_preidx:
6259  case ARM::STRBi_preidx: {
6260    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6261      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6262    // Decode the offset.
6263    unsigned Offset = MI->getOperand(4).getImm();
6264    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6265    Offset = ARM_AM::getAM2Offset(Offset);
6266    if (isSub)
6267      Offset = -Offset;
6268
6269    MachineMemOperand *MMO = *MI->memoperands_begin();
6270    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6271      .addOperand(MI->getOperand(0))  // Rn_wb
6272      .addOperand(MI->getOperand(1))  // Rt
6273      .addOperand(MI->getOperand(2))  // Rn
6274      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6275      .addOperand(MI->getOperand(5))  // pred
6276      .addOperand(MI->getOperand(6))
6277      .addMemOperand(MMO);
6278    MI->eraseFromParent();
6279    return BB;
6280  }
6281  case ARM::STRr_preidx:
6282  case ARM::STRBr_preidx:
6283  case ARM::STRH_preidx: {
6284    unsigned NewOpc;
6285    switch (MI->getOpcode()) {
6286    default: llvm_unreachable("unexpected opcode!");
6287    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6288    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6289    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6290    }
6291    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6292    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6293      MIB.addOperand(MI->getOperand(i));
6294    MI->eraseFromParent();
6295    return BB;
6296  }
6297  case ARM::ATOMIC_LOAD_ADD_I8:
6298     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6299  case ARM::ATOMIC_LOAD_ADD_I16:
6300     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6301  case ARM::ATOMIC_LOAD_ADD_I32:
6302     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6303
6304  case ARM::ATOMIC_LOAD_AND_I8:
6305     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6306  case ARM::ATOMIC_LOAD_AND_I16:
6307     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6308  case ARM::ATOMIC_LOAD_AND_I32:
6309     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6310
6311  case ARM::ATOMIC_LOAD_OR_I8:
6312     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6313  case ARM::ATOMIC_LOAD_OR_I16:
6314     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6315  case ARM::ATOMIC_LOAD_OR_I32:
6316     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6317
6318  case ARM::ATOMIC_LOAD_XOR_I8:
6319     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6320  case ARM::ATOMIC_LOAD_XOR_I16:
6321     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6322  case ARM::ATOMIC_LOAD_XOR_I32:
6323     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6324
6325  case ARM::ATOMIC_LOAD_NAND_I8:
6326     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6327  case ARM::ATOMIC_LOAD_NAND_I16:
6328     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6329  case ARM::ATOMIC_LOAD_NAND_I32:
6330     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6331
6332  case ARM::ATOMIC_LOAD_SUB_I8:
6333     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6334  case ARM::ATOMIC_LOAD_SUB_I16:
6335     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6336  case ARM::ATOMIC_LOAD_SUB_I32:
6337     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6338
6339  case ARM::ATOMIC_LOAD_MIN_I8:
6340     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6341  case ARM::ATOMIC_LOAD_MIN_I16:
6342     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6343  case ARM::ATOMIC_LOAD_MIN_I32:
6344     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6345
6346  case ARM::ATOMIC_LOAD_MAX_I8:
6347     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6348  case ARM::ATOMIC_LOAD_MAX_I16:
6349     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6350  case ARM::ATOMIC_LOAD_MAX_I32:
6351     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6352
6353  case ARM::ATOMIC_LOAD_UMIN_I8:
6354     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6355  case ARM::ATOMIC_LOAD_UMIN_I16:
6356     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6357  case ARM::ATOMIC_LOAD_UMIN_I32:
6358     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6359
6360  case ARM::ATOMIC_LOAD_UMAX_I8:
6361     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6362  case ARM::ATOMIC_LOAD_UMAX_I16:
6363     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6364  case ARM::ATOMIC_LOAD_UMAX_I32:
6365     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6366
6367  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6368  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6369  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6370
6371  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6372  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6373  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6374
6375
6376  case ARM::ATOMADD6432:
6377    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6378                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6379                              /*NeedsCarry*/ true);
6380  case ARM::ATOMSUB6432:
6381    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6382                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6383                              /*NeedsCarry*/ true);
6384  case ARM::ATOMOR6432:
6385    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6386                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6387  case ARM::ATOMXOR6432:
6388    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6389                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6390  case ARM::ATOMAND6432:
6391    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6392                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6393  case ARM::ATOMSWAP6432:
6394    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6395  case ARM::ATOMCMPXCHG6432:
6396    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6397                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6398                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6399
6400  case ARM::tMOVCCr_pseudo: {
6401    // To "insert" a SELECT_CC instruction, we actually have to insert the
6402    // diamond control-flow pattern.  The incoming instruction knows the
6403    // destination vreg to set, the condition code register to branch on, the
6404    // true/false values to select between, and a branch opcode to use.
6405    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6406    MachineFunction::iterator It = BB;
6407    ++It;
6408
6409    //  thisMBB:
6410    //  ...
6411    //   TrueVal = ...
6412    //   cmpTY ccX, r1, r2
6413    //   bCC copy1MBB
6414    //   fallthrough --> copy0MBB
6415    MachineBasicBlock *thisMBB  = BB;
6416    MachineFunction *F = BB->getParent();
6417    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6418    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6419    F->insert(It, copy0MBB);
6420    F->insert(It, sinkMBB);
6421
6422    // Transfer the remainder of BB and its successor edges to sinkMBB.
6423    sinkMBB->splice(sinkMBB->begin(), BB,
6424                    llvm::next(MachineBasicBlock::iterator(MI)),
6425                    BB->end());
6426    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6427
6428    BB->addSuccessor(copy0MBB);
6429    BB->addSuccessor(sinkMBB);
6430
6431    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6432      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6433
6434    //  copy0MBB:
6435    //   %FalseValue = ...
6436    //   # fallthrough to sinkMBB
6437    BB = copy0MBB;
6438
6439    // Update machine-CFG edges
6440    BB->addSuccessor(sinkMBB);
6441
6442    //  sinkMBB:
6443    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6444    //  ...
6445    BB = sinkMBB;
6446    BuildMI(*BB, BB->begin(), dl,
6447            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6448      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6449      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6450
6451    MI->eraseFromParent();   // The pseudo instruction is gone now.
6452    return BB;
6453  }
6454
6455  case ARM::BCCi64:
6456  case ARM::BCCZi64: {
6457    // If there is an unconditional branch to the other successor, remove it.
6458    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6459
6460    // Compare both parts that make up the double comparison separately for
6461    // equality.
6462    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6463
6464    unsigned LHS1 = MI->getOperand(1).getReg();
6465    unsigned LHS2 = MI->getOperand(2).getReg();
6466    if (RHSisZero) {
6467      AddDefaultPred(BuildMI(BB, dl,
6468                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6469                     .addReg(LHS1).addImm(0));
6470      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6471        .addReg(LHS2).addImm(0)
6472        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6473    } else {
6474      unsigned RHS1 = MI->getOperand(3).getReg();
6475      unsigned RHS2 = MI->getOperand(4).getReg();
6476      AddDefaultPred(BuildMI(BB, dl,
6477                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6478                     .addReg(LHS1).addReg(RHS1));
6479      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6480        .addReg(LHS2).addReg(RHS2)
6481        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6482    }
6483
6484    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6485    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6486    if (MI->getOperand(0).getImm() == ARMCC::NE)
6487      std::swap(destMBB, exitMBB);
6488
6489    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6490      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6491    if (isThumb2)
6492      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6493    else
6494      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6495
6496    MI->eraseFromParent();   // The pseudo instruction is gone now.
6497    return BB;
6498  }
6499
6500  case ARM::Int_eh_sjlj_setjmp:
6501  case ARM::Int_eh_sjlj_setjmp_nofp:
6502  case ARM::tInt_eh_sjlj_setjmp:
6503  case ARM::t2Int_eh_sjlj_setjmp:
6504  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6505    EmitSjLjDispatchBlock(MI, BB);
6506    return BB;
6507
6508  case ARM::ABS:
6509  case ARM::t2ABS: {
6510    // To insert an ABS instruction, we have to insert the
6511    // diamond control-flow pattern.  The incoming instruction knows the
6512    // source vreg to test against 0, the destination vreg to set,
6513    // the condition code register to branch on, the
6514    // true/false values to select between, and a branch opcode to use.
6515    // It transforms
6516    //     V1 = ABS V0
6517    // into
6518    //     V2 = MOVS V0
6519    //     BCC                      (branch to SinkBB if V0 >= 0)
6520    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6521    //     SinkBB: V1 = PHI(V2, V3)
6522    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6523    MachineFunction::iterator BBI = BB;
6524    ++BBI;
6525    MachineFunction *Fn = BB->getParent();
6526    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6527    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6528    Fn->insert(BBI, RSBBB);
6529    Fn->insert(BBI, SinkBB);
6530
6531    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6532    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6533    bool isThumb2 = Subtarget->isThumb2();
6534    MachineRegisterInfo &MRI = Fn->getRegInfo();
6535    // In Thumb mode S must not be specified if source register is the SP or
6536    // PC and if destination register is the SP, so restrict register class
6537    unsigned NewMovDstReg = MRI.createVirtualRegister(isThumb2 ?
6538      (const TargetRegisterClass*)&ARM::rGPRRegClass :
6539      (const TargetRegisterClass*)&ARM::GPRRegClass);
6540    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
6541      (const TargetRegisterClass*)&ARM::rGPRRegClass :
6542      (const TargetRegisterClass*)&ARM::GPRRegClass);
6543
6544    // Transfer the remainder of BB and its successor edges to sinkMBB.
6545    SinkBB->splice(SinkBB->begin(), BB,
6546      llvm::next(MachineBasicBlock::iterator(MI)),
6547      BB->end());
6548    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6549
6550    BB->addSuccessor(RSBBB);
6551    BB->addSuccessor(SinkBB);
6552
6553    // fall through to SinkMBB
6554    RSBBB->addSuccessor(SinkBB);
6555
6556    // insert a movs at the end of BB
6557    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6558      NewMovDstReg)
6559      .addReg(ABSSrcReg, RegState::Kill)
6560      .addImm((unsigned)ARMCC::AL).addReg(0)
6561      .addReg(ARM::CPSR, RegState::Define);
6562
6563    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6564    BuildMI(BB, dl,
6565      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6566      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6567
6568    // insert rsbri in RSBBB
6569    // Note: BCC and rsbri will be converted into predicated rsbmi
6570    // by if-conversion pass
6571    BuildMI(*RSBBB, RSBBB->begin(), dl,
6572      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6573      .addReg(NewMovDstReg, RegState::Kill)
6574      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6575
6576    // insert PHI in SinkBB,
6577    // reuse ABSDstReg to not change uses of ABS instruction
6578    BuildMI(*SinkBB, SinkBB->begin(), dl,
6579      TII->get(ARM::PHI), ABSDstReg)
6580      .addReg(NewRsbDstReg).addMBB(RSBBB)
6581      .addReg(NewMovDstReg).addMBB(BB);
6582
6583    // remove ABS instruction
6584    MI->eraseFromParent();
6585
6586    // return last added BB
6587    return SinkBB;
6588  }
6589  }
6590}
6591
6592void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6593                                                      SDNode *Node) const {
6594  if (!MI->hasPostISelHook()) {
6595    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6596           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6597    return;
6598  }
6599
6600  const MCInstrDesc *MCID = &MI->getDesc();
6601  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6602  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6603  // operand is still set to noreg. If needed, set the optional operand's
6604  // register to CPSR, and remove the redundant implicit def.
6605  //
6606  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6607
6608  // Rename pseudo opcodes.
6609  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6610  if (NewOpc) {
6611    const ARMBaseInstrInfo *TII =
6612      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6613    MCID = &TII->get(NewOpc);
6614
6615    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6616           "converted opcode should be the same except for cc_out");
6617
6618    MI->setDesc(*MCID);
6619
6620    // Add the optional cc_out operand
6621    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6622  }
6623  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6624
6625  // Any ARM instruction that sets the 's' bit should specify an optional
6626  // "cc_out" operand in the last operand position.
6627  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6628    assert(!NewOpc && "Optional cc_out operand required");
6629    return;
6630  }
6631  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6632  // since we already have an optional CPSR def.
6633  bool definesCPSR = false;
6634  bool deadCPSR = false;
6635  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6636       i != e; ++i) {
6637    const MachineOperand &MO = MI->getOperand(i);
6638    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6639      definesCPSR = true;
6640      if (MO.isDead())
6641        deadCPSR = true;
6642      MI->RemoveOperand(i);
6643      break;
6644    }
6645  }
6646  if (!definesCPSR) {
6647    assert(!NewOpc && "Optional cc_out operand required");
6648    return;
6649  }
6650  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6651  if (deadCPSR) {
6652    assert(!MI->getOperand(ccOutIdx).getReg() &&
6653           "expect uninitialized optional cc_out operand");
6654    return;
6655  }
6656
6657  // If this instruction was defined with an optional CPSR def and its dag node
6658  // had a live implicit CPSR def, then activate the optional CPSR def.
