ARMISelLowering.cpp revision 0c1aec18911f2a67fb37b6593d08f4f8cb7e18ef
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62static cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
88  if (ElemTy != MVT::i32) {
89    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
90    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
93  }
94  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
95  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
97  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
98  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
100  if (VT.isInteger()) {
101    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
102    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
104    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
105    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
106    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
107         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
108      setTruncStoreAction(VT.getSimpleVT(),
109                          (MVT::SimpleValueType)InnerVT, Expand);
110  }
111  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
112
113  // Promote all bit-wise operations.
114  if (VT.isInteger() && VT != PromotedBitwiseVT) {
115    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
122    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
123                       PromotedBitwiseVT.getSimpleVT());
124  }
125
126  // Neon does not support vector divide/remainder operations.
127  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
130  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
131  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
132  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
133}
134
135void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
136  addRegisterClass(VT, ARM::DPRRegisterClass);
137  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
138}
139
140void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
141  addRegisterClass(VT, ARM::QPRRegisterClass);
142  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
143}
144
145static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
146  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
147    return new TargetLoweringObjectFileMachO();
148
149  return new ARMElfTargetObjectFile();
150}
151
152ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
153    : TargetLowering(TM, createTLOF(TM)) {
154  Subtarget = &TM.getSubtarget<ARMSubtarget>();
155  RegInfo = TM.getRegisterInfo();
156  Itins = TM.getInstrItineraryData();
157
158  if (Subtarget->isTargetDarwin()) {
159    // Uses VFP for Thumb libfuncs if available.
160    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
161      // Single-precision floating-point arithmetic.
162      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
163      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
164      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
165      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
166
167      // Double-precision floating-point arithmetic.
168      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
169      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
170      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
171      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
172
173      // Single-precision comparisons.
174      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
175      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
176      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
177      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
178      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
179      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
180      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
181      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
182
183      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
190      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
191
192      // Double-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
194      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
195      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
196      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
197      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
198      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
199      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
200      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
210
211      // Floating-point to integer conversions.
212      // i64 conversions are done via library routines even when generating VFP
213      // instructions, so use the same ones.
214      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
215      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
216      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
217      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
218
219      // Conversions between floating types.
220      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
221      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
222
223      // Integer to floating-point conversions.
224      // i64 conversions are done via library routines even when generating VFP
225      // instructions, so use the same ones.
226      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
227      // e.g., __floatunsidf vs. __floatunssidfvfp.
228      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
229      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
230      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
231      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
232    }
233  }
234
235  // These libcalls are not available in 32-bit.
236  setLibcallName(RTLIB::SHL_I128, 0);
237  setLibcallName(RTLIB::SRL_I128, 0);
238  setLibcallName(RTLIB::SRA_I128, 0);
239
240  if (Subtarget->isAAPCS_ABI()) {
241    // Double-precision floating-point arithmetic helper functions
242    // RTABI chapter 4.1.2, Table 2
243    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
244    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
245    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
246    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
247    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
248    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
249    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
250    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
251
252    // Double-precision floating-point comparison helper functions
253    // RTABI chapter 4.1.2, Table 3
254    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
255    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
256    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
257    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
258    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
259    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
260    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
261    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
262    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
263    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
264    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
265    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
266    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
267    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
268    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
269    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
270    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
278
279    // Single-precision floating-point arithmetic helper functions
280    // RTABI chapter 4.1.2, Table 4
281    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
282    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
283    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
284    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
285    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
286    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
287    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
288    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
289
290    // Single-precision floating-point comparison helper functions
291    // RTABI chapter 4.1.2, Table 5
292    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
293    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
294    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
295    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
296    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
297    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
298    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
299    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
300    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
301    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
302    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
303    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
304    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
305    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
306    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
307    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
308    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
316
317    // Floating-point to integer conversions.
318    // RTABI chapter 4.1.2, Table 6
319    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
320    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
321    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
322    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
323    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
324    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
325    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
326    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
327    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
335
336    // Conversions between floating types.
337    // RTABI chapter 4.1.2, Table 7
338    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
339    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
340    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
342
343    // Integer to floating-point conversions.
344    // RTABI chapter 4.1.2, Table 8
345    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
346    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
347    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
348    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
349    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
350    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
351    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
352    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
353    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
361
362    // Long long helper functions
363    // RTABI chapter 4.2, Table 9
364    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
365    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
366    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
367    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
368    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
369    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
370    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
371    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
376
377    // Integer division functions
378    // RTABI chapter 4.3.1
379    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
380    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
381    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
382    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
383    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
384    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
385    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
391  }
392
393  if (Subtarget->isThumb1Only())
394    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
395  else
396    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
397  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
398    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
399    if (!Subtarget->isFPOnlySP())
400      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
401
402    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
403  }
404
405  if (Subtarget->hasNEON()) {
406    addDRTypeForNEON(MVT::v2f32);
407    addDRTypeForNEON(MVT::v8i8);
408    addDRTypeForNEON(MVT::v4i16);
409    addDRTypeForNEON(MVT::v2i32);
410    addDRTypeForNEON(MVT::v1i64);
411
412    addQRTypeForNEON(MVT::v4f32);
413    addQRTypeForNEON(MVT::v2f64);
414    addQRTypeForNEON(MVT::v16i8);
415    addQRTypeForNEON(MVT::v8i16);
416    addQRTypeForNEON(MVT::v4i32);
417    addQRTypeForNEON(MVT::v2i64);
418
419    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
420    // neither Neon nor VFP support any arithmetic operations on it.
421    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
422    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
423    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
424    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
425    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
426    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
427    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
428    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
429    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
430    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
431    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
432    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
433    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
434    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
435    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
436    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
437    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
438    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
439    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
440    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
441    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
442    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
443    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
444    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
445
446    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
447
448    // Neon does not support some operations on v1i64 and v2i64 types.
449    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
450    // Custom handling for some quad-vector types to detect VMULL.
451    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
452    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
453    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
454    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
455    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
456
457    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
458    setTargetDAGCombine(ISD::SHL);
459    setTargetDAGCombine(ISD::SRL);
460    setTargetDAGCombine(ISD::SRA);
461    setTargetDAGCombine(ISD::SIGN_EXTEND);
462    setTargetDAGCombine(ISD::ZERO_EXTEND);
463    setTargetDAGCombine(ISD::ANY_EXTEND);
464    setTargetDAGCombine(ISD::SELECT_CC);
465    setTargetDAGCombine(ISD::BUILD_VECTOR);
466    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
467  }
468
469  computeRegisterProperties();
470
471  // ARM does not have f32 extending load.
472  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
473
474  // ARM does not have i1 sign extending load.
475  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
476
477  // ARM supports all 4 flavors of integer indexed load / store.
478  if (!Subtarget->isThumb1Only()) {
479    for (unsigned im = (unsigned)ISD::PRE_INC;
480         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
481      setIndexedLoadAction(im,  MVT::i1,  Legal);
482      setIndexedLoadAction(im,  MVT::i8,  Legal);
483      setIndexedLoadAction(im,  MVT::i16, Legal);
484      setIndexedLoadAction(im,  MVT::i32, Legal);
485      setIndexedStoreAction(im, MVT::i1,  Legal);
486      setIndexedStoreAction(im, MVT::i8,  Legal);
487      setIndexedStoreAction(im, MVT::i16, Legal);
488      setIndexedStoreAction(im, MVT::i32, Legal);
489    }
490  }
491
492  // i64 operation support.
493  if (Subtarget->isThumb1Only()) {
494    setOperationAction(ISD::MUL,     MVT::i64, Expand);
495    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
496    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
497    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
498    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
499  } else {
500    setOperationAction(ISD::MUL,     MVT::i64, Expand);
501    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
502    if (!Subtarget->hasV6Ops())
503      setOperationAction(ISD::MULHS, MVT::i32, Expand);
504  }
505  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
506  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
507  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
508  setOperationAction(ISD::SRL,       MVT::i64, Custom);
509  setOperationAction(ISD::SRA,       MVT::i64, Custom);
510
511  // ARM does not have ROTL.
512  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
513  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
514  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
515  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
516    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
517
518  // Only ARMv6 has BSWAP.
519  if (!Subtarget->hasV6Ops())
520    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
521
522  // These are expanded into libcalls.
523  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
524    // v7M has a hardware divider
525    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
526    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
527  }
528  setOperationAction(ISD::SREM,  MVT::i32, Expand);
529  setOperationAction(ISD::UREM,  MVT::i32, Expand);
530  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
531  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
532
533  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
534  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
535  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
536  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
537  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
538
539  setOperationAction(ISD::TRAP, MVT::Other, Legal);
540
541  // Use the default implementation.
542  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
543  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
544  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
545  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
546  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
547  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
548  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
549  // FIXME: Shouldn't need this, since no register is used, but the legalizer
550  // doesn't yet know how to not do that for SjLj.
551  setExceptionSelectorRegister(ARM::R0);
552  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
553  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
554  // the default expansion.
555  if (Subtarget->hasDataBarrier() ||
556      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
557    // membarrier needs custom lowering; the rest are legal and handled
558    // normally.
559    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
560  } else {
561    // Set them all for expansion, which will force libcalls.
562    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
563    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
564    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
565    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
566    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
567    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
568    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
569    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
570    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
571    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
584    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
585    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
586    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
587    // Since the libcalls include locking, fold in the fences
588    setShouldFoldAtomicFences(true);
589  }
590  // 64-bit versions are always libcalls (for now)
591  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
592  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
593  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
594  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
595  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
596  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
597  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
598  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
599
600  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
601
602  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
603  if (!Subtarget->hasV6Ops()) {
604    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
605    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
606  }
607  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
608
609  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
610    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
611    // iff target supports vfp2.
612    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
613    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
614  }
615
616  // We want to custom lower some of our intrinsics.
617  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
618  if (Subtarget->isTargetDarwin()) {
619    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
620    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
621    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
622  }
623
624  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
625  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
626  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
627  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
628  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
629  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
630  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
631  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
632  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
633
634  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
635  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
636  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
637  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
638  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
639
640  // We don't support sin/cos/fmod/copysign/pow
641  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
642  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
643  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
644  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
645  setOperationAction(ISD::FREM,      MVT::f64, Expand);
646  setOperationAction(ISD::FREM,      MVT::f32, Expand);
647  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
648    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
650  }
651  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
652  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
653
654  // Various VFP goodness
655  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
656    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
657    if (Subtarget->hasVFP2()) {
658      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
659      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
660      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
661      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
662    }
663    // Special handling for half-precision FP.
664    if (!Subtarget->hasFP16()) {
665      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
666      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
667    }
668  }
669
670  // We have target-specific dag combine patterns for the following nodes:
671  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
672  setTargetDAGCombine(ISD::ADD);
673  setTargetDAGCombine(ISD::SUB);
674  setTargetDAGCombine(ISD::MUL);
675
676  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
677    setTargetDAGCombine(ISD::OR);
678  if (Subtarget->hasNEON())
679    setTargetDAGCombine(ISD::AND);
680
681  setStackPointerRegisterToSaveRestore(ARM::SP);
682
683  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
684    setSchedulingPreference(Sched::RegPressure);
685  else
686    setSchedulingPreference(Sched::Hybrid);
687
688  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
689
690  // On ARM arguments smaller than 4 bytes are extended, so all arguments
691  // are at least 4 bytes aligned.
692  setMinStackArgumentAlignment(4);
693
694  benefitFromCodePlacementOpt = true;
695}
696
697std::pair<const TargetRegisterClass*, uint8_t>
698ARMTargetLowering::findRepresentativeClass(EVT VT) const{
699  const TargetRegisterClass *RRC = 0;
700  uint8_t Cost = 1;
701  switch (VT.getSimpleVT().SimpleTy) {
702  default:
703    return TargetLowering::findRepresentativeClass(VT);
704  // Use DPR as representative register class for all floating point
705  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
706  // the cost is 1 for both f32 and f64.
707  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
708  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
709    RRC = ARM::DPRRegisterClass;
710    break;
711  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
712  case MVT::v4f32: case MVT::v2f64:
713    RRC = ARM::DPRRegisterClass;
714    Cost = 2;
715    break;
716  case MVT::v4i64:
717    RRC = ARM::DPRRegisterClass;
718    Cost = 4;
719    break;
720  case MVT::v8i64:
721    RRC = ARM::DPRRegisterClass;
722    Cost = 8;
723    break;
724  }
725  return std::make_pair(RRC, Cost);
726}
727
728const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
729  switch (Opcode) {
730  default: return 0;
731  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
732  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
733  case ARMISD::CALL:          return "ARMISD::CALL";
734  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
735  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
736  case ARMISD::tCALL:         return "ARMISD::tCALL";
737  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
738  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
739  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
740  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
741  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
742  case ARMISD::CMP:           return "ARMISD::CMP";
743  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
744  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
745  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
746  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
747  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
748  case ARMISD::CMOV:          return "ARMISD::CMOV";
749  case ARMISD::CNEG:          return "ARMISD::CNEG";
750
751  case ARMISD::RBIT:          return "ARMISD::RBIT";
752
753  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
754  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
755  case ARMISD::SITOF:         return "ARMISD::SITOF";
756  case ARMISD::UITOF:         return "ARMISD::UITOF";
757
758  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
759  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
760  case ARMISD::RRX:           return "ARMISD::RRX";
761
762  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
763  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
764
765  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
766  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
767  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
768
769  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
770
771  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
772
773  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
774
775  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
776  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
777
778  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
779
780  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
781  case ARMISD::VCGE:          return "ARMISD::VCGE";
782  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
783  case ARMISD::VCGT:          return "ARMISD::VCGT";
784  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
785  case ARMISD::VTST:          return "ARMISD::VTST";
786
787  case ARMISD::VSHL:          return "ARMISD::VSHL";
788  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
789  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
790  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
791  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
792  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
793  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
794  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
795  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
796  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
797  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
798  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
799  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
800  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
801  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
802  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
803  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
804  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
805  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
806  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
807  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
808  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
809  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
810  case ARMISD::VDUP:          return "ARMISD::VDUP";
811  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
812  case ARMISD::VEXT:          return "ARMISD::VEXT";
813  case ARMISD::VREV64:        return "ARMISD::VREV64";
814  case ARMISD::VREV32:        return "ARMISD::VREV32";
815  case ARMISD::VREV16:        return "ARMISD::VREV16";
816  case ARMISD::VZIP:          return "ARMISD::VZIP";
817  case ARMISD::VUZP:          return "ARMISD::VUZP";
818  case ARMISD::VTRN:          return "ARMISD::VTRN";
819  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
820  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
821  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
822  case ARMISD::FMAX:          return "ARMISD::FMAX";
823  case ARMISD::FMIN:          return "ARMISD::FMIN";
824  case ARMISD::BFI:           return "ARMISD::BFI";
825  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
826  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
827  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
828  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
829  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
830  }
831}
832
833/// getRegClassFor - Return the register class that should be used for the
834/// specified value type.
835TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
836  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
837  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
838  // load / store 4 to 8 consecutive D registers.
839  if (Subtarget->hasNEON()) {
840    if (VT == MVT::v4i64)
841      return ARM::QQPRRegisterClass;
842    else if (VT == MVT::v8i64)
843      return ARM::QQQQPRRegisterClass;
844  }
845  return TargetLowering::getRegClassFor(VT);
846}
847
848// Create a fast isel object.
849FastISel *
850ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
851  return ARM::createFastISel(funcInfo);
852}
853
854/// getFunctionAlignment - Return the Log2 alignment of this function.
855unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
856  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
857}
858
859/// getMaximalGlobalOffset - Returns the maximal possible offset which can
860/// be used for loads / stores from the global.
861unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
862  return (Subtarget->isThumb1Only() ? 127 : 4095);
863}
864
865Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
866  unsigned NumVals = N->getNumValues();
867  if (!NumVals)
868    return Sched::RegPressure;
869
870  for (unsigned i = 0; i != NumVals; ++i) {
871    EVT VT = N->getValueType(i);
872    if (VT == MVT::Flag || VT == MVT::Other)
873      continue;
874    if (VT.isFloatingPoint() || VT.isVector())
875      return Sched::Latency;
876  }
877
878  if (!N->isMachineOpcode())
879    return Sched::RegPressure;
880
881  // Load are scheduled for latency even if there instruction itinerary
882  // is not available.
883  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
884  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
885
886  if (TID.getNumDefs() == 0)
887    return Sched::RegPressure;
888  if (!Itins->isEmpty() &&
889      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
890    return Sched::Latency;
891
892  return Sched::RegPressure;
893}
894
895unsigned
896ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
897                                       MachineFunction &MF) const {
898  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
899
900  switch (RC->getID()) {
901  default:
902    return 0;
903  case ARM::tGPRRegClassID:
904    return TFI->hasFP(MF) ? 4 : 5;
905  case ARM::GPRRegClassID: {
906    unsigned FP = TFI->hasFP(MF) ? 1 : 0;
907    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
908  }
909  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
910  case ARM::DPRRegClassID:
911    return 32 - 10;
912  }
913}
914
915//===----------------------------------------------------------------------===//
916// Lowering Code
917//===----------------------------------------------------------------------===//
918
919/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
920static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
921  switch (CC) {
922  default: llvm_unreachable("Unknown condition code!");
923  case ISD::SETNE:  return ARMCC::NE;
924  case ISD::SETEQ:  return ARMCC::EQ;
925  case ISD::SETGT:  return ARMCC::GT;
926  case ISD::SETGE:  return ARMCC::GE;
927  case ISD::SETLT:  return ARMCC::LT;
928  case ISD::SETLE:  return ARMCC::LE;
929  case ISD::SETUGT: return ARMCC::HI;
930  case ISD::SETUGE: return ARMCC::HS;
931  case ISD::SETULT: return ARMCC::LO;
932  case ISD::SETULE: return ARMCC::LS;
933  }
934}
935
936/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
937static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
938                        ARMCC::CondCodes &CondCode2) {
939  CondCode2 = ARMCC::AL;
940  switch (CC) {
941  default: llvm_unreachable("Unknown FP condition!");
942  case ISD::SETEQ:
943  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
944  case ISD::SETGT:
945  case ISD::SETOGT: CondCode = ARMCC::GT; break;
946  case ISD::SETGE:
947  case ISD::SETOGE: CondCode = ARMCC::GE; break;
948  case ISD::SETOLT: CondCode = ARMCC::MI; break;
949  case ISD::SETOLE: CondCode = ARMCC::LS; break;
950  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
951  case ISD::SETO:   CondCode = ARMCC::VC; break;
952  case ISD::SETUO:  CondCode = ARMCC::VS; break;
953  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
954  case ISD::SETUGT: CondCode = ARMCC::HI; break;
955  case ISD::SETUGE: CondCode = ARMCC::PL; break;
956  case ISD::SETLT:
957  case ISD::SETULT: CondCode = ARMCC::LT; break;
958  case ISD::SETLE:
959  case ISD::SETULE: CondCode = ARMCC::LE; break;
960  case ISD::SETNE:
961  case ISD::SETUNE: CondCode = ARMCC::NE; break;
962  }
963}
964
965//===----------------------------------------------------------------------===//
966//                      Calling Convention Implementation
967//===----------------------------------------------------------------------===//
968
969#include "ARMGenCallingConv.inc"
970
971/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
972/// given CallingConvention value.
973CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
974                                                 bool Return,
975                                                 bool isVarArg) const {
976  switch (CC) {
977  default:
978    llvm_unreachable("Unsupported calling convention");
979  case CallingConv::Fast:
980    if (Subtarget->hasVFP2() && !isVarArg) {
981      if (!Subtarget->isAAPCS_ABI())
982        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
983      // For AAPCS ABI targets, just use VFP variant of the calling convention.
984      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
985    }
986    // Fallthrough
987  case CallingConv::C: {
988    // Use target triple & subtarget features to do actual dispatch.
989    if (!Subtarget->isAAPCS_ABI())
990      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
991    else if (Subtarget->hasVFP2() &&
992             FloatABIType == FloatABI::Hard && !isVarArg)
993      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
994    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
995  }
996  case CallingConv::ARM_AAPCS_VFP:
997    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
998  case CallingConv::ARM_AAPCS:
999    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1000  case CallingConv::ARM_APCS:
1001    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1002  }
1003}
1004
1005/// LowerCallResult - Lower the result values of a call into the
1006/// appropriate copies out of appropriate physical registers.
1007SDValue
1008ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1009                                   CallingConv::ID CallConv, bool isVarArg,
1010                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1011                                   DebugLoc dl, SelectionDAG &DAG,
1012                                   SmallVectorImpl<SDValue> &InVals) const {
1013
1014  // Assign locations to each value returned by this call.
1015  SmallVector<CCValAssign, 16> RVLocs;
1016  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1017                 RVLocs, *DAG.getContext());
1018  CCInfo.AnalyzeCallResult(Ins,
1019                           CCAssignFnForNode(CallConv, /* Return*/ true,
1020                                             isVarArg));
1021
1022  // Copy all of the result registers out of their specified physreg.
1023  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1024    CCValAssign VA = RVLocs[i];
1025
1026    SDValue Val;
1027    if (VA.needsCustom()) {
1028      // Handle f64 or half of a v2f64.
1029      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1030                                      InFlag);
1031      Chain = Lo.getValue(1);
1032      InFlag = Lo.getValue(2);
1033      VA = RVLocs[++i]; // skip ahead to next loc
1034      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1035                                      InFlag);
1036      Chain = Hi.getValue(1);
1037      InFlag = Hi.getValue(2);
1038      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1039
1040      if (VA.getLocVT() == MVT::v2f64) {
1041        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1042        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1043                          DAG.getConstant(0, MVT::i32));
1044
1045        VA = RVLocs[++i]; // skip ahead to next loc
1046        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1047        Chain = Lo.getValue(1);
1048        InFlag = Lo.getValue(2);
1049        VA = RVLocs[++i]; // skip ahead to next loc
1050        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1051        Chain = Hi.getValue(1);
1052        InFlag = Hi.getValue(2);
1053        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1054        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1055                          DAG.getConstant(1, MVT::i32));
1056      }
1057    } else {
1058      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1059                               InFlag);
1060      Chain = Val.getValue(1);
1061      InFlag = Val.getValue(2);
1062    }
1063
1064    switch (VA.getLocInfo()) {
1065    default: llvm_unreachable("Unknown loc info!");
1066    case CCValAssign::Full: break;
1067    case CCValAssign::BCvt:
1068      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1069      break;
1070    }
1071
1072    InVals.push_back(Val);
1073  }
1074
1075  return Chain;
1076}
1077
1078/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1079/// by "Src" to address "Dst" of size "Size".  Alignment information is
1080/// specified by the specific parameter attribute.  The copy will be passed as
1081/// a byval function parameter.
