ARMISelLowering.cpp revision 102ebf16b6eb46e3021b9e8db8a1bc163bc64639
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMPerfectShuffle.h"
21#include "ARMRegisterInfo.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "llvm/CallingConv.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/Instruction.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Type.h"
32#include "llvm/CodeGen/CallingConvLower.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/VectorExtras.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include <sstream>
47using namespace llvm;
48
49static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
50                                   CCValAssign::LocInfo &LocInfo,
51                                   ISD::ArgFlagsTy &ArgFlags,
52                                   CCState &State);
53static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
54                                    CCValAssign::LocInfo &LocInfo,
55                                    ISD::ArgFlagsTy &ArgFlags,
56                                    CCState &State);
57static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
58                                      CCValAssign::LocInfo &LocInfo,
59                                      ISD::ArgFlagsTy &ArgFlags,
60                                      CCState &State);
61static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
62                                       CCValAssign::LocInfo &LocInfo,
63                                       ISD::ArgFlagsTy &ArgFlags,
64                                       CCState &State);
65
66void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
67                                       EVT PromotedBitwiseVT) {
68  if (VT != PromotedLdStVT) {
69    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
70    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
71                       PromotedLdStVT.getSimpleVT());
72
73    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
74    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
75                       PromotedLdStVT.getSimpleVT());
76  }
77
78  EVT ElemTy = VT.getVectorElementType();
79  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
80    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
81  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
82    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
83  if (ElemTy != MVT::i32) {
84    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
85    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
86    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
87    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
88  }
89  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
90  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
91  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
92  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
93  if (VT.isInteger()) {
94    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
95    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
96    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
97  }
98
99  // Promote all bit-wise operations.
100  if (VT.isInteger() && VT != PromotedBitwiseVT) {
101    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
102    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
103                       PromotedBitwiseVT.getSimpleVT());
104    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
105    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
106                       PromotedBitwiseVT.getSimpleVT());
107    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
108    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
109                       PromotedBitwiseVT.getSimpleVT());
110  }
111
112  // Neon does not support vector divide/remainder operations.
113  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
114  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
115  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
116  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
117  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
118  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
119}
120
121void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
122  addRegisterClass(VT, ARM::DPRRegisterClass);
123  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
124}
125
126void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
127  addRegisterClass(VT, ARM::QPRRegisterClass);
128  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
129}
130
131static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
132  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
133    return new TargetLoweringObjectFileMachO();
134  return new ARMElfTargetObjectFile();
135}
136
137ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
138    : TargetLowering(TM, createTLOF(TM)) {
139  Subtarget = &TM.getSubtarget<ARMSubtarget>();
140
141  if (Subtarget->isTargetDarwin()) {
142    // Uses VFP for Thumb libfuncs if available.
143    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
144      // Single-precision floating-point arithmetic.
145      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
146      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
147      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
148      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
149
150      // Double-precision floating-point arithmetic.
151      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
152      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
153      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
154      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
155
156      // Single-precision comparisons.
157      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
158      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
159      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
160      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
161      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
162      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
163      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
164      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
165
166      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
168      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
169      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
170      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
171      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
172      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
173      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
174
175      // Double-precision comparisons.
176      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
177      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
178      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
179      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
180      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
181      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
182      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
183      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
184
185      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
190      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
191      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
192      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
193
194      // Floating-point to integer conversions.
195      // i64 conversions are done via library routines even when generating VFP
196      // instructions, so use the same ones.
197      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
198      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
199      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
200      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
201
202      // Conversions between floating types.
203      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
204      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
205
206      // Integer to floating-point conversions.
207      // i64 conversions are done via library routines even when generating VFP
208      // instructions, so use the same ones.
209      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
210      // e.g., __floatunsidf vs. __floatunssidfvfp.
211      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
212      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
213      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
214      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
215    }
216  }
217
218  // These libcalls are not available in 32-bit.
219  setLibcallName(RTLIB::SHL_I128, 0);
220  setLibcallName(RTLIB::SRL_I128, 0);
221  setLibcallName(RTLIB::SRA_I128, 0);
222
223  // Libcalls should use the AAPCS base standard ABI, even if hard float
224  // is in effect, as per the ARM RTABI specification, section 4.1.2.
225  if (Subtarget->isAAPCS_ABI()) {
226    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
227      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
228                            CallingConv::ARM_AAPCS);
229    }
230  }
231
232  if (Subtarget->isThumb1Only())
233    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
234  else
235    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
236  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
237    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
238    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
239
240    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
241  }
242
243  if (Subtarget->hasNEON()) {
244    addDRTypeForNEON(MVT::v2f32);
245    addDRTypeForNEON(MVT::v8i8);
246    addDRTypeForNEON(MVT::v4i16);
247    addDRTypeForNEON(MVT::v2i32);
248    addDRTypeForNEON(MVT::v1i64);
249
250    addQRTypeForNEON(MVT::v4f32);
251    addQRTypeForNEON(MVT::v2f64);
252    addQRTypeForNEON(MVT::v16i8);
253    addQRTypeForNEON(MVT::v8i16);
254    addQRTypeForNEON(MVT::v4i32);
255    addQRTypeForNEON(MVT::v2i64);
256
257    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
258    // neither Neon nor VFP support any arithmetic operations on it.
259    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
260    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
261    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
262    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
263    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
264    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
265    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
266    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
267    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
268    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
269    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
270    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
271    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
272    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
273    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
274    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
275    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
276    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
277    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
278    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
279    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
280    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
281    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
282    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
283
284    // Neon does not support some operations on v1i64 and v2i64 types.
285    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
286    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
287    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
288    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
289
290    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
291    setTargetDAGCombine(ISD::SHL);
292    setTargetDAGCombine(ISD::SRL);
293    setTargetDAGCombine(ISD::SRA);
294    setTargetDAGCombine(ISD::SIGN_EXTEND);
295    setTargetDAGCombine(ISD::ZERO_EXTEND);
296    setTargetDAGCombine(ISD::ANY_EXTEND);
297  }
298
299  computeRegisterProperties();
300
301  // ARM does not have f32 extending load.
302  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
303
304  // ARM does not have i1 sign extending load.
305  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
306
307  // ARM supports all 4 flavors of integer indexed load / store.
308  if (!Subtarget->isThumb1Only()) {
309    for (unsigned im = (unsigned)ISD::PRE_INC;
310         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
311      setIndexedLoadAction(im,  MVT::i1,  Legal);
312      setIndexedLoadAction(im,  MVT::i8,  Legal);
313      setIndexedLoadAction(im,  MVT::i16, Legal);
314      setIndexedLoadAction(im,  MVT::i32, Legal);
315      setIndexedStoreAction(im, MVT::i1,  Legal);
316      setIndexedStoreAction(im, MVT::i8,  Legal);
317      setIndexedStoreAction(im, MVT::i16, Legal);
318      setIndexedStoreAction(im, MVT::i32, Legal);
319    }
320  }
321
322  // i64 operation support.
323  if (Subtarget->isThumb1Only()) {
324    setOperationAction(ISD::MUL,     MVT::i64, Expand);
325    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
326    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
327    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
328    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
329  } else {
330    setOperationAction(ISD::MUL,     MVT::i64, Expand);
331    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
332    if (!Subtarget->hasV6Ops())
333      setOperationAction(ISD::MULHS, MVT::i32, Expand);
334  }
335  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
336  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
337  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
338  setOperationAction(ISD::SRL,       MVT::i64, Custom);
339  setOperationAction(ISD::SRA,       MVT::i64, Custom);
340
341  // ARM does not have ROTL.
342  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
343  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
344  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
345  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
346    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
347
348  // Only ARMv6 has BSWAP.
349  if (!Subtarget->hasV6Ops())
350    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
351
352  // These are expanded into libcalls.
353  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
354  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
355  setOperationAction(ISD::SREM,  MVT::i32, Expand);
356  setOperationAction(ISD::UREM,  MVT::i32, Expand);
357  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
358  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
359
360  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
361  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
362  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
363  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
364  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
365
366  // Use the default implementation.
367  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
368  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
369  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
370  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
371  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
372  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
373  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
374  // FIXME: Shouldn't need this, since no register is used, but the legalizer
375  // doesn't yet know how to not do that for SjLj.
376  setExceptionSelectorRegister(ARM::R0);
377  if (Subtarget->isThumb())
378    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
379  else
380    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
381  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
382
383  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
384    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
385    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
386  }
387  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
388
389  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
390    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR iff target supports vfp2.
391    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
392
393  // We want to custom lower some of our intrinsics.
394  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
395
396  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
397  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
398  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
399  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
400  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
401  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
402  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
403  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
404  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
405
406  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
407  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
408  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
409  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
410  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
411
412  // We don't support sin/cos/fmod/copysign/pow
413  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
414  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
415  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
416  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
417  setOperationAction(ISD::FREM,      MVT::f64, Expand);
418  setOperationAction(ISD::FREM,      MVT::f32, Expand);
419  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
420    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
421    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
422  }
423  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
424  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
425
426  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
427  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
428    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
429    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
430    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
431    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
432  }
433
434  // We have target-specific dag combine patterns for the following nodes:
435  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
436  setTargetDAGCombine(ISD::ADD);
437  setTargetDAGCombine(ISD::SUB);
438
439  setStackPointerRegisterToSaveRestore(ARM::SP);
440  setSchedulingPreference(SchedulingForRegPressure);
441
442  // FIXME: If-converter should use instruction latency to determine
443  // profitability rather than relying on fixed limits.
444  if (Subtarget->getCPUString() == "generic") {
445    // Generic (and overly aggressive) if-conversion limits.
446    setIfCvtBlockSizeLimit(10);
447    setIfCvtDupBlockSizeLimit(2);
448  } else if (Subtarget->hasV6Ops()) {
449    setIfCvtBlockSizeLimit(2);
450    setIfCvtDupBlockSizeLimit(1);
451  } else {
452    setIfCvtBlockSizeLimit(3);
453    setIfCvtDupBlockSizeLimit(2);
454  }
455
456  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
457  // Do not enable CodePlacementOpt for now: it currently runs after the
458  // ARMConstantIslandPass and messes up branch relaxation and placement
459  // of constant islands.
460  // benefitFromCodePlacementOpt = true;
461}
462
463const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
464  switch (Opcode) {
465  default: return 0;
466  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
467  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
468  case ARMISD::CALL:          return "ARMISD::CALL";
469  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
470  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
471  case ARMISD::tCALL:         return "ARMISD::tCALL";
472  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
473  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
474  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
475  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
476  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
477  case ARMISD::CMP:           return "ARMISD::CMP";
478  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
479  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
480  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
481  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
482  case ARMISD::CMOV:          return "ARMISD::CMOV";
483  case ARMISD::CNEG:          return "ARMISD::CNEG";
484
485  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
486  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
487  case ARMISD::SITOF:         return "ARMISD::SITOF";
488  case ARMISD::UITOF:         return "ARMISD::UITOF";
489
490  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
491  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
492  case ARMISD::RRX:           return "ARMISD::RRX";
493
494  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
495  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
496
497  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
498  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
499
500  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
501
502  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
503
504  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
505  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
506
507  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
508  case ARMISD::VCGE:          return "ARMISD::VCGE";
509  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
510  case ARMISD::VCGT:          return "ARMISD::VCGT";
511  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
512  case ARMISD::VTST:          return "ARMISD::VTST";
513
514  case ARMISD::VSHL:          return "ARMISD::VSHL";
515  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
516  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
517  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
518  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
519  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
520  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
521  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
522  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
523  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
524  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
525  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
526  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
527  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
528  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
529  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
530  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
531  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
532  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
533  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
534  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
535  case ARMISD::VDUP:          return "ARMISD::VDUP";
536  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
537  case ARMISD::VEXT:          return "ARMISD::VEXT";
538  case ARMISD::VREV64:        return "ARMISD::VREV64";
539  case ARMISD::VREV32:        return "ARMISD::VREV32";
540  case ARMISD::VREV16:        return "ARMISD::VREV16";
541  case ARMISD::VZIP:          return "ARMISD::VZIP";
542  case ARMISD::VUZP:          return "ARMISD::VUZP";
543  case ARMISD::VTRN:          return "ARMISD::VTRN";
544  }
545}
546
547/// getFunctionAlignment - Return the Log2 alignment of this function.
548unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
549  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
550}
551
552//===----------------------------------------------------------------------===//
553// Lowering Code
554//===----------------------------------------------------------------------===//
555
556/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
557static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
558  switch (CC) {
559  default: llvm_unreachable("Unknown condition code!");
560  case ISD::SETNE:  return ARMCC::NE;
561  case ISD::SETEQ:  return ARMCC::EQ;
562  case ISD::SETGT:  return ARMCC::GT;
563  case ISD::SETGE:  return ARMCC::GE;
564  case ISD::SETLT:  return ARMCC::LT;
565  case ISD::SETLE:  return ARMCC::LE;
566  case ISD::SETUGT: return ARMCC::HI;
567  case ISD::SETUGE: return ARMCC::HS;
568  case ISD::SETULT: return ARMCC::LO;
569  case ISD::SETULE: return ARMCC::LS;
570  }
571}
572
573/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
574static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
575                        ARMCC::CondCodes &CondCode2) {
576  CondCode2 = ARMCC::AL;
577  switch (CC) {
578  default: llvm_unreachable("Unknown FP condition!");
579  case ISD::SETEQ:
580  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
581  case ISD::SETGT:
582  case ISD::SETOGT: CondCode = ARMCC::GT; break;
583  case ISD::SETGE:
584  case ISD::SETOGE: CondCode = ARMCC::GE; break;
585  case ISD::SETOLT: CondCode = ARMCC::MI; break;
586  case ISD::SETOLE: CondCode = ARMCC::LS; break;
587  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
588  case ISD::SETO:   CondCode = ARMCC::VC; break;
589  case ISD::SETUO:  CondCode = ARMCC::VS; break;
590  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
591  case ISD::SETUGT: CondCode = ARMCC::HI; break;
592  case ISD::SETUGE: CondCode = ARMCC::PL; break;
593  case ISD::SETLT:
594  case ISD::SETULT: CondCode = ARMCC::LT; break;
595  case ISD::SETLE:
596  case ISD::SETULE: CondCode = ARMCC::LE; break;
597  case ISD::SETNE:
598  case ISD::SETUNE: CondCode = ARMCC::NE; break;
599  }
600}
601
602//===----------------------------------------------------------------------===//
603//                      Calling Convention Implementation
604//===----------------------------------------------------------------------===//
605
606#include "ARMGenCallingConv.inc"
607
608// APCS f64 is in register pairs, possibly split to stack
609static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
610                          CCValAssign::LocInfo &LocInfo,
611                          CCState &State, bool CanFail) {
612  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
613
614  // Try to get the first register.
615  if (unsigned Reg = State.AllocateReg(RegList, 4))
616    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
617  else {
618    // For the 2nd half of a v2f64, do not fail.
619    if (CanFail)
620      return false;
621
622    // Put the whole thing on the stack.
623    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
624                                           State.AllocateStack(8, 4),
625                                           LocVT, LocInfo));
626    return true;
627  }
628
629  // Try to get the second register.
630  if (unsigned Reg = State.AllocateReg(RegList, 4))
631    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
632  else
633    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
634                                           State.AllocateStack(4, 4),
635                                           LocVT, LocInfo));
636  return true;
637}
638
639static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
640                                   CCValAssign::LocInfo &LocInfo,
641                                   ISD::ArgFlagsTy &ArgFlags,
642                                   CCState &State) {
643  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
644    return false;
645  if (LocVT == MVT::v2f64 &&
646      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
647    return false;
648  return true;  // we handled it
649}
650
651// AAPCS f64 is in aligned register pairs
652static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
653                           CCValAssign::LocInfo &LocInfo,
654                           CCState &State, bool CanFail) {
655  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
656  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
657
658  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
659  if (Reg == 0) {
660    // For the 2nd half of a v2f64, do not just fail.
661    if (CanFail)
662      return false;
663
664    // Put the whole thing on the stack.
665    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
666                                           State.AllocateStack(8, 8),
667                                           LocVT, LocInfo));
668    return true;
669  }
670
671  unsigned i;
672  for (i = 0; i < 2; ++i)
673    if (HiRegList[i] == Reg)
674      break;
675
676  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
677  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
678                                         LocVT, LocInfo));
679  return true;
680}
681
682static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
683                                    CCValAssign::LocInfo &LocInfo,
684                                    ISD::ArgFlagsTy &ArgFlags,
685                                    CCState &State) {
686  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
687    return false;
688  if (LocVT == MVT::v2f64 &&
689      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
690    return false;
691  return true;  // we handled it
692}
693
694static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
695                         CCValAssign::LocInfo &LocInfo, CCState &State) {
696  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
697  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
698
699  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
700  if (Reg == 0)
701    return false; // we didn't handle it
702
703  unsigned i;
704  for (i = 0; i < 2; ++i)
705    if (HiRegList[i] == Reg)
706      break;
707
708  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
709  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
710                                         LocVT, LocInfo));
711  return true;
712}
713
714static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
715                                      CCValAssign::LocInfo &LocInfo,
716                                      ISD::ArgFlagsTy &ArgFlags,
717                                      CCState &State) {
718  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
719    return false;
720  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
721    return false;
722  return true;  // we handled it
723}
724
725static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
726                                       CCValAssign::LocInfo &LocInfo,
727                                       ISD::ArgFlagsTy &ArgFlags,
728                                       CCState &State) {
729  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
730                                   State);
731}
732
733/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
734/// given CallingConvention value.
735CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
736                                                 bool Return,
737                                                 bool isVarArg) const {
738  switch (CC) {
739  default:
740    llvm_unreachable("Unsupported calling convention");
741  case CallingConv::C:
742  case CallingConv::Fast:
743    // Use target triple & subtarget features to do actual dispatch.
744    if (Subtarget->isAAPCS_ABI()) {
745      if (Subtarget->hasVFP2() &&
746          FloatABIType == FloatABI::Hard && !isVarArg)
747        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
748      else
749        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
750    } else
751        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
752  case CallingConv::ARM_AAPCS_VFP:
753    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
754  case CallingConv::ARM_AAPCS:
755    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
756  case CallingConv::ARM_APCS:
757    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
758  }
759}
760
761/// LowerCallResult - Lower the result values of a call into the
762/// appropriate copies out of appropriate physical registers.
763SDValue
764ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
765                                   CallingConv::ID CallConv, bool isVarArg,
766                                   const SmallVectorImpl<ISD::InputArg> &Ins,
767                                   DebugLoc dl, SelectionDAG &DAG,
768                                   SmallVectorImpl<SDValue> &InVals) {
769
770  // Assign locations to each value returned by this call.
771  SmallVector<CCValAssign, 16> RVLocs;
772  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
773                 RVLocs, *DAG.getContext());
774  CCInfo.AnalyzeCallResult(Ins,
775                           CCAssignFnForNode(CallConv, /* Return*/ true,
776                                             isVarArg));
777
778  // Copy all of the result registers out of their specified physreg.
779  for (unsigned i = 0; i != RVLocs.size(); ++i) {
780    CCValAssign VA = RVLocs[i];
781
782    SDValue Val;
783    if (VA.needsCustom()) {
784      // Handle f64 or half of a v2f64.
785      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
786                                      InFlag);
787      Chain = Lo.getValue(1);
788      InFlag = Lo.getValue(2);
789      VA = RVLocs[++i]; // skip ahead to next loc
790      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
791                                      InFlag);
792      Chain = Hi.getValue(1);
793      InFlag = Hi.getValue(2);
794      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
795
796      if (VA.getLocVT() == MVT::v2f64) {
797        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
798        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
799                          DAG.getConstant(0, MVT::i32));
800
801        VA = RVLocs[++i]; // skip ahead to next loc
802        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
803        Chain = Lo.getValue(1);
804        InFlag = Lo.getValue(2);
805        VA = RVLocs[++i]; // skip ahead to next loc
806        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
807        Chain = Hi.getValue(1);
808        InFlag = Hi.getValue(2);
809        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
810        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
811                          DAG.getConstant(1, MVT::i32));
812      }
813    } else {
814      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
815                               InFlag);
816      Chain = Val.getValue(1);
817      InFlag = Val.getValue(2);
818    }
819
820    switch (VA.getLocInfo()) {
821    default: llvm_unreachable("Unknown loc info!");
822    case CCValAssign::Full: break;
823    case CCValAssign::BCvt:
824      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
825      break;
826    }
827
828    InVals.push_back(Val);
829  }
830
831  return Chain;
832}
833
834/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
835/// by "Src" to address "Dst" of size "Size".  Alignment information is
836/// specified by the specific parameter attribute.  The copy will be passed as
837/// a byval function parameter.
838/// Sometimes what we are copying is the end of a larger object, the part that
839/// does not fit in registers.
840static SDValue
841CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
842                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
843                          DebugLoc dl) {
844  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
845  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
846                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
847}
848
849/// LowerMemOpCallTo - Store the argument to the stack.
850SDValue
851ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
852                                    SDValue StackPtr, SDValue Arg,
853                                    DebugLoc dl, SelectionDAG &DAG,
854                                    const CCValAssign &VA,
855                                    ISD::ArgFlagsTy Flags) {
856  unsigned LocMemOffset = VA.getLocMemOffset();
857  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
858  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
859  if (Flags.isByVal()) {
860    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
861  }
862  return DAG.getStore(Chain, dl, Arg, PtrOff,
863                      PseudoSourceValue::getStack(), LocMemOffset);
864}
865
866void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
867                                         SDValue Chain, SDValue &Arg,
868                                         RegsToPassVector &RegsToPass,
869                                         CCValAssign &VA, CCValAssign &NextVA,
870                                         SDValue &StackPtr,
871                                         SmallVector<SDValue, 8> &MemOpChains,
872                                         ISD::ArgFlagsTy Flags) {
873
874  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
875                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
876  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
877
878  if (NextVA.isRegLoc())
879    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
880  else {
881    assert(NextVA.isMemLoc());
882    if (StackPtr.getNode() == 0)
883      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
884
885    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
886                                           dl, DAG, NextVA,
887                                           Flags));
888  }
889}
890
891/// LowerCall - Lowering a call into a callseq_start <-
892/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
893/// nodes.
894SDValue
895ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
896                             CallingConv::ID CallConv, bool isVarArg,
897                             bool isTailCall,
898                             const SmallVectorImpl<ISD::OutputArg> &Outs,
899                             const SmallVectorImpl<ISD::InputArg> &Ins,
900                             DebugLoc dl, SelectionDAG &DAG,
901                             SmallVectorImpl<SDValue> &InVals) {
902
903  // Analyze operands of the call, assigning locations to each operand.
904  SmallVector<CCValAssign, 16> ArgLocs;
905  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
906                 *DAG.getContext());
907  CCInfo.AnalyzeCallOperands(Outs,
908                             CCAssignFnForNode(CallConv, /* Return*/ false,
909                                               isVarArg));
910
911  // Get a count of how many bytes are to be pushed on the stack.
912  unsigned NumBytes = CCInfo.getNextStackOffset();
913
914  // Adjust the stack pointer for the new arguments...
915  // These operations are automatically eliminated by the prolog/epilog pass
916  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
917
918  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
919
920  RegsToPassVector RegsToPass;
921  SmallVector<SDValue, 8> MemOpChains;
922
923  // Walk the register/memloc assignments, inserting copies/loads.  In the case
924  // of tail call optimization, arguments are handled later.