6659  MachineOperand &MO = MI->getOperand(ccOutIdx);
6660  MO.setReg(ARM::CPSR);
6661  MO.setIsDef(true);
6662}
6663
6664//===----------------------------------------------------------------------===//
6665//                           ARM Optimization Hooks
6666//===----------------------------------------------------------------------===//
6667
6668static
6669SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6670                            TargetLowering::DAGCombinerInfo &DCI) {
6671  SelectionDAG &DAG = DCI.DAG;
6672  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6673  EVT VT = N->getValueType(0);
6674  unsigned Opc = N->getOpcode();
6675  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6676  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6677  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6678  ISD::CondCode CC = ISD::SETCC_INVALID;
6679
6680  if (isSlctCC) {
6681    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6682  } else {
6683    SDValue CCOp = Slct.getOperand(0);
6684    if (CCOp.getOpcode() == ISD::SETCC)
6685      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6686  }
6687
6688  bool DoXform = false;
6689  bool InvCC = false;
6690  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6691          "Bad input!");
6692
6693  if (LHS.getOpcode() == ISD::Constant &&
6694      cast<ConstantSDNode>(LHS)->isNullValue()) {
6695    DoXform = true;
6696  } else if (CC != ISD::SETCC_INVALID &&
6697             RHS.getOpcode() == ISD::Constant &&
6698             cast<ConstantSDNode>(RHS)->isNullValue()) {
6699    std::swap(LHS, RHS);
6700    SDValue Op0 = Slct.getOperand(0);
6701    EVT OpVT = isSlctCC ? Op0.getValueType() :
6702                          Op0.getOperand(0).getValueType();
6703    bool isInt = OpVT.isInteger();
6704    CC = ISD::getSetCCInverse(CC, isInt);
6705
6706    if (!TLI.isCondCodeLegal(CC, OpVT))
6707      return SDValue();         // Inverse operator isn't legal.
6708
6709    DoXform = true;
6710    InvCC = true;
6711  }
6712
6713  if (DoXform) {
6714    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6715    if (isSlctCC)
6716      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6717                             Slct.getOperand(0), Slct.getOperand(1), CC);
6718    SDValue CCOp = Slct.getOperand(0);
6719    if (InvCC)
6720      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6721                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6722    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6723                       CCOp, OtherOp, Result);
6724  }
6725  return SDValue();
6726}
6727
6728// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6729// (only after legalization).
6730static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6731                                 TargetLowering::DAGCombinerInfo &DCI,
6732                                 const ARMSubtarget *Subtarget) {
6733
6734  // Only perform optimization if after legalize, and if NEON is available. We
6735  // also expected both operands to be BUILD_VECTORs.
6736  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6737      || N0.getOpcode() != ISD::BUILD_VECTOR
6738      || N1.getOpcode() != ISD::BUILD_VECTOR)
6739    return SDValue();
6740
6741  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6742  EVT VT = N->getValueType(0);
6743  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6744    return SDValue();
6745
6746  // Check that the vector operands are of the right form.
6747  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6748  // operands, where N is the size of the formed vector.
6749  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6750  // index such that we have a pair wise add pattern.
6751
6752  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6753  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6754    return SDValue();
6755  SDValue Vec = N0->getOperand(0)->getOperand(0);
6756  SDNode *V = Vec.getNode();
6757  unsigned nextIndex = 0;
6758
6759  // For each operands to the ADD which are BUILD_VECTORs,
6760  // check to see if each of their operands are an EXTRACT_VECTOR with
6761  // the same vector and appropriate index.
6762  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6763    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6764        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6765
6766      SDValue ExtVec0 = N0->getOperand(i);
6767      SDValue ExtVec1 = N1->getOperand(i);
6768
6769      // First operand is the vector, verify its the same.
6770      if (V != ExtVec0->getOperand(0).getNode() ||
6771          V != ExtVec1->getOperand(0).getNode())
6772        return SDValue();
6773
6774      // Second is the constant, verify its correct.
6775      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6776      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6777
6778      // For the constant, we want to see all the even or all the odd.
6779      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6780          || C1->getZExtValue() != nextIndex+1)
6781        return SDValue();
6782
6783      // Increment index.
6784      nextIndex+=2;
6785    } else
6786      return SDValue();
6787  }
6788
6789  // Create VPADDL node.
6790  SelectionDAG &DAG = DCI.DAG;
6791  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6792
6793  // Build operand list.
6794  SmallVector<SDValue, 8> Ops;
6795  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6796                                TLI.getPointerTy()));
6797
6798  // Input is the vector.
6799  Ops.push_back(Vec);
6800
6801  // Get widened type and narrowed type.
6802  MVT widenType;
6803  unsigned numElem = VT.getVectorNumElements();
6804  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6805    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6806    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6807    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6808    default:
6809      llvm_unreachable("Invalid vector element type for padd optimization.");
6810  }
6811
6812  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6813                            widenType, &Ops[0], Ops.size());
6814  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6815}
6816
6817/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6818/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6819/// called with the default operands, and if that fails, with commuted
6820/// operands.
6821static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6822                                          TargetLowering::DAGCombinerInfo &DCI,
6823                                          const ARMSubtarget *Subtarget){
6824
6825  // Attempt to create vpaddl for this add.
6826  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6827  if (Result.getNode())
6828    return Result;
6829
6830  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6831  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6832    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6833    if (Result.getNode()) return Result;
6834  }
6835  return SDValue();
6836}
6837
6838/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6839///
6840static SDValue PerformADDCombine(SDNode *N,
6841                                 TargetLowering::DAGCombinerInfo &DCI,
6842                                 const ARMSubtarget *Subtarget) {
6843  SDValue N0 = N->getOperand(0);
6844  SDValue N1 = N->getOperand(1);
6845
6846  // First try with the default operand order.
6847  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6848  if (Result.getNode())
6849    return Result;
6850
6851  // If that didn't work, try again with the operands commuted.
6852  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6853}
6854
6855/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6856///
6857static SDValue PerformSUBCombine(SDNode *N,
6858                                 TargetLowering::DAGCombinerInfo &DCI) {
6859  SDValue N0 = N->getOperand(0);
6860  SDValue N1 = N->getOperand(1);
6861
6862  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6863  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6864    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6865    if (Result.getNode()) return Result;
6866  }
6867
6868  return SDValue();
6869}
6870
6871/// PerformVMULCombine
6872/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6873/// special multiplier accumulator forwarding.
6874///   vmul d3, d0, d2
6875///   vmla d3, d1, d2
6876/// is faster than
6877///   vadd d3, d0, d1
6878///   vmul d3, d3, d2
6879static SDValue PerformVMULCombine(SDNode *N,
6880                                  TargetLowering::DAGCombinerInfo &DCI,
6881                                  const ARMSubtarget *Subtarget) {
6882  if (!Subtarget->hasVMLxForwarding())
6883    return SDValue();
6884
6885  SelectionDAG &DAG = DCI.DAG;
6886  SDValue N0 = N->getOperand(0);
6887  SDValue N1 = N->getOperand(1);
6888  unsigned Opcode = N0.getOpcode();
6889  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6890      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6891    Opcode = N1.getOpcode();
6892    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6893        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6894      return SDValue();
6895    std::swap(N0, N1);
6896  }
6897
6898  EVT VT = N->getValueType(0);
6899  DebugLoc DL = N->getDebugLoc();
6900  SDValue N00 = N0->getOperand(0);
6901  SDValue N01 = N0->getOperand(1);
6902  return DAG.getNode(Opcode, DL, VT,
6903                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6904                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6905}
6906
6907static SDValue PerformMULCombine(SDNode *N,
6908                                 TargetLowering::DAGCombinerInfo &DCI,
6909                                 const ARMSubtarget *Subtarget) {
6910  SelectionDAG &DAG = DCI.DAG;
6911
6912  if (Subtarget->isThumb1Only())
6913    return SDValue();
6914
6915  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6916    return SDValue();
6917
6918  EVT VT = N->getValueType(0);
6919  if (VT.is64BitVector() || VT.is128BitVector())
6920    return PerformVMULCombine(N, DCI, Subtarget);
6921  if (VT != MVT::i32)
6922    return SDValue();
6923
6924  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6925  if (!C)
6926    return SDValue();
6927
6928  int64_t MulAmt = C->getSExtValue();
6929  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6930
6931  ShiftAmt = ShiftAmt & (32 - 1);
6932  SDValue V = N->getOperand(0);
6933  DebugLoc DL = N->getDebugLoc();
6934
6935  SDValue Res;
6936  MulAmt >>= ShiftAmt;
6937
6938  if (MulAmt >= 0) {
6939    if (isPowerOf2_32(MulAmt - 1)) {
6940      // (mul x, 2^N + 1) => (add (shl x, N), x)
6941      Res = DAG.getNode(ISD::ADD, DL, VT,
6942                        V,
6943                        DAG.getNode(ISD::SHL, DL, VT,
6944                                    V,
6945                                    DAG.getConstant(Log2_32(MulAmt - 1),
6946                                                    MVT::i32)));
6947    } else if (isPowerOf2_32(MulAmt + 1)) {
6948      // (mul x, 2^N - 1) => (sub (shl x, N), x)
6949      Res = DAG.getNode(ISD::SUB, DL, VT,
6950                        DAG.getNode(ISD::SHL, DL, VT,
6951                                    V,
6952                                    DAG.getConstant(Log2_32(MulAmt + 1),
6953                                                    MVT::i32)),
6954                        V);
6955    } else
6956      return SDValue();
6957  } else {
6958    uint64_t MulAmtAbs = -MulAmt;
6959    if (isPowerOf2_32(MulAmtAbs + 1)) {
6960      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6961      Res = DAG.getNode(ISD::SUB, DL, VT,
6962                        V,
6963                        DAG.getNode(ISD::SHL, DL, VT,
6964                                    V,
6965                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
6966                                                    MVT::i32)));
6967    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
6968      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6969      Res = DAG.getNode(ISD::ADD, DL, VT,
6970                        V,
6971                        DAG.getNode(ISD::SHL, DL, VT,
6972                                    V,
6973                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
6974                                                    MVT::i32)));
6975      Res = DAG.getNode(ISD::SUB, DL, VT,
6976                        DAG.getConstant(0, MVT::i32),Res);
6977
6978    } else
6979      return SDValue();
6980  }
6981
6982  if (ShiftAmt != 0)
6983    Res = DAG.getNode(ISD::SHL, DL, VT,
6984                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
6985
6986  // Do not add new nodes to DAG combiner worklist.