1082/// Sometimes what we are copying is the end of a larger object, the part that
1083/// does not fit in registers.
1084static SDValue
1085CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1086                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1087                          DebugLoc dl) {
1088  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1089  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1090                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1091                       MachinePointerInfo(0), MachinePointerInfo(0));
1092}
1093
1094/// LowerMemOpCallTo - Store the argument to the stack.
1095SDValue
1096ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1097                                    SDValue StackPtr, SDValue Arg,
1098                                    DebugLoc dl, SelectionDAG &DAG,
1099                                    const CCValAssign &VA,
1100                                    ISD::ArgFlagsTy Flags) const {
1101  unsigned LocMemOffset = VA.getLocMemOffset();
1102  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1103  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1104  if (Flags.isByVal())
1105    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1106
1107  return DAG.getStore(Chain, dl, Arg, PtrOff,
1108                      MachinePointerInfo::getStack(LocMemOffset),
1109                      false, false, 0);
1110}
1111
1112void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1113                                         SDValue Chain, SDValue &Arg,
1114                                         RegsToPassVector &RegsToPass,
1115                                         CCValAssign &VA, CCValAssign &NextVA,
1116                                         SDValue &StackPtr,
1117                                         SmallVector<SDValue, 8> &MemOpChains,
1118                                         ISD::ArgFlagsTy Flags) const {
1119
1120  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1121                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1122  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1123
1124  if (NextVA.isRegLoc())
1125    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1126  else {
1127    assert(NextVA.isMemLoc());
1128    if (StackPtr.getNode() == 0)
1129      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1130
1131    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1132                                           dl, DAG, NextVA,
1133                                           Flags));
1134  }
1135}
1136
1137/// LowerCall - Lowering a call into a callseq_start <-
1138/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1139/// nodes.
1140SDValue
1141ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1142                             CallingConv::ID CallConv, bool isVarArg,
1143                             bool &isTailCall,
1144                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1145                             const SmallVectorImpl<SDValue> &OutVals,
1146                             const SmallVectorImpl<ISD::InputArg> &Ins,
1147                             DebugLoc dl, SelectionDAG &DAG,
1148                             SmallVectorImpl<SDValue> &InVals) const {
1149  MachineFunction &MF = DAG.getMachineFunction();
1150  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1151  bool IsSibCall = false;
1152  // Temporarily disable tail calls so things don't break.
1153  if (!EnableARMTailCalls)
1154    isTailCall = false;
1155  if (isTailCall) {
1156    // Check if it's really possible to do a tail call.
1157    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1158                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1159                                                   Outs, OutVals, Ins, DAG);
1160    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1161    // detected sibcalls.
1162    if (isTailCall) {
1163      ++NumTailCalls;
1164      IsSibCall = true;
1165    }
1166  }
1167
1168  // Analyze operands of the call, assigning locations to each operand.
1169  SmallVector<CCValAssign, 16> ArgLocs;
1170  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1171                 *DAG.getContext());
1172  CCInfo.AnalyzeCallOperands(Outs,
1173                             CCAssignFnForNode(CallConv, /* Return*/ false,
1174                                               isVarArg));
1175
1176  // Get a count of how many bytes are to be pushed on the stack.
1177  unsigned NumBytes = CCInfo.getNextStackOffset();
1178
1179  // For tail calls, memory operands are available in our caller's stack.
1180  if (IsSibCall)
1181    NumBytes = 0;
1182
1183  // Adjust the stack pointer for the new arguments...
1184  // These operations are automatically eliminated by the prolog/epilog pass
1185  if (!IsSibCall)
1186    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1187
1188  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1189
1190  RegsToPassVector RegsToPass;
1191  SmallVector<SDValue, 8> MemOpChains;
1192
1193  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1194  // of tail call optimization, arguments are handled later.
1195  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1196       i != e;
1197       ++i, ++realArgIdx) {
1198    CCValAssign &VA = ArgLocs[i];
1199    SDValue Arg = OutVals[realArgIdx];
1200    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1201
1202    // Promote the value if needed.
1203    switch (VA.getLocInfo()) {
1204    default: llvm_unreachable("Unknown loc info!");
1205    case CCValAssign::Full: break;
1206    case CCValAssign::SExt:
1207      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1208      break;
1209    case CCValAssign::ZExt:
1210      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1211      break;
1212    case CCValAssign::AExt:
1213      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1214      break;
1215    case CCValAssign::BCvt:
1216      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1217      break;
1218    }
1219
1220    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1221    if (VA.needsCustom()) {
1222      if (VA.getLocVT() == MVT::v2f64) {
1223        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1224                                  DAG.getConstant(0, MVT::i32));
1225        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1226                                  DAG.getConstant(1, MVT::i32));
1227
1228        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1229                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1230
1231        VA = ArgLocs[++i]; // skip ahead to next loc
1232        if (VA.isRegLoc()) {
1233          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1234                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1235        } else {
1236          assert(VA.isMemLoc());
1237
1238          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1239                                                 dl, DAG, VA, Flags));
1240        }
1241      } else {
1242        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1243                         StackPtr, MemOpChains, Flags);
1244      }
1245    } else if (VA.isRegLoc()) {
1246      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1247    } else if (!IsSibCall) {
1248      assert(VA.isMemLoc());
1249
1250      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1251                                             dl, DAG, VA, Flags));
1252    }
1253  }
1254
1255  if (!MemOpChains.empty())
1256    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1257                        &MemOpChains[0], MemOpChains.size());
1258
1259  // Build a sequence of copy-to-reg nodes chained together with token chain
1260  // and flag operands which copy the outgoing args into the appropriate regs.
1261  SDValue InFlag;
1262  // Tail call byval lowering might overwrite argument registers so in case of
1263  // tail call optimization the copies to registers are lowered later.
1264  if (!isTailCall)
1265    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1266      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1267                               RegsToPass[i].second, InFlag);
1268      InFlag = Chain.getValue(1);
1269    }
1270
1271  // For tail calls lower the arguments to the 'real' stack slot.
1272  if (isTailCall) {
1273    // Force all the incoming stack arguments to be loaded from the stack
1274    // before any new outgoing arguments are stored to the stack, because the
1275    // outgoing stack slots may alias the incoming argument stack slots, and
1276    // the alias isn't otherwise explicit. This is slightly more conservative
1277    // than necessary, because it means that each store effectively depends
1278    // on every argument instead of just those arguments it would clobber.
1279
1280    // Do not flag preceeding copytoreg stuff together with the following stuff.
1281    InFlag = SDValue();
1282    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1283      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1284                               RegsToPass[i].second, InFlag);
1285      InFlag = Chain.getValue(1);
1286    }
1287    InFlag =SDValue();
1288  }
1289
1290  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1291  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1292  // node so that legalize doesn't hack it.
1293  bool isDirect = false;
1294  bool isARMFunc = false;
1295  bool isLocalARMFunc = false;
1296  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1297
1298  if (EnableARMLongCalls) {
1299    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1300            && "long-calls with non-static relocation model!");
1301    // Handle a global address or an external symbol. If it's not one of
1302    // those, the target's already in a register, so we don't need to do
1303    // anything extra.
1304    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1305      const GlobalValue *GV = G->getGlobal();
1306      // Create a constant pool entry for the callee address
1307      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1308      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1309                                                           ARMPCLabelIndex,
1310                                                           ARMCP::CPValue, 0);
1311      // Get the address of the callee into a register
1312      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1313      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1314      Callee = DAG.getLoad(getPointerTy(), dl,
1315                           DAG.getEntryNode(), CPAddr,
1316                           MachinePointerInfo::getConstantPool(),
1317                           false, false, 0);
1318    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1319      const char *Sym = S->getSymbol();
1320
1321      // Create a constant pool entry for the callee address
1322      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1323      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1324                                                       Sym, ARMPCLabelIndex, 0);
1325      // Get the address of the callee into a register
1326      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1327      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1328      Callee = DAG.getLoad(getPointerTy(), dl,
1329                           DAG.getEntryNode(), CPAddr,
1330                           MachinePointerInfo::getConstantPool(),
1331                           false, false, 0);
1332    }
1333  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1334    const GlobalValue *GV = G->getGlobal();
1335    isDirect = true;
1336    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1337    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1338                   getTargetMachine().getRelocationModel() != Reloc::Static;
1339    isARMFunc = !Subtarget->isThumb() || isStub;
1340    // ARM call to a local ARM function is predicable.
1341    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1342    // tBX takes a register source operand.
1343    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1344      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1345      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1346                                                           ARMPCLabelIndex,
1347                                                           ARMCP::CPValue, 4);
1348      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1349      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1350      Callee = DAG.getLoad(getPointerTy(), dl,
1351                           DAG.getEntryNode(), CPAddr,
1352                           MachinePointerInfo::getConstantPool(),
1353                           false, false, 0);
1354      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1355      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1356                           getPointerTy(), Callee, PICLabel);
1357    } else {
1358      // On ELF targets for PIC code, direct calls should go through the PLT
1359      unsigned OpFlags = 0;
1360      if (Subtarget->isTargetELF() &&
1361                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1362        OpFlags = ARMII::MO_PLT;
1363      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1364    }
1365  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1366    isDirect = true;
1367    bool isStub = Subtarget->isTargetDarwin() &&
1368                  getTargetMachine().getRelocationModel() != Reloc::Static;
1369    isARMFunc = !Subtarget->isThumb() || isStub;
1370    // tBX takes a register source operand.
1371    const char *Sym = S->getSymbol();
1372    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1373      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1374      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1375                                                       Sym, ARMPCLabelIndex, 4);
1376      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1377      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1378      Callee = DAG.getLoad(getPointerTy(), dl,
1379                           DAG.getEntryNode(), CPAddr,
1380                           MachinePointerInfo::getConstantPool(),
1381                           false, false, 0);
1382      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1383      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1384                           getPointerTy(), Callee, PICLabel);
1385    } else {
1386      unsigned OpFlags = 0;
1387      // On ELF targets for PIC code, direct calls should go through the PLT
1388      if (Subtarget->isTargetELF() &&
1389                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1390        OpFlags = ARMII::MO_PLT;
1391      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1392    }
1393  }
1394
1395  // FIXME: handle tail calls differently.
1396  unsigned CallOpc;
1397  if (Subtarget->isThumb()) {
1398    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1399      CallOpc = ARMISD::CALL_NOLINK;
1400    else
1401      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1402  } else {
1403    CallOpc = (isDirect || Subtarget->hasV5TOps())
1404      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1405      : ARMISD::CALL_NOLINK;
1406  }
1407
1408  std::vector<SDValue> Ops;
1409  Ops.push_back(Chain);
1410  Ops.push_back(Callee);
1411
1412  // Add argument registers to the end of the list so that they are known live
1413  // into the call.
1414  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1415    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1416                                  RegsToPass[i].second.getValueType()));
1417
1418  if (InFlag.getNode())
1419    Ops.push_back(InFlag);
1420
1421  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1422  if (isTailCall)
1423    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1424
1425  // Returns a chain and a flag for retval copy to use.
1426  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1427  InFlag = Chain.getValue(1);
1428
1429  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1430                             DAG.getIntPtrConstant(0, true), InFlag);
1431  if (!Ins.empty())
1432    InFlag = Chain.getValue(1);
1433
1434  // Handle result values, copying them out of physregs into vregs that we
1435  // return.
1436  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1437                         dl, DAG, InVals);
1438}
1439
1440/// MatchingStackOffset - Return true if the given stack call argument is
1441/// already available in the same position (relatively) of the caller's
1442/// incoming argument stack.
1443static
1444bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1445                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1446                         const ARMInstrInfo *TII) {
1447  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1448  int FI = INT_MAX;
1449  if (Arg.getOpcode() == ISD::CopyFromReg) {
1450    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1451    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1452      return false;
1453    MachineInstr *Def = MRI->getVRegDef(VR);
1454    if (!Def)
1455      return false;
1456    if (!Flags.isByVal()) {
1457      if (!TII->isLoadFromStackSlot(Def, FI))
1458        return false;
1459    } else {
1460      return false;
1461    }
1462  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1463    if (Flags.isByVal())
1464      // ByVal argument is passed in as a pointer but it's now being
1465      // dereferenced. e.g.
1466      // define @foo(%struct.X* %A) {
1467      //   tail call @bar(%struct.X* byval %A)
1468      // }
1469      return false;
1470    SDValue Ptr = Ld->getBasePtr();
1471    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1472    if (!FINode)
1473      return false;
1474    FI = FINode->getIndex();
1475  } else
1476    return false;
1477
1478  assert(FI != INT_MAX);
1479  if (!MFI->isFixedObjectIndex(FI))
1480    return false;
1481  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1482}
1483
1484/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1485/// for tail call optimization. Targets which want to do tail call
1486/// optimization should implement this function.
1487bool
1488ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1489                                                     CallingConv::ID CalleeCC,
1490                                                     bool isVarArg,
1491                                                     bool isCalleeStructRet,
1492                                                     bool isCallerStructRet,
1493                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1494                                    const SmallVectorImpl<SDValue> &OutVals,
1495                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1496                                                     SelectionDAG& DAG) const {
1497  const Function *CallerF = DAG.getMachineFunction().getFunction();
1498  CallingConv::ID CallerCC = CallerF->getCallingConv();
1499  bool CCMatch = CallerCC == CalleeCC;
1500
1501  // Look for obvious safe cases to perform tail call optimization that do not
1502  // require ABI changes. This is what gcc calls sibcall.
1503
1504  // Do not sibcall optimize vararg calls unless the call site is not passing
1505  // any arguments.
1506  if (isVarArg && !Outs.empty())
1507    return false;
1508
1509  // Also avoid sibcall optimization if either caller or callee uses struct
1510  // return semantics.
1511  if (isCalleeStructRet || isCallerStructRet)
1512    return false;
1513
1514  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1515  // emitEpilogue is not ready for them.
1516  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1517  // LR.  This means if we need to reload LR, it takes an extra instructions,
1518  // which outweighs the value of the tail call; but here we don't know yet
1519  // whether LR is going to be used.  Probably the right approach is to
1520  // generate the tail call here and turn it back into CALL/RET in
1521  // emitEpilogue if LR is used.
1522
1523  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1524  // but we need to make sure there are enough registers; the only valid
1525  // registers are the 4 used for parameters.  We don't currently do this
1526  // case.
1527  if (Subtarget->isThumb1Only())
1528    return false;
1529
1530  // If the calling conventions do not match, then we'd better make sure the
1531  // results are returned in the same way as what the caller expects.
1532  if (!CCMatch) {
1533    SmallVector<CCValAssign, 16> RVLocs1;
1534    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1535                    RVLocs1, *DAG.getContext());
1536    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1537
1538    SmallVector<CCValAssign, 16> RVLocs2;
1539    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1540                    RVLocs2, *DAG.getContext());
1541    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1542
1543    if (RVLocs1.size() != RVLocs2.size())
1544      return false;
1545    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1546      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1547        return false;
1548      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1549        return false;
1550      if (RVLocs1[i].isRegLoc()) {
1551        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1552          return false;
1553      } else {
1554        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1555          return false;
1556      }
1557    }
1558  }
1559
1560  // If the callee takes no arguments then go on to check the results of the
1561  // call.
1562  if (!Outs.empty()) {
1563    // Check if stack adjustment is needed. For now, do not do this if any
1564    // argument is passed on the stack.
1565    SmallVector<CCValAssign, 16> ArgLocs;
1566    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1567                   ArgLocs, *DAG.getContext());
1568    CCInfo.AnalyzeCallOperands(Outs,
1569                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1570    if (CCInfo.getNextStackOffset()) {
1571      MachineFunction &MF = DAG.getMachineFunction();
1572
1573      // Check if the arguments are already laid out in the right way as
1574      // the caller's fixed stack objects.
1575      MachineFrameInfo *MFI = MF.getFrameInfo();
1576      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1577      const ARMInstrInfo *TII =
1578        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1579      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1580           i != e;
1581           ++i, ++realArgIdx) {
1582        CCValAssign &VA = ArgLocs[i];
1583        EVT RegVT = VA.getLocVT();
1584        SDValue Arg = OutVals[realArgIdx];
1585        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1586        if (VA.getLocInfo() == CCValAssign::Indirect)
1587          return false;
1588        if (VA.needsCustom()) {
1589          // f64 and vector types are split into multiple registers or
1590          // register/stack-slot combinations.  The types will not match
1591          // the registers; give up on memory f64 refs until we figure
1592          // out what to do about this.
1593          if (!VA.isRegLoc())
1594            return false;
1595          if (!ArgLocs[++i].isRegLoc())
1596            return false;
1597          if (RegVT == MVT::v2f64) {
1598            if (!ArgLocs[++i].isRegLoc())
1599              return false;
1600            if (!ArgLocs[++i].isRegLoc())
1601              return false;
1602          }
1603        } else if (!VA.isRegLoc()) {
1604          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1605                                   MFI, MRI, TII))
1606            return false;
1607        }
1608      }
1609    }
1610  }
1611
1612  return true;
1613}
1614
1615SDValue
1616ARMTargetLowering::LowerReturn(SDValue Chain,
1617                               CallingConv::ID CallConv, bool isVarArg,
1618                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1619                               const SmallVectorImpl<SDValue> &OutVals,
1620                               DebugLoc dl, SelectionDAG &DAG) const {
1621
1622  // CCValAssign - represent the assignment of the return value to a location.
1623  SmallVector<CCValAssign, 16> RVLocs;
1624
1625  // CCState - Info about the registers and stack slots.
1626  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1627                 *DAG.getContext());
1628
1629  // Analyze outgoing return values.
1630  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1631                                               isVarArg));
1632
1633  // If this is the first return lowered for this function, add
1634  // the regs to the liveout set for the function.
1635  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1636    for (unsigned i = 0; i != RVLocs.size(); ++i)
1637      if (RVLocs[i].isRegLoc())
1638        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1639  }
1640
1641  SDValue Flag;
1642
1643  // Copy the result values into the output registers.
1644  for (unsigned i = 0, realRVLocIdx = 0;
1645       i != RVLocs.size();
1646       ++i, ++realRVLocIdx) {
1647    CCValAssign &VA = RVLocs[i];
1648    assert(VA.isRegLoc() && "Can only return in registers!");
1649
1650    SDValue Arg = OutVals[realRVLocIdx];
1651
1652    switch (VA.getLocInfo()) {
1653    default: llvm_unreachable("Unknown loc info!");
1654    case CCValAssign::Full: break;
1655    case CCValAssign::BCvt:
1656      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1657      break;
1658    }
1659
1660    if (VA.needsCustom()) {
1661      if (VA.getLocVT() == MVT::v2f64) {
1662        // Extract the first half and return it in two registers.
1663        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1664                                   DAG.getConstant(0, MVT::i32));
1665        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1666                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1667
1668        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1669        Flag = Chain.getValue(1);
1670        VA = RVLocs[++i]; // skip ahead to next loc
1671        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1672                                 HalfGPRs.getValue(1), Flag);
1673        Flag = Chain.getValue(1);
1674        VA = RVLocs[++i]; // skip ahead to next loc
1675
1676        // Extract the 2nd half and fall through to handle it as an f64 value.
1677        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1678                          DAG.getConstant(1, MVT::i32));
1679      }
1680      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1681      // available.
1682      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1683                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1684      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1685      Flag = Chain.getValue(1);
1686      VA = RVLocs[++i]; // skip ahead to next loc
1687      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1688                               Flag);
1689    } else
1690      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1691
1692    // Guarantee that all emitted copies are
1693    // stuck together, avoiding something bad.
1694    Flag = Chain.getValue(1);
1695  }
1696
1697  SDValue result;
1698  if (Flag.getNode())
1699    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1700  else // Return Void
1701    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1702
1703  return result;
1704}
1705
1706bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1707  if (N->getNumValues() != 1)
1708    return false;
1709  if (!N->hasNUsesOfValue(1, 0))
1710    return false;
1711
1712  unsigned NumCopies = 0;
1713  SDNode* Copies[2];
1714  SDNode *Use = *N->use_begin();
1715  if (Use->getOpcode() == ISD::CopyToReg) {
1716    Copies[NumCopies++] = Use;
1717  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1718    // f64 returned in a pair of GPRs.
1719    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1720         UI != UE; ++UI) {
1721      if (UI->getOpcode() != ISD::CopyToReg)
1722        return false;
1723      Copies[UI.getUse().getResNo()] = *UI;
1724      ++NumCopies;
1725    }
1726  } else if (Use->getOpcode() == ISD::BITCAST) {
1727    // f32 returned in a single GPR.
1728    if (!Use->hasNUsesOfValue(1, 0))
1729      return false;
1730    Use = *Use->use_begin();
1731    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1732      return false;
1733    Copies[NumCopies++] = Use;
1734  } else {
1735    return false;
1736  }
1737
1738  if (NumCopies != 1 && NumCopies != 2)
1739    return false;
1740
1741  bool HasRet = false;
1742  for (unsigned i = 0; i < NumCopies; ++i) {
1743    SDNode *Copy = Copies[i];
1744    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1745         UI != UE; ++UI) {
1746      if (UI->getOpcode() == ISD::CopyToReg) {
1747        SDNode *Use = *UI;
1748        if (Use == Copies[0] || Use == Copies[1])
1749          continue;
1750        return false;
1751      }
1752      if (UI->getOpcode() != ARMISD::RET_FLAG)
1753        return false;
1754      HasRet = true;
1755    }
1756  }
1757
1758  return HasRet;
1759}
1760
1761// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1762// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1763// one of the above mentioned nodes. It has to be wrapped because otherwise
1764// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1765// be used to form addressing mode. These wrapped nodes will be selected
1766// into MOVi.