925  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
926       i != e;
927       ++i, ++realArgIdx) {
928    CCValAssign &VA = ArgLocs[i];
929    SDValue Arg = Outs[realArgIdx].Val;
930    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
931
932    // Promote the value if needed.
933    switch (VA.getLocInfo()) {
934    default: llvm_unreachable("Unknown loc info!");
935    case CCValAssign::Full: break;
936    case CCValAssign::SExt:
937      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
938      break;
939    case CCValAssign::ZExt:
940      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
941      break;
942    case CCValAssign::AExt:
943      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
944      break;
945    case CCValAssign::BCvt:
946      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
947      break;
948    }
949
950    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
951    if (VA.needsCustom()) {
952      if (VA.getLocVT() == MVT::v2f64) {
953        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
954                                  DAG.getConstant(0, MVT::i32));
955        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
956                                  DAG.getConstant(1, MVT::i32));
957
958        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
959                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
960
961        VA = ArgLocs[++i]; // skip ahead to next loc
962        if (VA.isRegLoc()) {
963          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
964                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
965        } else {
966          assert(VA.isMemLoc());
967          if (StackPtr.getNode() == 0)
968            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
969
970          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
971                                                 dl, DAG, VA, Flags));
972        }
973      } else {
974        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
975                         StackPtr, MemOpChains, Flags);
976      }
977    } else if (VA.isRegLoc()) {
978      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
979    } else {
980      assert(VA.isMemLoc());
981      if (StackPtr.getNode() == 0)
982        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
983
984      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
985                                             dl, DAG, VA, Flags));
986    }
987  }
988
989  if (!MemOpChains.empty())
990    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
991                        &MemOpChains[0], MemOpChains.size());
992
993  // Build a sequence of copy-to-reg nodes chained together with token chain
994  // and flag operands which copy the outgoing args into the appropriate regs.
995  SDValue InFlag;
996  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
997    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
998                             RegsToPass[i].second, InFlag);
999    InFlag = Chain.getValue(1);
1000  }
1001
1002  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1003  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1004  // node so that legalize doesn't hack it.
1005  bool isDirect = false;
1006  bool isARMFunc = false;
1007  bool isLocalARMFunc = false;
1008  MachineFunction &MF = DAG.getMachineFunction();
1009  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1010  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1011    GlobalValue *GV = G->getGlobal();
1012    isDirect = true;
1013    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1014    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1015                   getTargetMachine().getRelocationModel() != Reloc::Static;
1016    isARMFunc = !Subtarget->isThumb() || isStub;
1017    // ARM call to a local ARM function is predicable.
1018    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
1019    // tBX takes a register source operand.
1020    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1021      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1022      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1023                                                           ARMPCLabelIndex,
1024                                                           ARMCP::CPValue, 4);
1025      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1026      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1027      Callee = DAG.getLoad(getPointerTy(), dl,
1028                           DAG.getEntryNode(), CPAddr,
1029                           PseudoSourceValue::getConstantPool(), 0);
1030      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1031      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1032                           getPointerTy(), Callee, PICLabel);
1033   } else
1034      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
1035  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1036    isDirect = true;
1037    bool isStub = Subtarget->isTargetDarwin() &&
1038                  getTargetMachine().getRelocationModel() != Reloc::Static;
1039    isARMFunc = !Subtarget->isThumb() || isStub;
1040    // tBX takes a register source operand.
1041    const char *Sym = S->getSymbol();
1042    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1043      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1044      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1045                                                       Sym, ARMPCLabelIndex, 4);
1046      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1047      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1048      Callee = DAG.getLoad(getPointerTy(), dl,
1049                           DAG.getEntryNode(), CPAddr,
1050                           PseudoSourceValue::getConstantPool(), 0);
1051      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1052      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1053                           getPointerTy(), Callee, PICLabel);
1054    } else
1055      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1056  }
1057
1058  // FIXME: handle tail calls differently.
1059  unsigned CallOpc;
1060  if (Subtarget->isThumb()) {
1061    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1062      CallOpc = ARMISD::CALL_NOLINK;
1063    else
1064      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1065  } else {
1066    CallOpc = (isDirect || Subtarget->hasV5TOps())
1067      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1068      : ARMISD::CALL_NOLINK;
1069  }
1070  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1071    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1072    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1073    InFlag = Chain.getValue(1);
1074  }
1075
1076  std::vector<SDValue> Ops;
1077  Ops.push_back(Chain);
1078  Ops.push_back(Callee);
1079
1080  // Add argument registers to the end of the list so that they are known live
1081  // into the call.
1082  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1083    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1084                                  RegsToPass[i].second.getValueType()));
1085
1086  if (InFlag.getNode())
1087    Ops.push_back(InFlag);
1088  // Returns a chain and a flag for retval copy to use.
1089  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1090                      &Ops[0], Ops.size());
1091  InFlag = Chain.getValue(1);
1092
1093  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1094                             DAG.getIntPtrConstant(0, true), InFlag);
1095  if (!Ins.empty())
1096    InFlag = Chain.getValue(1);
1097
1098  // Handle result values, copying them out of physregs into vregs that we
1099  // return.
1100  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1101                         dl, DAG, InVals);
1102}
1103
1104SDValue
1105ARMTargetLowering::LowerReturn(SDValue Chain,
1106                               CallingConv::ID CallConv, bool isVarArg,
1107                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1108                               DebugLoc dl, SelectionDAG &DAG) {
1109
1110  // CCValAssign - represent the assignment of the return value to a location.
1111  SmallVector<CCValAssign, 16> RVLocs;
1112
1113  // CCState - Info about the registers and stack slots.
1114  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1115                 *DAG.getContext());
1116
1117  // Analyze outgoing return values.
1118  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1119                                               isVarArg));
1120
1121  // If this is the first return lowered for this function, add
1122  // the regs to the liveout set for the function.
1123  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1124    for (unsigned i = 0; i != RVLocs.size(); ++i)
1125      if (RVLocs[i].isRegLoc())
1126        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1127  }
1128
1129  SDValue Flag;
1130
1131  // Copy the result values into the output registers.
1132  for (unsigned i = 0, realRVLocIdx = 0;
1133       i != RVLocs.size();
1134       ++i, ++realRVLocIdx) {
1135    CCValAssign &VA = RVLocs[i];
1136    assert(VA.isRegLoc() && "Can only return in registers!");
1137
1138    SDValue Arg = Outs[realRVLocIdx].Val;
1139
1140    switch (VA.getLocInfo()) {
1141    default: llvm_unreachable("Unknown loc info!");
1142    case CCValAssign::Full: break;
1143    case CCValAssign::BCvt:
1144      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1145      break;
1146    }
1147
1148    if (VA.needsCustom()) {
1149      if (VA.getLocVT() == MVT::v2f64) {
1150        // Extract the first half and return it in two registers.
1151        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1152                                   DAG.getConstant(0, MVT::i32));
1153        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1154                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1155
1156        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1157        Flag = Chain.getValue(1);
1158        VA = RVLocs[++i]; // skip ahead to next loc
1159        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1160                                 HalfGPRs.getValue(1), Flag);
1161        Flag = Chain.getValue(1);
1162        VA = RVLocs[++i]; // skip ahead to next loc
1163
1164        // Extract the 2nd half and fall through to handle it as an f64 value.
1165        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1166                          DAG.getConstant(1, MVT::i32));
1167      }
1168      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1169      // available.
1170      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1171                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1172      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1173      Flag = Chain.getValue(1);
1174      VA = RVLocs[++i]; // skip ahead to next loc
1175      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1176                               Flag);
1177    } else
1178      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1179
1180    // Guarantee that all emitted copies are
1181    // stuck together, avoiding something bad.
1182    Flag = Chain.getValue(1);
1183  }
1184
1185  SDValue result;
1186  if (Flag.getNode())
1187    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1188  else // Return Void
1189    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1190
1191  return result;
1192}
1193
1194// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1195// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1196// one of the above mentioned nodes. It has to be wrapped because otherwise
1197// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1198// be used to form addressing mode. These wrapped nodes will be selected
1199// into MOVi.
1200static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1201  EVT PtrVT = Op.getValueType();
1202  // FIXME there is no actual debug info here
1203  DebugLoc dl = Op.getDebugLoc();
1204  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1205  SDValue Res;
1206  if (CP->isMachineConstantPoolEntry())
1207    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1208                                    CP->getAlignment());
1209  else
1210    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1211                                    CP->getAlignment());
1212  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1213}
1214
1215SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1216  MachineFunction &MF = DAG.getMachineFunction();
1217  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1218  unsigned ARMPCLabelIndex = 0;
1219  DebugLoc DL = Op.getDebugLoc();
1220  EVT PtrVT = getPointerTy();
1221  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1222  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1223  SDValue CPAddr;
1224  if (RelocM == Reloc::Static) {
1225    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1226  } else {
1227    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1228    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1229    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1230                                                         ARMCP::CPBlockAddress,
1231                                                         PCAdj);
1232    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1233  }
1234  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1235  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1236                               PseudoSourceValue::getConstantPool(), 0);
1237  if (RelocM == Reloc::Static)
1238    return Result;
1239  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1240  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1241}
1242
1243// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1244SDValue
1245ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1246                                                 SelectionDAG &DAG) {
1247  DebugLoc dl = GA->getDebugLoc();
1248  EVT PtrVT = getPointerTy();
1249  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1250  MachineFunction &MF = DAG.getMachineFunction();
1251  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1252  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1253  ARMConstantPoolValue *CPV =
1254    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1255                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1256  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1257  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1258  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1259                         PseudoSourceValue::getConstantPool(), 0);
1260  SDValue Chain = Argument.getValue(1);
1261
1262  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1263  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1264
1265  // call __tls_get_addr.
1266  ArgListTy Args;
1267  ArgListEntry Entry;
1268  Entry.Node = Argument;
1269  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1270  Args.push_back(Entry);
1271  // FIXME: is there useful debug info available here?
1272  std::pair<SDValue, SDValue> CallResult =
1273    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1274                false, false, false, false,
1275                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1276                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1277  return CallResult.first;
1278}
1279
1280// Lower ISD::GlobalTLSAddress using the "initial exec" or
1281// "local exec" model.
1282SDValue
1283ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1284                                        SelectionDAG &DAG) {
1285  GlobalValue *GV = GA->getGlobal();
1286  DebugLoc dl = GA->getDebugLoc();
1287  SDValue Offset;
1288  SDValue Chain = DAG.getEntryNode();
1289  EVT PtrVT = getPointerTy();
1290  // Get the Thread Pointer
1291  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1292
1293  if (GV->isDeclaration()) {
1294    MachineFunction &MF = DAG.getMachineFunction();
1295    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1296    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1297    // Initial exec model.
1298    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1299    ARMConstantPoolValue *CPV =
1300      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1301                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1302    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1303    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1304    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1305                         PseudoSourceValue::getConstantPool(), 0);
1306    Chain = Offset.getValue(1);
1307
1308    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1309    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1310
1311    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1312                         PseudoSourceValue::getConstantPool(), 0);
1313  } else {
1314    // local exec model
1315    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1316    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1317    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1318    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1319                         PseudoSourceValue::getConstantPool(), 0);
1320  }
1321
1322  // The address of the thread local variable is the add of the thread
1323  // pointer with the offset of the variable.
1324  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1325}
1326
1327SDValue
1328ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1329  // TODO: implement the "local dynamic" model
1330  assert(Subtarget->isTargetELF() &&
1331         "TLS not implemented for non-ELF targets");
1332  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1333  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1334  // otherwise use the "Local Exec" TLS Model
1335  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1336    return LowerToTLSGeneralDynamicModel(GA, DAG);
1337  else
1338    return LowerToTLSExecModels(GA, DAG);
1339}
1340
1341SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1342                                                 SelectionDAG &DAG) {
1343  EVT PtrVT = getPointerTy();
1344  DebugLoc dl = Op.getDebugLoc();
1345  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1346  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1347  if (RelocM == Reloc::PIC_) {
1348    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1349    ARMConstantPoolValue *CPV =
1350      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1351    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1352    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1353    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1354                                 CPAddr,
1355                                 PseudoSourceValue::getConstantPool(), 0);
1356    SDValue Chain = Result.getValue(1);
1357    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1358    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1359    if (!UseGOTOFF)
1360      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1361                           PseudoSourceValue::getGOT(), 0);
1362    return Result;
1363  } else {
1364    // If we have T2 ops, we can materialize the address directly via movt/movw
1365    // pair. This is always cheaper.