6987  DCI.CombineTo(N, Res, false);
6988  return SDValue();
6989}
6990
6991static bool isCMOVWithZeroOrAllOnesLHS(SDValue N, bool AllOnes) {
6992  if (N.getOpcode() != ARMISD::CMOV || !N.getNode()->hasOneUse())
6993    return false;
6994
6995  SDValue FalseVal = N.getOperand(0);
6996  ConstantSDNode *C = dyn_cast<ConstantSDNode>(FalseVal);
6997  if (!C)
6998    return false;
6999  if (AllOnes)
7000    return C->isAllOnesValue();
7001  return C->isNullValue();
7002}
7003
7004/// formConditionalOp - Combine an operation with a conditional move operand
7005/// to form a conditional op. e.g. (or x, (cmov 0, y, cond)) => (or.cond x, y)
7006/// (and x, (cmov -1, y, cond)) => (and.cond, x, y)
7007static SDValue formConditionalOp(SDNode *N, SelectionDAG &DAG,
7008                                 bool Commutable) {
7009  SDValue N0 = N->getOperand(0);
7010  SDValue N1 = N->getOperand(1);
7011
7012  bool isAND = N->getOpcode() == ISD::AND;
7013  bool isCand = isCMOVWithZeroOrAllOnesLHS(N1, isAND);
7014  if (!isCand && Commutable) {
7015    isCand = isCMOVWithZeroOrAllOnesLHS(N0, isAND);
7016    if (isCand)
7017      std::swap(N0, N1);
7018  }
7019  if (!isCand)
7020    return SDValue();
7021
7022  unsigned Opc = 0;
7023  switch (N->getOpcode()) {
7024  default: llvm_unreachable("Unexpected node");
7025  case ISD::AND: Opc = ARMISD::CAND; break;
7026  case ISD::OR:  Opc = ARMISD::COR; break;
7027  case ISD::XOR: Opc = ARMISD::CXOR; break;
7028  }
7029  return DAG.getNode(Opc, N->getDebugLoc(), N->getValueType(0), N0,
7030                     N1.getOperand(1), N1.getOperand(2), N1.getOperand(3),
7031                     N1.getOperand(4));
7032}
7033
7034static SDValue PerformANDCombine(SDNode *N,
7035                                 TargetLowering::DAGCombinerInfo &DCI,
7036                                 const ARMSubtarget *Subtarget) {
7037
7038  // Attempt to use immediate-form VBIC
7039  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7040  DebugLoc dl = N->getDebugLoc();
7041  EVT VT = N->getValueType(0);
7042  SelectionDAG &DAG = DCI.DAG;
7043
7044  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7045    return SDValue();
7046
7047  APInt SplatBits, SplatUndef;
7048  unsigned SplatBitSize;
7049  bool HasAnyUndefs;
7050  if (BVN &&
7051      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7052    if (SplatBitSize <= 64) {
7053      EVT VbicVT;
7054      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7055                                      SplatUndef.getZExtValue(), SplatBitSize,
7056                                      DAG, VbicVT, VT.is128BitVector(),
7057                                      OtherModImm);
7058      if (Val.getNode()) {
7059        SDValue Input =
7060          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7061        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7062        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7063      }
7064    }
7065  }
7066
7067  if (!Subtarget->isThumb1Only()) {
7068    // (and x, (cmov -1, y, cond)) => (and.cond x, y)
7069    SDValue CAND = formConditionalOp(N, DAG, true);
7070    if (CAND.getNode())
7071      return CAND;
7072  }
7073
7074  return SDValue();
7075}
7076
7077/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
7078static SDValue PerformORCombine(SDNode *N,
7079                                TargetLowering::DAGCombinerInfo &DCI,
7080                                const ARMSubtarget *Subtarget) {
7081  // Attempt to use immediate-form VORR
7082  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7083  DebugLoc dl = N->getDebugLoc();
7084  EVT VT = N->getValueType(0);
7085  SelectionDAG &DAG = DCI.DAG;
7086
7087  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7088    return SDValue();
7089
7090  APInt SplatBits, SplatUndef;
7091  unsigned SplatBitSize;
7092  bool HasAnyUndefs;
7093  if (BVN && Subtarget->hasNEON() &&
7094      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7095    if (SplatBitSize <= 64) {
7096      EVT VorrVT;
7097      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7098                                      SplatUndef.getZExtValue(), SplatBitSize,
7099                                      DAG, VorrVT, VT.is128BitVector(),
7100                                      OtherModImm);
7101      if (Val.getNode()) {
7102        SDValue Input =
7103          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7104        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7105        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7106      }
7107    }
7108  }
7109
7110  if (!Subtarget->isThumb1Only()) {
7111    // (or x, (cmov 0, y, cond)) => (or.cond x, y)
7112    SDValue COR = formConditionalOp(N, DAG, true);
7113    if (COR.getNode())
7114      return COR;
7115  }
7116
7117  SDValue N0 = N->getOperand(0);
7118  if (N0.getOpcode() != ISD::AND)
7119    return SDValue();
7120  SDValue N1 = N->getOperand(1);
7121
7122  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7123  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7124      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7125    APInt SplatUndef;
7126    unsigned SplatBitSize;
7127    bool HasAnyUndefs;
7128
7129    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7130    APInt SplatBits0;
7131    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7132                                  HasAnyUndefs) && !HasAnyUndefs) {
7133      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7134      APInt SplatBits1;
7135      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7136                                    HasAnyUndefs) && !HasAnyUndefs &&
7137          SplatBits0 == ~SplatBits1) {
7138        // Canonicalize the vector type to make instruction selection simpler.
7139        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7140        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7141                                     N0->getOperand(1), N0->getOperand(0),
7142                                     N1->getOperand(0));
7143        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7144      }
7145    }
7146  }
7147
7148  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7149  // reasonable.
7150
7151  // BFI is only available on V6T2+
7152  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7153    return SDValue();
7154
7155  DebugLoc DL = N->getDebugLoc();
7156  // 1) or (and A, mask), val => ARMbfi A, val, mask
7157  //      iff (val & mask) == val
7158  //
7159  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7160  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7161  //          && mask == ~mask2
7162  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7163  //          && ~mask == mask2
7164  //  (i.e., copy a bitfield value into another bitfield of the same width)
7165
7166  if (VT != MVT::i32)
7167    return SDValue();
7168
7169  SDValue N00 = N0.getOperand(0);
7170
7171  // The value and the mask need to be constants so we can verify this is
7172  // actually a bitfield set. If the mask is 0xffff, we can do better
7173  // via a movt instruction, so don't use BFI in that case.
7174  SDValue MaskOp = N0.getOperand(1);
7175  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7176  if (!MaskC)
7177    return SDValue();
7178  unsigned Mask = MaskC->getZExtValue();
7179  if (Mask == 0xffff)
7180    return SDValue();
7181  SDValue Res;
7182  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7183  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7184  if (N1C) {
7185    unsigned Val = N1C->getZExtValue();
7186    if ((Val & ~Mask) != Val)
7187      return SDValue();
7188
7189    if (ARM::isBitFieldInvertedMask(Mask)) {
7190      Val >>= CountTrailingZeros_32(~Mask);
7191
7192      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7193                        DAG.getConstant(Val, MVT::i32),
7194                        DAG.getConstant(Mask, MVT::i32));
7195
7196      // Do not add new nodes to DAG combiner worklist.
7197      DCI.CombineTo(N, Res, false);
7198      return SDValue();
7199    }
7200  } else if (N1.getOpcode() == ISD::AND) {
7201    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7202    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7203    if (!N11C)
7204      return SDValue();
7205    unsigned Mask2 = N11C->getZExtValue();
7206
7207    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7208    // as is to match.
7209    if (ARM::isBitFieldInvertedMask(Mask) &&
7210        (Mask == ~Mask2)) {
7211      // The pack halfword instruction works better for masks that fit it,
7212      // so use that when it's available.
7213      if (Subtarget->hasT2ExtractPack() &&
7214          (Mask == 0xffff || Mask == 0xffff0000))
7215        return SDValue();
7216      // 2a
7217      unsigned amt = CountTrailingZeros_32(Mask2);
7218      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7219                        DAG.getConstant(amt, MVT::i32));
7220      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7221                        DAG.getConstant(Mask, MVT::i32));
7222      // Do not add new nodes to DAG combiner worklist.
7223      DCI.CombineTo(N, Res, false);
7224      return SDValue();
7225    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7226               (~Mask == Mask2)) {
7227      // The pack halfword instruction works better for masks that fit it,
7228      // so use that when it's available.
7229      if (Subtarget->hasT2ExtractPack() &&
7230          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7231        return SDValue();
7232      // 2b
7233      unsigned lsb = CountTrailingZeros_32(Mask);
7234      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7235                        DAG.getConstant(lsb, MVT::i32));
7236      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7237                        DAG.getConstant(Mask2, MVT::i32));
7238      // Do not add new nodes to DAG combiner worklist.
7239      DCI.CombineTo(N, Res, false);
7240      return SDValue();
7241    }
7242  }
7243
7244  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7245      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7246      ARM::isBitFieldInvertedMask(~Mask)) {
7247    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7248    // where lsb(mask) == #shamt and masked bits of B are known zero.
7249    SDValue ShAmt = N00.getOperand(1);
7250    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7251    unsigned LSB = CountTrailingZeros_32(Mask);
7252    if (ShAmtC != LSB)
7253      return SDValue();
7254
7255    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7256                      DAG.getConstant(~Mask, MVT::i32));
7257
7258    // Do not add new nodes to DAG combiner worklist.
7259    DCI.CombineTo(N, Res, false);
7260  }
7261
7262  return SDValue();
7263}
7264
7265static SDValue PerformXORCombine(SDNode *N,
7266                                 TargetLowering::DAGCombinerInfo &DCI,
7267                                 const ARMSubtarget *Subtarget) {
7268  EVT VT = N->getValueType(0);
7269  SelectionDAG &DAG = DCI.DAG;
7270
7271  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7272    return SDValue();
7273
7274  if (!Subtarget->isThumb1Only()) {
7275    // (xor x, (cmov 0, y, cond)) => (xor.cond x, y)
7276    SDValue CXOR = formConditionalOp(N, DAG, true);
7277    if (CXOR.getNode())
7278      return CXOR;
7279  }
7280
7281  return SDValue();
7282}
7283
7284/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7285/// the bits being cleared by the AND are not demanded by the BFI.
7286static SDValue PerformBFICombine(SDNode *N,
7287                                 TargetLowering::DAGCombinerInfo &DCI) {
7288  SDValue N1 = N->getOperand(1);
7289  if (N1.getOpcode() == ISD::AND) {
7290    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7291    if (!N11C)
7292      return SDValue();
7293    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7294    unsigned LSB = CountTrailingZeros_32(~InvMask);
7295    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7296    unsigned Mask = (1 << Width)-1;
7297    unsigned Mask2 = N11C->getZExtValue();
7298    if ((Mask & (~Mask2)) == 0)
7299      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7300                             N->getOperand(0), N1.getOperand(0),
7301                             N->getOperand(2));
7302  }
7303  return SDValue();
7304}
7305
7306/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7307/// ARMISD::VMOVRRD.
7308static SDValue PerformVMOVRRDCombine(SDNode *N,
7309                                     TargetLowering::DAGCombinerInfo &DCI) {
7310  // vmovrrd(vmovdrr x, y) -> x,y
7311  SDValue InDouble = N->getOperand(0);
7312  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7313    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7314
7315  // vmovrrd(load f64) -> (load i32), (load i32)
7316  SDNode *InNode = InDouble.getNode();
7317  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7318      InNode->getValueType(0) == MVT::f64 &&
7319      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7320      !cast<LoadSDNode>(InNode)->isVolatile()) {
7321    // TODO: Should this be done for non-FrameIndex operands?
7322    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7323
7324    SelectionDAG &DAG = DCI.DAG;
7325    DebugLoc DL = LD->getDebugLoc();
7326    SDValue BasePtr = LD->getBasePtr();
7327    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7328                                 LD->getPointerInfo(), LD->isVolatile(),
7329                                 LD->isNonTemporal(), LD->isInvariant(),
7330                                 LD->getAlignment());
7331
7332    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7333                                    DAG.getConstant(4, MVT::i32));
7334    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7335                                 LD->getPointerInfo(), LD->isVolatile(),
7336                                 LD->isNonTemporal(), LD->isInvariant(),
7337                                 std::min(4U, LD->getAlignment() / 2));
7338
7339    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7340    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7341    DCI.RemoveFromWorklist(LD);
7342    DAG.DeleteNode(LD);
7343    return Result;
7344  }
7345
7346  return SDValue();
7347}
7348
7349/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7350/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7351static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7352  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7353  SDValue Op0 = N->getOperand(0);
7354  SDValue Op1 = N->getOperand(1);
7355  if (Op0.getOpcode() == ISD::BITCAST)
7356    Op0 = Op0.getOperand(0);
7357  if (Op1.getOpcode() == ISD::BITCAST)
7358    Op1 = Op1.getOperand(0);
7359  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7360      Op0.getNode() == Op1.getNode() &&
7361      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7362    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7363                       N->getValueType(0), Op0.getOperand(0));
7364  return SDValue();
7365}
7366
7367/// PerformSTORECombine - Target-specific dag combine xforms for
7368/// ISD::STORE.
7369static SDValue PerformSTORECombine(SDNode *N,
7370                                   TargetLowering::DAGCombinerInfo &DCI) {
7371  StoreSDNode *St = cast<StoreSDNode>(N);
7372  if (St->isVolatile())
7373    return SDValue();
7374
7375  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
7376  // pack all of the elements in one place.  Next, store to memory in fewer
7377  // chunks.
7378  SDValue StVal = St->getValue();
7379  EVT VT = StVal.getValueType();
7380  if (St->isTruncatingStore() && VT.isVector()) {
7381    SelectionDAG &DAG = DCI.DAG;
7382    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7383    EVT StVT = St->getMemoryVT();
7384    unsigned NumElems = VT.getVectorNumElements();
7385    assert(StVT != VT && "Cannot truncate to the same type");
7386    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
7387    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
7388
7389    // From, To sizes and ElemCount must be pow of two
7390    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
7391
7392    // We are going to use the original vector elt for storing.
7393    // Accumulated smaller vector elements must be a multiple of the store size.
7394    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
7395
7396    unsigned SizeRatio  = FromEltSz / ToEltSz;
7397    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
7398
7399    // Create a type on which we perform the shuffle.
7400    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
7401                                     NumElems*SizeRatio);
7402    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
7403
7404    DebugLoc DL = St->getDebugLoc();
7405    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
7406    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
7407    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
7408
7409    // Can't shuffle using an illegal type.