1767static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1768  EVT PtrVT = Op.getValueType();
1769  // FIXME there is no actual debug info here
1770  DebugLoc dl = Op.getDebugLoc();
1771  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1772  SDValue Res;
1773  if (CP->isMachineConstantPoolEntry())
1774    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1775                                    CP->getAlignment());
1776  else
1777    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1778                                    CP->getAlignment());
1779  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1780}
1781
1782unsigned ARMTargetLowering::getJumpTableEncoding() const {
1783  return MachineJumpTableInfo::EK_Inline;
1784}
1785
1786SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1787                                             SelectionDAG &DAG) const {
1788  MachineFunction &MF = DAG.getMachineFunction();
1789  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1790  unsigned ARMPCLabelIndex = 0;
1791  DebugLoc DL = Op.getDebugLoc();
1792  EVT PtrVT = getPointerTy();
1793  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1794  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1795  SDValue CPAddr;
1796  if (RelocM == Reloc::Static) {
1797    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1798  } else {
1799    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1800    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1801    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1802                                                         ARMCP::CPBlockAddress,
1803                                                         PCAdj);
1804    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1805  }
1806  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1807  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1808                               MachinePointerInfo::getConstantPool(),
1809                               false, false, 0);
1810  if (RelocM == Reloc::Static)
1811    return Result;
1812  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1813  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1814}
1815
1816// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1817SDValue
1818ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1819                                                 SelectionDAG &DAG) const {
1820  DebugLoc dl = GA->getDebugLoc();
1821  EVT PtrVT = getPointerTy();
1822  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1823  MachineFunction &MF = DAG.getMachineFunction();
1824  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1825  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1826  ARMConstantPoolValue *CPV =
1827    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1828                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1829  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1830  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1831  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1832                         MachinePointerInfo::getConstantPool(),
1833                         false, false, 0);
1834  SDValue Chain = Argument.getValue(1);
1835
1836  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1837  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1838
1839  // call __tls_get_addr.
1840  ArgListTy Args;
1841  ArgListEntry Entry;
1842  Entry.Node = Argument;
1843  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1844  Args.push_back(Entry);
1845  // FIXME: is there useful debug info available here?
1846  std::pair<SDValue, SDValue> CallResult =
1847    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1848                false, false, false, false,
1849                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1850                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1851  return CallResult.first;
1852}
1853
1854// Lower ISD::GlobalTLSAddress using the "initial exec" or
1855// "local exec" model.
1856SDValue
1857ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1858                                        SelectionDAG &DAG) const {
1859  const GlobalValue *GV = GA->getGlobal();
1860  DebugLoc dl = GA->getDebugLoc();
1861  SDValue Offset;
1862  SDValue Chain = DAG.getEntryNode();
1863  EVT PtrVT = getPointerTy();
1864  // Get the Thread Pointer
1865  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1866
1867  if (GV->isDeclaration()) {
1868    MachineFunction &MF = DAG.getMachineFunction();
1869    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1870    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1871    // Initial exec model.
1872    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1873    ARMConstantPoolValue *CPV =
1874      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1875                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1876    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1877    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1878    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1879                         MachinePointerInfo::getConstantPool(),
1880                         false, false, 0);
1881    Chain = Offset.getValue(1);
1882
1883    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1884    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1885
1886    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1887                         MachinePointerInfo::getConstantPool(),
1888                         false, false, 0);
1889  } else {
1890    // local exec model
1891    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
1892    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1893    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1894    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1895                         MachinePointerInfo::getConstantPool(),
1896                         false, false, 0);
1897  }
1898
1899  // The address of the thread local variable is the add of the thread
1900  // pointer with the offset of the variable.
1901  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1902}
1903
1904SDValue
1905ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1906  // TODO: implement the "local dynamic" model
1907  assert(Subtarget->isTargetELF() &&
1908         "TLS not implemented for non-ELF targets");
1909  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1910  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1911  // otherwise use the "Local Exec" TLS Model
1912  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1913    return LowerToTLSGeneralDynamicModel(GA, DAG);
1914  else
1915    return LowerToTLSExecModels(GA, DAG);
1916}
1917
1918SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1919                                                 SelectionDAG &DAG) const {
1920  EVT PtrVT = getPointerTy();
1921  DebugLoc dl = Op.getDebugLoc();
1922  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1923  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1924  if (RelocM == Reloc::PIC_) {
1925    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1926    ARMConstantPoolValue *CPV =
1927      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
1928    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1929    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1930    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1931                                 CPAddr,
1932                                 MachinePointerInfo::getConstantPool(),
1933                                 false, false, 0);
1934    SDValue Chain = Result.getValue(1);
1935    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1936    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1937    if (!UseGOTOFF)
1938      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1939                           MachinePointerInfo::getGOT(), false, false, 0);
1940    return Result;
1941  } else {
1942    // If we have T2 ops, we can materialize the address directly via movt/movw
1943    // pair. This is always cheaper.
1944    if (Subtarget->useMovt()) {
1945      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1946                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1947    } else {
1948      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1949      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1950      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1951                         MachinePointerInfo::getConstantPool(),
1952                         false, false, 0);
1953    }
1954  }
1955}
1956
1957SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1958                                                    SelectionDAG &DAG) const {
1959  MachineFunction &MF = DAG.getMachineFunction();
1960  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1961  unsigned ARMPCLabelIndex = 0;
1962  EVT PtrVT = getPointerTy();
1963  DebugLoc dl = Op.getDebugLoc();
1964  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1965  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1966  SDValue CPAddr;
1967  if (RelocM == Reloc::Static)
1968    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1969  else {
1970    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1971    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1972    ARMConstantPoolValue *CPV =
1973      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1974    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1975  }
1976  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1977
1978  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1979                               MachinePointerInfo::getConstantPool(),
1980                               false, false, 0);
1981  SDValue Chain = Result.getValue(1);
1982
1983  if (RelocM == Reloc::PIC_) {
1984    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1985    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1986  }
1987
1988  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1989    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1990                         false, false, 0);
1991
1992  return Result;
1993}
1994
1995SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1996                                                    SelectionDAG &DAG) const {
1997  assert(Subtarget->isTargetELF() &&
1998         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1999  MachineFunction &MF = DAG.getMachineFunction();
2000  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2001  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2002  EVT PtrVT = getPointerTy();
2003  DebugLoc dl = Op.getDebugLoc();
2004  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2005  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2006                                                       "_GLOBAL_OFFSET_TABLE_",
2007                                                       ARMPCLabelIndex, PCAdj);
2008  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2009  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2010  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2011                               MachinePointerInfo::getConstantPool(),
2012                               false, false, 0);
2013  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2014  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2015}
2016
2017SDValue
2018ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2019  const {
2020  DebugLoc dl = Op.getDebugLoc();
2021  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2022                     Op.getOperand(0), Op.getOperand(1));
2023}
2024
2025SDValue
2026ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2027  DebugLoc dl = Op.getDebugLoc();
2028  SDValue Val = DAG.getConstant(0, MVT::i32);
2029  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2030                     Op.getOperand(1), Val);
2031}
2032
2033SDValue
2034ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2035  DebugLoc dl = Op.getDebugLoc();
2036  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2037                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2038}
2039
2040SDValue
2041ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2042                                          const ARMSubtarget *Subtarget) const {
2043  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2044  DebugLoc dl = Op.getDebugLoc();
2045  switch (IntNo) {
2046  default: return SDValue();    // Don't custom lower most intrinsics.
2047  case Intrinsic::arm_thread_pointer: {
2048    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2049    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2050  }
2051  case Intrinsic::eh_sjlj_lsda: {
2052    MachineFunction &MF = DAG.getMachineFunction();
2053    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2054    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2055    EVT PtrVT = getPointerTy();
2056    DebugLoc dl = Op.getDebugLoc();
2057    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2058    SDValue CPAddr;
2059    unsigned PCAdj = (RelocM != Reloc::PIC_)
2060      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2061    ARMConstantPoolValue *CPV =
2062      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2063                               ARMCP::CPLSDA, PCAdj);
2064    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2065    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2066    SDValue Result =
2067      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2068                  MachinePointerInfo::getConstantPool(),
2069                  false, false, 0);
2070
2071    if (RelocM == Reloc::PIC_) {
2072      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2073      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2074    }
2075    return Result;
2076  }
2077  }
2078}
2079
2080static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2081                               const ARMSubtarget *Subtarget) {
2082  DebugLoc dl = Op.getDebugLoc();
2083  if (!Subtarget->hasDataBarrier()) {
2084    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2085    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2086    // here.
2087    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2088           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2089    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2090                       DAG.getConstant(0, MVT::i32));
2091  }
2092
2093  SDValue Op5 = Op.getOperand(5);
2094  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2095  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2096  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2097  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2098
2099  ARM_MB::MemBOpt DMBOpt;
2100  if (isDeviceBarrier)
2101    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2102  else
2103    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2104  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2105                     DAG.getConstant(DMBOpt, MVT::i32));
2106}
2107
2108static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2109                             const ARMSubtarget *Subtarget) {
2110  // ARM pre v5TE and Thumb1 does not have preload instructions.
2111  if (!(Subtarget->isThumb2() ||
2112        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2113    // Just preserve the chain.
2114    return Op.getOperand(0);
2115
2116  DebugLoc dl = Op.getDebugLoc();
2117  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2118  if (!isRead &&
2119      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2120    // ARMv7 with MP extension has PLDW.
2121    return Op.getOperand(0);
2122
2123  if (Subtarget->isThumb())
2124    // Invert the bits.
2125    isRead = ~isRead & 1;
2126  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2127
2128  // Currently there is no intrinsic that matches pli.
2129  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2130                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2131                     DAG.getConstant(isData, MVT::i32));
2132}
2133
2134static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2135  MachineFunction &MF = DAG.getMachineFunction();
2136  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2137
2138  // vastart just stores the address of the VarArgsFrameIndex slot into the
2139  // memory location argument.
2140  DebugLoc dl = Op.getDebugLoc();
2141  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2142  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2143  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2144  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2145                      MachinePointerInfo(SV), false, false, 0);
2146}
2147
2148SDValue
2149ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2150                                        SDValue &Root, SelectionDAG &DAG,
2151                                        DebugLoc dl) const {
2152  MachineFunction &MF = DAG.getMachineFunction();
2153  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2154
2155  TargetRegisterClass *RC;
2156  if (AFI->isThumb1OnlyFunction())
2157    RC = ARM::tGPRRegisterClass;
2158  else
2159    RC = ARM::GPRRegisterClass;
2160
2161  // Transform the arguments stored in physical registers into virtual ones.
2162  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2163  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2164
2165  SDValue ArgValue2;
2166  if (NextVA.isMemLoc()) {
2167    MachineFrameInfo *MFI = MF.getFrameInfo();
2168    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2169
2170    // Create load node to retrieve arguments from the stack.
2171    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2172    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2173                            MachinePointerInfo::getFixedStack(FI),
2174                            false, false, 0);
2175  } else {
2176    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2177    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2178  }
2179
2180  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2181}
2182
2183SDValue
2184ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2185                                        CallingConv::ID CallConv, bool isVarArg,
2186                                        const SmallVectorImpl<ISD::InputArg>
2187                                          &Ins,
2188                                        DebugLoc dl, SelectionDAG &DAG,
2189                                        SmallVectorImpl<SDValue> &InVals)
2190                                          const {
2191
2192  MachineFunction &MF = DAG.getMachineFunction();
2193  MachineFrameInfo *MFI = MF.getFrameInfo();
2194
2195  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2196
2197  // Assign locations to all of the incoming arguments.
2198  SmallVector<CCValAssign, 16> ArgLocs;
2199  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2200                 *DAG.getContext());
2201  CCInfo.AnalyzeFormalArguments(Ins,
2202                                CCAssignFnForNode(CallConv, /* Return*/ false,
2203                                                  isVarArg));
2204
2205  SmallVector<SDValue, 16> ArgValues;
2206
2207  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2208    CCValAssign &VA = ArgLocs[i];
2209
2210    // Arguments stored in registers.
2211    if (VA.isRegLoc()) {
2212      EVT RegVT = VA.getLocVT();
2213
2214      SDValue ArgValue;
2215      if (VA.needsCustom()) {
2216        // f64 and vector types are split up into multiple registers or
2217        // combinations of registers and stack slots.
2218        if (VA.getLocVT() == MVT::v2f64) {
2219          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2220                                                   Chain, DAG, dl);
2221          VA = ArgLocs[++i]; // skip ahead to next loc
2222          SDValue ArgValue2;
2223          if (VA.isMemLoc()) {
2224            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2225            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2226            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2227                                    MachinePointerInfo::getFixedStack(FI),
2228                                    false, false, 0);
2229          } else {
2230            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2231                                             Chain, DAG, dl);
2232          }
2233          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2234          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2235                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2236          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2237                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2238        } else
2239          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2240
2241      } else {
2242        TargetRegisterClass *RC;
2243
2244        if (RegVT == MVT::f32)
2245          RC = ARM::SPRRegisterClass;
2246        else if (RegVT == MVT::f64)
2247          RC = ARM::DPRRegisterClass;
2248        else if (RegVT == MVT::v2f64)
2249          RC = ARM::QPRRegisterClass;
2250        else if (RegVT == MVT::i32)
2251          RC = (AFI->isThumb1OnlyFunction() ?
2252                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2253        else
2254          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2255
2256        // Transform the arguments in physical registers into virtual ones.
2257        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2258        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2259      }
2260
2261      // If this is an 8 or 16-bit value, it is really passed promoted
2262      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2263      // truncate to the right size.
2264      switch (VA.getLocInfo()) {
2265      default: llvm_unreachable("Unknown loc info!");
2266      case CCValAssign::Full: break;
2267      case CCValAssign::BCvt:
2268        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2269        break;
2270      case CCValAssign::SExt:
2271        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2272                               DAG.getValueType(VA.getValVT()));
2273        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2274        break;
2275      case CCValAssign::ZExt:
2276        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2277                               DAG.getValueType(VA.getValVT()));
2278        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2279        break;
2280      }
2281
2282      InVals.push_back(ArgValue);
2283
2284    } else { // VA.isRegLoc()
2285
2286      // sanity check
2287      assert(VA.isMemLoc());
2288      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2289
2290      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2291      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2292
2293      // Create load nodes to retrieve arguments from the stack.
2294      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2295      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2296                                   MachinePointerInfo::getFixedStack(FI),
2297                                   false, false, 0));
2298    }
2299  }
2300
2301  // varargs
2302  if (isVarArg) {
2303    static const unsigned GPRArgRegs[] = {
2304      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2305    };
2306
2307    unsigned NumGPRs = CCInfo.getFirstUnallocated
2308      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2309
2310    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2311    unsigned VARegSize = (4 - NumGPRs) * 4;
2312    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2313    unsigned ArgOffset = CCInfo.getNextStackOffset();
2314    if (VARegSaveSize) {
2315      // If this function is vararg, store any remaining integer argument regs
2316      // to their spots on the stack so that they may be loaded by deferencing
2317      // the result of va_next.
2318      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2319      AFI->setVarArgsFrameIndex(
2320        MFI->CreateFixedObject(VARegSaveSize,
2321                               ArgOffset + VARegSaveSize - VARegSize,
2322                               false));
2323      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2324                                      getPointerTy());
2325
2326      SmallVector<SDValue, 4> MemOps;
2327      for (; NumGPRs < 4; ++NumGPRs) {
2328        TargetRegisterClass *RC;
2329        if (AFI->isThumb1OnlyFunction())
2330          RC = ARM::tGPRRegisterClass;
2331        else
2332          RC = ARM::GPRRegisterClass;
2333
2334        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2335        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2336        SDValue Store =
2337          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2338               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2339                       false, false, 0);
2340        MemOps.push_back(Store);
2341        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2342                          DAG.getConstant(4, getPointerTy()));
2343      }
2344      if (!MemOps.empty())
2345        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2346                            &MemOps[0], MemOps.size());
2347    } else
2348      // This will point to the next argument passed via stack.
2349      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2350  }
2351
2352  return Chain;
2353}
2354
2355/// isFloatingPointZero - Return true if this is +0.0.
2356static bool isFloatingPointZero(SDValue Op) {
2357  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2358    return CFP->getValueAPF().isPosZero();
2359  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2360    // Maybe this has already been legalized into the constant pool?
2361    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2362      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2363      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2364        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2365          return CFP->getValueAPF().isPosZero();
2366    }
2367  }
2368  return false;
2369}
2370
2371/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2372/// the given operands.
2373SDValue
2374ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2375                             SDValue &ARMcc, SelectionDAG &DAG,
2376                             DebugLoc dl) const {
2377  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2378    unsigned C = RHSC->getZExtValue();
2379    if (!isLegalICmpImmediate(C)) {
2380      // Constant does not fit, try adjusting it by one?
2381      switch (CC) {
2382      default: break;
2383      case ISD::SETLT:
2384      case ISD::SETGE:
2385        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2386          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2387          RHS = DAG.getConstant(C-1, MVT::i32);
2388        }
2389        break;
2390      case ISD::SETULT:
2391      case ISD::SETUGE:
2392        if (C != 0 && isLegalICmpImmediate(C-1)) {
2393          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2394          RHS = DAG.getConstant(C-1, MVT::i32);
2395        }
2396        break;
2397      case ISD::SETLE:
2398      case ISD::SETGT:
2399        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2400          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2401          RHS = DAG.getConstant(C+1, MVT::i32);
2402        }
2403        break;
2404      case ISD::SETULE:
2405      case ISD::SETUGT:
2406        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2407          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2408          RHS = DAG.getConstant(C+1, MVT::i32);
2409        }
2410        break;
2411      }
2412    }
2413  }
2414
2415  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2416  ARMISD::NodeType CompareType;
2417  switch (CondCode) {
2418  default:
2419    CompareType = ARMISD::CMP;
2420    break;
2421  case ARMCC::EQ:
2422  case ARMCC::NE:
2423    // Uses only Z Flag
2424    CompareType = ARMISD::CMPZ;
2425    break;
2426  }
2427  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2428  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2429}
2430
2431/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2432SDValue
2433ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2434                             DebugLoc dl) const {
2435  SDValue Cmp;
2436  if (!isFloatingPointZero(RHS))
2437    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2438  else
2439    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2440  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2441}
2442
2443SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2444  SDValue Cond = Op.getOperand(0);
2445  SDValue SelectTrue = Op.getOperand(1);
2446  SDValue SelectFalse = Op.getOperand(2);
2447  DebugLoc dl = Op.getDebugLoc();
2448
2449  // Convert:
2450  //
2451  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2452  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2453  //
2454  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2455    const ConstantSDNode *CMOVTrue =
2456      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2457    const ConstantSDNode *CMOVFalse =
2458      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2459
2460    if (CMOVTrue && CMOVFalse) {
2461      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2462      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2463
2464      SDValue True;
2465      SDValue False;
2466      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2467        True = SelectTrue;
2468        False = SelectFalse;
2469      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2470        True = SelectFalse;
2471        False = SelectTrue;
2472      }
2473
2474      if (True.getNode() && False.getNode()) {
2475        EVT VT = Cond.getValueType();
2476        SDValue ARMcc = Cond.getOperand(2);
2477        SDValue CCR = Cond.getOperand(3);
2478        SDValue Cmp = Cond.getOperand(4);
2479        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2480      }
2481    }
2482  }
2483
2484  return DAG.getSelectCC(dl, Cond,
2485                         DAG.getConstant(0, Cond.getValueType()),
2486                         SelectTrue, SelectFalse, ISD::SETNE);
2487}
2488
2489SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2490  EVT VT = Op.getValueType();
2491  SDValue LHS = Op.getOperand(0);
2492  SDValue RHS = Op.getOperand(1);
2493  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2494  SDValue TrueVal = Op.getOperand(2);
2495  SDValue FalseVal = Op.getOperand(3);
2496  DebugLoc dl = Op.getDebugLoc();
2497
2498  if (LHS.getValueType() == MVT::i32) {
2499    SDValue ARMcc;
2500    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2501    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2502    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2503  }
2504
2505  ARMCC::CondCodes CondCode, CondCode2;
2506  FPCCToARMCC(CC, CondCode, CondCode2);
2507
2508  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2509  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2510  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2511  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2512                               ARMcc, CCR, Cmp);
2513  if (CondCode2 != ARMCC::AL) {
2514    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2515    // FIXME: Needs another CMP because flag can have but one use.
2516    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2517    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2518                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2519  }
2520  return Result;
2521}
2522
2523/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2524/// to morph to an integer compare sequence.
2525static bool canChangeToInt(SDValue Op, bool &SeenZero,
2526                           const ARMSubtarget *Subtarget) {
2527  SDNode *N = Op.getNode();
2528  if (!N->hasOneUse())
2529    // Otherwise it requires moving the value from fp to integer registers.
2530    return false;
2531  if (!N->getNumValues())
2532    return false;
2533  EVT VT = Op.getValueType();
2534  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2535    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2536    // vmrs are very slow, e.g. cortex-a8.
2537    return false;
2538
2539  if (isFloatingPointZero(Op)) {
2540    SeenZero = true;
2541    return true;
2542  }
2543  return ISD::isNormalLoad(N);
2544}
2545
2546static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2547  if (isFloatingPointZero(Op))
2548    return DAG.getConstant(0, MVT::i32);
2549
2550  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2551    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2552                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2553                       Ld->isVolatile(), Ld->isNonTemporal(),
2554                       Ld->getAlignment());
2555
2556  llvm_unreachable("Unknown VFP cmp argument!");
2557}
2558
2559static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2560                           SDValue &RetVal1, SDValue &RetVal2) {
2561  if (isFloatingPointZero(Op)) {
2562    RetVal1 = DAG.getConstant(0, MVT::i32);
2563    RetVal2 = DAG.getConstant(0, MVT::i32);
2564    return;
2565  }
2566
2567  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2568    SDValue Ptr = Ld->getBasePtr();
2569    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2570                          Ld->getChain(), Ptr,
2571                          Ld->getPointerInfo(),
2572                          Ld->isVolatile(), Ld->isNonTemporal(),
2573                          Ld->getAlignment());
2574
2575    EVT PtrType = Ptr.getValueType();
2576    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2577    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2578                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2579    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2580                          Ld->getChain(), NewPtr,
2581                          Ld->getPointerInfo().getWithOffset(4),
2582                          Ld->isVolatile(), Ld->isNonTemporal(),
2583                          NewAlign);
2584    return;
2585  }
2586
2587  llvm_unreachable("Unknown VFP cmp argument!");
2588}
2589
2590/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2591/// f32 and even f64 comparisons to integer ones.
2592SDValue
2593ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2594  SDValue Chain = Op.getOperand(0);
2595  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2596  SDValue LHS = Op.getOperand(2);
2597  SDValue RHS = Op.getOperand(3);
2598  SDValue Dest = Op.getOperand(4);
2599  DebugLoc dl = Op.getDebugLoc();
2600
2601  bool SeenZero = false;
2602  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2603      canChangeToInt(RHS, SeenZero, Subtarget) &&
2604      // If one of the operand is zero, it's safe to ignore the NaN case since
2605      // we only care about equality comparisons.