1366    if (Subtarget->useMovt()) {
1367      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1368                         DAG.getTargetGlobalAddress(GV, PtrVT));
1369    } else {
1370      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1371      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1372      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1373                         PseudoSourceValue::getConstantPool(), 0);
1374    }
1375  }
1376}
1377
1378SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1379                                                    SelectionDAG &DAG) {
1380  MachineFunction &MF = DAG.getMachineFunction();
1381  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1382  unsigned ARMPCLabelIndex = 0;
1383  EVT PtrVT = getPointerTy();
1384  DebugLoc dl = Op.getDebugLoc();
1385  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1386  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1387  SDValue CPAddr;
1388  if (RelocM == Reloc::Static)
1389    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1390  else {
1391    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1392    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1393    ARMConstantPoolValue *CPV =
1394      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1395    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1396  }
1397  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1398
1399  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1400                               PseudoSourceValue::getConstantPool(), 0);
1401  SDValue Chain = Result.getValue(1);
1402
1403  if (RelocM == Reloc::PIC_) {
1404    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1405    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1406  }
1407
1408  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1409    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1410                         PseudoSourceValue::getGOT(), 0);
1411
1412  return Result;
1413}
1414
1415SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1416                                                    SelectionDAG &DAG){
1417  assert(Subtarget->isTargetELF() &&
1418         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1419  MachineFunction &MF = DAG.getMachineFunction();
1420  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1421  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1422  EVT PtrVT = getPointerTy();
1423  DebugLoc dl = Op.getDebugLoc();
1424  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1425  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1426                                                       "_GLOBAL_OFFSET_TABLE_",
1427                                                       ARMPCLabelIndex, PCAdj);
1428  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1429  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1430  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1431                               PseudoSourceValue::getConstantPool(), 0);
1432  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1433  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1434}
1435
1436SDValue
1437ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1438  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1439  DebugLoc dl = Op.getDebugLoc();
1440  switch (IntNo) {
1441  default: return SDValue();    // Don't custom lower most intrinsics.
1442  case Intrinsic::arm_thread_pointer: {
1443    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1444    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1445  }
1446  case Intrinsic::eh_sjlj_lsda: {
1447    MachineFunction &MF = DAG.getMachineFunction();
1448    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1449    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1450    EVT PtrVT = getPointerTy();
1451    DebugLoc dl = Op.getDebugLoc();
1452    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1453    SDValue CPAddr;
1454    unsigned PCAdj = (RelocM != Reloc::PIC_)
1455      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1456    ARMConstantPoolValue *CPV =
1457      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1458                               ARMCP::CPLSDA, PCAdj);
1459    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1460    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1461    SDValue Result =
1462      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1463                  PseudoSourceValue::getConstantPool(), 0);
1464    SDValue Chain = Result.getValue(1);
1465
1466    if (RelocM == Reloc::PIC_) {
1467      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1468      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1469    }
1470    return Result;
1471  }
1472  case Intrinsic::eh_sjlj_setjmp:
1473    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1474  }
1475}
1476
1477static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1478                          const ARMSubtarget *Subtarget) {
1479  DebugLoc dl = Op.getDebugLoc();
1480  SDValue Op5 = Op.getOperand(5);
1481  SDValue Res;
1482  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1483  if (isDeviceBarrier) {
1484    if (Subtarget->hasV7Ops())
1485      Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0));
1486    else
1487      Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0),
1488                        DAG.getConstant(0, MVT::i32));
1489  } else {
1490    if (Subtarget->hasV7Ops())
1491      Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
1492    else
1493      Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
1494                        DAG.getConstant(0, MVT::i32));
1495  }
1496  return Res;
1497}
1498
1499static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1500                            unsigned VarArgsFrameIndex) {
1501  // vastart just stores the address of the VarArgsFrameIndex slot into the
1502  // memory location argument.
1503  DebugLoc dl = Op.getDebugLoc();
1504  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1505  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1506  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1507  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1508}
1509
1510SDValue
1511ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1512  SDNode *Node = Op.getNode();
1513  DebugLoc dl = Node->getDebugLoc();
1514  EVT VT = Node->getValueType(0);
1515  SDValue Chain = Op.getOperand(0);
1516  SDValue Size  = Op.getOperand(1);
1517  SDValue Align = Op.getOperand(2);
1518
1519  // Chain the dynamic stack allocation so that it doesn't modify the stack
1520  // pointer when other instructions are using the stack.
1521  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1522
1523  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1524  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1525  if (AlignVal > StackAlign)
1526    // Do this now since selection pass cannot introduce new target
1527    // independent node.
1528    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1529
1530  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1531  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1532  // do even more horrible hack later.
1533  MachineFunction &MF = DAG.getMachineFunction();
1534  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1535  if (AFI->isThumb1OnlyFunction()) {
1536    bool Negate = true;
1537    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1538    if (C) {
1539      uint32_t Val = C->getZExtValue();
1540      if (Val <= 508 && ((Val & 3) == 0))
1541        Negate = false;
1542    }
1543    if (Negate)
1544      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1545  }
1546
1547  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1548  SDValue Ops1[] = { Chain, Size, Align };
1549  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1550  Chain = Res.getValue(1);
1551  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1552                             DAG.getIntPtrConstant(0, true), SDValue());
1553  SDValue Ops2[] = { Res, Chain };
1554  return DAG.getMergeValues(Ops2, 2, dl);
1555}
1556
1557SDValue
1558ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1559                                        SDValue &Root, SelectionDAG &DAG,
1560                                        DebugLoc dl) {
1561  MachineFunction &MF = DAG.getMachineFunction();
1562  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1563
1564  TargetRegisterClass *RC;
1565  if (AFI->isThumb1OnlyFunction())
1566    RC = ARM::tGPRRegisterClass;
1567  else
1568    RC = ARM::GPRRegisterClass;
1569
1570  // Transform the arguments stored in physical registers into virtual ones.
1571  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1572  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1573
1574  SDValue ArgValue2;
1575  if (NextVA.isMemLoc()) {
1576    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1577    MachineFrameInfo *MFI = MF.getFrameInfo();
1578    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset(),
1579                                    true, false);
1580
1581    // Create load node to retrieve arguments from the stack.
1582    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1583    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
1584                            PseudoSourceValue::getFixedStack(FI), 0);
1585  } else {
1586    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1587    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1588  }
1589
1590  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
1591}
1592
1593SDValue
1594ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1595                                        CallingConv::ID CallConv, bool isVarArg,
1596                                        const SmallVectorImpl<ISD::InputArg>
1597                                          &Ins,
1598                                        DebugLoc dl, SelectionDAG &DAG,
1599                                        SmallVectorImpl<SDValue> &InVals) {
1600
1601  MachineFunction &MF = DAG.getMachineFunction();
1602  MachineFrameInfo *MFI = MF.getFrameInfo();
1603
1604  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1605
1606  // Assign locations to all of the incoming arguments.
1607  SmallVector<CCValAssign, 16> ArgLocs;
1608  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1609                 *DAG.getContext());
1610  CCInfo.AnalyzeFormalArguments(Ins,
1611                                CCAssignFnForNode(CallConv, /* Return*/ false,
1612                                                  isVarArg));
1613
1614  SmallVector<SDValue, 16> ArgValues;
1615
1616  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1617    CCValAssign &VA = ArgLocs[i];
1618
1619    // Arguments stored in registers.
1620    if (VA.isRegLoc()) {
1621      EVT RegVT = VA.getLocVT();
1622
1623      SDValue ArgValue;
1624      if (VA.needsCustom()) {
1625        // f64 and vector types are split up into multiple registers or
1626        // combinations of registers and stack slots.
1627        RegVT = MVT::i32;
1628
1629        if (VA.getLocVT() == MVT::v2f64) {
1630          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1631                                                   Chain, DAG, dl);
1632          VA = ArgLocs[++i]; // skip ahead to next loc
1633          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1634                                                   Chain, DAG, dl);
1635          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1636          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1637                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1638          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1639                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1640        } else
1641          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1642
1643      } else {
1644        TargetRegisterClass *RC;
1645
1646        if (RegVT == MVT::f32)
1647          RC = ARM::SPRRegisterClass;
1648        else if (RegVT == MVT::f64)
1649          RC = ARM::DPRRegisterClass;
1650        else if (RegVT == MVT::v2f64)
1651          RC = ARM::QPRRegisterClass;
1652        else if (RegVT == MVT::i32)
1653          RC = (AFI->isThumb1OnlyFunction() ?
1654                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1655        else
1656          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1657
1658        // Transform the arguments in physical registers into virtual ones.
1659        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1660        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1661      }
1662
1663      // If this is an 8 or 16-bit value, it is really passed promoted
1664      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1665      // truncate to the right size.
1666      switch (VA.getLocInfo()) {
1667      default: llvm_unreachable("Unknown loc info!");
1668      case CCValAssign::Full: break;
1669      case CCValAssign::BCvt:
1670        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1671        break;
1672      case CCValAssign::SExt:
1673        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1674                               DAG.getValueType(VA.getValVT()));
1675        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1676        break;
1677      case CCValAssign::ZExt:
1678        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1679                               DAG.getValueType(VA.getValVT()));
1680        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1681        break;
1682      }
1683
1684      InVals.push_back(ArgValue);
1685
1686    } else { // VA.isRegLoc()
1687
1688      // sanity check
1689      assert(VA.isMemLoc());
1690      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1691
1692      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1693      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1694                                      true, false);
1695
1696      // Create load nodes to retrieve arguments from the stack.
1697      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1698      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1699                                   PseudoSourceValue::getFixedStack(FI), 0));
1700    }
1701  }
1702
1703  // varargs
1704  if (isVarArg) {
1705    static const unsigned GPRArgRegs[] = {
1706      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1707    };
1708
1709    unsigned NumGPRs = CCInfo.getFirstUnallocated
1710      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1711
1712    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1713    unsigned VARegSize = (4 - NumGPRs) * 4;
1714    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1715    unsigned ArgOffset = CCInfo.getNextStackOffset();
1716    if (VARegSaveSize) {
1717      // If this function is vararg, store any remaining integer argument regs
1718      // to their spots on the stack so that they may be loaded by deferencing
1719      // the result of va_next.
1720      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1721      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1722                                                 VARegSaveSize - VARegSize,
1723                                                 true, false);
1724      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1725
1726      SmallVector<SDValue, 4> MemOps;
1727      for (; NumGPRs < 4; ++NumGPRs) {
1728        TargetRegisterClass *RC;
1729        if (AFI->isThumb1OnlyFunction())
1730          RC = ARM::tGPRRegisterClass;
1731        else
1732          RC = ARM::GPRRegisterClass;
1733
1734        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1735        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1736        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1737                        PseudoSourceValue::getFixedStack(VarArgsFrameIndex), 0);
1738        MemOps.push_back(Store);
1739        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1740                          DAG.getConstant(4, getPointerTy()));
1741      }
1742      if (!MemOps.empty())
1743        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1744                            &MemOps[0], MemOps.size());
1745    } else
1746      // This will point to the next argument passed via stack.
1747      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset, true, false);
1748  }
1749
1750  return Chain;
1751}
1752
1753/// isFloatingPointZero - Return true if this is +0.0.
1754static bool isFloatingPointZero(SDValue Op) {
1755  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1756    return CFP->getValueAPF().isPosZero();
1757  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1758    // Maybe this has already been legalized into the constant pool?