7410    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
7411
7412    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
7413                                DAG.getUNDEF(WideVec.getValueType()),
7414                                ShuffleVec.data());
7415    // At this point all of the data is stored at the bottom of the
7416    // register. We now need to save it to mem.
7417
7418    // Find the largest store unit
7419    MVT StoreType = MVT::i8;
7420    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
7421         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
7422      MVT Tp = (MVT::SimpleValueType)tp;
7423      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
7424        StoreType = Tp;
7425    }
7426    // Didn't find a legal store type.
7427    if (!TLI.isTypeLegal(StoreType))
7428      return SDValue();
7429
7430    // Bitcast the original vector into a vector of store-size units
7431    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
7432            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
7433    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
7434    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
7435    SmallVector<SDValue, 8> Chains;
7436    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
7437                                        TLI.getPointerTy());
7438    SDValue BasePtr = St->getBasePtr();
7439
7440    // Perform one or more big stores into memory.
7441    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
7442    for (unsigned I = 0; I < E; I++) {
7443      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
7444                                   StoreType, ShuffWide,
7445                                   DAG.getIntPtrConstant(I));
7446      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
7447                                St->getPointerInfo(), St->isVolatile(),
7448                                St->isNonTemporal(), St->getAlignment());
7449      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
7450                            Increment);
7451      Chains.push_back(Ch);
7452    }
7453    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
7454                       Chains.size());
7455  }
7456
7457  if (!ISD::isNormalStore(St))
7458    return SDValue();
7459
7460  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
7461  // ARM stores of arguments in the same cache line.
7462  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7463      StVal.getNode()->hasOneUse()) {
7464    SelectionDAG  &DAG = DCI.DAG;
7465    DebugLoc DL = St->getDebugLoc();
7466    SDValue BasePtr = St->getBasePtr();
7467    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7468                                  StVal.getNode()->getOperand(0), BasePtr,
7469                                  St->getPointerInfo(), St->isVolatile(),
7470                                  St->isNonTemporal(), St->getAlignment());
7471
7472    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7473                                    DAG.getConstant(4, MVT::i32));
7474    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7475                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7476                        St->isNonTemporal(),
7477                        std::min(4U, St->getAlignment() / 2));
7478  }
7479
7480  if (StVal.getValueType() != MVT::i64 ||
7481      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7482    return SDValue();
7483
7484  // Bitcast an i64 store extracted from a vector to f64.
7485  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7486  SelectionDAG &DAG = DCI.DAG;
7487  DebugLoc dl = StVal.getDebugLoc();
7488  SDValue IntVec = StVal.getOperand(0);
7489  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7490                                 IntVec.getValueType().getVectorNumElements());
7491  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7492  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7493                               Vec, StVal.getOperand(1));
7494  dl = N->getDebugLoc();
7495  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7496  // Make the DAGCombiner fold the bitcasts.
7497  DCI.AddToWorklist(Vec.getNode());
7498  DCI.AddToWorklist(ExtElt.getNode());
7499  DCI.AddToWorklist(V.getNode());
7500  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7501                      St->getPointerInfo(), St->isVolatile(),
7502                      St->isNonTemporal(), St->getAlignment(),
7503                      St->getTBAAInfo());
7504}
7505
7506/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7507/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7508/// i64 vector to have f64 elements, since the value can then be loaded
7509/// directly into a VFP register.
7510static bool hasNormalLoadOperand(SDNode *N) {
7511  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7512  for (unsigned i = 0; i < NumElts; ++i) {
7513    SDNode *Elt = N->getOperand(i).getNode();
7514    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7515      return true;
7516  }
7517  return false;
7518}
7519
7520/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7521/// ISD::BUILD_VECTOR.
7522static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7523                                          TargetLowering::DAGCombinerInfo &DCI){
7524  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7525  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7526  // into a pair of GPRs, which is fine when the value is used as a scalar,
7527  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7528  SelectionDAG &DAG = DCI.DAG;
7529  if (N->getNumOperands() == 2) {
7530    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7531    if (RV.getNode())
7532      return RV;
7533  }
7534
7535  // Load i64 elements as f64 values so that type legalization does not split
7536  // them up into i32 values.
7537  EVT VT = N->getValueType(0);
7538  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7539    return SDValue();
7540  DebugLoc dl = N->getDebugLoc();
7541  SmallVector<SDValue, 8> Ops;
7542  unsigned NumElts = VT.getVectorNumElements();
7543  for (unsigned i = 0; i < NumElts; ++i) {
7544    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7545    Ops.push_back(V);
7546    // Make the DAGCombiner fold the bitcast.
7547    DCI.AddToWorklist(V.getNode());
7548  }
7549  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7550  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7551  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7552}
7553
7554/// PerformInsertEltCombine - Target-specific dag combine xforms for
7555/// ISD::INSERT_VECTOR_ELT.
7556static SDValue PerformInsertEltCombine(SDNode *N,
7557                                       TargetLowering::DAGCombinerInfo &DCI) {
7558  // Bitcast an i64 load inserted into a vector to f64.
7559  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7560  EVT VT = N->getValueType(0);
7561  SDNode *Elt = N->getOperand(1).getNode();
7562  if (VT.getVectorElementType() != MVT::i64 ||
7563      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7564    return SDValue();
7565
7566  SelectionDAG &DAG = DCI.DAG;
7567  DebugLoc dl = N->getDebugLoc();
7568  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7569                                 VT.getVectorNumElements());
7570  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7571  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7572  // Make the DAGCombiner fold the bitcasts.
7573  DCI.AddToWorklist(Vec.getNode());
7574  DCI.AddToWorklist(V.getNode());
7575  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7576                               Vec, V, N->getOperand(2));
7577  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7578}
7579
7580/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7581/// ISD::VECTOR_SHUFFLE.
7582static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7583  // The LLVM shufflevector instruction does not require the shuffle mask
7584  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7585  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7586  // operands do not match the mask length, they are extended by concatenating
7587  // them with undef vectors.  That is probably the right thing for other
7588  // targets, but for NEON it is better to concatenate two double-register
7589  // size vector operands into a single quad-register size vector.  Do that
7590  // transformation here:
7591  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7592  //   shuffle(concat(v1, v2), undef)
7593  SDValue Op0 = N->getOperand(0);
7594  SDValue Op1 = N->getOperand(1);
7595  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7596      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7597      Op0.getNumOperands() != 2 ||
7598      Op1.getNumOperands() != 2)
7599    return SDValue();
7600  SDValue Concat0Op1 = Op0.getOperand(1);
7601  SDValue Concat1Op1 = Op1.getOperand(1);
7602  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7603      Concat1Op1.getOpcode() != ISD::UNDEF)
7604    return SDValue();
7605  // Skip the transformation if any of the types are illegal.
7606  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7607  EVT VT = N->getValueType(0);
7608  if (!TLI.isTypeLegal(VT) ||
7609      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7610      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7611    return SDValue();
7612
7613  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7614                                  Op0.getOperand(0), Op1.getOperand(0));
7615  // Translate the shuffle mask.
7616  SmallVector<int, 16> NewMask;
7617  unsigned NumElts = VT.getVectorNumElements();
7618  unsigned HalfElts = NumElts/2;
7619  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7620  for (unsigned n = 0; n < NumElts; ++n) {
7621    int MaskElt = SVN->getMaskElt(n);
7622    int NewElt = -1;
7623    if (MaskElt < (int)HalfElts)
7624      NewElt = MaskElt;
7625    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7626      NewElt = HalfElts + MaskElt - NumElts;
7627    NewMask.push_back(NewElt);
7628  }
7629  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7630                              DAG.getUNDEF(VT), NewMask.data());
7631}
7632
7633/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7634/// NEON load/store intrinsics to merge base address updates.
7635static SDValue CombineBaseUpdate(SDNode *N,
7636                                 TargetLowering::DAGCombinerInfo &DCI) {
7637  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7638    return SDValue();
7639
7640  SelectionDAG &DAG = DCI.DAG;
7641  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7642                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7643  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7644  SDValue Addr = N->getOperand(AddrOpIdx);
7645
7646  // Search for a use of the address operand that is an increment.
7647  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7648         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7649    SDNode *User = *UI;
7650    if (User->getOpcode() != ISD::ADD ||
7651        UI.getUse().getResNo() != Addr.getResNo())
7652      continue;
7653
7654    // Check that the add is independent of the load/store.  Otherwise, folding
7655    // it would create a cycle.
7656    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7657      continue;
7658
7659    // Find the new opcode for the updating load/store.
7660    bool isLoad = true;
7661    bool isLaneOp = false;
7662    unsigned NewOpc = 0;
7663    unsigned NumVecs = 0;
7664    if (isIntrinsic) {
7665      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7666      switch (IntNo) {
7667      default: llvm_unreachable("unexpected intrinsic for Neon base update");
7668      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7669        NumVecs = 1; break;
7670      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7671        NumVecs = 2; break;
7672      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7673        NumVecs = 3; break;
7674      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7675        NumVecs = 4; break;
7676      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7677        NumVecs = 2; isLaneOp = true; break;
7678      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7679        NumVecs = 3; isLaneOp = true; break;
7680      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7681        NumVecs = 4; isLaneOp = true; break;
7682      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7683        NumVecs = 1; isLoad = false; break;
7684      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7685        NumVecs = 2; isLoad = false; break;
7686      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7687        NumVecs = 3; isLoad = false; break;
7688      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7689        NumVecs = 4; isLoad = false; break;
7690      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7691        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7692      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7693        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7694      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7695        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7696      }
7697    } else {
7698      isLaneOp = true;
7699      switch (N->getOpcode()) {
7700      default: llvm_unreachable("unexpected opcode for Neon base update");
7701      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7702      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7703      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7704      }
7705    }
7706
7707    // Find the size of memory referenced by the load/store.
7708    EVT VecTy;
7709    if (isLoad)
7710      VecTy = N->getValueType(0);
7711    else
7712      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7713    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7714    if (isLaneOp)
7715      NumBytes /= VecTy.getVectorNumElements();
7716
7717    // If the increment is a constant, it must match the memory ref size.
7718    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7719    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7720      uint64_t IncVal = CInc->getZExtValue();
7721      if (IncVal != NumBytes)
7722        continue;
7723    } else if (NumBytes >= 3 * 16) {
7724      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7725      // separate instructions that make it harder to use a non-constant update.
7726      continue;
7727    }
7728
7729    // Create the new updating load/store node.
7730    EVT Tys[6];
7731    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7732    unsigned n;
7733    for (n = 0; n < NumResultVecs; ++n)
7734      Tys[n] = VecTy;
7735    Tys[n++] = MVT::i32;
7736    Tys[n] = MVT::Other;
7737    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7738    SmallVector<SDValue, 8> Ops;
7739    Ops.push_back(N->getOperand(0)); // incoming chain
7740    Ops.push_back(N->getOperand(AddrOpIdx));
7741    Ops.push_back(Inc);
7742    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7743      Ops.push_back(N->getOperand(i));
7744    }
7745    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7746    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7747                                           Ops.data(), Ops.size(),
7748                                           MemInt->getMemoryVT(),
7749                                           MemInt->getMemOperand());
7750
7751    // Update the uses.
7752    std::vector<SDValue> NewResults;
7753    for (unsigned i = 0; i < NumResultVecs; ++i) {
7754      NewResults.push_back(SDValue(UpdN.getNode(), i));
7755    }
7756    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7757    DCI.CombineTo(N, NewResults);
7758    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7759
7760    break;
7761  }
7762  return SDValue();
7763}
7764
7765/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7766/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7767/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7768/// return true.
7769static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7770  SelectionDAG &DAG = DCI.DAG;
7771  EVT VT = N->getValueType(0);
7772  // vldN-dup instructions only support 64-bit vectors for N > 1.
7773  if (!VT.is64BitVector())
7774    return false;
7775
7776  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7777  SDNode *VLD = N->getOperand(0).getNode();
7778  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7779    return false;
7780  unsigned NumVecs = 0;
7781  unsigned NewOpc = 0;
7782  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7783  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7784    NumVecs = 2;
7785    NewOpc = ARMISD::VLD2DUP;
7786  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7787    NumVecs = 3;
7788    NewOpc = ARMISD::VLD3DUP;
7789  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7790    NumVecs = 4;
7791    NewOpc = ARMISD::VLD4DUP;
7792  } else {
7793    return false;
7794  }
7795
7796  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7797  // numbers match the load.
7798  unsigned VLDLaneNo =
7799    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7800  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7801       UI != UE; ++UI) {
7802    // Ignore uses of the chain result.
7803    if (UI.getUse().getResNo() == NumVecs)
7804      continue;
7805    SDNode *User = *UI;
7806    if (User->getOpcode() != ARMISD::VDUPLANE ||
7807        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7808      return false;
7809  }
7810
7811  // Create the vldN-dup node.