2606      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2607    // If unsafe fp math optimization is enabled and there are no othter uses of
2608    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2609    // to an integer comparison.
2610    if (CC == ISD::SETOEQ)
2611      CC = ISD::SETEQ;
2612    else if (CC == ISD::SETUNE)
2613      CC = ISD::SETNE;
2614
2615    SDValue ARMcc;
2616    if (LHS.getValueType() == MVT::f32) {
2617      LHS = bitcastf32Toi32(LHS, DAG);
2618      RHS = bitcastf32Toi32(RHS, DAG);
2619      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2620      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2621      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2622                         Chain, Dest, ARMcc, CCR, Cmp);
2623    }
2624
2625    SDValue LHS1, LHS2;
2626    SDValue RHS1, RHS2;
2627    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2628    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2629    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2630    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2631    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2632    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2633    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2634  }
2635
2636  return SDValue();
2637}
2638
2639SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2640  SDValue Chain = Op.getOperand(0);
2641  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2642  SDValue LHS = Op.getOperand(2);
2643  SDValue RHS = Op.getOperand(3);
2644  SDValue Dest = Op.getOperand(4);
2645  DebugLoc dl = Op.getDebugLoc();
2646
2647  if (LHS.getValueType() == MVT::i32) {
2648    SDValue ARMcc;
2649    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2650    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2651    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2652                       Chain, Dest, ARMcc, CCR, Cmp);
2653  }
2654
2655  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2656
2657  if (UnsafeFPMath &&
2658      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2659       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2660    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2661    if (Result.getNode())
2662      return Result;
2663  }
2664
2665  ARMCC::CondCodes CondCode, CondCode2;
2666  FPCCToARMCC(CC, CondCode, CondCode2);
2667
2668  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2669  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2670  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2671  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2672  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2673  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2674  if (CondCode2 != ARMCC::AL) {
2675    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2676    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2677    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2678  }
2679  return Res;
2680}
2681
2682SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2683  SDValue Chain = Op.getOperand(0);
2684  SDValue Table = Op.getOperand(1);
2685  SDValue Index = Op.getOperand(2);
2686  DebugLoc dl = Op.getDebugLoc();
2687
2688  EVT PTy = getPointerTy();
2689  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2690  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2691  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2692  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2693  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2694  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2695  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2696  if (Subtarget->isThumb2()) {
2697    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2698    // which does another jump to the destination. This also makes it easier
2699    // to translate it to TBB / TBH later.
2700    // FIXME: This might not work if the function is extremely large.
2701    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2702                       Addr, Op.getOperand(2), JTI, UId);
2703  }
2704  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2705    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2706                       MachinePointerInfo::getJumpTable(),
2707                       false, false, 0);
2708    Chain = Addr.getValue(1);
2709    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2710    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2711  } else {
2712    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2713                       MachinePointerInfo::getJumpTable(), false, false, 0);
2714    Chain = Addr.getValue(1);
2715    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2716  }
2717}
2718
2719static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2720  DebugLoc dl = Op.getDebugLoc();
2721  unsigned Opc;
2722
2723  switch (Op.getOpcode()) {
2724  default:
2725    assert(0 && "Invalid opcode!");
2726  case ISD::FP_TO_SINT:
2727    Opc = ARMISD::FTOSI;
2728    break;
2729  case ISD::FP_TO_UINT:
2730    Opc = ARMISD::FTOUI;
2731    break;
2732  }
2733  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2734  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2735}
2736
2737static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2738  EVT VT = Op.getValueType();
2739  DebugLoc dl = Op.getDebugLoc();
2740  unsigned Opc;
2741
2742  switch (Op.getOpcode()) {
2743  default:
2744    assert(0 && "Invalid opcode!");
2745  case ISD::SINT_TO_FP:
2746    Opc = ARMISD::SITOF;
2747    break;
2748  case ISD::UINT_TO_FP:
2749    Opc = ARMISD::UITOF;
2750    break;
2751  }
2752
2753  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
2754  return DAG.getNode(Opc, dl, VT, Op);
2755}
2756
2757SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2758  // Implement fcopysign with a fabs and a conditional fneg.
2759  SDValue Tmp0 = Op.getOperand(0);
2760  SDValue Tmp1 = Op.getOperand(1);
2761  DebugLoc dl = Op.getDebugLoc();
2762  EVT VT = Op.getValueType();
2763  EVT SrcVT = Tmp1.getValueType();
2764  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2765  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2766  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2767  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2768  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2769  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2770}
2771
2772SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2773  MachineFunction &MF = DAG.getMachineFunction();
2774  MachineFrameInfo *MFI = MF.getFrameInfo();
2775  MFI->setReturnAddressIsTaken(true);
2776
2777  EVT VT = Op.getValueType();
2778  DebugLoc dl = Op.getDebugLoc();
2779  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2780  if (Depth) {
2781    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2782    SDValue Offset = DAG.getConstant(4, MVT::i32);
2783    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2784                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2785                       MachinePointerInfo(), false, false, 0);
2786  }
2787
2788  // Return LR, which contains the return address. Mark it an implicit live-in.
2789  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2790  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2791}
2792
2793SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2794  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2795  MFI->setFrameAddressIsTaken(true);
2796
2797  EVT VT = Op.getValueType();
2798  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2799  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2800  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2801    ? ARM::R7 : ARM::R11;
2802  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2803  while (Depth--)
2804    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2805                            MachinePointerInfo(),
2806                            false, false, 0);
2807  return FrameAddr;
2808}
2809
2810/// ExpandBITCAST - If the target supports VFP, this function is called to
2811/// expand a bit convert where either the source or destination type is i64 to
2812/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2813/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2814/// vectors), since the legalizer won't know what to do with that.
2815static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
2816  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2817  DebugLoc dl = N->getDebugLoc();
2818  SDValue Op = N->getOperand(0);
2819
2820  // This function is only supposed to be called for i64 types, either as the
2821  // source or destination of the bit convert.
2822  EVT SrcVT = Op.getValueType();
2823  EVT DstVT = N->getValueType(0);
2824  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2825         "ExpandBITCAST called for non-i64 type");
2826
2827  // Turn i64->f64 into VMOVDRR.
2828  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2829    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2830                             DAG.getConstant(0, MVT::i32));
2831    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2832                             DAG.getConstant(1, MVT::i32));
2833    return DAG.getNode(ISD::BITCAST, dl, DstVT,
2834                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2835  }
2836
2837  // Turn f64->i64 into VMOVRRD.
2838  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2839    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2840                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2841    // Merge the pieces into a single i64 value.
2842    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2843  }
2844
2845  return SDValue();
2846}
2847
2848/// getZeroVector - Returns a vector of specified type with all zero elements.
2849/// Zero vectors are used to represent vector negation and in those cases
2850/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2851/// not support i64 elements, so sometimes the zero vectors will need to be
2852/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2853/// zero vector.
2854static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2855  assert(VT.isVector() && "Expected a vector type");
2856  // The canonical modified immediate encoding of a zero vector is....0!
2857  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2858  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2859  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2860  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
2861}
2862
2863/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2864/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2865SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2866                                                SelectionDAG &DAG) const {
2867  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2868  EVT VT = Op.getValueType();
2869  unsigned VTBits = VT.getSizeInBits();
2870  DebugLoc dl = Op.getDebugLoc();
2871  SDValue ShOpLo = Op.getOperand(0);
2872  SDValue ShOpHi = Op.getOperand(1);
2873  SDValue ShAmt  = Op.getOperand(2);
2874  SDValue ARMcc;
2875  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2876
2877  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2878
2879  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2880                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2881  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2882  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2883                                   DAG.getConstant(VTBits, MVT::i32));
2884  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2885  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2886  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2887
2888  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2889  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2890                          ARMcc, DAG, dl);
2891  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2892  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2893                           CCR, Cmp);
2894
2895  SDValue Ops[2] = { Lo, Hi };
2896  return DAG.getMergeValues(Ops, 2, dl);
2897}
2898
2899/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2900/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2901SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2902                                               SelectionDAG &DAG) const {
2903  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2904  EVT VT = Op.getValueType();
2905  unsigned VTBits = VT.getSizeInBits();
2906  DebugLoc dl = Op.getDebugLoc();
2907  SDValue ShOpLo = Op.getOperand(0);
2908  SDValue ShOpHi = Op.getOperand(1);
2909  SDValue ShAmt  = Op.getOperand(2);
2910  SDValue ARMcc;
2911
2912  assert(Op.getOpcode() == ISD::SHL_PARTS);
2913  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2914                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2915  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2916  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2917                                   DAG.getConstant(VTBits, MVT::i32));
2918  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2919  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2920
2921  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2922  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2923  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2924                          ARMcc, DAG, dl);
2925  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2926  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2927                           CCR, Cmp);
2928
2929  SDValue Ops[2] = { Lo, Hi };
2930  return DAG.getMergeValues(Ops, 2, dl);
2931}
2932
2933SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2934                                            SelectionDAG &DAG) const {
2935  // The rounding mode is in bits 23:22 of the FPSCR.
2936  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2937  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2938  // so that the shift + and get folded into a bitfield extract.
2939  DebugLoc dl = Op.getDebugLoc();
2940  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2941                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2942                                              MVT::i32));
2943  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2944                                  DAG.getConstant(1U << 22, MVT::i32));
2945  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2946                              DAG.getConstant(22, MVT::i32));
2947  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2948                     DAG.getConstant(3, MVT::i32));
2949}
2950
2951static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2952                         const ARMSubtarget *ST) {
2953  EVT VT = N->getValueType(0);
2954  DebugLoc dl = N->getDebugLoc();
2955
2956  if (!ST->hasV6T2Ops())
2957    return SDValue();
2958
2959  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2960  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2961}
2962
2963static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2964                          const ARMSubtarget *ST) {
2965  EVT VT = N->getValueType(0);
2966  DebugLoc dl = N->getDebugLoc();
2967
2968  if (!VT.isVector())
2969    return SDValue();
2970
2971  // Lower vector shifts on NEON to use VSHL.
2972  assert(ST->hasNEON() && "unexpected vector shift");
2973
2974  // Left shifts translate directly to the vshiftu intrinsic.
2975  if (N->getOpcode() == ISD::SHL)
2976    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2977                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2978                       N->getOperand(0), N->getOperand(1));
2979
2980  assert((N->getOpcode() == ISD::SRA ||
2981          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2982
2983  // NEON uses the same intrinsics for both left and right shifts.  For
2984  // right shifts, the shift amounts are negative, so negate the vector of
2985  // shift amounts.
2986  EVT ShiftVT = N->getOperand(1).getValueType();
2987  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2988                                     getZeroVector(ShiftVT, DAG, dl),
2989                                     N->getOperand(1));
2990  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2991                             Intrinsic::arm_neon_vshifts :
2992                             Intrinsic::arm_neon_vshiftu);
2993  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2994                     DAG.getConstant(vshiftInt, MVT::i32),
2995                     N->getOperand(0), NegatedCount);
2996}
2997
2998static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
2999                                const ARMSubtarget *ST) {
3000  EVT VT = N->getValueType(0);
3001  DebugLoc dl = N->getDebugLoc();
3002
3003  // We can get here for a node like i32 = ISD::SHL i32, i64
3004  if (VT != MVT::i64)
3005    return SDValue();
3006
3007  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3008         "Unknown shift to lower!");
3009
3010  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3011  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3012      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3013    return SDValue();
3014
3015  // If we are in thumb mode, we don't have RRX.
3016  if (ST->isThumb1Only()) return SDValue();
3017
3018  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3019  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3020                           DAG.getConstant(0, MVT::i32));
3021  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3022                           DAG.getConstant(1, MVT::i32));
3023
3024  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3025  // captures the result into a carry flag.
3026  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3027  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
3028
3029  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3030  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3031
3032  // Merge the pieces into a single i64 value.
3033 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3034}
3035
3036static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3037  SDValue TmpOp0, TmpOp1;
3038  bool Invert = false;
3039  bool Swap = false;
3040  unsigned Opc = 0;
3041
3042  SDValue Op0 = Op.getOperand(0);
3043  SDValue Op1 = Op.getOperand(1);
3044  SDValue CC = Op.getOperand(2);
3045  EVT VT = Op.getValueType();
3046  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3047  DebugLoc dl = Op.getDebugLoc();
3048
3049  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3050    switch (SetCCOpcode) {
3051    default: llvm_unreachable("Illegal FP comparison"); break;
3052    case ISD::SETUNE:
3053    case ISD::SETNE:  Invert = true; // Fallthrough
3054    case ISD::SETOEQ:
3055    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3056    case ISD::SETOLT:
3057    case ISD::SETLT: Swap = true; // Fallthrough
3058    case ISD::SETOGT:
3059    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3060    case ISD::SETOLE:
3061    case ISD::SETLE:  Swap = true; // Fallthrough
3062    case ISD::SETOGE:
3063    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3064    case ISD::SETUGE: Swap = true; // Fallthrough
3065    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3066    case ISD::SETUGT: Swap = true; // Fallthrough
3067    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3068    case ISD::SETUEQ: Invert = true; // Fallthrough
3069    case ISD::SETONE:
3070      // Expand this to (OLT | OGT).
3071      TmpOp0 = Op0;
3072      TmpOp1 = Op1;
3073      Opc = ISD::OR;
3074      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3075      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3076      break;
3077    case ISD::SETUO: Invert = true; // Fallthrough
3078    case ISD::SETO:
3079      // Expand this to (OLT | OGE).
3080      TmpOp0 = Op0;
3081      TmpOp1 = Op1;
3082      Opc = ISD::OR;
3083      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3084      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3085      break;
3086    }
3087  } else {
3088    // Integer comparisons.
3089    switch (SetCCOpcode) {
3090    default: llvm_unreachable("Illegal integer comparison"); break;
3091    case ISD::SETNE:  Invert = true;
3092    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3093    case ISD::SETLT:  Swap = true;
3094    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3095    case ISD::SETLE:  Swap = true;
3096    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3097    case ISD::SETULT: Swap = true;
3098    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3099    case ISD::SETULE: Swap = true;
3100    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3101    }
3102
3103    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3104    if (Opc == ARMISD::VCEQ) {
3105
3106      SDValue AndOp;
3107      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3108        AndOp = Op0;
3109      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3110        AndOp = Op1;
3111
3112      // Ignore bitconvert.
3113      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3114        AndOp = AndOp.getOperand(0);
3115
3116      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3117        Opc = ARMISD::VTST;
3118        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3119        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3120        Invert = !Invert;
3121      }
3122    }
3123  }
3124
3125  if (Swap)
3126    std::swap(Op0, Op1);
3127
3128  // If one of the operands is a constant vector zero, attempt to fold the
3129  // comparison to a specialized compare-against-zero form.
3130  SDValue SingleOp;
3131  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3132    SingleOp = Op0;
3133  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3134    if (Opc == ARMISD::VCGE)
3135      Opc = ARMISD::VCLEZ;
3136    else if (Opc == ARMISD::VCGT)
3137      Opc = ARMISD::VCLTZ;
3138    SingleOp = Op1;
3139  }
3140
3141  SDValue Result;
3142  if (SingleOp.getNode()) {
3143    switch (Opc) {
3144    case ARMISD::VCEQ:
3145      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3146    case ARMISD::VCGE:
3147      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3148    case ARMISD::VCLEZ:
3149      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3150    case ARMISD::VCGT:
3151      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3152    case ARMISD::VCLTZ:
3153      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3154    default:
3155      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3156    }
3157  } else {
3158     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3159  }
3160
3161  if (Invert)
3162    Result = DAG.getNOT(dl, Result, VT);
3163
3164  return Result;
3165}
3166
3167/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3168/// valid vector constant for a NEON instruction with a "modified immediate"
3169/// operand (e.g., VMOV).  If so, return the encoded value.
3170static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3171                                 unsigned SplatBitSize, SelectionDAG &DAG,
3172                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3173  unsigned OpCmode, Imm;
3174
3175  // SplatBitSize is set to the smallest size that splats the vector, so a
3176  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3177  // immediate instructions others than VMOV do not support the 8-bit encoding
3178  // of a zero vector, and the default encoding of zero is supposed to be the
3179  // 32-bit version.
3180  if (SplatBits == 0)
3181    SplatBitSize = 32;
3182
3183  switch (SplatBitSize) {
3184  case 8:
3185    if (type != VMOVModImm)
3186      return SDValue();
3187    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3188    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3189    OpCmode = 0xe;
3190    Imm = SplatBits;
3191    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3192    break;
3193
3194  case 16:
3195    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3196    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3197    if ((SplatBits & ~0xff) == 0) {
3198      // Value = 0x00nn: Op=x, Cmode=100x.
3199      OpCmode = 0x8;
3200      Imm = SplatBits;
3201      break;
3202    }
3203    if ((SplatBits & ~0xff00) == 0) {
3204      // Value = 0xnn00: Op=x, Cmode=101x.
3205      OpCmode = 0xa;
3206      Imm = SplatBits >> 8;
3207      break;
3208    }
3209    return SDValue();
3210
3211  case 32:
3212    // NEON's 32-bit VMOV supports splat values where:
3213    // * only one byte is nonzero, or
3214    // * the least significant byte is 0xff and the second byte is nonzero, or
3215    // * the least significant 2 bytes are 0xff and the third is nonzero.
3216    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3217    if ((SplatBits & ~0xff) == 0) {
3218      // Value = 0x000000nn: Op=x, Cmode=000x.
3219      OpCmode = 0;
3220      Imm = SplatBits;
3221      break;
3222    }
3223    if ((SplatBits & ~0xff00) == 0) {
3224      // Value = 0x0000nn00: Op=x, Cmode=001x.
3225      OpCmode = 0x2;
3226      Imm = SplatBits >> 8;
3227      break;
3228    }
3229    if ((SplatBits & ~0xff0000) == 0) {
3230      // Value = 0x00nn0000: Op=x, Cmode=010x.
3231      OpCmode = 0x4;
3232      Imm = SplatBits >> 16;
3233      break;
3234    }
3235    if ((SplatBits & ~0xff000000) == 0) {
3236      // Value = 0xnn000000: Op=x, Cmode=011x.
3237      OpCmode = 0x6;
3238      Imm = SplatBits >> 24;
3239      break;
3240    }
3241
3242    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3243    if (type == OtherModImm) return SDValue();
3244
3245    if ((SplatBits & ~0xffff) == 0 &&
3246        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3247      // Value = 0x0000nnff: Op=x, Cmode=1100.
3248      OpCmode = 0xc;
3249      Imm = SplatBits >> 8;
3250      SplatBits |= 0xff;
3251      break;
3252    }
3253
3254    if ((SplatBits & ~0xffffff) == 0 &&
3255        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3256      // Value = 0x00nnffff: Op=x, Cmode=1101.
3257      OpCmode = 0xd;
3258      Imm = SplatBits >> 16;
3259      SplatBits |= 0xffff;
3260      break;
3261    }
3262
3263    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3264    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3265    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3266    // and fall through here to test for a valid 64-bit splat.  But, then the
3267    // caller would also need to check and handle the change in size.
3268    return SDValue();
3269
3270  case 64: {
3271    if (type != VMOVModImm)
3272      return SDValue();
3273    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3274    uint64_t BitMask = 0xff;
3275    uint64_t Val = 0;
3276    unsigned ImmMask = 1;
3277    Imm = 0;
3278    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3279      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3280        Val |= BitMask;
3281        Imm |= ImmMask;
3282      } else if ((SplatBits & BitMask) != 0) {
3283        return SDValue();
3284      }
3285      BitMask <<= 8;
3286      ImmMask <<= 1;
3287    }
3288    // Op=1, Cmode=1110.
3289    OpCmode = 0x1e;
3290    SplatBits = Val;
3291    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3292    break;
3293  }
3294
3295  default:
3296    llvm_unreachable("unexpected size for isNEONModifiedImm");
3297    return SDValue();
3298  }
3299
3300  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3301  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3302}
3303
3304static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3305                       bool &ReverseVEXT, unsigned &Imm) {
3306  unsigned NumElts = VT.getVectorNumElements();
3307  ReverseVEXT = false;
3308
3309  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3310  if (M[0] < 0)
3311    return false;
3312
3313  Imm = M[0];
3314
3315  // If this is a VEXT shuffle, the immediate value is the index of the first
3316  // element.  The other shuffle indices must be the successive elements after
3317  // the first one.
3318  unsigned ExpectedElt = Imm;
3319  for (unsigned i = 1; i < NumElts; ++i) {
3320    // Increment the expected index.  If it wraps around, it may still be
3321    // a VEXT but the source vectors must be swapped.
3322    ExpectedElt += 1;
3323    if (ExpectedElt == NumElts * 2) {
3324      ExpectedElt = 0;
3325      ReverseVEXT = true;
3326    }
3327
3328    if (M[i] < 0) continue; // ignore UNDEF indices
3329    if (ExpectedElt != static_cast<unsigned>(M[i]))
3330      return false;
3331  }
3332
3333  // Adjust the index value if the source operands will be swapped.
3334  if (ReverseVEXT)
3335    Imm -= NumElts;
3336
3337  return true;
3338}
3339
3340/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3341/// instruction with the specified blocksize.  (The order of the elements
3342/// within each block of the vector is reversed.)
3343static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3344                       unsigned BlockSize) {
3345  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3346         "Only possible block sizes for VREV are: 16, 32, 64");
3347
3348  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3349  if (EltSz == 64)
3350    return false;
3351
3352  unsigned NumElts = VT.getVectorNumElements();
3353  unsigned BlockElts = M[0] + 1;
3354  // If the first shuffle index is UNDEF, be optimistic.