1759    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1760      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1761      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1762        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1763          return CFP->getValueAPF().isPosZero();
1764    }
1765  }
1766  return false;
1767}
1768
1769/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1770/// the given operands.
1771SDValue
1772ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1773                             SDValue &ARMCC, SelectionDAG &DAG, DebugLoc dl) {
1774  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1775    unsigned C = RHSC->getZExtValue();
1776    if (!isLegalICmpImmediate(C)) {
1777      // Constant does not fit, try adjusting it by one?
1778      switch (CC) {
1779      default: break;
1780      case ISD::SETLT:
1781      case ISD::SETGE:
1782        if (isLegalICmpImmediate(C-1)) {
1783          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1784          RHS = DAG.getConstant(C-1, MVT::i32);
1785        }
1786        break;
1787      case ISD::SETULT:
1788      case ISD::SETUGE:
1789        if (C > 0 && isLegalICmpImmediate(C-1)) {
1790          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1791          RHS = DAG.getConstant(C-1, MVT::i32);
1792        }
1793        break;
1794      case ISD::SETLE:
1795      case ISD::SETGT:
1796        if (isLegalICmpImmediate(C+1)) {
1797          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1798          RHS = DAG.getConstant(C+1, MVT::i32);
1799        }
1800        break;
1801      case ISD::SETULE:
1802      case ISD::SETUGT:
1803        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
1804          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1805          RHS = DAG.getConstant(C+1, MVT::i32);
1806        }
1807        break;
1808      }
1809    }
1810  }
1811
1812  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1813  ARMISD::NodeType CompareType;
1814  switch (CondCode) {
1815  default:
1816    CompareType = ARMISD::CMP;
1817    break;
1818  case ARMCC::EQ:
1819  case ARMCC::NE:
1820    // Uses only Z Flag
1821    CompareType = ARMISD::CMPZ;
1822    break;
1823  }
1824  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1825  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1826}
1827
1828/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1829static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1830                         DebugLoc dl) {
1831  SDValue Cmp;
1832  if (!isFloatingPointZero(RHS))
1833    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1834  else
1835    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1836  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1837}
1838
1839SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
1840  EVT VT = Op.getValueType();
1841  SDValue LHS = Op.getOperand(0);
1842  SDValue RHS = Op.getOperand(1);
1843  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1844  SDValue TrueVal = Op.getOperand(2);
1845  SDValue FalseVal = Op.getOperand(3);
1846  DebugLoc dl = Op.getDebugLoc();
1847
1848  if (LHS.getValueType() == MVT::i32) {
1849    SDValue ARMCC;
1850    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1851    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1852    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1853  }
1854
1855  ARMCC::CondCodes CondCode, CondCode2;
1856  FPCCToARMCC(CC, CondCode, CondCode2);
1857
1858  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1859  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1860  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1861  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1862                                 ARMCC, CCR, Cmp);
1863  if (CondCode2 != ARMCC::AL) {
1864    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1865    // FIXME: Needs another CMP because flag can have but one use.
1866    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1867    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1868                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1869  }
1870  return Result;
1871}
1872
1873SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
1874  SDValue  Chain = Op.getOperand(0);
1875  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1876  SDValue    LHS = Op.getOperand(2);
1877  SDValue    RHS = Op.getOperand(3);
1878  SDValue   Dest = Op.getOperand(4);
1879  DebugLoc dl = Op.getDebugLoc();
1880
1881  if (LHS.getValueType() == MVT::i32) {
1882    SDValue ARMCC;
1883    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1884    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1885    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1886                       Chain, Dest, ARMCC, CCR,Cmp);
1887  }
1888
1889  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1890  ARMCC::CondCodes CondCode, CondCode2;
1891  FPCCToARMCC(CC, CondCode, CondCode2);
1892
1893  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1894  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1895  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1896  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1897  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1898  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1899  if (CondCode2 != ARMCC::AL) {
1900    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1901    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1902    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1903  }
1904  return Res;
1905}
1906
1907SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1908  SDValue Chain = Op.getOperand(0);
1909  SDValue Table = Op.getOperand(1);
1910  SDValue Index = Op.getOperand(2);
1911  DebugLoc dl = Op.getDebugLoc();
1912
1913  EVT PTy = getPointerTy();
1914  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1915  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1916  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1917  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1918  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1919  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1920  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1921  if (Subtarget->isThumb2()) {
1922    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1923    // which does another jump to the destination. This also makes it easier
1924    // to translate it to TBB / TBH later.
1925    // FIXME: This might not work if the function is extremely large.
1926    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1927                       Addr, Op.getOperand(2), JTI, UId);
1928  }
1929  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1930    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
1931                       PseudoSourceValue::getJumpTable(), 0);
1932    Chain = Addr.getValue(1);
1933    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1934    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1935  } else {
1936    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
1937                       PseudoSourceValue::getJumpTable(), 0);
1938    Chain = Addr.getValue(1);
1939    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1940  }
1941}
1942
1943static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1944  DebugLoc dl = Op.getDebugLoc();
1945  unsigned Opc =
1946    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1947  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1948  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1949}
1950
1951static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1952  EVT VT = Op.getValueType();
1953  DebugLoc dl = Op.getDebugLoc();
1954  unsigned Opc =
1955    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1956
1957  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1958  return DAG.getNode(Opc, dl, VT, Op);
1959}
1960
1961static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1962  // Implement fcopysign with a fabs and a conditional fneg.
1963  SDValue Tmp0 = Op.getOperand(0);
1964  SDValue Tmp1 = Op.getOperand(1);
1965  DebugLoc dl = Op.getDebugLoc();
1966  EVT VT = Op.getValueType();
1967  EVT SrcVT = Tmp1.getValueType();
1968  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1969  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1970  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1971  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1972  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1973}
1974
1975SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1976  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1977  MFI->setFrameAddressIsTaken(true);
1978  EVT VT = Op.getValueType();
1979  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1980  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1981  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1982    ? ARM::R7 : ARM::R11;
1983  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1984  while (Depth--)
1985    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1986  return FrameAddr;
1987}
1988
1989SDValue
1990ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1991                                           SDValue Chain,
1992                                           SDValue Dst, SDValue Src,
1993                                           SDValue Size, unsigned Align,
1994                                           bool AlwaysInline,
1995                                         const Value *DstSV, uint64_t DstSVOff,
1996                                         const Value *SrcSV, uint64_t SrcSVOff){
1997  // Do repeated 4-byte loads and stores. To be improved.
1998  // This requires 4-byte alignment.
1999  if ((Align & 3) != 0)
2000    return SDValue();
2001  // This requires the copy size to be a constant, preferrably
2002  // within a subtarget-specific limit.
2003  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2004  if (!ConstantSize)
2005    return SDValue();
2006  uint64_t SizeVal = ConstantSize->getZExtValue();
2007  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
2008    return SDValue();
2009
2010  unsigned BytesLeft = SizeVal & 3;
2011  unsigned NumMemOps = SizeVal >> 2;
2012  unsigned EmittedNumMemOps = 0;
2013  EVT VT = MVT::i32;
2014  unsigned VTSize = 4;
2015  unsigned i = 0;
2016  const unsigned MAX_LOADS_IN_LDM = 6;
2017  SDValue TFOps[MAX_LOADS_IN_LDM];
2018  SDValue Loads[MAX_LOADS_IN_LDM];
2019  uint64_t SrcOff = 0, DstOff = 0;
2020
2021  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
2022  // same number of stores.  The loads and stores will get combined into
2023  // ldm/stm later on.
2024  while (EmittedNumMemOps < NumMemOps) {
2025    for (i = 0;
2026         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2027      Loads[i] = DAG.getLoad(VT, dl, Chain,
2028                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2029                                         DAG.getConstant(SrcOff, MVT::i32)),
2030                             SrcSV, SrcSVOff + SrcOff);
2031      TFOps[i] = Loads[i].getValue(1);
2032      SrcOff += VTSize;
2033    }
2034    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2035
2036    for (i = 0;
2037         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2038      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2039                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2040                                       DAG.getConstant(DstOff, MVT::i32)),
2041                           DstSV, DstSVOff + DstOff);
2042      DstOff += VTSize;
2043    }
2044    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2045
2046    EmittedNumMemOps += i;
2047  }
2048
2049  if (BytesLeft == 0)
2050    return Chain;
2051
2052  // Issue loads / stores for the trailing (1 - 3) bytes.
2053  unsigned BytesLeftSave = BytesLeft;
2054  i = 0;
2055  while (BytesLeft) {
2056    if (BytesLeft >= 2) {
2057      VT = MVT::i16;
2058      VTSize = 2;
2059    } else {
2060      VT = MVT::i8;
2061      VTSize = 1;
2062    }
2063
2064    Loads[i] = DAG.getLoad(VT, dl, Chain,
2065                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2066                                       DAG.getConstant(SrcOff, MVT::i32)),
2067                           SrcSV, SrcSVOff + SrcOff);
2068    TFOps[i] = Loads[i].getValue(1);
2069    ++i;
2070    SrcOff += VTSize;
2071    BytesLeft -= VTSize;
2072  }
2073  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2074
2075  i = 0;
2076  BytesLeft = BytesLeftSave;
2077  while (BytesLeft) {
2078    if (BytesLeft >= 2) {
2079      VT = MVT::i16;
2080      VTSize = 2;
2081    } else {
2082      VT = MVT::i8;
2083      VTSize = 1;
2084    }
2085
2086    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2087                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2088                                        DAG.getConstant(DstOff, MVT::i32)),
2089                            DstSV, DstSVOff + DstOff);
2090    ++i;
2091    DstOff += VTSize;
2092    BytesLeft -= VTSize;
2093  }
2094  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2095}
2096
2097static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2098  SDValue Op = N->getOperand(0);
2099  DebugLoc dl = N->getDebugLoc();
2100  if (N->getValueType(0) == MVT::f64) {
2101    // Turn i64->f64 into VMOVDRR.
2102    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2103                             DAG.getConstant(0, MVT::i32));
2104    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2105                             DAG.getConstant(1, MVT::i32));
2106    return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2107  }
2108
2109  // Turn f64->i64 into VMOVRRD.
2110  SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2111                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2112
2113  // Merge the pieces into a single i64 value.
2114  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2115}
2116
2117/// getZeroVector - Returns a vector of specified type with all zero elements.
2118///
2119static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2120  assert(VT.isVector() && "Expected a vector type");
2121
2122  // Zero vectors are used to represent vector negation and in those cases
2123  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2124  // not support i64 elements, so sometimes the zero vectors will need to be
2125  // explicitly constructed.  For those cases, and potentially other uses in
2126  // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
2127  // to their dest type.  This ensures they get CSE'd.
2128  SDValue Vec;
2129  SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
2130  SmallVector<SDValue, 8> Ops;
2131  MVT TVT;
2132
2133  if (VT.getSizeInBits() == 64) {
2134    Ops.assign(8, Cst); TVT = MVT::v8i8;
2135  } else {
2136    Ops.assign(16, Cst); TVT = MVT::v16i8;
2137  }
2138  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2139
2140  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2141}
2142
2143/// getOnesVector - Returns a vector of specified type with all bits set.
2144///
2145static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2146  assert(VT.isVector() && "Expected a vector type");
2147
2148  // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
2149  // dest type. This ensures they get CSE'd.