7812  EVT Tys[5];
7813  unsigned n;
7814  for (n = 0; n < NumVecs; ++n)
7815    Tys[n] = VT;
7816  Tys[n] = MVT::Other;
7817  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7818  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7819  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7820  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7821                                           Ops, 2, VLDMemInt->getMemoryVT(),
7822                                           VLDMemInt->getMemOperand());
7823
7824  // Update the uses.
7825  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7826       UI != UE; ++UI) {
7827    unsigned ResNo = UI.getUse().getResNo();
7828    // Ignore uses of the chain result.
7829    if (ResNo == NumVecs)
7830      continue;
7831    SDNode *User = *UI;
7832    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7833  }
7834
7835  // Now the vldN-lane intrinsic is dead except for its chain result.
7836  // Update uses of the chain.
7837  std::vector<SDValue> VLDDupResults;
7838  for (unsigned n = 0; n < NumVecs; ++n)
7839    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7840  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7841  DCI.CombineTo(VLD, VLDDupResults);
7842
7843  return true;
7844}
7845
7846/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7847/// ARMISD::VDUPLANE.
7848static SDValue PerformVDUPLANECombine(SDNode *N,
7849                                      TargetLowering::DAGCombinerInfo &DCI) {
7850  SDValue Op = N->getOperand(0);
7851
7852  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7853  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7854  if (CombineVLDDUP(N, DCI))
7855    return SDValue(N, 0);
7856
7857  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7858  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7859  while (Op.getOpcode() == ISD::BITCAST)
7860    Op = Op.getOperand(0);
7861  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7862    return SDValue();
7863
7864  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7865  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7866  // The canonical VMOV for a zero vector uses a 32-bit element size.
7867  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7868  unsigned EltBits;
7869  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7870    EltSize = 8;
7871  EVT VT = N->getValueType(0);
7872  if (EltSize > VT.getVectorElementType().getSizeInBits())
7873    return SDValue();
7874
7875  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7876}
7877
7878// isConstVecPow2 - Return true if each vector element is a power of 2, all
7879// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7880static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7881{
7882  integerPart cN;
7883  integerPart c0 = 0;
7884  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7885       I != E; I++) {
7886    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7887    if (!C)
7888      return false;
7889
7890    bool isExact;
7891    APFloat APF = C->getValueAPF();
7892    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7893        != APFloat::opOK || !isExact)
7894      return false;
7895
7896    c0 = (I == 0) ? cN : c0;
7897    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7898      return false;
7899  }
7900  C = c0;
7901  return true;
7902}
7903
7904/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7905/// can replace combinations of VMUL and VCVT (floating-point to integer)
7906/// when the VMUL has a constant operand that is a power of 2.
7907///
7908/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7909///  vmul.f32        d16, d17, d16
7910///  vcvt.s32.f32    d16, d16
7911/// becomes:
7912///  vcvt.s32.f32    d16, d16, #3
7913static SDValue PerformVCVTCombine(SDNode *N,
7914                                  TargetLowering::DAGCombinerInfo &DCI,
7915                                  const ARMSubtarget *Subtarget) {
7916  SelectionDAG &DAG = DCI.DAG;
7917  SDValue Op = N->getOperand(0);
7918
7919  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7920      Op.getOpcode() != ISD::FMUL)
7921    return SDValue();
7922
7923  uint64_t C;
7924  SDValue N0 = Op->getOperand(0);
7925  SDValue ConstVec = Op->getOperand(1);
7926  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7927
7928  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7929      !isConstVecPow2(ConstVec, isSigned, C))
7930    return SDValue();
7931
7932  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7933    Intrinsic::arm_neon_vcvtfp2fxu;
7934  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7935                     N->getValueType(0),
7936                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7937                     DAG.getConstant(Log2_64(C), MVT::i32));
7938}
7939
7940/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7941/// can replace combinations of VCVT (integer to floating-point) and VDIV
7942/// when the VDIV has a constant operand that is a power of 2.
7943///
7944/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7945///  vcvt.f32.s32    d16, d16
7946///  vdiv.f32        d16, d17, d16
7947/// becomes:
7948///  vcvt.f32.s32    d16, d16, #3
7949static SDValue PerformVDIVCombine(SDNode *N,
7950                                  TargetLowering::DAGCombinerInfo &DCI,
7951                                  const ARMSubtarget *Subtarget) {
7952  SelectionDAG &DAG = DCI.DAG;
7953  SDValue Op = N->getOperand(0);
7954  unsigned OpOpcode = Op.getNode()->getOpcode();
7955
7956  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7957      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7958    return SDValue();
7959
7960  uint64_t C;
7961  SDValue ConstVec = N->getOperand(1);
7962  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7963
7964  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7965      !isConstVecPow2(ConstVec, isSigned, C))
7966    return SDValue();
7967
7968  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7969    Intrinsic::arm_neon_vcvtfxu2fp;
7970  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7971                     Op.getValueType(),
7972                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7973                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7974}
7975
7976/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7977/// operand of a vector shift operation, where all the elements of the
7978/// build_vector must have the same constant integer value.
7979static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7980  // Ignore bit_converts.
7981  while (Op.getOpcode() == ISD::BITCAST)
7982    Op = Op.getOperand(0);
7983  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7984  APInt SplatBits, SplatUndef;
7985  unsigned SplatBitSize;
7986  bool HasAnyUndefs;
7987  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7988                                      HasAnyUndefs, ElementBits) ||
7989      SplatBitSize > ElementBits)
7990    return false;
7991  Cnt = SplatBits.getSExtValue();
7992  return true;
7993}
7994
7995/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7996/// operand of a vector shift left operation.  That value must be in the range:
7997///   0 <= Value < ElementBits for a left shift; or
7998///   0 <= Value <= ElementBits for a long left shift.
7999static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8000  assert(VT.isVector() && "vector shift count is not a vector type");
8001  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8002  if (! getVShiftImm(Op, ElementBits, Cnt))
8003    return false;
8004  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8005}
8006
8007/// isVShiftRImm - Check if this is a valid build_vector for the immediate
8008/// operand of a vector shift right operation.  For a shift opcode, the value
8009/// is positive, but for an intrinsic the value count must be negative. The
8010/// absolute value must be in the range:
8011///   1 <= |Value| <= ElementBits for a right shift; or
8012///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
8013static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8014                         int64_t &Cnt) {
8015  assert(VT.isVector() && "vector shift count is not a vector type");
8016  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8017  if (! getVShiftImm(Op, ElementBits, Cnt))
8018    return false;
8019  if (isIntrinsic)
8020    Cnt = -Cnt;
8021  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8022}
8023
8024/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
8025static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8026  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8027  switch (IntNo) {
8028  default:
8029    // Don't do anything for most intrinsics.
8030    break;
8031
8032  // Vector shifts: check for immediate versions and lower them.
8033  // Note: This is done during DAG combining instead of DAG legalizing because
8034  // the build_vectors for 64-bit vector element shift counts are generally
8035  // not legal, and it is hard to see their values after they get legalized to
8036  // loads from a constant pool.
8037  case Intrinsic::arm_neon_vshifts:
8038  case Intrinsic::arm_neon_vshiftu:
8039  case Intrinsic::arm_neon_vshiftls:
8040  case Intrinsic::arm_neon_vshiftlu:
8041  case Intrinsic::arm_neon_vshiftn:
8042  case Intrinsic::arm_neon_vrshifts:
8043  case Intrinsic::arm_neon_vrshiftu:
8044  case Intrinsic::arm_neon_vrshiftn:
8045  case Intrinsic::arm_neon_vqshifts:
8046  case Intrinsic::arm_neon_vqshiftu:
8047  case Intrinsic::arm_neon_vqshiftsu:
8048  case Intrinsic::arm_neon_vqshiftns:
8049  case Intrinsic::arm_neon_vqshiftnu:
8050  case Intrinsic::arm_neon_vqshiftnsu:
8051  case Intrinsic::arm_neon_vqrshiftns:
8052  case Intrinsic::arm_neon_vqrshiftnu:
8053  case Intrinsic::arm_neon_vqrshiftnsu: {
8054    EVT VT = N->getOperand(1).getValueType();
8055    int64_t Cnt;
8056    unsigned VShiftOpc = 0;
8057
8058    switch (IntNo) {
8059    case Intrinsic::arm_neon_vshifts:
8060    case Intrinsic::arm_neon_vshiftu:
8061      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8062        VShiftOpc = ARMISD::VSHL;
8063        break;
8064      }
8065      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8066        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8067                     ARMISD::VSHRs : ARMISD::VSHRu);
8068        break;
8069      }
8070      return SDValue();
8071
8072    case Intrinsic::arm_neon_vshiftls:
8073    case Intrinsic::arm_neon_vshiftlu:
8074      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8075        break;
8076      llvm_unreachable("invalid shift count for vshll intrinsic");
8077
8078    case Intrinsic::arm_neon_vrshifts:
8079    case Intrinsic::arm_neon_vrshiftu:
8080      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8081        break;
8082      return SDValue();
8083
8084    case Intrinsic::arm_neon_vqshifts:
8085    case Intrinsic::arm_neon_vqshiftu:
8086      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8087        break;
8088      return SDValue();
8089
8090    case Intrinsic::arm_neon_vqshiftsu:
8091      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8092        break;
8093      llvm_unreachable("invalid shift count for vqshlu intrinsic");
8094
8095    case Intrinsic::arm_neon_vshiftn:
8096    case Intrinsic::arm_neon_vrshiftn:
8097    case Intrinsic::arm_neon_vqshiftns:
8098    case Intrinsic::arm_neon_vqshiftnu:
8099    case Intrinsic::arm_neon_vqshiftnsu:
8100    case Intrinsic::arm_neon_vqrshiftns:
8101    case Intrinsic::arm_neon_vqrshiftnu:
8102    case Intrinsic::arm_neon_vqrshiftnsu:
8103      // Narrowing shifts require an immediate right shift.
8104      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8105        break;
8106      llvm_unreachable("invalid shift count for narrowing vector shift "
8107                       "intrinsic");
8108
8109    default:
8110      llvm_unreachable("unhandled vector shift");
8111    }
8112
8113    switch (IntNo) {
8114    case Intrinsic::arm_neon_vshifts:
8115    case Intrinsic::arm_neon_vshiftu:
8116      // Opcode already set above.
8117      break;
8118    case Intrinsic::arm_neon_vshiftls:
8119    case Intrinsic::arm_neon_vshiftlu:
8120      if (Cnt == VT.getVectorElementType().getSizeInBits())
8121        VShiftOpc = ARMISD::VSHLLi;
8122      else
8123        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8124                     ARMISD::VSHLLs : ARMISD::VSHLLu);
8125      break;
8126    case Intrinsic::arm_neon_vshiftn:
8127      VShiftOpc = ARMISD::VSHRN; break;
8128    case Intrinsic::arm_neon_vrshifts:
8129      VShiftOpc = ARMISD::VRSHRs; break;
8130    case Intrinsic::arm_neon_vrshiftu:
8131      VShiftOpc = ARMISD::VRSHRu; break;
8132    case Intrinsic::arm_neon_vrshiftn:
8133      VShiftOpc = ARMISD::VRSHRN; break;
8134    case Intrinsic::arm_neon_vqshifts:
8135      VShiftOpc = ARMISD::VQSHLs; break;
8136    case Intrinsic::arm_neon_vqshiftu:
8137      VShiftOpc = ARMISD::VQSHLu; break;
8138    case Intrinsic::arm_neon_vqshiftsu:
8139      VShiftOpc = ARMISD::VQSHLsu; break;
8140    case Intrinsic::arm_neon_vqshiftns:
8141      VShiftOpc = ARMISD::VQSHRNs; break;
8142    case Intrinsic::arm_neon_vqshiftnu:
8143      VShiftOpc = ARMISD::VQSHRNu; break;
8144    case Intrinsic::arm_neon_vqshiftnsu:
8145      VShiftOpc = ARMISD::VQSHRNsu; break;
8146    case Intrinsic::arm_neon_vqrshiftns:
8147      VShiftOpc = ARMISD::VQRSHRNs; break;
8148    case Intrinsic::arm_neon_vqrshiftnu:
8149      VShiftOpc = ARMISD::VQRSHRNu; break;
8150    case Intrinsic::arm_neon_vqrshiftnsu:
8151      VShiftOpc = ARMISD::VQRSHRNsu; break;
8152    }
8153
8154    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8155                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8156  }
8157
8158  case Intrinsic::arm_neon_vshiftins: {
8159    EVT VT = N->getOperand(1).getValueType();
8160    int64_t Cnt;
8161    unsigned VShiftOpc = 0;
8162
8163    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8164      VShiftOpc = ARMISD::VSLI;
8165    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8166      VShiftOpc = ARMISD::VSRI;
8167    else {
8168      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8169    }
8170
8171    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8172                       N->getOperand(1), N->getOperand(2),
8173                       DAG.getConstant(Cnt, MVT::i32));
8174  }
8175
8176  case Intrinsic::arm_neon_vqrshifts:
8177  case Intrinsic::arm_neon_vqrshiftu:
8178    // No immediate versions of these to check for.