3355  if (M[0] < 0)
3356    BlockElts = BlockSize / EltSz;
3357
3358  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3359    return false;
3360
3361  for (unsigned i = 0; i < NumElts; ++i) {
3362    if (M[i] < 0) continue; // ignore UNDEF indices
3363    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3364      return false;
3365  }
3366
3367  return true;
3368}
3369
3370static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3371                       unsigned &WhichResult) {
3372  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3373  if (EltSz == 64)
3374    return false;
3375
3376  unsigned NumElts = VT.getVectorNumElements();
3377  WhichResult = (M[0] == 0 ? 0 : 1);
3378  for (unsigned i = 0; i < NumElts; i += 2) {
3379    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3380        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3381      return false;
3382  }
3383  return true;
3384}
3385
3386/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3387/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3388/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3389static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3390                                unsigned &WhichResult) {
3391  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3392  if (EltSz == 64)
3393    return false;
3394
3395  unsigned NumElts = VT.getVectorNumElements();
3396  WhichResult = (M[0] == 0 ? 0 : 1);
3397  for (unsigned i = 0; i < NumElts; i += 2) {
3398    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3399        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3400      return false;
3401  }
3402  return true;
3403}
3404
3405static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3406                       unsigned &WhichResult) {
3407  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3408  if (EltSz == 64)
3409    return false;
3410
3411  unsigned NumElts = VT.getVectorNumElements();
3412  WhichResult = (M[0] == 0 ? 0 : 1);
3413  for (unsigned i = 0; i != NumElts; ++i) {
3414    if (M[i] < 0) continue; // ignore UNDEF indices
3415    if ((unsigned) M[i] != 2 * i + WhichResult)
3416      return false;
3417  }
3418
3419  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3420  if (VT.is64BitVector() && EltSz == 32)
3421    return false;
3422
3423  return true;
3424}
3425
3426/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3427/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3428/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3429static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3430                                unsigned &WhichResult) {
3431  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3432  if (EltSz == 64)
3433    return false;
3434
3435  unsigned Half = VT.getVectorNumElements() / 2;
3436  WhichResult = (M[0] == 0 ? 0 : 1);
3437  for (unsigned j = 0; j != 2; ++j) {
3438    unsigned Idx = WhichResult;
3439    for (unsigned i = 0; i != Half; ++i) {
3440      int MIdx = M[i + j * Half];
3441      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3442        return false;
3443      Idx += 2;
3444    }
3445  }
3446
3447  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3448  if (VT.is64BitVector() && EltSz == 32)
3449    return false;
3450
3451  return true;
3452}
3453
3454static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3455                       unsigned &WhichResult) {
3456  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3457  if (EltSz == 64)
3458    return false;
3459
3460  unsigned NumElts = VT.getVectorNumElements();
3461  WhichResult = (M[0] == 0 ? 0 : 1);
3462  unsigned Idx = WhichResult * NumElts / 2;
3463  for (unsigned i = 0; i != NumElts; i += 2) {
3464    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3465        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3466      return false;
3467    Idx += 1;
3468  }
3469
3470  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3471  if (VT.is64BitVector() && EltSz == 32)
3472    return false;
3473
3474  return true;
3475}
3476
3477/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3478/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3479/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3480static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3481                                unsigned &WhichResult) {
3482  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3483  if (EltSz == 64)
3484    return false;
3485
3486  unsigned NumElts = VT.getVectorNumElements();
3487  WhichResult = (M[0] == 0 ? 0 : 1);
3488  unsigned Idx = WhichResult * NumElts / 2;
3489  for (unsigned i = 0; i != NumElts; i += 2) {
3490    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3491        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3492      return false;
3493    Idx += 1;
3494  }
3495
3496  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3497  if (VT.is64BitVector() && EltSz == 32)
3498    return false;
3499
3500  return true;
3501}
3502
3503// If N is an integer constant that can be moved into a register in one
3504// instruction, return an SDValue of such a constant (will become a MOV
3505// instruction).  Otherwise return null.
3506static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3507                                     const ARMSubtarget *ST, DebugLoc dl) {
3508  uint64_t Val;
3509  if (!isa<ConstantSDNode>(N))
3510    return SDValue();
3511  Val = cast<ConstantSDNode>(N)->getZExtValue();
3512
3513  if (ST->isThumb1Only()) {
3514    if (Val <= 255 || ~Val <= 255)
3515      return DAG.getConstant(Val, MVT::i32);
3516  } else {
3517    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3518      return DAG.getConstant(Val, MVT::i32);
3519  }
3520  return SDValue();
3521}
3522
3523// If this is a case we can't handle, return null and let the default
3524// expansion code take care of it.
3525static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3526                                 const ARMSubtarget *ST) {
3527  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3528  DebugLoc dl = Op.getDebugLoc();
3529  EVT VT = Op.getValueType();
3530
3531  APInt SplatBits, SplatUndef;
3532  unsigned SplatBitSize;
3533  bool HasAnyUndefs;
3534  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3535    if (SplatBitSize <= 64) {
3536      // Check if an immediate VMOV works.
3537      EVT VmovVT;
3538      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3539                                      SplatUndef.getZExtValue(), SplatBitSize,
3540                                      DAG, VmovVT, VT.is128BitVector(),
3541                                      VMOVModImm);
3542      if (Val.getNode()) {
3543        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3544        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3545      }
3546
3547      // Try an immediate VMVN.
3548      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3549                             ((1LL << SplatBitSize) - 1));
3550      Val = isNEONModifiedImm(NegatedImm,
3551                                      SplatUndef.getZExtValue(), SplatBitSize,
3552                                      DAG, VmovVT, VT.is128BitVector(),
3553                                      VMVNModImm);
3554      if (Val.getNode()) {
3555        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3556        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3557      }
3558    }
3559  }
3560
3561  // Scan through the operands to see if only one value is used.
3562  unsigned NumElts = VT.getVectorNumElements();
3563  bool isOnlyLowElement = true;
3564  bool usesOnlyOneValue = true;
3565  bool isConstant = true;
3566  SDValue Value;
3567  for (unsigned i = 0; i < NumElts; ++i) {
3568    SDValue V = Op.getOperand(i);
3569    if (V.getOpcode() == ISD::UNDEF)
3570      continue;
3571    if (i > 0)
3572      isOnlyLowElement = false;
3573    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3574      isConstant = false;
3575
3576    if (!Value.getNode())
3577      Value = V;
3578    else if (V != Value)
3579      usesOnlyOneValue = false;
3580  }
3581
3582  if (!Value.getNode())
3583    return DAG.getUNDEF(VT);
3584
3585  if (isOnlyLowElement)
3586    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3587
3588  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3589
3590  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3591  // i32 and try again.
3592  if (usesOnlyOneValue && EltSize <= 32) {
3593    if (!isConstant)
3594      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3595    if (VT.getVectorElementType().isFloatingPoint()) {
3596      SmallVector<SDValue, 8> Ops;
3597      for (unsigned i = 0; i < NumElts; ++i)
3598        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3599                                  Op.getOperand(i)));
3600      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3601      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3602      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3603      if (Val.getNode())
3604        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3605    }
3606    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3607    if (Val.getNode())
3608      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3609  }
3610
3611  // If all elements are constants and the case above didn't get hit, fall back
3612  // to the default expansion, which will generate a load from the constant
3613  // pool.
3614  if (isConstant)
3615    return SDValue();
3616
3617  // Vectors with 32- or 64-bit elements can be built by directly assigning
3618  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3619  // will be legalized.
3620  if (EltSize >= 32) {
3621    // Do the expansion with floating-point types, since that is what the VFP
3622    // registers are defined to use, and since i64 is not legal.
3623    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3624    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3625    SmallVector<SDValue, 8> Ops;
3626    for (unsigned i = 0; i < NumElts; ++i)
3627      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3628    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3629    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3630  }
3631
3632  return SDValue();
3633}
3634
3635/// isShuffleMaskLegal - Targets can use this to indicate that they only
3636/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3637/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3638/// are assumed to be legal.
3639bool
3640ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3641                                      EVT VT) const {
3642  if (VT.getVectorNumElements() == 4 &&
3643      (VT.is128BitVector() || VT.is64BitVector())) {
3644    unsigned PFIndexes[4];
3645    for (unsigned i = 0; i != 4; ++i) {
3646      if (M[i] < 0)
3647        PFIndexes[i] = 8;
3648      else
3649        PFIndexes[i] = M[i];
3650    }
3651
3652    // Compute the index in the perfect shuffle table.
3653    unsigned PFTableIndex =
3654      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3655    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3656    unsigned Cost = (PFEntry >> 30);
3657
3658    if (Cost <= 4)
3659      return true;
3660  }
3661
3662  bool ReverseVEXT;
3663  unsigned Imm, WhichResult;
3664
3665  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3666  return (EltSize >= 32 ||
3667          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3668          isVREVMask(M, VT, 64) ||
3669          isVREVMask(M, VT, 32) ||
3670          isVREVMask(M, VT, 16) ||
3671          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3672          isVTRNMask(M, VT, WhichResult) ||
3673          isVUZPMask(M, VT, WhichResult) ||
3674          isVZIPMask(M, VT, WhichResult) ||
3675          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3676          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3677          isVZIP_v_undef_Mask(M, VT, WhichResult));
3678}
3679
3680/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3681/// the specified operations to build the shuffle.
3682static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3683                                      SDValue RHS, SelectionDAG &DAG,
3684                                      DebugLoc dl) {
3685  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3686  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3687  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3688
3689  enum {
3690    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3691    OP_VREV,
3692    OP_VDUP0,
3693    OP_VDUP1,
3694    OP_VDUP2,
3695    OP_VDUP3,
3696    OP_VEXT1,
3697    OP_VEXT2,
3698    OP_VEXT3,
3699    OP_VUZPL, // VUZP, left result
3700    OP_VUZPR, // VUZP, right result
3701    OP_VZIPL, // VZIP, left result
3702    OP_VZIPR, // VZIP, right result
3703    OP_VTRNL, // VTRN, left result
3704    OP_VTRNR  // VTRN, right result
3705  };
3706
3707  if (OpNum == OP_COPY) {
3708    if (LHSID == (1*9+2)*9+3) return LHS;
3709    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3710    return RHS;
3711  }
3712
3713  SDValue OpLHS, OpRHS;
3714  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3715  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3716  EVT VT = OpLHS.getValueType();
3717
3718  switch (OpNum) {
3719  default: llvm_unreachable("Unknown shuffle opcode!");
3720  case OP_VREV:
3721    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3722  case OP_VDUP0:
3723  case OP_VDUP1:
3724  case OP_VDUP2:
3725  case OP_VDUP3:
3726    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3727                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3728  case OP_VEXT1:
3729  case OP_VEXT2:
3730  case OP_VEXT3:
3731    return DAG.getNode(ARMISD::VEXT, dl, VT,
3732                       OpLHS, OpRHS,
3733                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3734  case OP_VUZPL:
3735  case OP_VUZPR:
3736    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3737                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3738  case OP_VZIPL:
3739  case OP_VZIPR:
3740    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3741                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3742  case OP_VTRNL:
3743  case OP_VTRNR:
3744    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3745                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3746  }
3747}
3748
3749static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3750  SDValue V1 = Op.getOperand(0);
3751  SDValue V2 = Op.getOperand(1);
3752  DebugLoc dl = Op.getDebugLoc();
3753  EVT VT = Op.getValueType();
3754  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3755  SmallVector<int, 8> ShuffleMask;
3756
3757  // Convert shuffles that are directly supported on NEON to target-specific
3758  // DAG nodes, instead of keeping them as shuffles and matching them again
3759  // during code selection.  This is more efficient and avoids the possibility
3760  // of inconsistencies between legalization and selection.
3761  // FIXME: floating-point vectors should be canonicalized to integer vectors
3762  // of the same time so that they get CSEd properly.
3763  SVN->getMask(ShuffleMask);
3764
3765  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3766  if (EltSize <= 32) {
3767    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3768      int Lane = SVN->getSplatIndex();
3769      // If this is undef splat, generate it via "just" vdup, if possible.
3770      if (Lane == -1) Lane = 0;
3771
3772      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3773        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3774      }
3775      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3776                         DAG.getConstant(Lane, MVT::i32));
3777    }
3778
3779    bool ReverseVEXT;
3780    unsigned Imm;
3781    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3782      if (ReverseVEXT)
3783        std::swap(V1, V2);
3784      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3785                         DAG.getConstant(Imm, MVT::i32));
3786    }
3787
3788    if (isVREVMask(ShuffleMask, VT, 64))
3789      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3790    if (isVREVMask(ShuffleMask, VT, 32))
3791      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3792    if (isVREVMask(ShuffleMask, VT, 16))
3793      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3794
3795    // Check for Neon shuffles that modify both input vectors in place.
3796    // If both results are used, i.e., if there are two shuffles with the same
3797    // source operands and with masks corresponding to both results of one of
3798    // these operations, DAG memoization will ensure that a single node is
3799    // used for both shuffles.
3800    unsigned WhichResult;
3801    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3802      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3803                         V1, V2).getValue(WhichResult);
3804    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3805      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3806                         V1, V2).getValue(WhichResult);
3807    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3808      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3809                         V1, V2).getValue(WhichResult);
3810
3811    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3812      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3813                         V1, V1).getValue(WhichResult);
3814    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3815      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3816                         V1, V1).getValue(WhichResult);
3817    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3818      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3819                         V1, V1).getValue(WhichResult);
3820  }
3821
3822  // If the shuffle is not directly supported and it has 4 elements, use
3823  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3824  unsigned NumElts = VT.getVectorNumElements();
3825  if (NumElts == 4) {
3826    unsigned PFIndexes[4];
3827    for (unsigned i = 0; i != 4; ++i) {
3828      if (ShuffleMask[i] < 0)
3829        PFIndexes[i] = 8;
3830      else
3831        PFIndexes[i] = ShuffleMask[i];
3832    }
3833
3834    // Compute the index in the perfect shuffle table.
3835    unsigned PFTableIndex =
3836      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3837    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3838    unsigned Cost = (PFEntry >> 30);
3839
3840    if (Cost <= 4)
3841      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3842  }
3843
3844  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3845  if (EltSize >= 32) {
3846    // Do the expansion with floating-point types, since that is what the VFP
3847    // registers are defined to use, and since i64 is not legal.
3848    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3849    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3850    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
3851    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
3852    SmallVector<SDValue, 8> Ops;
3853    for (unsigned i = 0; i < NumElts; ++i) {
3854      if (ShuffleMask[i] < 0)
3855        Ops.push_back(DAG.getUNDEF(EltVT));
3856      else
3857        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3858                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3859                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3860                                                  MVT::i32)));
3861    }
3862    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3863    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3864  }
3865
3866  return SDValue();
3867}
3868
3869static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3870  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
3871  SDValue Lane = Op.getOperand(1);
3872  if (!isa<ConstantSDNode>(Lane))
3873    return SDValue();
3874
3875  SDValue Vec = Op.getOperand(0);
3876  if (Op.getValueType() == MVT::i32 &&
3877      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
3878    DebugLoc dl = Op.getDebugLoc();
3879    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3880  }
3881
3882  return Op;
3883}
3884
3885static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3886  // The only time a CONCAT_VECTORS operation can have legal types is when
3887  // two 64-bit vectors are concatenated to a 128-bit vector.
3888  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3889         "unexpected CONCAT_VECTORS");
3890  DebugLoc dl = Op.getDebugLoc();
3891  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3892  SDValue Op0 = Op.getOperand(0);
3893  SDValue Op1 = Op.getOperand(1);
3894  if (Op0.getOpcode() != ISD::UNDEF)
3895    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3896                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
3897                      DAG.getIntPtrConstant(0));
3898  if (Op1.getOpcode() != ISD::UNDEF)
3899    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3900                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
3901                      DAG.getIntPtrConstant(1));
3902  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
3903}
3904
3905/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
3906/// element has been zero/sign-extended, depending on the isSigned parameter,
3907/// from an integer type half its size.
3908static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
3909                                   bool isSigned) {
3910  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
3911  EVT VT = N->getValueType(0);
3912  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
3913    SDNode *BVN = N->getOperand(0).getNode();
3914    if (BVN->getValueType(0) != MVT::v4i32 ||
3915        BVN->getOpcode() != ISD::BUILD_VECTOR)
3916      return false;
3917    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
3918    unsigned HiElt = 1 - LoElt;
3919    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
3920    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
3921    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
3922    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
3923    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
3924      return false;
3925    if (isSigned) {
3926      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
3927          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
3928        return true;
3929    } else {
3930      if (Hi0->isNullValue() && Hi1->isNullValue())
3931        return true;
3932    }
3933    return false;
3934  }
3935
3936  if (N->getOpcode() != ISD::BUILD_VECTOR)
3937    return false;
3938
3939  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
3940    SDNode *Elt = N->getOperand(i).getNode();
3941    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
3942      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3943      unsigned HalfSize = EltSize / 2;
3944      if (isSigned) {
3945        int64_t SExtVal = C->getSExtValue();
3946        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
3947          return false;
3948      } else {
3949        if ((C->getZExtValue() >> HalfSize) != 0)
3950          return false;
3951      }
3952      continue;
3953    }
3954    return false;
3955  }
3956
3957  return true;
3958}
3959
3960/// isSignExtended - Check if a node is a vector value that is sign-extended
3961/// or a constant BUILD_VECTOR with sign-extended elements.
3962static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
3963  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
3964    return true;
3965  if (isExtendedBUILD_VECTOR(N, DAG, true))
3966    return true;
3967  return false;
3968}
3969
3970/// isZeroExtended - Check if a node is a vector value that is zero-extended
3971/// or a constant BUILD_VECTOR with zero-extended elements.
3972static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
3973  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
3974    return true;
3975  if (isExtendedBUILD_VECTOR(N, DAG, false))
3976    return true;
3977  return false;
3978}
3979
3980/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
3981/// load, or BUILD_VECTOR with extended elements, return the unextended value.
3982static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3983  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3984    return N->getOperand(0);
3985  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
3986    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3987                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3988                       LD->isNonTemporal(), LD->getAlignment());
3989  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
3990  // have been legalized as a BITCAST from v4i32.
3991  if (N->getOpcode() == ISD::BITCAST) {
3992    SDNode *BVN = N->getOperand(0).getNode();
3993    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
3994           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
3995    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
3996    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
3997                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
3998  }
3999  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4000  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4001  EVT VT = N->getValueType(0);
4002  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4003  unsigned NumElts = VT.getVectorNumElements();
4004  MVT TruncVT = MVT::getIntegerVT(EltSize);
4005  SmallVector<SDValue, 8> Ops;
4006  for (unsigned i = 0; i != NumElts; ++i) {
4007    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4008    const APInt &CInt = C->getAPIntValue();
4009    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4010  }
4011  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4012                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4013}
4014
4015static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4016  // Multiplications are only custom-lowered for 128-bit vectors so that
4017  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4018  EVT VT = Op.getValueType();
4019  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4020  SDNode *N0 = Op.getOperand(0).getNode();
4021  SDNode *N1 = Op.getOperand(1).getNode();
4022  unsigned NewOpc = 0;
4023  if (isSignExtended(N0, DAG) && isSignExtended(N1, DAG))
4024    NewOpc = ARMISD::VMULLs;
4025  else if (isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG))
4026    NewOpc = ARMISD::VMULLu;
4027  else if (VT == MVT::v2i64)
4028    // Fall through to expand this.  It is not legal.
4029    return SDValue();
4030  else
4031    // Other vector multiplications are legal.
4032    return Op;
4033
4034  // Legalize to a VMULL instruction.
4035  DebugLoc DL = Op.getDebugLoc();
4036  SDValue Op0 = SkipExtension(N0, DAG);
4037  SDValue Op1 = SkipExtension(N1, DAG);
4038
4039  assert(Op0.getValueType().is64BitVector() &&
4040         Op1.getValueType().is64BitVector() &&
4041         "unexpected types for extended operands to VMULL");
4042  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4043}
4044
4045SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4046  switch (Op.getOpcode()) {
4047  default: llvm_unreachable("Don't know how to custom lower this!");
4048  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4049  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4050  case ISD::GlobalAddress:
4051    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4052      LowerGlobalAddressELF(Op, DAG);
4053  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4054  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4055  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4056  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4057  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4058  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4059  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4060  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4061  case ISD::SINT_TO_FP:
4062  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4063  case ISD::FP_TO_SINT:
4064  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4065  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4066  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4067  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4068  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4069  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4070  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4071  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4072  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4073                                                               Subtarget);
4074  case ISD::BITCAST:   return ExpandBITCAST(Op.getNode(), DAG);
4075  case ISD::SHL:
4076  case ISD::SRL:
4077  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4078  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4079  case ISD::SRL_PARTS:
4080  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4081  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4082  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4083  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4084  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4085  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4086  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4087  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4088  case ISD::MUL:           return LowerMUL(Op, DAG);
4089  }
4090  return SDValue();
4091}
4092
4093/// ReplaceNodeResults - Replace the results of node with an illegal result
4094/// type with new values built out of custom code.
4095void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4096                                           SmallVectorImpl<SDValue>&Results,
4097                                           SelectionDAG &DAG) const {
4098  SDValue Res;
4099  switch (N->getOpcode()) {
4100  default:
4101    llvm_unreachable("Don't know how to custom expand this!");
4102    break;
4103  case ISD::BITCAST:
4104    Res = ExpandBITCAST(N, DAG);
4105    break;
4106  case ISD::SRL:
4107  case ISD::SRA:
4108    Res = Expand64BitShift(N, DAG, Subtarget);
4109    break;
4110  }
4111  if (Res.getNode())
4112    Results.push_back(Res);
4113}
4114
4115//===----------------------------------------------------------------------===//
4116//                           ARM Scheduler Hooks
4117//===----------------------------------------------------------------------===//
4118
4119MachineBasicBlock *
4120ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4121                                     MachineBasicBlock *BB,
4122                                     unsigned Size) const {
4123  unsigned dest    = MI->getOperand(0).getReg();
4124  unsigned ptr     = MI->getOperand(1).getReg();
4125  unsigned oldval  = MI->getOperand(2).getReg();
4126  unsigned newval  = MI->getOperand(3).getReg();
4127  unsigned scratch = BB->getParent()->getRegInfo()
4128    .createVirtualRegister(ARM::GPRRegisterClass);
4129  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4130  DebugLoc dl = MI->getDebugLoc();
4131  bool isThumb2 = Subtarget->isThumb2();
4132
4133  unsigned ldrOpc, strOpc;
4134  switch (Size) {
4135  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4136  case 1:
4137    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4138    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
4139    break;
4140  case 2:
4141    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4142    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4143    break;
4144  case 4:
4145    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4146    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4147    break;
4148  }
4149
4150  MachineFunction *MF = BB->getParent();
4151  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4152  MachineFunction::iterator It = BB;
4153  ++It; // insert the new blocks after the current block
4154
4155  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4156  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4157  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4158  MF->insert(It, loop1MBB);
4159  MF->insert(It, loop2MBB);
4160  MF->insert(It, exitMBB);
4161
4162  // Transfer the remainder of BB and its successor edges to exitMBB.