2150  SDValue Vec;
2151  SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
2152  SmallVector<SDValue, 8> Ops;
2153  MVT TVT;
2154
2155  if (VT.getSizeInBits() == 64) {
2156    Ops.assign(8, Cst); TVT = MVT::v8i8;
2157  } else {
2158    Ops.assign(16, Cst); TVT = MVT::v16i8;
2159  }
2160  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2161
2162  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2163}
2164
2165/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2166/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2167SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) {
2168  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2169  EVT VT = Op.getValueType();
2170  unsigned VTBits = VT.getSizeInBits();
2171  DebugLoc dl = Op.getDebugLoc();
2172  SDValue ShOpLo = Op.getOperand(0);
2173  SDValue ShOpHi = Op.getOperand(1);
2174  SDValue ShAmt  = Op.getOperand(2);
2175  SDValue ARMCC;
2176  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2177
2178  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2179
2180  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2181                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2182  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2183  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2184                                   DAG.getConstant(VTBits, MVT::i32));
2185  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2186  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2187  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2188
2189  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2190  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2191                          ARMCC, DAG, dl);
2192  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2193  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
2194                           CCR, Cmp);
2195
2196  SDValue Ops[2] = { Lo, Hi };
2197  return DAG.getMergeValues(Ops, 2, dl);
2198}
2199
2200/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2201/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2202SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) {
2203  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2204  EVT VT = Op.getValueType();
2205  unsigned VTBits = VT.getSizeInBits();
2206  DebugLoc dl = Op.getDebugLoc();
2207  SDValue ShOpLo = Op.getOperand(0);
2208  SDValue ShOpHi = Op.getOperand(1);
2209  SDValue ShAmt  = Op.getOperand(2);
2210  SDValue ARMCC;
2211
2212  assert(Op.getOpcode() == ISD::SHL_PARTS);
2213  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2214                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2215  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2216  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2217                                   DAG.getConstant(VTBits, MVT::i32));
2218  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2219  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2220
2221  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2222  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2223  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2224                          ARMCC, DAG, dl);
2225  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2226  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
2227                           CCR, Cmp);
2228
2229  SDValue Ops[2] = { Lo, Hi };
2230  return DAG.getMergeValues(Ops, 2, dl);
2231}
2232
2233static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2234                          const ARMSubtarget *ST) {
2235  EVT VT = N->getValueType(0);
2236  DebugLoc dl = N->getDebugLoc();
2237
2238  // Lower vector shifts on NEON to use VSHL.
2239  if (VT.isVector()) {
2240    assert(ST->hasNEON() && "unexpected vector shift");
2241
2242    // Left shifts translate directly to the vshiftu intrinsic.
2243    if (N->getOpcode() == ISD::SHL)
2244      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2245                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2246                         N->getOperand(0), N->getOperand(1));
2247
2248    assert((N->getOpcode() == ISD::SRA ||
2249            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2250
2251    // NEON uses the same intrinsics for both left and right shifts.  For
2252    // right shifts, the shift amounts are negative, so negate the vector of
2253    // shift amounts.
2254    EVT ShiftVT = N->getOperand(1).getValueType();
2255    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2256                                       getZeroVector(ShiftVT, DAG, dl),
2257                                       N->getOperand(1));
2258    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2259                               Intrinsic::arm_neon_vshifts :
2260                               Intrinsic::arm_neon_vshiftu);
2261    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2262                       DAG.getConstant(vshiftInt, MVT::i32),
2263                       N->getOperand(0), NegatedCount);
2264  }
2265
2266  // We can get here for a node like i32 = ISD::SHL i32, i64
2267  if (VT != MVT::i64)
2268    return SDValue();
2269
2270  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2271         "Unknown shift to lower!");
2272
2273  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2274  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2275      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2276    return SDValue();
2277
2278  // If we are in thumb mode, we don't have RRX.
2279  if (ST->isThumb1Only()) return SDValue();
2280
2281  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2282  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2283                             DAG.getConstant(0, MVT::i32));
2284  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2285                             DAG.getConstant(1, MVT::i32));
2286
2287  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2288  // captures the result into a carry flag.
2289  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2290  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2291
2292  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2293  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2294
2295  // Merge the pieces into a single i64 value.
2296 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2297}
2298
2299static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2300  SDValue TmpOp0, TmpOp1;
2301  bool Invert = false;
2302  bool Swap = false;
2303  unsigned Opc = 0;
2304
2305  SDValue Op0 = Op.getOperand(0);
2306  SDValue Op1 = Op.getOperand(1);
2307  SDValue CC = Op.getOperand(2);
2308  EVT VT = Op.getValueType();
2309  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2310  DebugLoc dl = Op.getDebugLoc();
2311
2312  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2313    switch (SetCCOpcode) {
2314    default: llvm_unreachable("Illegal FP comparison"); break;
2315    case ISD::SETUNE:
2316    case ISD::SETNE:  Invert = true; // Fallthrough
2317    case ISD::SETOEQ:
2318    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2319    case ISD::SETOLT:
2320    case ISD::SETLT: Swap = true; // Fallthrough
2321    case ISD::SETOGT:
2322    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2323    case ISD::SETOLE:
2324    case ISD::SETLE:  Swap = true; // Fallthrough
2325    case ISD::SETOGE:
2326    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2327    case ISD::SETUGE: Swap = true; // Fallthrough
2328    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2329    case ISD::SETUGT: Swap = true; // Fallthrough
2330    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2331    case ISD::SETUEQ: Invert = true; // Fallthrough
2332    case ISD::SETONE:
2333      // Expand this to (OLT | OGT).
2334      TmpOp0 = Op0;
2335      TmpOp1 = Op1;
2336      Opc = ISD::OR;
2337      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2338      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2339      break;
2340    case ISD::SETUO: Invert = true; // Fallthrough
2341    case ISD::SETO:
2342      // Expand this to (OLT | OGE).
2343      TmpOp0 = Op0;
2344      TmpOp1 = Op1;
2345      Opc = ISD::OR;
2346      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2347      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2348      break;
2349    }
2350  } else {
2351    // Integer comparisons.
2352    switch (SetCCOpcode) {
2353    default: llvm_unreachable("Illegal integer comparison"); break;
2354    case ISD::SETNE:  Invert = true;
2355    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2356    case ISD::SETLT:  Swap = true;
2357    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2358    case ISD::SETLE:  Swap = true;
2359    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2360    case ISD::SETULT: Swap = true;
2361    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2362    case ISD::SETULE: Swap = true;
2363    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2364    }
2365
2366    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2367    if (Opc == ARMISD::VCEQ) {
2368
2369      SDValue AndOp;
2370      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2371        AndOp = Op0;
2372      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2373        AndOp = Op1;
2374
2375      // Ignore bitconvert.
2376      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2377        AndOp = AndOp.getOperand(0);
2378
2379      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2380        Opc = ARMISD::VTST;
2381        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2382        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2383        Invert = !Invert;
2384      }
2385    }
2386  }
2387
2388  if (Swap)
2389    std::swap(Op0, Op1);
2390
2391  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2392
2393  if (Invert)
2394    Result = DAG.getNOT(dl, Result, VT);
2395
2396  return Result;
2397}
2398
2399/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2400/// VMOV instruction, and if so, return the constant being splatted.
2401static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2402                           unsigned SplatBitSize, SelectionDAG &DAG) {
2403  switch (SplatBitSize) {
2404  case 8:
2405    // Any 1-byte value is OK.
2406    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2407    return DAG.getTargetConstant(SplatBits, MVT::i8);
2408
2409  case 16:
2410    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2411    if ((SplatBits & ~0xff) == 0 ||
2412        (SplatBits & ~0xff00) == 0)
2413      return DAG.getTargetConstant(SplatBits, MVT::i16);
2414    break;
2415
2416  case 32:
2417    // NEON's 32-bit VMOV supports splat values where:
2418    // * only one byte is nonzero, or
2419    // * the least significant byte is 0xff and the second byte is nonzero, or
2420    // * the least significant 2 bytes are 0xff and the third is nonzero.
2421    if ((SplatBits & ~0xff) == 0 ||
2422        (SplatBits & ~0xff00) == 0 ||
2423        (SplatBits & ~0xff0000) == 0 ||
2424        (SplatBits & ~0xff000000) == 0)
2425      return DAG.getTargetConstant(SplatBits, MVT::i32);
2426
2427    if ((SplatBits & ~0xffff) == 0 &&
2428        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2429      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2430
2431    if ((SplatBits & ~0xffffff) == 0 &&
2432        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2433      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2434
2435    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2436    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2437    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2438    // and fall through here to test for a valid 64-bit splat.  But, then the
2439    // caller would also need to check and handle the change in size.
2440    break;
2441
2442  case 64: {
2443    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2444    uint64_t BitMask = 0xff;
2445    uint64_t Val = 0;
2446    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2447      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2448        Val |= BitMask;
2449      else if ((SplatBits & BitMask) != 0)
2450        return SDValue();
2451      BitMask <<= 8;
2452    }
2453    return DAG.getTargetConstant(Val, MVT::i64);
2454  }
2455
2456  default:
2457    llvm_unreachable("unexpected size for isVMOVSplat");
2458    break;
2459  }
2460
2461  return SDValue();
2462}
2463
2464/// getVMOVImm - If this is a build_vector of constants which can be
2465/// formed by using a VMOV instruction of the specified element size,
2466/// return the constant being splatted.  The ByteSize field indicates the
2467/// number of bytes of each element [1248].
2468SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2469  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2470  APInt SplatBits, SplatUndef;
2471  unsigned SplatBitSize;
2472  bool HasAnyUndefs;
2473  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2474                                      HasAnyUndefs, ByteSize * 8))
2475    return SDValue();
2476
2477  if (SplatBitSize > ByteSize * 8)
2478    return SDValue();
2479
2480  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2481                     SplatBitSize, DAG);
2482}
2483
2484static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
2485                       bool &ReverseVEXT, unsigned &Imm) {
2486  unsigned NumElts = VT.getVectorNumElements();
2487  ReverseVEXT = false;
2488  Imm = M[0];
2489
2490  // If this is a VEXT shuffle, the immediate value is the index of the first
2491  // element.  The other shuffle indices must be the successive elements after
2492  // the first one.
2493  unsigned ExpectedElt = Imm;
2494  for (unsigned i = 1; i < NumElts; ++i) {
2495    // Increment the expected index.  If it wraps around, it may still be
2496    // a VEXT but the source vectors must be swapped.
2497    ExpectedElt += 1;
2498    if (ExpectedElt == NumElts * 2) {
2499      ExpectedElt = 0;
2500      ReverseVEXT = true;
2501    }
2502
2503    if (ExpectedElt != static_cast<unsigned>(M[i]))
2504      return false;
2505  }
2506
2507  // Adjust the index value if the source operands will be swapped.
2508  if (ReverseVEXT)
2509    Imm -= NumElts;
2510
2511  return true;
2512}
2513
2514/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2515/// instruction with the specified blocksize.  (The order of the elements
2516/// within each block of the vector is reversed.)