8179    break;
8180  }
8181
8182  return SDValue();
8183}
8184
8185/// PerformShiftCombine - Checks for immediate versions of vector shifts and
8186/// lowers them.  As with the vector shift intrinsics, this is done during DAG
8187/// combining instead of DAG legalizing because the build_vectors for 64-bit
8188/// vector element shift counts are generally not legal, and it is hard to see
8189/// their values after they get legalized to loads from a constant pool.
8190static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8191                                   const ARMSubtarget *ST) {
8192  EVT VT = N->getValueType(0);
8193  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8194    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8195    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8196    SDValue N1 = N->getOperand(1);
8197    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8198      SDValue N0 = N->getOperand(0);
8199      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8200          DAG.MaskedValueIsZero(N0.getOperand(0),
8201                                APInt::getHighBitsSet(32, 16)))
8202        return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8203    }
8204  }
8205
8206  // Nothing to be done for scalar shifts.
8207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8208  if (!VT.isVector() || !TLI.isTypeLegal(VT))
8209    return SDValue();
8210
8211  assert(ST->hasNEON() && "unexpected vector shift");
8212  int64_t Cnt;
8213
8214  switch (N->getOpcode()) {
8215  default: llvm_unreachable("unexpected shift opcode");
8216
8217  case ISD::SHL:
8218    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8219      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8220                         DAG.getConstant(Cnt, MVT::i32));
8221    break;
8222
8223  case ISD::SRA:
8224  case ISD::SRL:
8225    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8226      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8227                            ARMISD::VSHRs : ARMISD::VSHRu);
8228      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8229                         DAG.getConstant(Cnt, MVT::i32));
8230    }
8231  }
8232  return SDValue();
8233}
8234
8235/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8236/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
8237static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8238                                    const ARMSubtarget *ST) {
8239  SDValue N0 = N->getOperand(0);
8240
8241  // Check for sign- and zero-extensions of vector extract operations of 8-
8242  // and 16-bit vector elements.  NEON supports these directly.  They are
8243  // handled during DAG combining because type legalization will promote them
8244  // to 32-bit types and it is messy to recognize the operations after that.
8245  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8246    SDValue Vec = N0.getOperand(0);
8247    SDValue Lane = N0.getOperand(1);
8248    EVT VT = N->getValueType(0);
8249    EVT EltVT = N0.getValueType();
8250    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8251
8252    if (VT == MVT::i32 &&
8253        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8254        TLI.isTypeLegal(Vec.getValueType()) &&
8255        isa<ConstantSDNode>(Lane)) {
8256
8257      unsigned Opc = 0;
8258      switch (N->getOpcode()) {
8259      default: llvm_unreachable("unexpected opcode");
8260      case ISD::SIGN_EXTEND:
8261        Opc = ARMISD::VGETLANEs;
8262        break;
8263      case ISD::ZERO_EXTEND:
8264      case ISD::ANY_EXTEND:
8265        Opc = ARMISD::VGETLANEu;
8266        break;
8267      }
8268      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8269    }
8270  }
8271
8272  return SDValue();
8273}
8274
8275/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8276/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
8277static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8278                                       const ARMSubtarget *ST) {
8279  // If the target supports NEON, try to use vmax/vmin instructions for f32
8280  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
8281  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
8282  // a NaN; only do the transformation when it matches that behavior.
8283
8284  // For now only do this when using NEON for FP operations; if using VFP, it
8285  // is not obvious that the benefit outweighs the cost of switching to the
8286  // NEON pipeline.
8287  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8288      N->getValueType(0) != MVT::f32)
8289    return SDValue();
8290
8291  SDValue CondLHS = N->getOperand(0);
8292  SDValue CondRHS = N->getOperand(1);
8293  SDValue LHS = N->getOperand(2);
8294  SDValue RHS = N->getOperand(3);
8295  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8296
8297  unsigned Opcode = 0;
8298  bool IsReversed;
8299  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8300    IsReversed = false; // x CC y ? x : y
8301  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8302    IsReversed = true ; // x CC y ? y : x
8303  } else {
8304    return SDValue();
8305  }
8306
8307  bool IsUnordered;
8308  switch (CC) {
8309  default: break;
8310  case ISD::SETOLT:
8311  case ISD::SETOLE:
8312  case ISD::SETLT:
8313  case ISD::SETLE:
8314  case ISD::SETULT:
8315  case ISD::SETULE:
8316    // If LHS is NaN, an ordered comparison will be false and the result will
8317    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
8318    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8319    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8320    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8321      break;
8322    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8323    // will return -0, so vmin can only be used for unsafe math or if one of
8324    // the operands is known to be nonzero.
8325    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8326        !DAG.getTarget().Options.UnsafeFPMath &&
8327        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8328      break;
8329    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8330    break;
8331
8332  case ISD::SETOGT:
8333  case ISD::SETOGE:
8334  case ISD::SETGT:
8335  case ISD::SETGE:
8336  case ISD::SETUGT:
8337  case ISD::SETUGE:
8338    // If LHS is NaN, an ordered comparison will be false and the result will
8339    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
8340    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8341    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8342    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8343      break;
8344    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8345    // will return +0, so vmax can only be used for unsafe math or if one of
8346    // the operands is known to be nonzero.
8347    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8348        !DAG.getTarget().Options.UnsafeFPMath &&
8349        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8350      break;
8351    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8352    break;
8353  }
8354
8355  if (!Opcode)
8356    return SDValue();
8357  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8358}
8359
8360/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8361SDValue
8362ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8363  SDValue Cmp = N->getOperand(4);
8364  if (Cmp.getOpcode() != ARMISD::CMPZ)
8365    // Only looking at EQ and NE cases.
8366    return SDValue();
8367
8368  EVT VT = N->getValueType(0);
8369  DebugLoc dl = N->getDebugLoc();
8370  SDValue LHS = Cmp.getOperand(0);
8371  SDValue RHS = Cmp.getOperand(1);
8372  SDValue FalseVal = N->getOperand(0);
8373  SDValue TrueVal = N->getOperand(1);
8374  SDValue ARMcc = N->getOperand(2);
8375  ARMCC::CondCodes CC =
8376    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8377
8378  // Simplify
8379  //   mov     r1, r0
8380  //   cmp     r1, x
8381  //   mov     r0, y
8382  //   moveq   r0, x
8383  // to
8384  //   cmp     r0, x
8385  //   movne   r0, y
8386  //
8387  //   mov     r1, r0
8388  //   cmp     r1, x
8389  //   mov     r0, x
8390  //   movne   r0, y
8391  // to
8392  //   cmp     r0, x
8393  //   movne   r0, y
8394  /// FIXME: Turn this into a target neutral optimization?
8395  SDValue Res;
8396  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8397    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8398                      N->getOperand(3), Cmp);
8399  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8400    SDValue ARMcc;
8401    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8402    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8403                      N->getOperand(3), NewCmp);
8404  }
8405
8406  if (Res.getNode()) {
8407    APInt KnownZero, KnownOne;
8408    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
8409    // Capture demanded bits information that would be otherwise lost.
8410    if (KnownZero == 0xfffffffe)
8411      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8412                        DAG.getValueType(MVT::i1));
8413    else if (KnownZero == 0xffffff00)
8414      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8415                        DAG.getValueType(MVT::i8));
8416    else if (KnownZero == 0xffff0000)
8417      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8418                        DAG.getValueType(MVT::i16));
8419  }
8420
8421  return Res;
8422}
8423
8424SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8425                                             DAGCombinerInfo &DCI) const {
8426  switch (N->getOpcode()) {
8427  default: break;
8428  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8429  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8430  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8431  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8432  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
8433  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
8434  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8435  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8436  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8437  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8438  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8439  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8440  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8441  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8442  case ISD::FP_TO_SINT:
8443  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8444  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8445  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8446  case ISD::SHL:
8447  case ISD::SRA:
8448  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8449  case ISD::SIGN_EXTEND:
8450  case ISD::ZERO_EXTEND:
8451  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8452  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8453  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8454  case ARMISD::VLD2DUP:
8455  case ARMISD::VLD3DUP:
8456  case ARMISD::VLD4DUP:
8457    return CombineBaseUpdate(N, DCI);
8458  case ISD::INTRINSIC_VOID:
8459  case ISD::INTRINSIC_W_CHAIN:
8460    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8461    case Intrinsic::arm_neon_vld1:
8462    case Intrinsic::arm_neon_vld2:
8463    case Intrinsic::arm_neon_vld3:
8464    case Intrinsic::arm_neon_vld4:
8465    case Intrinsic::arm_neon_vld2lane:
8466    case Intrinsic::arm_neon_vld3lane:
8467    case Intrinsic::arm_neon_vld4lane:
8468    case Intrinsic::arm_neon_vst1:
8469    case Intrinsic::arm_neon_vst2:
8470    case Intrinsic::arm_neon_vst3:
8471    case Intrinsic::arm_neon_vst4:
8472    case Intrinsic::arm_neon_vst2lane:
8473    case Intrinsic::arm_neon_vst3lane:
8474    case Intrinsic::arm_neon_vst4lane:
8475      return CombineBaseUpdate(N, DCI);
8476    default: break;
8477    }
8478    break;
8479  }
8480  return SDValue();
8481}
8482
8483bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8484                                                          EVT VT) const {
8485  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8486}
8487
8488bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8489  if (!Subtarget->allowsUnalignedMem())
8490    return false;
8491
8492  switch (VT.getSimpleVT().SimpleTy) {
8493  default:
8494    return false;
8495  case MVT::i8:
8496  case MVT::i16:
8497  case MVT::i32:
8498    return true;
8499  // FIXME: VLD1 etc with standard alignment is legal.
8500  }
8501}
8502
8503static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8504                       unsigned AlignCheck) {
8505  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8506          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8507}
8508
8509EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8510                                           unsigned DstAlign, unsigned SrcAlign,
8511                                           bool IsZeroVal,
8512                                           bool MemcpyStrSrc,
8513                                           MachineFunction &MF) const {
8514  const Function *F = MF.getFunction();
8515
8516  // See if we can use NEON instructions for this...
8517  if (IsZeroVal &&
8518      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8519      Subtarget->hasNEON()) {
8520    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8521      return MVT::v4i32;
8522    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8523      return MVT::v2i32;
8524    }
8525  }
8526
8527  // Lowering to i32/i16 if the size permits.
8528  if (Size >= 4) {
8529    return MVT::i32;
8530  } else if (Size >= 2) {
8531    return MVT::i16;
8532  }
8533
8534  // Let the target-independent logic figure it out.
8535  return MVT::Other;
8536}
8537
8538static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8539  if (V < 0)
8540    return false;
8541
8542  unsigned Scale = 1;
8543  switch (VT.getSimpleVT().SimpleTy) {
8544  default: return false;
8545  case MVT::i1:
8546  case MVT::i8:
8547    // Scale == 1;
8548    break;
8549  case MVT::i16:
8550    // Scale == 2;
8551    Scale = 2;
8552    break;
8553  case MVT::i32:
8554    // Scale == 4;
8555    Scale = 4;
8556    break;
8557  }
8558
8559  if ((V & (Scale - 1)) != 0)
8560    return false;
8561  V /= Scale;
8562  return V == (V & ((1LL << 5) - 1));
8563}
8564
8565static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8566                                      const ARMSubtarget *Subtarget) {
8567  bool isNeg = false;
8568  if (V < 0) {
8569    isNeg = true;
8570    V = - V;
8571  }
8572
8573  switch (VT.getSimpleVT().SimpleTy) {
8574  default: return false;
8575  case MVT::i1:
8576  case MVT::i8:
8577  case MVT::i16:
8578  case MVT::i32:
8579    // + imm12 or - imm8
8580    if (isNeg)
8581      return V == (V & ((1LL << 8) - 1));
8582    return V == (V & ((1LL << 12) - 1));
8583  case MVT::f32:
8584  case MVT::f64:
8585    // Same as ARM mode. FIXME: NEON?
8586    if (!Subtarget->hasVFP2())
8587      return false;
8588    if ((V & 3) != 0)
8589      return false;
8590    V >>= 2;
8591    return V == (V & ((1LL << 8) - 1));
8592  }
8593}
8594
8595/// isLegalAddressImmediate - Return true if the integer value can be used
8596/// as the offset of the target addressing mode for load / store of the
8597/// given type.