4163  exitMBB->splice(exitMBB->begin(), BB,
4164                  llvm::next(MachineBasicBlock::iterator(MI)),
4165                  BB->end());
4166  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4167
4168  //  thisMBB:
4169  //   ...
4170  //   fallthrough --> loop1MBB
4171  BB->addSuccessor(loop1MBB);
4172
4173  // loop1MBB:
4174  //   ldrex dest, [ptr]
4175  //   cmp dest, oldval
4176  //   bne exitMBB
4177  BB = loop1MBB;
4178  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4179  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4180                 .addReg(dest).addReg(oldval));
4181  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4182    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4183  BB->addSuccessor(loop2MBB);
4184  BB->addSuccessor(exitMBB);
4185
4186  // loop2MBB:
4187  //   strex scratch, newval, [ptr]
4188  //   cmp scratch, #0
4189  //   bne loop1MBB
4190  BB = loop2MBB;
4191  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4192                 .addReg(ptr));
4193  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4194                 .addReg(scratch).addImm(0));
4195  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4196    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4197  BB->addSuccessor(loop1MBB);
4198  BB->addSuccessor(exitMBB);
4199
4200  //  exitMBB:
4201  //   ...
4202  BB = exitMBB;
4203
4204  MI->eraseFromParent();   // The instruction is gone now.
4205
4206  return BB;
4207}
4208
4209MachineBasicBlock *
4210ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4211                                    unsigned Size, unsigned BinOpcode) const {
4212  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4213  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4214
4215  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4216  MachineFunction *MF = BB->getParent();
4217  MachineFunction::iterator It = BB;
4218  ++It;
4219
4220  unsigned dest = MI->getOperand(0).getReg();
4221  unsigned ptr = MI->getOperand(1).getReg();
4222  unsigned incr = MI->getOperand(2).getReg();
4223  DebugLoc dl = MI->getDebugLoc();
4224
4225  bool isThumb2 = Subtarget->isThumb2();
4226  unsigned ldrOpc, strOpc;
4227  switch (Size) {
4228  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4229  case 1:
4230    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4231    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4232    break;
4233  case 2:
4234    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4235    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4236    break;
4237  case 4:
4238    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4239    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4240    break;
4241  }
4242
4243  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4244  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4245  MF->insert(It, loopMBB);
4246  MF->insert(It, exitMBB);
4247
4248  // Transfer the remainder of BB and its successor edges to exitMBB.
4249  exitMBB->splice(exitMBB->begin(), BB,
4250                  llvm::next(MachineBasicBlock::iterator(MI)),
4251                  BB->end());
4252  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4253
4254  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4255  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4256  unsigned scratch2 = (!BinOpcode) ? incr :
4257    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4258
4259  //  thisMBB:
4260  //   ...
4261  //   fallthrough --> loopMBB
4262  BB->addSuccessor(loopMBB);
4263
4264  //  loopMBB:
4265  //   ldrex dest, ptr
4266  //   <binop> scratch2, dest, incr
4267  //   strex scratch, scratch2, ptr
4268  //   cmp scratch, #0
4269  //   bne- loopMBB
4270  //   fallthrough --> exitMBB
4271  BB = loopMBB;
4272  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4273  if (BinOpcode) {
4274    // operand order needs to go the other way for NAND
4275    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4276      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4277                     addReg(incr).addReg(dest)).addReg(0);
4278    else
4279      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4280                     addReg(dest).addReg(incr)).addReg(0);
4281  }
4282
4283  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4284                 .addReg(ptr));
4285  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4286                 .addReg(scratch).addImm(0));
4287  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4288    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4289
4290  BB->addSuccessor(loopMBB);
4291  BB->addSuccessor(exitMBB);
4292
4293  //  exitMBB:
4294  //   ...
4295  BB = exitMBB;
4296
4297  MI->eraseFromParent();   // The instruction is gone now.
4298
4299  return BB;
4300}
4301
4302static
4303MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4304  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4305       E = MBB->succ_end(); I != E; ++I)
4306    if (*I != Succ)
4307      return *I;
4308  llvm_unreachable("Expecting a BB with two successors!");
4309}
4310
4311MachineBasicBlock *
4312ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4313                                               MachineBasicBlock *BB) const {
4314  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4315  DebugLoc dl = MI->getDebugLoc();
4316  bool isThumb2 = Subtarget->isThumb2();
4317  switch (MI->getOpcode()) {
4318  default:
4319    MI->dump();
4320    llvm_unreachable("Unexpected instr type to insert");
4321
4322  case ARM::ATOMIC_LOAD_ADD_I8:
4323     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4324  case ARM::ATOMIC_LOAD_ADD_I16:
4325     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4326  case ARM::ATOMIC_LOAD_ADD_I32:
4327     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4328
4329  case ARM::ATOMIC_LOAD_AND_I8:
4330     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4331  case ARM::ATOMIC_LOAD_AND_I16:
4332     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4333  case ARM::ATOMIC_LOAD_AND_I32:
4334     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4335
4336  case ARM::ATOMIC_LOAD_OR_I8:
4337     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4338  case ARM::ATOMIC_LOAD_OR_I16:
4339     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4340  case ARM::ATOMIC_LOAD_OR_I32:
4341     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4342
4343  case ARM::ATOMIC_LOAD_XOR_I8:
4344     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4345  case ARM::ATOMIC_LOAD_XOR_I16:
4346     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4347  case ARM::ATOMIC_LOAD_XOR_I32:
4348     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4349
4350  case ARM::ATOMIC_LOAD_NAND_I8:
4351     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4352  case ARM::ATOMIC_LOAD_NAND_I16:
4353     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4354  case ARM::ATOMIC_LOAD_NAND_I32:
4355     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4356
4357  case ARM::ATOMIC_LOAD_SUB_I8:
4358     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4359  case ARM::ATOMIC_LOAD_SUB_I16:
4360     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4361  case ARM::ATOMIC_LOAD_SUB_I32:
4362     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4363
4364  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4365  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4366  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4367
4368  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4369  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4370  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4371
4372  case ARM::tMOVCCr_pseudo: {
4373    // To "insert" a SELECT_CC instruction, we actually have to insert the
4374    // diamond control-flow pattern.  The incoming instruction knows the
4375    // destination vreg to set, the condition code register to branch on, the
4376    // true/false values to select between, and a branch opcode to use.
4377    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4378    MachineFunction::iterator It = BB;
4379    ++It;
4380
4381    //  thisMBB:
4382    //  ...
4383    //   TrueVal = ...
4384    //   cmpTY ccX, r1, r2
4385    //   bCC copy1MBB
4386    //   fallthrough --> copy0MBB
4387    MachineBasicBlock *thisMBB  = BB;
4388    MachineFunction *F = BB->getParent();
4389    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4390    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4391    F->insert(It, copy0MBB);
4392    F->insert(It, sinkMBB);
4393
4394    // Transfer the remainder of BB and its successor edges to sinkMBB.
4395    sinkMBB->splice(sinkMBB->begin(), BB,
4396                    llvm::next(MachineBasicBlock::iterator(MI)),
4397                    BB->end());
4398    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4399
4400    BB->addSuccessor(copy0MBB);
4401    BB->addSuccessor(sinkMBB);
4402
4403    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4404      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4405
4406    //  copy0MBB:
4407    //   %FalseValue = ...
4408    //   # fallthrough to sinkMBB
4409    BB = copy0MBB;
4410
4411    // Update machine-CFG edges
4412    BB->addSuccessor(sinkMBB);
4413
4414    //  sinkMBB:
4415    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4416    //  ...
4417    BB = sinkMBB;
4418    BuildMI(*BB, BB->begin(), dl,
4419            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4420      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4421      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4422
4423    MI->eraseFromParent();   // The pseudo instruction is gone now.
4424    return BB;
4425  }
4426
4427  case ARM::BCCi64:
4428  case ARM::BCCZi64: {
4429    // Compare both parts that make up the double comparison separately for
4430    // equality.
4431    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4432
4433    unsigned LHS1 = MI->getOperand(1).getReg();
4434    unsigned LHS2 = MI->getOperand(2).getReg();
4435    if (RHSisZero) {
4436      AddDefaultPred(BuildMI(BB, dl,
4437                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4438                     .addReg(LHS1).addImm(0));
4439      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4440        .addReg(LHS2).addImm(0)
4441        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4442    } else {
4443      unsigned RHS1 = MI->getOperand(3).getReg();
4444      unsigned RHS2 = MI->getOperand(4).getReg();
4445      AddDefaultPred(BuildMI(BB, dl,
4446                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4447                     .addReg(LHS1).addReg(RHS1));
4448      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4449        .addReg(LHS2).addReg(RHS2)
4450        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4451    }
4452
4453    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4454    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4455    if (MI->getOperand(0).getImm() == ARMCC::NE)
4456      std::swap(destMBB, exitMBB);
4457
4458    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4459      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4460    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4461      .addMBB(exitMBB);
4462
4463    MI->eraseFromParent();   // The pseudo instruction is gone now.
4464    return BB;
4465  }
4466  }
4467}
4468
4469//===----------------------------------------------------------------------===//
4470//                           ARM Optimization Hooks
4471//===----------------------------------------------------------------------===//
4472
4473static
4474SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4475                            TargetLowering::DAGCombinerInfo &DCI) {
4476  SelectionDAG &DAG = DCI.DAG;
4477  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4478  EVT VT = N->getValueType(0);
4479  unsigned Opc = N->getOpcode();
4480  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4481  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4482  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4483  ISD::CondCode CC = ISD::SETCC_INVALID;
4484
4485  if (isSlctCC) {
4486    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4487  } else {
4488    SDValue CCOp = Slct.getOperand(0);
4489    if (CCOp.getOpcode() == ISD::SETCC)
4490      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4491  }
4492
4493  bool DoXform = false;
4494  bool InvCC = false;
4495  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4496          "Bad input!");
4497
4498  if (LHS.getOpcode() == ISD::Constant &&
4499      cast<ConstantSDNode>(LHS)->isNullValue()) {
4500    DoXform = true;
4501  } else if (CC != ISD::SETCC_INVALID &&
4502             RHS.getOpcode() == ISD::Constant &&
4503             cast<ConstantSDNode>(RHS)->isNullValue()) {
4504    std::swap(LHS, RHS);
4505    SDValue Op0 = Slct.getOperand(0);
4506    EVT OpVT = isSlctCC ? Op0.getValueType() :
4507                          Op0.getOperand(0).getValueType();
4508    bool isInt = OpVT.isInteger();
4509    CC = ISD::getSetCCInverse(CC, isInt);
4510
4511    if (!TLI.isCondCodeLegal(CC, OpVT))
4512      return SDValue();         // Inverse operator isn't legal.
4513
4514    DoXform = true;
4515    InvCC = true;
4516  }
4517
4518  if (DoXform) {
4519    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4520    if (isSlctCC)
4521      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4522                             Slct.getOperand(0), Slct.getOperand(1), CC);
4523    SDValue CCOp = Slct.getOperand(0);
4524    if (InvCC)
4525      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4526                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4527    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4528                       CCOp, OtherOp, Result);
4529  }
4530  return SDValue();
4531}
4532
4533/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4534/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4535/// called with the default operands, and if that fails, with commuted
4536/// operands.
4537static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4538                                         TargetLowering::DAGCombinerInfo &DCI) {
4539  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4540  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4541    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4542    if (Result.getNode()) return Result;
4543  }
4544  return SDValue();
4545}
4546
4547/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4548///
4549static SDValue PerformADDCombine(SDNode *N,
4550                                 TargetLowering::DAGCombinerInfo &DCI) {
4551  SDValue N0 = N->getOperand(0);
4552  SDValue N1 = N->getOperand(1);
4553
4554  // First try with the default operand order.
4555  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4556  if (Result.getNode())
4557    return Result;
4558
4559  // If that didn't work, try again with the operands commuted.
4560  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4561}
4562
4563/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4564///
4565static SDValue PerformSUBCombine(SDNode *N,
4566                                 TargetLowering::DAGCombinerInfo &DCI) {
4567  SDValue N0 = N->getOperand(0);
4568  SDValue N1 = N->getOperand(1);
4569
4570  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4571  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4572    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4573    if (Result.getNode()) return Result;
4574  }
4575
4576  return SDValue();
4577}
4578
4579static SDValue PerformMULCombine(SDNode *N,
4580                                 TargetLowering::DAGCombinerInfo &DCI,
4581                                 const ARMSubtarget *Subtarget) {
4582  SelectionDAG &DAG = DCI.DAG;
4583
4584  if (Subtarget->isThumb1Only())
4585    return SDValue();
4586
4587  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4588    return SDValue();
4589
4590  EVT VT = N->getValueType(0);
4591  if (VT != MVT::i32)
4592    return SDValue();
4593
4594  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4595  if (!C)
4596    return SDValue();
4597
4598  uint64_t MulAmt = C->getZExtValue();
4599  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4600  ShiftAmt = ShiftAmt & (32 - 1);
4601  SDValue V = N->getOperand(0);
4602  DebugLoc DL = N->getDebugLoc();
4603
4604  SDValue Res;
4605  MulAmt >>= ShiftAmt;
4606  if (isPowerOf2_32(MulAmt - 1)) {
4607    // (mul x, 2^N + 1) => (add (shl x, N), x)
4608    Res = DAG.getNode(ISD::ADD, DL, VT,
4609                      V, DAG.getNode(ISD::SHL, DL, VT,
4610                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4611                                                        MVT::i32)));
4612  } else if (isPowerOf2_32(MulAmt + 1)) {
4613    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4614    Res = DAG.getNode(ISD::SUB, DL, VT,
4615                      DAG.getNode(ISD::SHL, DL, VT,
4616                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4617                                                     MVT::i32)),
4618                                                     V);
4619  } else
4620    return SDValue();
4621
4622  if (ShiftAmt != 0)
4623    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4624                      DAG.getConstant(ShiftAmt, MVT::i32));
4625
4626  // Do not add new nodes to DAG combiner worklist.
4627  DCI.CombineTo(N, Res, false);
4628  return SDValue();
4629}
4630
4631static SDValue PerformANDCombine(SDNode *N,
4632                                TargetLowering::DAGCombinerInfo &DCI) {
4633  // Attempt to use immediate-form VBIC
4634  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4635  DebugLoc dl = N->getDebugLoc();
4636  EVT VT = N->getValueType(0);
4637  SelectionDAG &DAG = DCI.DAG;
4638
4639  APInt SplatBits, SplatUndef;
4640  unsigned SplatBitSize;
4641  bool HasAnyUndefs;
4642  if (BVN &&
4643      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4644    if (SplatBitSize <= 64) {
4645      EVT VbicVT;
4646      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
4647                                      SplatUndef.getZExtValue(), SplatBitSize,
4648                                      DAG, VbicVT, VT.is128BitVector(),
4649                                      OtherModImm);
4650      if (Val.getNode()) {
4651        SDValue Input =
4652          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
4653        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
4654        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
4655      }
4656    }
4657  }
4658
4659  return SDValue();
4660}
4661
4662/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4663static SDValue PerformORCombine(SDNode *N,
4664                                TargetLowering::DAGCombinerInfo &DCI,
4665                                const ARMSubtarget *Subtarget) {
4666  // Attempt to use immediate-form VORR
4667  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4668  DebugLoc dl = N->getDebugLoc();
4669  EVT VT = N->getValueType(0);
4670  SelectionDAG &DAG = DCI.DAG;
4671
4672  APInt SplatBits, SplatUndef;
4673  unsigned SplatBitSize;
4674  bool HasAnyUndefs;
4675  if (BVN && Subtarget->hasNEON() &&
4676      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4677    if (SplatBitSize <= 64) {
4678      EVT VorrVT;
4679      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4680                                      SplatUndef.getZExtValue(), SplatBitSize,
4681                                      DAG, VorrVT, VT.is128BitVector(),
4682                                      OtherModImm);
4683      if (Val.getNode()) {
4684        SDValue Input =
4685          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
4686        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
4687        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
4688      }
4689    }
4690  }
4691
4692  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4693  // reasonable.
4694
4695  // BFI is only available on V6T2+
4696  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4697    return SDValue();
4698
4699  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4700  DebugLoc DL = N->getDebugLoc();
4701  // 1) or (and A, mask), val => ARMbfi A, val, mask
4702  //      iff (val & mask) == val
4703  //
4704  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4705  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4706  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4707  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4708  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4709  //  (i.e., copy a bitfield value into another bitfield of the same width)
4710  if (N0.getOpcode() != ISD::AND)
4711    return SDValue();
4712
4713  if (VT != MVT::i32)
4714    return SDValue();
4715
4716  SDValue N00 = N0.getOperand(0);
4717
4718  // The value and the mask need to be constants so we can verify this is
4719  // actually a bitfield set. If the mask is 0xffff, we can do better
4720  // via a movt instruction, so don't use BFI in that case.
4721  SDValue MaskOp = N0.getOperand(1);
4722  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
4723  if (!MaskC)
4724    return SDValue();
4725  unsigned Mask = MaskC->getZExtValue();
4726  if (Mask == 0xffff)
4727    return SDValue();
4728  SDValue Res;
4729  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4730  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4731  if (N1C) {
4732    unsigned Val = N1C->getZExtValue();
4733    if ((Val & ~Mask) != Val)
4734      return SDValue();
4735
4736    if (ARM::isBitFieldInvertedMask(Mask)) {
4737      Val >>= CountTrailingZeros_32(~Mask);
4738
4739      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
4740                        DAG.getConstant(Val, MVT::i32),
4741                        DAG.getConstant(Mask, MVT::i32));
4742
4743      // Do not add new nodes to DAG combiner worklist.
4744      DCI.CombineTo(N, Res, false);
4745      return SDValue();
4746    }
4747  } else if (N1.getOpcode() == ISD::AND) {
4748    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4749    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4750    if (!N11C)
4751      return SDValue();
4752    unsigned Mask2 = N11C->getZExtValue();
4753
4754    if (ARM::isBitFieldInvertedMask(Mask) &&
4755        ARM::isBitFieldInvertedMask(~Mask2) &&
4756        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4757      // The pack halfword instruction works better for masks that fit it,
4758      // so use that when it's available.
4759      if (Subtarget->hasT2ExtractPack() &&
4760          (Mask == 0xffff || Mask == 0xffff0000))
4761        return SDValue();
4762      // 2a
4763      unsigned lsb = CountTrailingZeros_32(Mask2);
4764      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4765                        DAG.getConstant(lsb, MVT::i32));
4766      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
4767                        DAG.getConstant(Mask, MVT::i32));
4768      // Do not add new nodes to DAG combiner worklist.
4769      DCI.CombineTo(N, Res, false);
4770      return SDValue();
4771    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4772               ARM::isBitFieldInvertedMask(Mask2) &&
4773               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4774      // The pack halfword instruction works better for masks that fit it,
4775      // so use that when it's available.
4776      if (Subtarget->hasT2ExtractPack() &&
4777          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4778        return SDValue();
4779      // 2b
4780      unsigned lsb = CountTrailingZeros_32(Mask);
4781      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
4782                        DAG.getConstant(lsb, MVT::i32));
4783      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4784                                DAG.getConstant(Mask2, MVT::i32));
4785      // Do not add new nodes to DAG combiner worklist.
4786      DCI.CombineTo(N, Res, false);
4787      return SDValue();
4788    }
4789  }
4790
4791  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
4792      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
4793      ARM::isBitFieldInvertedMask(~Mask)) {
4794    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
4795    // where lsb(mask) == #shamt and masked bits of B are known zero.
4796    SDValue ShAmt = N00.getOperand(1);
4797    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4798    unsigned LSB = CountTrailingZeros_32(Mask);
4799    if (ShAmtC != LSB)
4800      return SDValue();
4801
4802    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
4803                      DAG.getConstant(~Mask, MVT::i32));
4804
4805    // Do not add new nodes to DAG combiner worklist.
4806    DCI.CombineTo(N, Res, false);
4807  }
4808
4809  return SDValue();
4810}
4811
4812/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
4813/// C1 & C2 == C1.
4814static SDValue PerformBFICombine(SDNode *N,
4815                                 TargetLowering::DAGCombinerInfo &DCI) {
4816  SDValue N1 = N->getOperand(1);
4817  if (N1.getOpcode() == ISD::AND) {
4818    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4819    if (!N11C)
4820      return SDValue();
4821    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
4822    unsigned Mask2 = N11C->getZExtValue();
4823    if ((Mask & Mask2) == Mask2)
4824      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
4825                             N->getOperand(0), N1.getOperand(0),
4826                             N->getOperand(2));
4827  }
4828  return SDValue();
4829}
4830
4831/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4832/// ARMISD::VMOVRRD.
4833static SDValue PerformVMOVRRDCombine(SDNode *N,
4834                                     TargetLowering::DAGCombinerInfo &DCI) {
4835  // vmovrrd(vmovdrr x, y) -> x,y
4836  SDValue InDouble = N->getOperand(0);
4837  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4838    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4839  return SDValue();
4840}
4841
4842/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4843/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4844static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4845  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4846  SDValue Op0 = N->getOperand(0);
4847  SDValue Op1 = N->getOperand(1);
4848  if (Op0.getOpcode() == ISD::BITCAST)
4849    Op0 = Op0.getOperand(0);
4850  if (Op1.getOpcode() == ISD::BITCAST)
4851    Op1 = Op1.getOperand(0);
4852  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4853      Op0.getNode() == Op1.getNode() &&
4854      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4855    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
4856                       N->getValueType(0), Op0.getOperand(0));
4857  return SDValue();
4858}
4859
4860/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4861/// ISD::BUILD_VECTOR.
4862static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
4863  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4864  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4865  // into a pair of GPRs, which is fine when the value is used as a scalar,
4866  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4867  if (N->getNumOperands() == 2)
4868    return PerformVMOVDRRCombine(N, DAG);
4869
4870  return SDValue();
4871}
4872
4873/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
4874/// ISD::VECTOR_SHUFFLE.
4875static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
4876  // The LLVM shufflevector instruction does not require the shuffle mask
4877  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
4878  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
4879  // operands do not match the mask length, they are extended by concatenating
4880  // them with undef vectors.  That is probably the right thing for other
4881  // targets, but for NEON it is better to concatenate two double-register
4882  // size vector operands into a single quad-register size vector.  Do that
4883  // transformation here:
4884  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
4885  //   shuffle(concat(v1, v2), undef)
4886  SDValue Op0 = N->getOperand(0);
4887  SDValue Op1 = N->getOperand(1);
4888  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
4889      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
4890      Op0.getNumOperands() != 2 ||
4891      Op1.getNumOperands() != 2)
4892    return SDValue();
4893  SDValue Concat0Op1 = Op0.getOperand(1);
4894  SDValue Concat1Op1 = Op1.getOperand(1);
4895  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
4896      Concat1Op1.getOpcode() != ISD::UNDEF)
4897    return SDValue();
4898  // Skip the transformation if any of the types are illegal.