2517static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
2518                       unsigned BlockSize) {
2519  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2520         "Only possible block sizes for VREV are: 16, 32, 64");
2521
2522  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2523  if (EltSz == 64)
2524    return false;
2525
2526  unsigned NumElts = VT.getVectorNumElements();
2527  unsigned BlockElts = M[0] + 1;
2528
2529  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2530    return false;
2531
2532  for (unsigned i = 0; i < NumElts; ++i) {
2533    if ((unsigned) M[i] !=
2534        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2535      return false;
2536  }
2537
2538  return true;
2539}
2540
2541static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
2542                       unsigned &WhichResult) {
2543  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2544  if (EltSz == 64)
2545    return false;
2546
2547  unsigned NumElts = VT.getVectorNumElements();
2548  WhichResult = (M[0] == 0 ? 0 : 1);
2549  for (unsigned i = 0; i < NumElts; i += 2) {
2550    if ((unsigned) M[i] != i + WhichResult ||
2551        (unsigned) M[i+1] != i + NumElts + WhichResult)
2552      return false;
2553  }
2554  return true;
2555}
2556
2557/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
2558/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2559/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
2560static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2561                                unsigned &WhichResult) {
2562  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2563  if (EltSz == 64)
2564    return false;
2565
2566  unsigned NumElts = VT.getVectorNumElements();
2567  WhichResult = (M[0] == 0 ? 0 : 1);
2568  for (unsigned i = 0; i < NumElts; i += 2) {
2569    if ((unsigned) M[i] != i + WhichResult ||
2570        (unsigned) M[i+1] != i + WhichResult)
2571      return false;
2572  }
2573  return true;
2574}
2575
2576static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
2577                       unsigned &WhichResult) {
2578  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2579  if (EltSz == 64)
2580    return false;
2581
2582  unsigned NumElts = VT.getVectorNumElements();
2583  WhichResult = (M[0] == 0 ? 0 : 1);
2584  for (unsigned i = 0; i != NumElts; ++i) {
2585    if ((unsigned) M[i] != 2 * i + WhichResult)
2586      return false;
2587  }
2588
2589  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2590  if (VT.is64BitVector() && EltSz == 32)
2591    return false;
2592
2593  return true;
2594}
2595
2596/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
2597/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2598/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
2599static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2600                                unsigned &WhichResult) {
2601  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2602  if (EltSz == 64)
2603    return false;
2604
2605  unsigned Half = VT.getVectorNumElements() / 2;
2606  WhichResult = (M[0] == 0 ? 0 : 1);
2607  for (unsigned j = 0; j != 2; ++j) {
2608    unsigned Idx = WhichResult;
2609    for (unsigned i = 0; i != Half; ++i) {
2610      if ((unsigned) M[i + j * Half] != Idx)
2611        return false;
2612      Idx += 2;
2613    }
2614  }
2615
2616  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2617  if (VT.is64BitVector() && EltSz == 32)
2618    return false;
2619
2620  return true;
2621}
2622
2623static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
2624                       unsigned &WhichResult) {
2625  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2626  if (EltSz == 64)
2627    return false;
2628
2629  unsigned NumElts = VT.getVectorNumElements();
2630  WhichResult = (M[0] == 0 ? 0 : 1);
2631  unsigned Idx = WhichResult * NumElts / 2;
2632  for (unsigned i = 0; i != NumElts; i += 2) {
2633    if ((unsigned) M[i] != Idx ||
2634        (unsigned) M[i+1] != Idx + NumElts)
2635      return false;
2636    Idx += 1;
2637  }
2638
2639  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2640  if (VT.is64BitVector() && EltSz == 32)
2641    return false;
2642
2643  return true;
2644}
2645
2646/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
2647/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2648/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
2649static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2650                                unsigned &WhichResult) {
2651  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2652  if (EltSz == 64)
2653    return false;
2654
2655  unsigned NumElts = VT.getVectorNumElements();
2656  WhichResult = (M[0] == 0 ? 0 : 1);
2657  unsigned Idx = WhichResult * NumElts / 2;
2658  for (unsigned i = 0; i != NumElts; i += 2) {
2659    if ((unsigned) M[i] != Idx ||
2660        (unsigned) M[i+1] != Idx)
2661      return false;
2662    Idx += 1;
2663  }
2664
2665  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2666  if (VT.is64BitVector() && EltSz == 32)
2667    return false;
2668
2669  return true;
2670}
2671
2672
2673static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2674  // Canonicalize all-zeros and all-ones vectors.
2675  ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
2676  if (ConstVal->isNullValue())
2677    return getZeroVector(VT, DAG, dl);
2678  if (ConstVal->isAllOnesValue())
2679    return getOnesVector(VT, DAG, dl);
2680
2681  EVT CanonicalVT;
2682  if (VT.is64BitVector()) {
2683    switch (Val.getValueType().getSizeInBits()) {
2684    case 8:  CanonicalVT = MVT::v8i8; break;
2685    case 16: CanonicalVT = MVT::v4i16; break;
2686    case 32: CanonicalVT = MVT::v2i32; break;
2687    case 64: CanonicalVT = MVT::v1i64; break;
2688    default: llvm_unreachable("unexpected splat element type"); break;
2689    }
2690  } else {
2691    assert(VT.is128BitVector() && "unknown splat vector size");
2692    switch (Val.getValueType().getSizeInBits()) {
2693    case 8:  CanonicalVT = MVT::v16i8; break;
2694    case 16: CanonicalVT = MVT::v8i16; break;
2695    case 32: CanonicalVT = MVT::v4i32; break;
2696    case 64: CanonicalVT = MVT::v2i64; break;
2697    default: llvm_unreachable("unexpected splat element type"); break;
2698    }
2699  }
2700
2701  // Build a canonical splat for this value.
2702  SmallVector<SDValue, 8> Ops;
2703  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2704  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2705                            Ops.size());
2706  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2707}
2708
2709// If this is a case we can't handle, return null and let the default
2710// expansion code take care of it.
2711static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2712  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2713  DebugLoc dl = Op.getDebugLoc();
2714  EVT VT = Op.getValueType();
2715
2716  APInt SplatBits, SplatUndef;
2717  unsigned SplatBitSize;
2718  bool HasAnyUndefs;
2719  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2720    if (SplatBitSize <= 64) {
2721      SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2722                                SplatUndef.getZExtValue(), SplatBitSize, DAG);
2723      if (Val.getNode())
2724        return BuildSplat(Val, VT, DAG, dl);
2725    }
2726  }
2727
2728  // If there are only 2 elements in a 128-bit vector, insert them into an
2729  // undef vector.  This handles the common case for 128-bit vector argument
2730  // passing, where the insertions should be translated to subreg accesses
2731  // with no real instructions.
2732  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2733    SDValue Val = DAG.getUNDEF(VT);
2734    SDValue Op0 = Op.getOperand(0);
2735    SDValue Op1 = Op.getOperand(1);
2736    if (Op0.getOpcode() != ISD::UNDEF)
2737      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2738                        DAG.getIntPtrConstant(0));
2739    if (Op1.getOpcode() != ISD::UNDEF)
2740      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2741                        DAG.getIntPtrConstant(1));
2742    return Val;
2743  }
2744
2745  return SDValue();
2746}
2747
2748/// isShuffleMaskLegal - Targets can use this to indicate that they only
2749/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
2750/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
2751/// are assumed to be legal.
2752bool
2753ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
2754                                      EVT VT) const {
2755  if (VT.getVectorNumElements() == 4 &&
2756      (VT.is128BitVector() || VT.is64BitVector())) {
2757    unsigned PFIndexes[4];
2758    for (unsigned i = 0; i != 4; ++i) {
2759      if (M[i] < 0)
2760        PFIndexes[i] = 8;
2761      else
2762        PFIndexes[i] = M[i];
2763    }
2764
2765    // Compute the index in the perfect shuffle table.
2766    unsigned PFTableIndex =
2767      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2768    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2769    unsigned Cost = (PFEntry >> 30);
2770
2771    if (Cost <= 4)
2772      return true;
2773  }
2774
2775  bool ReverseVEXT;
2776  unsigned Imm, WhichResult;
2777
2778  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
2779          isVREVMask(M, VT, 64) ||
2780          isVREVMask(M, VT, 32) ||
2781          isVREVMask(M, VT, 16) ||
2782          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
2783          isVTRNMask(M, VT, WhichResult) ||
2784          isVUZPMask(M, VT, WhichResult) ||
2785          isVZIPMask(M, VT, WhichResult) ||
2786          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
2787          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
2788          isVZIP_v_undef_Mask(M, VT, WhichResult));
2789}
2790
2791/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2792/// the specified operations to build the shuffle.
2793static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
2794                                      SDValue RHS, SelectionDAG &DAG,
2795                                      DebugLoc dl) {
2796  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2797  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2798  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2799
2800  enum {
2801    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2802    OP_VREV,
2803    OP_VDUP0,
2804    OP_VDUP1,
2805    OP_VDUP2,
2806    OP_VDUP3,
2807    OP_VEXT1,
2808    OP_VEXT2,
2809    OP_VEXT3,
2810    OP_VUZPL, // VUZP, left result
2811    OP_VUZPR, // VUZP, right result
2812    OP_VZIPL, // VZIP, left result
2813    OP_VZIPR, // VZIP, right result
2814    OP_VTRNL, // VTRN, left result
2815    OP_VTRNR  // VTRN, right result
2816  };
2817
2818  if (OpNum == OP_COPY) {
2819    if (LHSID == (1*9+2)*9+3) return LHS;
2820    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2821    return RHS;
2822  }
2823
2824  SDValue OpLHS, OpRHS;
2825  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
2826  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
2827  EVT VT = OpLHS.getValueType();
2828
2829  switch (OpNum) {
2830  default: llvm_unreachable("Unknown shuffle opcode!");
2831  case OP_VREV:
2832    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
2833  case OP_VDUP0:
2834  case OP_VDUP1:
2835  case OP_VDUP2:
2836  case OP_VDUP3:
2837    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
2838                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
2839  case OP_VEXT1:
2840  case OP_VEXT2:
2841  case OP_VEXT3:
2842    return DAG.getNode(ARMISD::VEXT, dl, VT,
2843                       OpLHS, OpRHS,
2844                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
2845  case OP_VUZPL:
2846  case OP_VUZPR:
2847    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2848                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
2849  case OP_VZIPL:
2850  case OP_VZIPR:
2851    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2852                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
2853  case OP_VTRNL:
2854  case OP_VTRNR:
2855    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2856                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
2857  }
2858}
2859
2860static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2861  SDValue V1 = Op.getOperand(0);
2862  SDValue V2 = Op.getOperand(1);
2863  DebugLoc dl = Op.getDebugLoc();
2864  EVT VT = Op.getValueType();
2865  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2866  SmallVector<int, 8> ShuffleMask;
2867
2868  // Convert shuffles that are directly supported on NEON to target-specific
2869  // DAG nodes, instead of keeping them as shuffles and matching them again
2870  // during code selection.  This is more efficient and avoids the possibility
2871  // of inconsistencies between legalization and selection.
2872  // FIXME: floating-point vectors should be canonicalized to integer vectors
2873  // of the same time so that they get CSEd properly.
2874  SVN->getMask(ShuffleMask);
2875
2876  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
2877    int Lane = SVN->getSplatIndex();
2878    // If this is undef splat, generate it via "just" vdup, if possible.
2879    if (Lane == -1) Lane = 0;
2880
2881    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
2882      return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
2883    }
2884    return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
2885                       DAG.getConstant(Lane, MVT::i32));
2886  }
2887
2888  bool ReverseVEXT;
2889  unsigned Imm;
2890  if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
2891    if (ReverseVEXT)
2892      std::swap(V1, V2);
2893    return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
2894                       DAG.getConstant(Imm, MVT::i32));
2895  }
2896
2897  if (isVREVMask(ShuffleMask, VT, 64))
2898    return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
2899  if (isVREVMask(ShuffleMask, VT, 32))
2900    return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
2901  if (isVREVMask(ShuffleMask, VT, 16))
2902    return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
2903
2904  // Check for Neon shuffles that modify both input vectors in place.
2905  // If both results are used, i.e., if there are two shuffles with the same
2906  // source operands and with masks corresponding to both results of one of
2907  // these operations, DAG memoization will ensure that a single node is
2908  // used for both shuffles.
2909  unsigned WhichResult;
2910  if (isVTRNMask(ShuffleMask, VT, WhichResult))
2911    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2912                       V1, V2).getValue(WhichResult);
2913  if (isVUZPMask(ShuffleMask, VT, WhichResult))
2914    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2915                       V1, V2).getValue(WhichResult);
2916  if (isVZIPMask(ShuffleMask, VT, WhichResult))
2917    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2918                       V1, V2).getValue(WhichResult);
2919
2920  if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
2921    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2922                       V1, V1).getValue(WhichResult);
2923  if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
2924    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2925                       V1, V1).getValue(WhichResult);
2926  if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
2927    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2928                       V1, V1).getValue(WhichResult);
2929
2930  // If the shuffle is not directly supported and it has 4 elements, use
2931  // the PerfectShuffle-generated table to synthesize it from other shuffles.