8598static bool isLegalAddressImmediate(int64_t V, EVT VT,
8599                                    const ARMSubtarget *Subtarget) {
8600  if (V == 0)
8601    return true;
8602
8603  if (!VT.isSimple())
8604    return false;
8605
8606  if (Subtarget->isThumb1Only())
8607    return isLegalT1AddressImmediate(V, VT);
8608  else if (Subtarget->isThumb2())
8609    return isLegalT2AddressImmediate(V, VT, Subtarget);
8610
8611  // ARM mode.
8612  if (V < 0)
8613    V = - V;
8614  switch (VT.getSimpleVT().SimpleTy) {
8615  default: return false;
8616  case MVT::i1:
8617  case MVT::i8:
8618  case MVT::i32:
8619    // +- imm12
8620    return V == (V & ((1LL << 12) - 1));
8621  case MVT::i16:
8622    // +- imm8
8623    return V == (V & ((1LL << 8) - 1));
8624  case MVT::f32:
8625  case MVT::f64:
8626    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8627      return false;
8628    if ((V & 3) != 0)
8629      return false;
8630    V >>= 2;
8631    return V == (V & ((1LL << 8) - 1));
8632  }
8633}
8634
8635bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8636                                                      EVT VT) const {
8637  int Scale = AM.Scale;
8638  if (Scale < 0)
8639    return false;
8640
8641  switch (VT.getSimpleVT().SimpleTy) {
8642  default: return false;
8643  case MVT::i1:
8644  case MVT::i8:
8645  case MVT::i16:
8646  case MVT::i32:
8647    if (Scale == 1)
8648      return true;
8649    // r + r << imm
8650    Scale = Scale & ~1;
8651    return Scale == 2 || Scale == 4 || Scale == 8;
8652  case MVT::i64:
8653    // r + r
8654    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8655      return true;
8656    return false;
8657  case MVT::isVoid:
8658    // Note, we allow "void" uses (basically, uses that aren't loads or
8659    // stores), because arm allows folding a scale into many arithmetic
8660    // operations.  This should be made more precise and revisited later.
8661
8662    // Allow r << imm, but the imm has to be a multiple of two.
8663    if (Scale & 1) return false;
8664    return isPowerOf2_32(Scale);
8665  }
8666}
8667
8668/// isLegalAddressingMode - Return true if the addressing mode represented
8669/// by AM is legal for this target, for a load/store of the specified type.
8670bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8671                                              Type *Ty) const {
8672  EVT VT = getValueType(Ty, true);
8673  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8674    return false;
8675
8676  // Can never fold addr of global into load/store.
8677  if (AM.BaseGV)
8678    return false;
8679
8680  switch (AM.Scale) {
8681  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8682    break;
8683  case 1:
8684    if (Subtarget->isThumb1Only())
8685      return false;
8686    // FALL THROUGH.
8687  default:
8688    // ARM doesn't support any R+R*scale+imm addr modes.
8689    if (AM.BaseOffs)
8690      return false;
8691
8692    if (!VT.isSimple())
8693      return false;
8694
8695    if (Subtarget->isThumb2())
8696      return isLegalT2ScaledAddressingMode(AM, VT);
8697
8698    int Scale = AM.Scale;
8699    switch (VT.getSimpleVT().SimpleTy) {
8700    default: return false;
8701    case MVT::i1:
8702    case MVT::i8:
8703    case MVT::i32:
8704      if (Scale < 0) Scale = -Scale;
8705      if (Scale == 1)
8706        return true;
8707      // r + r << imm
8708      return isPowerOf2_32(Scale & ~1);
8709    case MVT::i16:
8710    case MVT::i64:
8711      // r + r
8712      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8713        return true;
8714      return false;
8715
8716    case MVT::isVoid:
8717      // Note, we allow "void" uses (basically, uses that aren't loads or
8718      // stores), because arm allows folding a scale into many arithmetic
8719      // operations.  This should be made more precise and revisited later.
8720
8721      // Allow r << imm, but the imm has to be a multiple of two.
8722      if (Scale & 1) return false;
8723      return isPowerOf2_32(Scale);
8724    }
8725  }
8726  return true;
8727}
8728
8729/// isLegalICmpImmediate - Return true if the specified immediate is legal
8730/// icmp immediate, that is the target has icmp instructions which can compare
8731/// a register against the immediate without having to materialize the
8732/// immediate into a register.
8733bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8734  // Thumb2 and ARM modes can use cmn for negative immediates.
8735  if (!Subtarget->isThumb())
8736    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
8737  if (Subtarget->isThumb2())
8738    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
8739  // Thumb1 doesn't have cmn, and only 8-bit immediates.
8740  return Imm >= 0 && Imm <= 255;
8741}
8742
8743/// isLegalAddImmediate - Return true if the specified immediate is legal
8744/// add immediate, that is the target has add instructions which can add
8745/// a register with the immediate without having to materialize the
8746/// immediate into a register.
8747bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8748  return ARM_AM::getSOImmVal(Imm) != -1;
8749}
8750
8751static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8752                                      bool isSEXTLoad, SDValue &Base,
8753                                      SDValue &Offset, bool &isInc,
8754                                      SelectionDAG &DAG) {
8755  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8756    return false;
8757
8758  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8759    // AddressingMode 3
8760    Base = Ptr->getOperand(0);
8761    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8762      int RHSC = (int)RHS->getZExtValue();
8763      if (RHSC < 0 && RHSC > -256) {
8764        assert(Ptr->getOpcode() == ISD::ADD);
8765        isInc = false;
8766        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8767        return true;
8768      }
8769    }
8770    isInc = (Ptr->getOpcode() == ISD::ADD);
8771    Offset = Ptr->getOperand(1);
8772    return true;
8773  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8774    // AddressingMode 2
8775    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8776      int RHSC = (int)RHS->getZExtValue();
8777      if (RHSC < 0 && RHSC > -0x1000) {
8778        assert(Ptr->getOpcode() == ISD::ADD);
8779        isInc = false;
8780        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8781        Base = Ptr->getOperand(0);
8782        return true;
8783      }
8784    }
8785
8786    if (Ptr->getOpcode() == ISD::ADD) {
8787      isInc = true;
8788      ARM_AM::ShiftOpc ShOpcVal=
8789        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8790      if (ShOpcVal != ARM_AM::no_shift) {
8791        Base = Ptr->getOperand(1);
8792        Offset = Ptr->getOperand(0);
8793      } else {
8794        Base = Ptr->getOperand(0);
8795        Offset = Ptr->getOperand(1);
8796      }
8797      return true;
8798    }
8799
8800    isInc = (Ptr->getOpcode() == ISD::ADD);
8801    Base = Ptr->getOperand(0);
8802    Offset = Ptr->getOperand(1);
8803    return true;
8804  }
8805
8806  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8807  return false;
8808}
8809
8810static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8811                                     bool isSEXTLoad, SDValue &Base,
8812                                     SDValue &Offset, bool &isInc,
8813                                     SelectionDAG &DAG) {
8814  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8815    return false;
8816
8817  Base = Ptr->getOperand(0);
8818  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8819    int RHSC = (int)RHS->getZExtValue();
8820    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8821      assert(Ptr->getOpcode() == ISD::ADD);
8822      isInc = false;
8823      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8824      return true;
8825    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8826      isInc = Ptr->getOpcode() == ISD::ADD;
8827      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8828      return true;
8829    }
8830  }
8831
8832  return false;
8833}
8834
8835/// getPreIndexedAddressParts - returns true by value, base pointer and
8836/// offset pointer and addressing mode by reference if the node's address
8837/// can be legally represented as pre-indexed load / store address.
8838bool
8839ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8840                                             SDValue &Offset,
8841                                             ISD::MemIndexedMode &AM,
8842                                             SelectionDAG &DAG) const {
8843  if (Subtarget->isThumb1Only())
8844    return false;
8845
8846  EVT VT;
8847  SDValue Ptr;
8848  bool isSEXTLoad = false;
8849  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8850    Ptr = LD->getBasePtr();
8851    VT  = LD->getMemoryVT();
8852    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8853  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8854    Ptr = ST->getBasePtr();
8855    VT  = ST->getMemoryVT();
8856  } else
8857    return false;
8858
8859  bool isInc;
8860  bool isLegal = false;
8861  if (Subtarget->isThumb2())
8862    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8863                                       Offset, isInc, DAG);
8864  else
8865    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8866                                        Offset, isInc, DAG);
8867  if (!isLegal)
8868    return false;
8869
8870  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8871  return true;
8872}
8873
8874/// getPostIndexedAddressParts - returns true by value, base pointer and
8875/// offset pointer and addressing mode by reference if this node can be
8876/// combined with a load / store to form a post-indexed load / store.
8877bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8878                                                   SDValue &Base,
8879                                                   SDValue &Offset,
8880                                                   ISD::MemIndexedMode &AM,
8881                                                   SelectionDAG &DAG) const {
8882  if (Subtarget->isThumb1Only())
8883    return false;
8884
8885  EVT VT;
8886  SDValue Ptr;
8887  bool isSEXTLoad = false;
8888  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8889    VT  = LD->getMemoryVT();
8890    Ptr = LD->getBasePtr();
8891    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8892  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8893    VT  = ST->getMemoryVT();
8894    Ptr = ST->getBasePtr();
8895  } else
8896    return false;
8897
8898  bool isInc;
8899  bool isLegal = false;
8900  if (Subtarget->isThumb2())
8901    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8902                                       isInc, DAG);
8903  else
8904    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8905                                        isInc, DAG);
8906  if (!isLegal)
8907    return false;
8908
8909  if (Ptr != Base) {
8910    // Swap base ptr and offset to catch more post-index load / store when
8911    // it's legal. In Thumb2 mode, offset must be an immediate.
8912    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8913        !Subtarget->isThumb2())
8914      std::swap(Base, Offset);
8915
8916    // Post-indexed load / store update the base pointer.
8917    if (Ptr != Base)
8918      return false;
8919  }
8920
8921  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8922  return true;
8923}
8924
8925void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8926                                                       APInt &KnownZero,
8927                                                       APInt &KnownOne,
8928                                                       const SelectionDAG &DAG,
8929                                                       unsigned Depth) const {
8930  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
8931  switch (Op.getOpcode()) {
8932  default: break;
8933  case ARMISD::CMOV: {
8934    // Bits are known zero/one if known on the LHS and RHS.
8935    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
8936    if (KnownZero == 0 && KnownOne == 0) return;
8937
8938    APInt KnownZeroRHS, KnownOneRHS;
8939    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
8940    KnownZero &= KnownZeroRHS;
8941    KnownOne  &= KnownOneRHS;
8942    return;
8943  }
8944  }
8945}
8946
8947//===----------------------------------------------------------------------===//
8948//                           ARM Inline Assembly Support
8949//===----------------------------------------------------------------------===//
8950
8951bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8952  // Looking for "rev" which is V6+.
8953  if (!Subtarget->hasV6Ops())
8954    return false;
8955
8956  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8957  std::string AsmStr = IA->getAsmString();
8958  SmallVector<StringRef, 4> AsmPieces;
8959  SplitString(AsmStr, AsmPieces, ";\n");
8960
8961  switch (AsmPieces.size()) {
8962  default: return false;
8963  case 1:
8964    AsmStr = AsmPieces[0];
8965    AsmPieces.clear();
8966    SplitString(AsmStr, AsmPieces, " \t,");
8967
8968    // rev $0, $1
8969    if (AsmPieces.size() == 3 &&
8970        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8971        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8972      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8973      if (Ty && Ty->getBitWidth() == 32)
8974        return IntrinsicLowering::LowerToByteSwap(CI);
8975    }
8976    break;
8977  }
8978
8979  return false;
8980}
8981
8982/// getConstraintType - Given a constraint letter, return the type of
8983/// constraint it is for this target.
8984ARMTargetLowering::ConstraintType
8985ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8986  if (Constraint.size() == 1) {
8987    switch (Constraint[0]) {
8988    default:  break;
8989    case 'l': return C_RegisterClass;
8990    case 'w': return C_RegisterClass;
8991    case 'h': return C_RegisterClass;
8992    case 'x': return C_RegisterClass;
8993    case 't': return C_RegisterClass;
8994    case 'j': return C_Other; // Constant for movw.
8995      // An address with a single base register. Due to the way we
8996      // currently handle addresses it is the same as an 'r' memory constraint.
8997    case 'Q': return C_Memory;
8998    }
8999  } else if (Constraint.size() == 2) {
9000    switch (Constraint[0]) {
9001    default: break;
9002    // All 'U+' constraints are addresses.
9003    case 'U': return C_Memory;
9004    }
9005  }
9006  return TargetLowering::getConstraintType(Constraint);
9007}
9008
9009/// Examine constraint type and operand type and determine a weight value.
9010/// This object must already have been set up with the operand type
9011/// and the current alternative constraint selected.