4899  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4900  EVT VT = N->getValueType(0);
4901  if (!TLI.isTypeLegal(VT) ||
4902      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
4903      !TLI.isTypeLegal(Concat1Op1.getValueType()))
4904    return SDValue();
4905
4906  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
4907                                  Op0.getOperand(0), Op1.getOperand(0));
4908  // Translate the shuffle mask.
4909  SmallVector<int, 16> NewMask;
4910  unsigned NumElts = VT.getVectorNumElements();
4911  unsigned HalfElts = NumElts/2;
4912  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4913  for (unsigned n = 0; n < NumElts; ++n) {
4914    int MaskElt = SVN->getMaskElt(n);
4915    int NewElt = -1;
4916    if (MaskElt < (int)HalfElts)
4917      NewElt = MaskElt;
4918    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
4919      NewElt = HalfElts + MaskElt - NumElts;
4920    NewMask.push_back(NewElt);
4921  }
4922  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
4923                              DAG.getUNDEF(VT), NewMask.data());
4924}
4925
4926/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
4927/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
4928/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
4929/// return true.
4930static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
4931  SelectionDAG &DAG = DCI.DAG;
4932  EVT VT = N->getValueType(0);
4933  // vldN-dup instructions only support 64-bit vectors for N > 1.
4934  if (!VT.is64BitVector())
4935    return false;
4936
4937  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
4938  SDNode *VLD = N->getOperand(0).getNode();
4939  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
4940    return false;
4941  unsigned NumVecs = 0;
4942  unsigned NewOpc = 0;
4943  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
4944  if (IntNo == Intrinsic::arm_neon_vld2lane) {
4945    NumVecs = 2;
4946    NewOpc = ARMISD::VLD2DUP;
4947  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
4948    NumVecs = 3;
4949    NewOpc = ARMISD::VLD3DUP;
4950  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
4951    NumVecs = 4;
4952    NewOpc = ARMISD::VLD4DUP;
4953  } else {
4954    return false;
4955  }
4956
4957  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
4958  // numbers match the load.
4959  unsigned VLDLaneNo =
4960    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
4961  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
4962       UI != UE; ++UI) {
4963    // Ignore uses of the chain result.
4964    if (UI.getUse().getResNo() == NumVecs)
4965      continue;
4966    SDNode *User = *UI;
4967    if (User->getOpcode() != ARMISD::VDUPLANE ||
4968        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
4969      return false;
4970  }
4971
4972  // Create the vldN-dup node.
4973  EVT Tys[5];
4974  unsigned n;
4975  for (n = 0; n < NumVecs; ++n)
4976    Tys[n] = VT;
4977  Tys[n] = MVT::Other;
4978  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
4979  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
4980  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
4981  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
4982                                           Ops, 2, VLDMemInt->getMemoryVT(),
4983                                           VLDMemInt->getMemOperand());
4984
4985  // Update the uses.
4986  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
4987       UI != UE; ++UI) {
4988    unsigned ResNo = UI.getUse().getResNo();
4989    // Ignore uses of the chain result.
4990    if (ResNo == NumVecs)
4991      continue;
4992    SDNode *User = *UI;
4993    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
4994  }
4995
4996  // Now the vldN-lane intrinsic is dead except for its chain result.
4997  // Update uses of the chain.
4998  std::vector<SDValue> VLDDupResults;
4999  for (unsigned n = 0; n < NumVecs; ++n)
5000    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
5001  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
5002  DCI.CombineTo(VLD, VLDDupResults);
5003
5004  return true;
5005}
5006
5007/// PerformVDUPLANECombine - Target-specific dag combine xforms for
5008/// ARMISD::VDUPLANE.
5009static SDValue PerformVDUPLANECombine(SDNode *N,
5010                                      TargetLowering::DAGCombinerInfo &DCI) {
5011  SDValue Op = N->getOperand(0);
5012
5013  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
5014  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
5015  if (CombineVLDDUP(N, DCI))
5016    return SDValue(N, 0);
5017
5018  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
5019  // redundant.  Ignore bit_converts for now; element sizes are checked below.
5020  while (Op.getOpcode() == ISD::BITCAST)
5021    Op = Op.getOperand(0);
5022  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
5023    return SDValue();
5024
5025  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
5026  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
5027  // The canonical VMOV for a zero vector uses a 32-bit element size.
5028  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5029  unsigned EltBits;
5030  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
5031    EltSize = 8;
5032  EVT VT = N->getValueType(0);
5033  if (EltSize > VT.getVectorElementType().getSizeInBits())
5034    return SDValue();
5035
5036  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
5037}
5038
5039/// getVShiftImm - Check if this is a valid build_vector for the immediate
5040/// operand of a vector shift operation, where all the elements of the
5041/// build_vector must have the same constant integer value.
5042static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5043  // Ignore bit_converts.
5044  while (Op.getOpcode() == ISD::BITCAST)
5045    Op = Op.getOperand(0);
5046  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5047  APInt SplatBits, SplatUndef;
5048  unsigned SplatBitSize;
5049  bool HasAnyUndefs;
5050  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5051                                      HasAnyUndefs, ElementBits) ||
5052      SplatBitSize > ElementBits)
5053    return false;
5054  Cnt = SplatBits.getSExtValue();
5055  return true;
5056}
5057
5058/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5059/// operand of a vector shift left operation.  That value must be in the range:
5060///   0 <= Value < ElementBits for a left shift; or
5061///   0 <= Value <= ElementBits for a long left shift.
5062static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5063  assert(VT.isVector() && "vector shift count is not a vector type");
5064  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5065  if (! getVShiftImm(Op, ElementBits, Cnt))
5066    return false;
5067  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
5068}
5069
5070/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5071/// operand of a vector shift right operation.  For a shift opcode, the value
5072/// is positive, but for an intrinsic the value count must be negative. The
5073/// absolute value must be in the range:
5074///   1 <= |Value| <= ElementBits for a right shift; or
5075///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
5076static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5077                         int64_t &Cnt) {
5078  assert(VT.isVector() && "vector shift count is not a vector type");
5079  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5080  if (! getVShiftImm(Op, ElementBits, Cnt))
5081    return false;
5082  if (isIntrinsic)
5083    Cnt = -Cnt;
5084  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
5085}
5086
5087/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
5088static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
5089  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5090  switch (IntNo) {
5091  default:
5092    // Don't do anything for most intrinsics.
5093    break;
5094
5095  // Vector shifts: check for immediate versions and lower them.
5096  // Note: This is done during DAG combining instead of DAG legalizing because
5097  // the build_vectors for 64-bit vector element shift counts are generally
5098  // not legal, and it is hard to see their values after they get legalized to
5099  // loads from a constant pool.
5100  case Intrinsic::arm_neon_vshifts:
5101  case Intrinsic::arm_neon_vshiftu:
5102  case Intrinsic::arm_neon_vshiftls:
5103  case Intrinsic::arm_neon_vshiftlu:
5104  case Intrinsic::arm_neon_vshiftn:
5105  case Intrinsic::arm_neon_vrshifts:
5106  case Intrinsic::arm_neon_vrshiftu:
5107  case Intrinsic::arm_neon_vrshiftn:
5108  case Intrinsic::arm_neon_vqshifts:
5109  case Intrinsic::arm_neon_vqshiftu:
5110  case Intrinsic::arm_neon_vqshiftsu:
5111  case Intrinsic::arm_neon_vqshiftns:
5112  case Intrinsic::arm_neon_vqshiftnu:
5113  case Intrinsic::arm_neon_vqshiftnsu:
5114  case Intrinsic::arm_neon_vqrshiftns:
5115  case Intrinsic::arm_neon_vqrshiftnu:
5116  case Intrinsic::arm_neon_vqrshiftnsu: {
5117    EVT VT = N->getOperand(1).getValueType();
5118    int64_t Cnt;
5119    unsigned VShiftOpc = 0;
5120
5121    switch (IntNo) {
5122    case Intrinsic::arm_neon_vshifts:
5123    case Intrinsic::arm_neon_vshiftu:
5124      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
5125        VShiftOpc = ARMISD::VSHL;
5126        break;
5127      }
5128      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
5129        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
5130                     ARMISD::VSHRs : ARMISD::VSHRu);
5131        break;
5132      }
5133      return SDValue();
5134
5135    case Intrinsic::arm_neon_vshiftls:
5136    case Intrinsic::arm_neon_vshiftlu:
5137      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
5138        break;
5139      llvm_unreachable("invalid shift count for vshll intrinsic");
5140
5141    case Intrinsic::arm_neon_vrshifts:
5142    case Intrinsic::arm_neon_vrshiftu:
5143      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
5144        break;
5145      return SDValue();
5146
5147    case Intrinsic::arm_neon_vqshifts:
5148    case Intrinsic::arm_neon_vqshiftu:
5149      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
5150        break;
5151      return SDValue();
5152
5153    case Intrinsic::arm_neon_vqshiftsu:
5154      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
5155        break;
5156      llvm_unreachable("invalid shift count for vqshlu intrinsic");
5157
5158    case Intrinsic::arm_neon_vshiftn:
5159    case Intrinsic::arm_neon_vrshiftn:
5160    case Intrinsic::arm_neon_vqshiftns:
5161    case Intrinsic::arm_neon_vqshiftnu:
5162    case Intrinsic::arm_neon_vqshiftnsu:
5163    case Intrinsic::arm_neon_vqrshiftns:
5164    case Intrinsic::arm_neon_vqrshiftnu:
5165    case Intrinsic::arm_neon_vqrshiftnsu:
5166      // Narrowing shifts require an immediate right shift.
5167      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
5168        break;
5169      llvm_unreachable("invalid shift count for narrowing vector shift "
5170                       "intrinsic");
5171
5172    default:
5173      llvm_unreachable("unhandled vector shift");
5174    }
5175
5176    switch (IntNo) {
5177    case Intrinsic::arm_neon_vshifts:
5178    case Intrinsic::arm_neon_vshiftu:
5179      // Opcode already set above.
5180      break;
5181    case Intrinsic::arm_neon_vshiftls:
5182    case Intrinsic::arm_neon_vshiftlu:
5183      if (Cnt == VT.getVectorElementType().getSizeInBits())
5184        VShiftOpc = ARMISD::VSHLLi;
5185      else
5186        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
5187                     ARMISD::VSHLLs : ARMISD::VSHLLu);
5188      break;
5189    case Intrinsic::arm_neon_vshiftn:
5190      VShiftOpc = ARMISD::VSHRN; break;
5191    case Intrinsic::arm_neon_vrshifts:
5192      VShiftOpc = ARMISD::VRSHRs; break;
5193    case Intrinsic::arm_neon_vrshiftu:
5194      VShiftOpc = ARMISD::VRSHRu; break;
5195    case Intrinsic::arm_neon_vrshiftn:
5196      VShiftOpc = ARMISD::VRSHRN; break;
5197    case Intrinsic::arm_neon_vqshifts:
5198      VShiftOpc = ARMISD::VQSHLs; break;
5199    case Intrinsic::arm_neon_vqshiftu:
5200      VShiftOpc = ARMISD::VQSHLu; break;
5201    case Intrinsic::arm_neon_vqshiftsu:
5202      VShiftOpc = ARMISD::VQSHLsu; break;
5203    case Intrinsic::arm_neon_vqshiftns:
5204      VShiftOpc = ARMISD::VQSHRNs; break;
5205    case Intrinsic::arm_neon_vqshiftnu:
5206      VShiftOpc = ARMISD::VQSHRNu; break;
5207    case Intrinsic::arm_neon_vqshiftnsu:
5208      VShiftOpc = ARMISD::VQSHRNsu; break;
5209    case Intrinsic::arm_neon_vqrshiftns:
5210      VShiftOpc = ARMISD::VQRSHRNs; break;
5211    case Intrinsic::arm_neon_vqrshiftnu:
5212      VShiftOpc = ARMISD::VQRSHRNu; break;
5213    case Intrinsic::arm_neon_vqrshiftnsu:
5214      VShiftOpc = ARMISD::VQRSHRNsu; break;
5215    }
5216
5217    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
5218                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
5219  }
5220
5221  case Intrinsic::arm_neon_vshiftins: {
5222    EVT VT = N->getOperand(1).getValueType();
5223    int64_t Cnt;
5224    unsigned VShiftOpc = 0;
5225
5226    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
5227      VShiftOpc = ARMISD::VSLI;
5228    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
5229      VShiftOpc = ARMISD::VSRI;
5230    else {
5231      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
5232    }
5233
5234    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
5235                       N->getOperand(1), N->getOperand(2),
5236                       DAG.getConstant(Cnt, MVT::i32));
5237  }
5238
5239  case Intrinsic::arm_neon_vqrshifts:
5240  case Intrinsic::arm_neon_vqrshiftu:
5241    // No immediate versions of these to check for.
5242    break;
5243  }
5244
5245  return SDValue();
5246}
5247
5248/// PerformShiftCombine - Checks for immediate versions of vector shifts and
5249/// lowers them.  As with the vector shift intrinsics, this is done during DAG
5250/// combining instead of DAG legalizing because the build_vectors for 64-bit
5251/// vector element shift counts are generally not legal, and it is hard to see
5252/// their values after they get legalized to loads from a constant pool.
5253static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
5254                                   const ARMSubtarget *ST) {
5255  EVT VT = N->getValueType(0);
5256
5257  // Nothing to be done for scalar shifts.
5258  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5259  if (!VT.isVector() || !TLI.isTypeLegal(VT))
5260    return SDValue();
5261
5262  assert(ST->hasNEON() && "unexpected vector shift");
5263  int64_t Cnt;
5264
5265  switch (N->getOpcode()) {
5266  default: llvm_unreachable("unexpected shift opcode");
5267
5268  case ISD::SHL:
5269    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
5270      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
5271                         DAG.getConstant(Cnt, MVT::i32));
5272    break;
5273
5274  case ISD::SRA:
5275  case ISD::SRL:
5276    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
5277      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
5278                            ARMISD::VSHRs : ARMISD::VSHRu);
5279      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
5280                         DAG.getConstant(Cnt, MVT::i32));
5281    }
5282  }
5283  return SDValue();
5284}
5285
5286/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
5287/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
5288static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
5289                                    const ARMSubtarget *ST) {
5290  SDValue N0 = N->getOperand(0);
5291
5292  // Check for sign- and zero-extensions of vector extract operations of 8-
5293  // and 16-bit vector elements.  NEON supports these directly.  They are
5294  // handled during DAG combining because type legalization will promote them
5295  // to 32-bit types and it is messy to recognize the operations after that.
5296  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5297    SDValue Vec = N0.getOperand(0);
5298    SDValue Lane = N0.getOperand(1);
5299    EVT VT = N->getValueType(0);
5300    EVT EltVT = N0.getValueType();
5301    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5302
5303    if (VT == MVT::i32 &&
5304        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
5305        TLI.isTypeLegal(Vec.getValueType()) &&
5306        isa<ConstantSDNode>(Lane)) {
5307
5308      unsigned Opc = 0;
5309      switch (N->getOpcode()) {
5310      default: llvm_unreachable("unexpected opcode");
5311      case ISD::SIGN_EXTEND:
5312        Opc = ARMISD::VGETLANEs;
5313        break;
5314      case ISD::ZERO_EXTEND:
5315      case ISD::ANY_EXTEND:
5316        Opc = ARMISD::VGETLANEu;
5317        break;
5318      }
5319      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
5320    }
5321  }
5322
5323  return SDValue();
5324}
5325
5326/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
5327/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
5328static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
5329                                       const ARMSubtarget *ST) {
5330  // If the target supports NEON, try to use vmax/vmin instructions for f32
5331  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
5332  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
5333  // a NaN; only do the transformation when it matches that behavior.
5334
5335  // For now only do this when using NEON for FP operations; if using VFP, it
5336  // is not obvious that the benefit outweighs the cost of switching to the
5337  // NEON pipeline.
5338  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
5339      N->getValueType(0) != MVT::f32)
5340    return SDValue();
5341
5342  SDValue CondLHS = N->getOperand(0);
5343  SDValue CondRHS = N->getOperand(1);
5344  SDValue LHS = N->getOperand(2);
5345  SDValue RHS = N->getOperand(3);
5346  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5347
5348  unsigned Opcode = 0;
5349  bool IsReversed;
5350  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
5351    IsReversed = false; // x CC y ? x : y
5352  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
5353    IsReversed = true ; // x CC y ? y : x
5354  } else {
5355    return SDValue();
5356  }
5357
5358  bool IsUnordered;
5359  switch (CC) {
5360  default: break;
5361  case ISD::SETOLT:
5362  case ISD::SETOLE:
5363  case ISD::SETLT:
5364  case ISD::SETLE:
5365  case ISD::SETULT:
5366  case ISD::SETULE:
5367    // If LHS is NaN, an ordered comparison will be false and the result will
5368    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
5369    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5370    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
5371    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5372      break;
5373    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
5374    // will return -0, so vmin can only be used for unsafe math or if one of
5375    // the operands is known to be nonzero.
5376    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
5377        !UnsafeFPMath &&
5378        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5379      break;
5380    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
5381    break;
5382
5383  case ISD::SETOGT:
5384  case ISD::SETOGE:
5385  case ISD::SETGT:
5386  case ISD::SETGE:
5387  case ISD::SETUGT:
5388  case ISD::SETUGE:
5389    // If LHS is NaN, an ordered comparison will be false and the result will
5390    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
5391    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5392    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
5393    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5394      break;
5395    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
5396    // will return +0, so vmax can only be used for unsafe math or if one of
5397    // the operands is known to be nonzero.
5398    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
5399        !UnsafeFPMath &&
5400        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5401      break;
5402    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
5403    break;
5404  }
5405
5406  if (!Opcode)
5407    return SDValue();
5408  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
5409}
5410
5411SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
5412                                             DAGCombinerInfo &DCI) const {
5413  switch (N->getOpcode()) {
5414  default: break;
5415  case ISD::ADD:        return PerformADDCombine(N, DCI);
5416  case ISD::SUB:        return PerformSUBCombine(N, DCI);
5417  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
5418  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
5419  case ISD::AND:        return PerformANDCombine(N, DCI);
5420  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
5421  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
5422  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
5423  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
5424  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
5425  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
5426  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
5427  case ISD::SHL:
5428  case ISD::SRA:
5429  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
5430  case ISD::SIGN_EXTEND:
5431  case ISD::ZERO_EXTEND:
5432  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
5433  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
5434  }
5435  return SDValue();
5436}
5437
5438bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
5439  if (!Subtarget->allowsUnalignedMem())
5440    return false;
5441
5442  switch (VT.getSimpleVT().SimpleTy) {
5443  default:
5444    return false;
5445  case MVT::i8:
5446  case MVT::i16:
5447  case MVT::i32:
5448    return true;
5449  // FIXME: VLD1 etc with standard alignment is legal.
5450  }
5451}
5452
5453static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
5454  if (V < 0)
5455    return false;
5456
5457  unsigned Scale = 1;
5458  switch (VT.getSimpleVT().SimpleTy) {
5459  default: return false;
5460  case MVT::i1:
5461  case MVT::i8:
5462    // Scale == 1;
5463    break;
5464  case MVT::i16:
5465    // Scale == 2;
5466    Scale = 2;
5467    break;
5468  case MVT::i32:
5469    // Scale == 4;
5470    Scale = 4;
5471    break;
5472  }
5473
5474  if ((V & (Scale - 1)) != 0)
5475    return false;
5476  V /= Scale;
5477  return V == (V & ((1LL << 5) - 1));
5478}
5479
5480static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
5481                                      const ARMSubtarget *Subtarget) {
5482  bool isNeg = false;
5483  if (V < 0) {
5484    isNeg = true;
5485    V = - V;
5486  }
5487
5488  switch (VT.getSimpleVT().SimpleTy) {
5489  default: return false;
5490  case MVT::i1:
5491  case MVT::i8:
5492  case MVT::i16:
5493  case MVT::i32:
5494    // + imm12 or - imm8
5495    if (isNeg)
5496      return V == (V & ((1LL << 8) - 1));
5497    return V == (V & ((1LL << 12) - 1));
5498  case MVT::f32:
5499  case MVT::f64:
5500    // Same as ARM mode. FIXME: NEON?
5501    if (!Subtarget->hasVFP2())
5502      return false;
5503    if ((V & 3) != 0)
5504      return false;
5505    V >>= 2;
5506    return V == (V & ((1LL << 8) - 1));
5507  }
5508}
5509
5510/// isLegalAddressImmediate - Return true if the integer value can be used
5511/// as the offset of the target addressing mode for load / store of the
5512/// given type.
5513static bool isLegalAddressImmediate(int64_t V, EVT VT,
5514                                    const ARMSubtarget *Subtarget) {
5515  if (V == 0)
5516    return true;
5517
5518  if (!VT.isSimple())
5519    return false;
5520
5521  if (Subtarget->isThumb1Only())
5522    return isLegalT1AddressImmediate(V, VT);
5523  else if (Subtarget->isThumb2())
5524    return isLegalT2AddressImmediate(V, VT, Subtarget);
5525
5526  // ARM mode.
5527  if (V < 0)
5528    V = - V;
5529  switch (VT.getSimpleVT().SimpleTy) {
5530  default: return false;
5531  case MVT::i1:
5532  case MVT::i8:
5533  case MVT::i32:
5534    // +- imm12
5535    return V == (V & ((1LL << 12) - 1));
5536  case MVT::i16:
5537    // +- imm8
5538    return V == (V & ((1LL << 8) - 1));
5539  case MVT::f32:
5540  case MVT::f64:
5541    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5542      return false;
5543    if ((V & 3) != 0)
5544      return false;
5545    V >>= 2;
5546    return V == (V & ((1LL << 8) - 1));
5547  }
5548}
5549
5550bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5551                                                      EVT VT) const {
5552  int Scale = AM.Scale;
5553  if (Scale < 0)
5554    return false;
5555
5556  switch (VT.getSimpleVT().SimpleTy) {
5557  default: return false;
5558  case MVT::i1:
5559  case MVT::i8:
5560  case MVT::i16:
5561  case MVT::i32:
5562    if (Scale == 1)
5563      return true;
5564    // r + r << imm
5565    Scale = Scale & ~1;
5566    return Scale == 2 || Scale == 4 || Scale == 8;
5567  case MVT::i64:
5568    // r + r
5569    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5570      return true;
5571    return false;
5572  case MVT::isVoid:
5573    // Note, we allow "void" uses (basically, uses that aren't loads or
5574    // stores), because arm allows folding a scale into many arithmetic
5575    // operations.  This should be made more precise and revisited later.
5576
5577    // Allow r << imm, but the imm has to be a multiple of two.
5578    if (Scale & 1) return false;
5579    return isPowerOf2_32(Scale);
5580  }
5581}
5582
5583/// isLegalAddressingMode - Return true if the addressing mode represented
5584/// by AM is legal for this target, for a load/store of the specified type.
5585bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5586                                              const Type *Ty) const {
5587  EVT VT = getValueType(Ty, true);
5588  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5589    return false;
5590
5591  // Can never fold addr of global into load/store.
5592  if (AM.BaseGV)
5593    return false;
5594
5595  switch (AM.Scale) {
5596  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5597    break;
5598  case 1:
5599    if (Subtarget->isThumb1Only())
5600      return false;
5601    // FALL THROUGH.
5602  default:
5603    // ARM doesn't support any R+R*scale+imm addr modes.
5604    if (AM.BaseOffs)
5605      return false;
5606
5607    if (!VT.isSimple())
5608      return false;
5609
5610    if (Subtarget->isThumb2())
5611      return isLegalT2ScaledAddressingMode(AM, VT);
5612
5613    int Scale = AM.Scale;
5614    switch (VT.getSimpleVT().SimpleTy) {
5615    default: return false;
5616    case MVT::i1:
5617    case MVT::i8:
5618    case MVT::i32:
5619      if (Scale < 0) Scale = -Scale;
5620      if (Scale == 1)
5621        return true;
5622      // r + r << imm
5623      return isPowerOf2_32(Scale & ~1);
5624    case MVT::i16:
5625    case MVT::i64:
5626      // r + r
5627      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5628        return true;
5629      return false;
5630
5631    case MVT::isVoid:
5632      // Note, we allow "void" uses (basically, uses that aren't loads or
5633      // stores), because arm allows folding a scale into many arithmetic
5634      // operations.  This should be made more precise and revisited later.
5635
5636      // Allow r << imm, but the imm has to be a multiple of two.
5637      if (Scale & 1) return false;
5638      return isPowerOf2_32(Scale);
5639    }
5640    break;
5641  }
5642  return true;
5643}
5644
5645/// isLegalICmpImmediate - Return true if the specified immediate is legal
5646/// icmp immediate, that is the target has icmp instructions which can compare
5647/// a register against the immediate without having to materialize the
5648/// immediate into a register.
5649bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5650  if (!Subtarget->isThumb())
5651    return ARM_AM::getSOImmVal(Imm) != -1;
5652  if (Subtarget->isThumb2())
5653    return ARM_AM::getT2SOImmVal(Imm) != -1;
5654  return Imm >= 0 && Imm <= 255;
5655}
5656
5657static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5658                                      bool isSEXTLoad, SDValue &Base,
5659                                      SDValue &Offset, bool &isInc,
5660                                      SelectionDAG &DAG) {
5661  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5662    return false;
5663
5664  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5665    // AddressingMode 3
5666    Base = Ptr->getOperand(0);
5667    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5668      int RHSC = (int)RHS->getZExtValue();
5669      if (RHSC < 0 && RHSC > -256) {
5670        assert(Ptr->getOpcode() == ISD::ADD);
5671        isInc = false;
5672        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5673        return true;
5674      }
5675    }
5676    isInc = (Ptr->getOpcode() == ISD::ADD);
5677    Offset = Ptr->getOperand(1);
5678    return true;
5679  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5680    // AddressingMode 2
5681    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5682      int RHSC = (int)RHS->getZExtValue();
5683      if (RHSC < 0 && RHSC > -0x1000) {
5684        assert(Ptr->getOpcode() == ISD::ADD);
5685        isInc = false;
5686        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5687        Base = Ptr->getOperand(0);
5688        return true;
5689      }
5690    }
5691
5692    if (Ptr->getOpcode() == ISD::ADD) {
5693      isInc = true;
5694      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5695      if (ShOpcVal != ARM_AM::no_shift) {
5696        Base = Ptr->getOperand(1);
5697        Offset = Ptr->getOperand(0);
5698      } else {
5699        Base = Ptr->getOperand(0);
5700        Offset = Ptr->getOperand(1);
5701      }
5702      return true;
5703    }
5704
5705    isInc = (Ptr->getOpcode() == ISD::ADD);
5706    Base = Ptr->getOperand(0);
5707    Offset = Ptr->getOperand(1);
5708    return true;
5709  }
5710
5711  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5712  return false;
5713}
5714
5715static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5716                                     bool isSEXTLoad, SDValue &Base,
5717                                     SDValue &Offset, bool &isInc,
5718                                     SelectionDAG &DAG) {
5719  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5720    return false;
5721
5722  Base = Ptr->getOperand(0);
5723  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5724    int RHSC = (int)RHS->getZExtValue();
5725    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5726      assert(Ptr->getOpcode() == ISD::ADD);
5727      isInc = false;
5728      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5729      return true;
5730    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5731      isInc = Ptr->getOpcode() == ISD::ADD;
5732      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5733      return true;
5734    }
5735  }
5736
5737  return false;
5738}
5739
5740/// getPreIndexedAddressParts - returns true by value, base pointer and
5741/// offset pointer and addressing mode by reference if the node's address
5742/// can be legally represented as pre-indexed load / store address.
5743bool
5744ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5745                                             SDValue &Offset,
5746                                             ISD::MemIndexedMode &AM,
5747                                             SelectionDAG &DAG) const {
5748  if (Subtarget->isThumb1Only())
5749    return false;
5750
5751  EVT VT;
5752  SDValue Ptr;
5753  bool isSEXTLoad = false;
5754  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5755    Ptr = LD->getBasePtr();
5756    VT  = LD->getMemoryVT();
5757    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5758  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5759    Ptr = ST->getBasePtr();
5760    VT  = ST->getMemoryVT();
5761  } else
5762    return false;
5763
5764  bool isInc;
5765  bool isLegal = false;
5766  if (Subtarget->isThumb2())
5767    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5768                                       Offset, isInc, DAG);
5769  else
5770    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5771                                        Offset, isInc, DAG);
5772  if (!isLegal)
5773    return false;
5774
5775  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5776  return true;
5777}
5778
5779/// getPostIndexedAddressParts - returns true by value, base pointer and
5780/// offset pointer and addressing mode by reference if this node can be
5781/// combined with a load / store to form a post-indexed load / store.
5782bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5783                                                   SDValue &Base,
5784                                                   SDValue &Offset,
5785                                                   ISD::MemIndexedMode &AM,
5786                                                   SelectionDAG &DAG) const {
5787  if (Subtarget->isThumb1Only())
5788    return false;
5789
5790  EVT VT;
5791  SDValue Ptr;
5792  bool isSEXTLoad = false;
5793  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5794    VT  = LD->getMemoryVT();
5795    Ptr = LD->getBasePtr();
5796    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5797  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5798    VT  = ST->getMemoryVT();
5799    Ptr = ST->getBasePtr();
5800  } else
5801    return false;
5802
5803  bool isInc;
5804  bool isLegal = false;
5805  if (Subtarget->isThumb2())
5806    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5807                                       isInc, DAG);
5808  else
5809    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5810                                        isInc, DAG);
5811  if (!isLegal)
5812    return false;
5813
5814  if (Ptr != Base) {
5815    // Swap base ptr and offset to catch more post-index load / store when
5816    // it's legal. In Thumb2 mode, offset must be an immediate.
5817    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5818        !Subtarget->isThumb2())
5819      std::swap(Base, Offset);
5820
5821    // Post-indexed load / store update the base pointer.
5822    if (Ptr != Base)
5823      return false;
5824  }
5825
5826  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5827  return true;
5828}
5829
5830void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5831                                                       const APInt &Mask,
5832                                                       APInt &KnownZero,
5833                                                       APInt &KnownOne,
5834                                                       const SelectionDAG &DAG,
5835                                                       unsigned Depth) const {
5836  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5837  switch (Op.getOpcode()) {
5838  default: break;
5839  case ARMISD::CMOV: {
5840    // Bits are known zero/one if known on the LHS and RHS.
5841    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5842    if (KnownZero == 0 && KnownOne == 0) return;
5843
5844    APInt KnownZeroRHS, KnownOneRHS;
5845    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5846                          KnownZeroRHS, KnownOneRHS, Depth+1);
5847    KnownZero &= KnownZeroRHS;
5848    KnownOne  &= KnownOneRHS;
5849    return;
5850  }
5851  }
5852}
5853
5854//===----------------------------------------------------------------------===//
5855//                           ARM Inline Assembly Support
5856//===----------------------------------------------------------------------===//
5857
5858/// getConstraintType - Given a constraint letter, return the type of
5859/// constraint it is for this target.
5860ARMTargetLowering::ConstraintType
5861ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5862  if (Constraint.size() == 1) {
5863    switch (Constraint[0]) {
5864    default:  break;
5865    case 'l': return C_RegisterClass;
5866    case 'w': return C_RegisterClass;
5867    }
5868  }
5869  return TargetLowering::getConstraintType(Constraint);
5870}
5871
5872/// Examine constraint type and operand type and determine a weight value.
5873/// This object must already have been set up with the operand type
5874/// and the current alternative constraint selected.
5875TargetLowering::ConstraintWeight
5876ARMTargetLowering::getSingleConstraintMatchWeight(
5877    AsmOperandInfo &info, const char *constraint) const {
5878  ConstraintWeight weight = CW_Invalid;
5879  Value *CallOperandVal = info.CallOperandVal;
5880    // If we don't have a value, we can't do a match,
5881    // but allow it at the lowest weight.
5882  if (CallOperandVal == NULL)
5883    return CW_Default;
5884  const Type *type = CallOperandVal->getType();
5885  // Look at the constraint type.
5886  switch (*constraint) {
5887  default:
5888    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5889    break;
5890  case 'l':
5891    if (type->isIntegerTy()) {
5892      if (Subtarget->isThumb())
5893        weight = CW_SpecificReg;
5894      else
5895        weight = CW_Register;
5896    }
5897    break;
5898  case 'w':
5899    if (type->isFloatingPointTy())
5900      weight = CW_Register;
5901    break;
5902  }
5903  return weight;
5904}
5905
5906std::pair<unsigned, const TargetRegisterClass*>
5907ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5908                                                EVT VT) const {
5909  if (Constraint.size() == 1) {
5910    // GCC ARM Constraint Letters
5911    switch (Constraint[0]) {
5912    case 'l':
5913      if (Subtarget->isThumb())
5914        return std::make_pair(0U, ARM::tGPRRegisterClass);
5915      else
5916        return std::make_pair(0U, ARM::GPRRegisterClass);
5917    case 'r':
5918      return std::make_pair(0U, ARM::GPRRegisterClass);
5919    case 'w':
5920      if (VT == MVT::f32)
5921        return std::make_pair(0U, ARM::SPRRegisterClass);
5922      if (VT.getSizeInBits() == 64)
5923        return std::make_pair(0U, ARM::DPRRegisterClass);
5924      if (VT.getSizeInBits() == 128)
5925        return std::make_pair(0U, ARM::QPRRegisterClass);
5926      break;
5927    }
5928  }
5929  if (StringRef("{cc}").equals_lower(Constraint))
5930    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5931
5932  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5933}
5934
5935std::vector<unsigned> ARMTargetLowering::
5936getRegClassForInlineAsmConstraint(const std::string &Constraint,
5937                                  EVT VT) const {
5938  if (Constraint.size() != 1)
5939    return std::vector<unsigned>();
5940
5941  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5942  default: break;
5943  case 'l':
5944    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5945                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5946                                 0);
5947  case 'r':
5948    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5949                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5950                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5951                                 ARM::R12, ARM::LR, 0);
5952  case 'w':
5953    if (VT == MVT::f32)
5954      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5955                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5956                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5957                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5958                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5959                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5960                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5961                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5962    if (VT.getSizeInBits() == 64)
5963      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5964                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5965                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5966                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5967    if (VT.getSizeInBits() == 128)
5968      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5969                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5970      break;
5971  }
5972
5973  return std::vector<unsigned>();
5974}
5975
5976/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5977/// vector.  If it is invalid, don't add anything to Ops.
5978void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5979                                                     char Constraint,
5980                                                     std::vector<SDValue>&Ops,
5981                                                     SelectionDAG &DAG) const {
5982  SDValue Result(0, 0);
5983
5984  switch (Constraint) {
5985  default: break;
5986  case 'I': case 'J': case 'K': case 'L':
5987  case 'M': case 'N': case 'O':
5988    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5989    if (!C)
5990      return;
5991
5992    int64_t CVal64 = C->getSExtValue();
5993    int CVal = (int) CVal64;
5994    // None of these constraints allow values larger than 32 bits.  Check
5995    // that the value fits in an int.
5996    if (CVal != CVal64)
5997      return;
5998
5999    switch (Constraint) {
6000      case 'I':
6001        if (Subtarget->isThumb1Only()) {
6002          // This must be a constant between 0 and 255, for ADD
6003          // immediates.
6004          if (CVal >= 0 && CVal <= 255)
6005            break;
6006        } else if (Subtarget->isThumb2()) {
6007          // A constant that can be used as an immediate value in a
6008          // data-processing instruction.
6009          if (ARM_AM::getT2SOImmVal(CVal) != -1)
6010            break;
6011        } else {
6012          // A constant that can be used as an immediate value in a
6013          // data-processing instruction.
6014          if (ARM_AM::getSOImmVal(CVal) != -1)
6015            break;
6016        }
6017        return;
6018
6019      case 'J':
6020        if (Subtarget->isThumb()) {  // FIXME thumb2
6021          // This must be a constant between -255 and -1, for negated ADD
6022          // immediates. This can be used in GCC with an "n" modifier that
6023          // prints the negated value, for use with SUB instructions. It is
6024          // not useful otherwise but is implemented for compatibility.
6025          if (CVal >= -255 && CVal <= -1)
6026            break;
6027        } else {
6028          // This must be a constant between -4095 and 4095. It is not clear
6029          // what this constraint is intended for. Implemented for
6030          // compatibility with GCC.
6031          if (CVal >= -4095 && CVal <= 4095)
6032            break;
6033        }
6034        return;
6035
6036      case 'K':
6037        if (Subtarget->isThumb1Only()) {
6038          // A 32-bit value where only one byte has a nonzero value. Exclude
6039          // zero to match GCC. This constraint is used by GCC internally for
6040          // constants that can be loaded with a move/shift combination.
6041          // It is not useful otherwise but is implemented for compatibility.
6042          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
6043            break;
6044        } else if (Subtarget->isThumb2()) {
6045          // A constant whose bitwise inverse can be used as an immediate
6046          // value in a data-processing instruction. This can be used in GCC
6047          // with a "B" modifier that prints the inverted value, for use with
6048          // BIC and MVN instructions. It is not useful otherwise but is
6049          // implemented for compatibility.
6050          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
6051            break;
6052        } else {
6053          // A constant whose bitwise inverse can be used as an immediate
6054          // value in a data-processing instruction. This can be used in GCC
6055          // with a "B" modifier that prints the inverted value, for use with
6056          // BIC and MVN instructions. It is not useful otherwise but is
6057          // implemented for compatibility.
6058          if (ARM_AM::getSOImmVal(~CVal) != -1)
6059            break;
6060        }
6061        return;
6062
6063      case 'L':
6064        if (Subtarget->isThumb1Only()) {
6065          // This must be a constant between -7 and 7,
6066          // for 3-operand ADD/SUB immediate instructions.
6067          if (CVal >= -7 && CVal < 7)
6068            break;
6069        } else if (Subtarget->isThumb2()) {
6070          // A constant whose negation can be used as an immediate value in a
6071          // data-processing instruction. This can be used in GCC with an "n"
6072          // modifier that prints the negated value, for use with SUB
6073          // instructions. It is not useful otherwise but is implemented for
6074          // compatibility.
6075          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
6076            break;
6077        } else {
6078          // A constant whose negation can be used as an immediate value in a
6079          // data-processing instruction. This can be used in GCC with an "n"
6080          // modifier that prints the negated value, for use with SUB
6081          // instructions. It is not useful otherwise but is implemented for
6082          // compatibility.
6083          if (ARM_AM::getSOImmVal(-CVal) != -1)
6084            break;
6085        }
6086        return;
6087
6088      case 'M':
6089        if (Subtarget->isThumb()) { // FIXME thumb2
6090          // This must be a multiple of 4 between 0 and 1020, for
6091          // ADD sp + immediate.
6092          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
6093            break;
6094        } else {
6095          // A power of two or a constant between 0 and 32.  This is used in
6096          // GCC for the shift amount on shifted register operands, but it is
6097          // useful in general for any shift amounts.
6098          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
6099            break;
6100        }
6101        return;
6102
6103      case 'N':
6104        if (Subtarget->isThumb()) {  // FIXME thumb2
6105          // This must be a constant between 0 and 31, for shift amounts.
6106          if (CVal >= 0 && CVal <= 31)
6107            break;
6108        }
6109        return;
6110
6111      case 'O':
6112        if (Subtarget->isThumb()) {  // FIXME thumb2
6113          // This must be a multiple of 4 between -508 and 508, for
6114          // ADD/SUB sp = sp + immediate.
6115          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
6116            break;
6117        }
6118        return;
6119    }
6120    Result = DAG.getTargetConstant(CVal, Op.getValueType());
6121    break;
6122  }
6123
6124  if (Result.getNode()) {
6125    Ops.push_back(Result);
6126    return;
6127  }
6128  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6129}
6130
6131bool
6132ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6133  // The ARM target isn't yet aware of offsets.
6134  return false;
6135}
6136
6137int ARM::getVFPf32Imm(const APFloat &FPImm) {
6138  APInt Imm = FPImm.bitcastToAPInt();
6139  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
6140  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
6141  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
6142
6143  // We can handle 4 bits of mantissa.
6144  // mantissa = (16+UInt(e:f:g:h))/16.
6145  if (Mantissa & 0x7ffff)
6146    return -1;
6147  Mantissa >>= 19;
6148  if ((Mantissa & 0xf) != Mantissa)
6149    return -1;
6150
6151  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6152  if (Exp < -3 || Exp > 4)
6153    return -1;
6154  Exp = ((Exp+3) & 0x7) ^ 4;
6155
6156  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6157}
6158
6159int ARM::getVFPf64Imm(const APFloat &FPImm) {
6160  APInt Imm = FPImm.bitcastToAPInt();
6161  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
6162  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
6163  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
6164
6165  // We can handle 4 bits of mantissa.
6166  // mantissa = (16+UInt(e:f:g:h))/16.
6167  if (Mantissa & 0xffffffffffffLL)
6168    return -1;
6169  Mantissa >>= 48;
6170  if ((Mantissa & 0xf) != Mantissa)
6171    return -1;
6172
6173  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6174  if (Exp < -3 || Exp > 4)
6175    return -1;
6176  Exp = ((Exp+3) & 0x7) ^ 4;
6177
6178  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6179}
6180
6181bool ARM::isBitFieldInvertedMask(unsigned v) {
6182  if (v == 0xffffffff)
6183    return 0;
6184  // there can be 1's on either or both "outsides", all the "inside"
6185  // bits must be 0's
6186  unsigned int lsb = 0, msb = 31;
6187  while (v & (1 << msb)) --msb;
6188  while (v & (1 << lsb)) ++lsb;
6189  for (unsigned int i = lsb; i <= msb; ++i) {
6190    if (v & (1 << i))
6191      return 0;
6192  }
6193  return 1;
6194}
6195
6196/// isFPImmLegal - Returns true if the target can instruction select the
6197/// specified FP immediate natively. If false, the legalizer will
6198/// materialize the FP immediate as a load from a constant pool.
6199bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
6200  if (!Subtarget->hasVFP3())
6201    return false;
6202  if (VT == MVT::f32)
6203    return ARM::getVFPf32Imm(Imm) != -1;
6204  if (VT == MVT::f64)
6205    return ARM::getVFPf64Imm(Imm) != -1;
6206  return false;
6207}
6208
6209/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6210/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
6211/// specified in the intrinsic calls.
6212bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6213                                           const CallInst &I,
6214                                           unsigned Intrinsic) const {
6215  switch (Intrinsic) {
6216  case Intrinsic::arm_neon_vld1:
6217  case Intrinsic::arm_neon_vld2:
6218  case Intrinsic::arm_neon_vld3:
6219  case Intrinsic::arm_neon_vld4:
6220  case Intrinsic::arm_neon_vld2lane:
6221  case Intrinsic::arm_neon_vld3lane:
6222  case Intrinsic::arm_neon_vld4lane: {
6223    Info.opc = ISD::INTRINSIC_W_CHAIN;
6224    // Conservatively set memVT to the entire set of vectors loaded.
6225    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
6226    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6227    Info.ptrVal = I.getArgOperand(0);
6228    Info.offset = 0;
6229    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
6230    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
6231    Info.vol = false; // volatile loads with NEON intrinsics not supported
6232    Info.readMem = true;
6233    Info.writeMem = false;
6234    return true;
6235  }
6236  case Intrinsic::arm_neon_vst1:
6237  case Intrinsic::arm_neon_vst2:
6238  case Intrinsic::arm_neon_vst3:
6239  case Intrinsic::arm_neon_vst4:
6240  case Intrinsic::arm_neon_vst2lane:
6241  case Intrinsic::arm_neon_vst3lane:
6242  case Intrinsic::arm_neon_vst4lane: {
6243    Info.opc = ISD::INTRINSIC_VOID;
6244    // Conservatively set memVT to the entire set of vectors stored.
6245    unsigned NumElts = 0;
6246    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6247      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
6248      if (!ArgTy->isVectorTy())
6249        break;
6250      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
6251    }
6252    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6253    Info.ptrVal = I.getArgOperand(0);
6254    Info.offset = 0;
6255    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
6256    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
6257    Info.vol = false; // volatile stores with NEON intrinsics not supported
6258    Info.readMem = false;
6259    Info.writeMem = true;
6260    return true;
6261  }
6262  default:
6263    break;
6264  }
6265
6266  return false;
6267}
6268