9012TargetLowering::ConstraintWeight
9013ARMTargetLowering::getSingleConstraintMatchWeight(
9014    AsmOperandInfo &info, const char *constraint) const {
9015  ConstraintWeight weight = CW_Invalid;
9016  Value *CallOperandVal = info.CallOperandVal;
9017    // If we don't have a value, we can't do a match,
9018    // but allow it at the lowest weight.
9019  if (CallOperandVal == NULL)
9020    return CW_Default;
9021  Type *type = CallOperandVal->getType();
9022  // Look at the constraint type.
9023  switch (*constraint) {
9024  default:
9025    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9026    break;
9027  case 'l':
9028    if (type->isIntegerTy()) {
9029      if (Subtarget->isThumb())
9030        weight = CW_SpecificReg;
9031      else
9032        weight = CW_Register;
9033    }
9034    break;
9035  case 'w':
9036    if (type->isFloatingPointTy())
9037      weight = CW_Register;
9038    break;
9039  }
9040  return weight;
9041}
9042
9043typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9044RCPair
9045ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9046                                                EVT VT) const {
9047  if (Constraint.size() == 1) {
9048    // GCC ARM Constraint Letters
9049    switch (Constraint[0]) {
9050    case 'l': // Low regs or general regs.
9051      if (Subtarget->isThumb())
9052        return RCPair(0U, &ARM::tGPRRegClass);
9053      return RCPair(0U, &ARM::GPRRegClass);
9054    case 'h': // High regs or no regs.
9055      if (Subtarget->isThumb())
9056        return RCPair(0U, &ARM::hGPRRegClass);
9057      break;
9058    case 'r':
9059      return RCPair(0U, &ARM::GPRRegClass);
9060    case 'w':
9061      if (VT == MVT::f32)
9062        return RCPair(0U, &ARM::SPRRegClass);
9063      if (VT.getSizeInBits() == 64)
9064        return RCPair(0U, &ARM::DPRRegClass);
9065      if (VT.getSizeInBits() == 128)
9066        return RCPair(0U, &ARM::QPRRegClass);
9067      break;
9068    case 'x':
9069      if (VT == MVT::f32)
9070        return RCPair(0U, &ARM::SPR_8RegClass);
9071      if (VT.getSizeInBits() == 64)
9072        return RCPair(0U, &ARM::DPR_8RegClass);
9073      if (VT.getSizeInBits() == 128)
9074        return RCPair(0U, &ARM::QPR_8RegClass);
9075      break;
9076    case 't':
9077      if (VT == MVT::f32)
9078        return RCPair(0U, &ARM::SPRRegClass);
9079      break;
9080    }
9081  }
9082  if (StringRef("{cc}").equals_lower(Constraint))
9083    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
9084
9085  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9086}
9087
9088/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9089/// vector.  If it is invalid, don't add anything to Ops.
9090void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9091                                                     std::string &Constraint,
9092                                                     std::vector<SDValue>&Ops,
9093                                                     SelectionDAG &DAG) const {
9094  SDValue Result(0, 0);
9095
9096  // Currently only support length 1 constraints.
9097  if (Constraint.length() != 1) return;
9098
9099  char ConstraintLetter = Constraint[0];
9100  switch (ConstraintLetter) {
9101  default: break;
9102  case 'j':
9103  case 'I': case 'J': case 'K': case 'L':
9104  case 'M': case 'N': case 'O':
9105    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9106    if (!C)
9107      return;
9108
9109    int64_t CVal64 = C->getSExtValue();
9110    int CVal = (int) CVal64;
9111    // None of these constraints allow values larger than 32 bits.  Check
9112    // that the value fits in an int.
9113    if (CVal != CVal64)
9114      return;
9115
9116    switch (ConstraintLetter) {
9117      case 'j':
9118        // Constant suitable for movw, must be between 0 and
9119        // 65535.
9120        if (Subtarget->hasV6T2Ops())
9121          if (CVal >= 0 && CVal <= 65535)
9122            break;
9123        return;
9124      case 'I':
9125        if (Subtarget->isThumb1Only()) {
9126          // This must be a constant between 0 and 255, for ADD
9127          // immediates.
9128          if (CVal >= 0 && CVal <= 255)
9129            break;
9130        } else if (Subtarget->isThumb2()) {
9131          // A constant that can be used as an immediate value in a
9132          // data-processing instruction.
9133          if (ARM_AM::getT2SOImmVal(CVal) != -1)
9134            break;
9135        } else {
9136          // A constant that can be used as an immediate value in a
9137          // data-processing instruction.
9138          if (ARM_AM::getSOImmVal(CVal) != -1)
9139            break;
9140        }
9141        return;
9142
9143      case 'J':
9144        if (Subtarget->isThumb()) {  // FIXME thumb2
9145          // This must be a constant between -255 and -1, for negated ADD
9146          // immediates. This can be used in GCC with an "n" modifier that
9147          // prints the negated value, for use with SUB instructions. It is
9148          // not useful otherwise but is implemented for compatibility.
9149          if (CVal >= -255 && CVal <= -1)
9150            break;
9151        } else {
9152          // This must be a constant between -4095 and 4095. It is not clear
9153          // what this constraint is intended for. Implemented for
9154          // compatibility with GCC.
9155          if (CVal >= -4095 && CVal <= 4095)
9156            break;
9157        }
9158        return;
9159
9160      case 'K':
9161        if (Subtarget->isThumb1Only()) {
9162          // A 32-bit value where only one byte has a nonzero value. Exclude
9163          // zero to match GCC. This constraint is used by GCC internally for
9164          // constants that can be loaded with a move/shift combination.
9165          // It is not useful otherwise but is implemented for compatibility.
9166          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9167            break;
9168        } else if (Subtarget->isThumb2()) {
9169          // A constant whose bitwise inverse can be used as an immediate
9170          // value in a data-processing instruction. This can be used in GCC
9171          // with a "B" modifier that prints the inverted value, for use with
9172          // BIC and MVN instructions. It is not useful otherwise but is
9173          // implemented for compatibility.
9174          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9175            break;
9176        } else {
9177          // A constant whose bitwise inverse can be used as an immediate
9178          // value in a data-processing instruction. This can be used in GCC
9179          // with a "B" modifier that prints the inverted value, for use with
9180          // BIC and MVN instructions. It is not useful otherwise but is
9181          // implemented for compatibility.
9182          if (ARM_AM::getSOImmVal(~CVal) != -1)
9183            break;
9184        }
9185        return;
9186
9187      case 'L':
9188        if (Subtarget->isThumb1Only()) {
9189          // This must be a constant between -7 and 7,
9190          // for 3-operand ADD/SUB immediate instructions.
9191          if (CVal >= -7 && CVal < 7)
9192            break;
9193        } else if (Subtarget->isThumb2()) {
9194          // A constant whose negation can be used as an immediate value in a
9195          // data-processing instruction. This can be used in GCC with an "n"
9196          // modifier that prints the negated value, for use with SUB
9197          // instructions. It is not useful otherwise but is implemented for
9198          // compatibility.
9199          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9200            break;
9201        } else {
9202          // A constant whose negation can be used as an immediate value in a
9203          // data-processing instruction. This can be used in GCC with an "n"
9204          // modifier that prints the negated value, for use with SUB
9205          // instructions. It is not useful otherwise but is implemented for
9206          // compatibility.
9207          if (ARM_AM::getSOImmVal(-CVal) != -1)
9208            break;
9209        }
9210        return;
9211
9212      case 'M':
9213        if (Subtarget->isThumb()) { // FIXME thumb2
9214          // This must be a multiple of 4 between 0 and 1020, for
9215          // ADD sp + immediate.
9216          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9217            break;
9218        } else {
9219          // A power of two or a constant between 0 and 32.  This is used in
9220          // GCC for the shift amount on shifted register operands, but it is
9221          // useful in general for any shift amounts.
9222          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9223            break;
9224        }
9225        return;
9226
9227      case 'N':
9228        if (Subtarget->isThumb()) {  // FIXME thumb2
9229          // This must be a constant between 0 and 31, for shift amounts.
9230          if (CVal >= 0 && CVal <= 31)
9231            break;
9232        }
9233        return;
9234
9235      case 'O':
9236        if (Subtarget->isThumb()) {  // FIXME thumb2
9237          // This must be a multiple of 4 between -508 and 508, for
9238          // ADD/SUB sp = sp + immediate.
9239          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9240            break;
9241        }
9242        return;
9243    }
9244    Result = DAG.getTargetConstant(CVal, Op.getValueType());
9245    break;
9246  }
9247
9248  if (Result.getNode()) {
9249    Ops.push_back(Result);
9250    return;
9251  }
9252  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9253}
9254
9255bool
9256ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9257  // The ARM target isn't yet aware of offsets.
9258  return false;
9259}
9260
9261bool ARM::isBitFieldInvertedMask(unsigned v) {
9262  if (v == 0xffffffff)
9263    return 0;
9264  // there can be 1's on either or both "outsides", all the "inside"
9265  // bits must be 0's
9266  unsigned int lsb = 0, msb = 31;
9267  while (v & (1 << msb)) --msb;
9268  while (v & (1 << lsb)) ++lsb;
9269  for (unsigned int i = lsb; i <= msb; ++i) {
9270    if (v & (1 << i))
9271      return 0;
9272  }
9273  return 1;
9274}
9275
9276/// isFPImmLegal - Returns true if the target can instruction select the
9277/// specified FP immediate natively. If false, the legalizer will
9278/// materialize the FP immediate as a load from a constant pool.
9279bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9280  if (!Subtarget->hasVFP3())
9281    return false;
9282  if (VT == MVT::f32)
9283    return ARM_AM::getFP32Imm(Imm) != -1;
9284  if (VT == MVT::f64)
9285    return ARM_AM::getFP64Imm(Imm) != -1;
9286  return false;
9287}
9288
9289/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9290/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
9291/// specified in the intrinsic calls.
9292bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9293                                           const CallInst &I,
9294                                           unsigned Intrinsic) const {
9295  switch (Intrinsic) {
9296  case Intrinsic::arm_neon_vld1:
9297  case Intrinsic::arm_neon_vld2:
9298  case Intrinsic::arm_neon_vld3:
9299  case Intrinsic::arm_neon_vld4:
9300  case Intrinsic::arm_neon_vld2lane:
9301  case Intrinsic::arm_neon_vld3lane:
9302  case Intrinsic::arm_neon_vld4lane: {
9303    Info.opc = ISD::INTRINSIC_W_CHAIN;
9304    // Conservatively set memVT to the entire set of vectors loaded.
9305    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
9306    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9307    Info.ptrVal = I.getArgOperand(0);
9308    Info.offset = 0;
9309    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9310    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9311    Info.vol = false; // volatile loads with NEON intrinsics not supported
9312    Info.readMem = true;
9313    Info.writeMem = false;
9314    return true;
9315  }
9316  case Intrinsic::arm_neon_vst1:
9317  case Intrinsic::arm_neon_vst2:
9318  case Intrinsic::arm_neon_vst3:
9319  case Intrinsic::arm_neon_vst4:
9320  case Intrinsic::arm_neon_vst2lane:
9321  case Intrinsic::arm_neon_vst3lane:
9322  case Intrinsic::arm_neon_vst4lane: {
9323    Info.opc = ISD::INTRINSIC_VOID;
9324    // Conservatively set memVT to the entire set of vectors stored.
9325    unsigned NumElts = 0;
9326    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9327      Type *ArgTy = I.getArgOperand(ArgI)->getType();
9328      if (!ArgTy->isVectorTy())
9329        break;
9330      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
9331    }
9332    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9333    Info.ptrVal = I.getArgOperand(0);
9334    Info.offset = 0;
9335    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9336    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9337    Info.vol = false; // volatile stores with NEON intrinsics not supported
9338    Info.readMem = false;
9339    Info.writeMem = true;
9340    return true;
9341  }
9342  case Intrinsic::arm_strexd: {
9343    Info.opc = ISD::INTRINSIC_W_CHAIN;
9344    Info.memVT = MVT::i64;
9345    Info.ptrVal = I.getArgOperand(2);
9346    Info.offset = 0;
9347    Info.align = 8;
9348    Info.vol = true;
9349    Info.readMem = false;
9350    Info.writeMem = true;
9351    return true;
9352  }
9353  case Intrinsic::arm_ldrexd: {
9354    Info.opc = ISD::INTRINSIC_W_CHAIN;
9355    Info.memVT = MVT::i64;
9356    Info.ptrVal = I.getArgOperand(0);
9357    Info.offset = 0;
9358    Info.align = 8;
9359    Info.vol = true;
9360    Info.readMem = true;
9361    Info.writeMem = false;
9362    return true;
9363  }
9364  default:
9365    break;
9366  }
9367
9368  return false;
9369}
9370