2932  if (VT.getVectorNumElements() == 4 &&
2933      (VT.is128BitVector() || VT.is64BitVector())) {
2934    unsigned PFIndexes[4];
2935    for (unsigned i = 0; i != 4; ++i) {
2936      if (ShuffleMask[i] < 0)
2937        PFIndexes[i] = 8;
2938      else
2939        PFIndexes[i] = ShuffleMask[i];
2940    }
2941
2942    // Compute the index in the perfect shuffle table.
2943    unsigned PFTableIndex =
2944      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2945
2946    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2947    unsigned Cost = (PFEntry >> 30);
2948
2949    if (Cost <= 4)
2950      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
2951  }
2952
2953  return SDValue();
2954}
2955
2956static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2957  EVT VT = Op.getValueType();
2958  DebugLoc dl = Op.getDebugLoc();
2959  SDValue Vec = Op.getOperand(0);
2960  SDValue Lane = Op.getOperand(1);
2961  assert(VT == MVT::i32 &&
2962         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
2963         "unexpected type for custom-lowering vector extract");
2964  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2965}
2966
2967static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2968  // The only time a CONCAT_VECTORS operation can have legal types is when
2969  // two 64-bit vectors are concatenated to a 128-bit vector.
2970  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2971         "unexpected CONCAT_VECTORS");
2972  DebugLoc dl = Op.getDebugLoc();
2973  SDValue Val = DAG.getUNDEF(MVT::v2f64);
2974  SDValue Op0 = Op.getOperand(0);
2975  SDValue Op1 = Op.getOperand(1);
2976  if (Op0.getOpcode() != ISD::UNDEF)
2977    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2978                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2979                      DAG.getIntPtrConstant(0));
2980  if (Op1.getOpcode() != ISD::UNDEF)
2981    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2982                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
2983                      DAG.getIntPtrConstant(1));
2984  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
2985}
2986
2987SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2988  switch (Op.getOpcode()) {
2989  default: llvm_unreachable("Don't know how to custom lower this!");
2990  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2991  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
2992  case ISD::GlobalAddress:
2993    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2994      LowerGlobalAddressELF(Op, DAG);
2995  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2996  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
2997  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
2998  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2999  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3000  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
3001  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3002  case ISD::SINT_TO_FP:
3003  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3004  case ISD::FP_TO_SINT:
3005  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3006  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3007  case ISD::RETURNADDR:    break;
3008  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3009  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3010  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3011  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3012  case ISD::SHL:
3013  case ISD::SRL:
3014  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3015  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3016  case ISD::SRL_PARTS:
3017  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3018  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3019  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
3020  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3021  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3022  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3023  }
3024  return SDValue();
3025}
3026
3027/// ReplaceNodeResults - Replace the results of node with an illegal result
3028/// type with new values built out of custom code.
3029void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3030                                           SmallVectorImpl<SDValue>&Results,
3031                                           SelectionDAG &DAG) {
3032  switch (N->getOpcode()) {
3033  default:
3034    llvm_unreachable("Don't know how to custom expand this!");
3035    return;
3036  case ISD::BIT_CONVERT:
3037    Results.push_back(ExpandBIT_CONVERT(N, DAG));
3038    return;
3039  case ISD::SRL:
3040  case ISD::SRA: {
3041    SDValue Res = LowerShift(N, DAG, Subtarget);
3042    if (Res.getNode())
3043      Results.push_back(Res);
3044    return;
3045  }
3046  }
3047}
3048
3049//===----------------------------------------------------------------------===//
3050//                           ARM Scheduler Hooks
3051//===----------------------------------------------------------------------===//
3052
3053MachineBasicBlock *
3054ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3055                                     MachineBasicBlock *BB,
3056                                     unsigned Size) const {
3057  unsigned dest    = MI->getOperand(0).getReg();
3058  unsigned ptr     = MI->getOperand(1).getReg();
3059  unsigned oldval  = MI->getOperand(2).getReg();
3060  unsigned newval  = MI->getOperand(3).getReg();
3061  unsigned scratch = BB->getParent()->getRegInfo()
3062    .createVirtualRegister(ARM::GPRRegisterClass);
3063  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3064  DebugLoc dl = MI->getDebugLoc();
3065  bool isThumb2 = Subtarget->isThumb2();
3066
3067  unsigned ldrOpc, strOpc;
3068  switch (Size) {
3069  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3070  case 1:
3071    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3072    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3073    break;
3074  case 2:
3075    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3076    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3077    break;
3078  case 4:
3079    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3080    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3081    break;
3082  }
3083
3084  MachineFunction *MF = BB->getParent();
3085  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3086  MachineFunction::iterator It = BB;
3087  ++It; // insert the new blocks after the current block
3088
3089  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3090  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3091  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3092  MF->insert(It, loop1MBB);
3093  MF->insert(It, loop2MBB);
3094  MF->insert(It, exitMBB);
3095  exitMBB->transferSuccessors(BB);
3096
3097  //  thisMBB:
3098  //   ...
3099  //   fallthrough --> loop1MBB
3100  BB->addSuccessor(loop1MBB);
3101
3102  // loop1MBB:
3103  //   ldrex dest, [ptr]
3104  //   cmp dest, oldval
3105  //   bne exitMBB
3106  BB = loop1MBB;
3107  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3108  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3109                 .addReg(dest).addReg(oldval));
3110  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3111    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3112  BB->addSuccessor(loop2MBB);
3113  BB->addSuccessor(exitMBB);
3114
3115  // loop2MBB:
3116  //   strex scratch, newval, [ptr]
3117  //   cmp scratch, #0
3118  //   bne loop1MBB
3119  BB = loop2MBB;
3120  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3121                 .addReg(ptr));
3122  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3123                 .addReg(scratch).addImm(0));
3124  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3125    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3126  BB->addSuccessor(loop1MBB);
3127  BB->addSuccessor(exitMBB);
3128
3129  //  exitMBB:
3130  //   ...
3131  BB = exitMBB;
3132  return BB;
3133}
3134
3135MachineBasicBlock *
3136ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3137                                    unsigned Size, unsigned BinOpcode) const {
3138  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3139  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3140
3141  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3142  MachineFunction *F = BB->getParent();
3143  MachineFunction::iterator It = BB;
3144  ++It;
3145
3146  unsigned dest = MI->getOperand(0).getReg();
3147  unsigned ptr = MI->getOperand(1).getReg();
3148  unsigned incr = MI->getOperand(2).getReg();
3149  DebugLoc dl = MI->getDebugLoc();
3150
3151  bool isThumb2 = Subtarget->isThumb2();
3152  unsigned ldrOpc, strOpc;
3153  switch (Size) {
3154  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3155  case 1:
3156    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3157    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3158    break;
3159  case 2:
3160    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3161    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3162    break;
3163  case 4:
3164    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3165    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3166    break;
3167  }
3168
3169  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3170  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
3171  F->insert(It, loopMBB);
3172  F->insert(It, exitMBB);
3173  exitMBB->transferSuccessors(BB);
3174
3175  MachineRegisterInfo &RegInfo = F->getRegInfo();
3176  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3177  unsigned scratch2 = (!BinOpcode) ? incr :
3178    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3179
3180  //  thisMBB:
3181  //   ...
3182  //   fallthrough --> loopMBB
3183  BB->addSuccessor(loopMBB);
3184
3185  //  loopMBB:
3186  //   ldrex dest, ptr
3187  //   <binop> scratch2, dest, incr
3188  //   strex scratch, scratch2, ptr
3189  //   cmp scratch, #0
3190  //   bne- loopMBB
3191  //   fallthrough --> exitMBB
3192  BB = loopMBB;
3193  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3194  if (BinOpcode) {
3195    // operand order needs to go the other way for NAND
3196    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3197      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3198                     addReg(incr).addReg(dest)).addReg(0);
3199    else
3200      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3201                     addReg(dest).addReg(incr)).addReg(0);
3202  }
3203
3204  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3205                 .addReg(ptr));
3206  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3207                 .addReg(scratch).addImm(0));
3208  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3209    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3210
3211  BB->addSuccessor(loopMBB);
3212  BB->addSuccessor(exitMBB);
3213
3214  //  exitMBB:
3215  //   ...
3216  BB = exitMBB;
3217
3218  F->DeleteMachineInstr(MI);   // The instruction is gone now.
3219
3220  return BB;
3221}
3222
3223MachineBasicBlock *
3224ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3225                                               MachineBasicBlock *BB,
3226                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
3227  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3228  DebugLoc dl = MI->getDebugLoc();
3229  bool isThumb2 = Subtarget->isThumb2();
3230  switch (MI->getOpcode()) {
3231  default:
3232    MI->dump();
3233    llvm_unreachable("Unexpected instr type to insert");
3234
3235  case ARM::ATOMIC_LOAD_ADD_I8:
3236     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3237  case ARM::ATOMIC_LOAD_ADD_I16:
3238     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3239  case ARM::ATOMIC_LOAD_ADD_I32:
3240     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3241
3242  case ARM::ATOMIC_LOAD_AND_I8:
3243     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3244  case ARM::ATOMIC_LOAD_AND_I16:
3245     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3246  case ARM::ATOMIC_LOAD_AND_I32:
3247     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3248
3249  case ARM::ATOMIC_LOAD_OR_I8:
3250     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3251  case ARM::ATOMIC_LOAD_OR_I16:
3252     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3253  case ARM::ATOMIC_LOAD_OR_I32:
3254     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3255
3256  case ARM::ATOMIC_LOAD_XOR_I8:
3257     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3258  case ARM::ATOMIC_LOAD_XOR_I16:
3259     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3260  case ARM::ATOMIC_LOAD_XOR_I32:
3261     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3262
3263  case ARM::ATOMIC_LOAD_NAND_I8:
3264     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3265  case ARM::ATOMIC_LOAD_NAND_I16:
3266     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3267  case ARM::ATOMIC_LOAD_NAND_I32:
3268     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3269
3270  case ARM::ATOMIC_LOAD_SUB_I8:
3271     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3272  case ARM::ATOMIC_LOAD_SUB_I16:
3273     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3274  case ARM::ATOMIC_LOAD_SUB_I32:
3275     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3276
3277  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
3278  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
3279  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
3280
3281  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
3282  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
3283  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
3284
3285  case ARM::tMOVCCr_pseudo: {
3286    // To "insert" a SELECT_CC instruction, we actually have to insert the
3287    // diamond control-flow pattern.  The incoming instruction knows the
3288    // destination vreg to set, the condition code register to branch on, the
3289    // true/false values to select between, and a branch opcode to use.
3290    const BasicBlock *LLVM_BB = BB->getBasicBlock();
3291    MachineFunction::iterator It = BB;
3292    ++It;
3293
3294    //  thisMBB:
3295    //  ...
3296    //   TrueVal = ...
3297    //   cmpTY ccX, r1, r2
3298    //   bCC copy1MBB
3299    //   fallthrough --> copy0MBB
3300    MachineBasicBlock *thisMBB  = BB;
3301    MachineFunction *F = BB->getParent();
3302    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3303    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3304    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
3305      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
3306    F->insert(It, copy0MBB);
3307    F->insert(It, sinkMBB);
3308    // Update machine-CFG edges by first adding all successors of the current
3309    // block to the new block which will contain the Phi node for the select.
3310    // Also inform sdisel of the edge changes.
3311    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
3312           E = BB->succ_end(); I != E; ++I) {
3313      EM->insert(std::make_pair(*I, sinkMBB));
3314      sinkMBB->addSuccessor(*I);
3315    }
3316    // Next, remove all successors of the current block, and add the true
3317    // and fallthrough blocks as its successors.
3318    while (!BB->succ_empty())
3319      BB->removeSuccessor(BB->succ_begin());
3320    BB->addSuccessor(copy0MBB);
3321    BB->addSuccessor(sinkMBB);
3322
3323    //  copy0MBB:
3324    //   %FalseValue = ...
3325    //   # fallthrough to sinkMBB
3326    BB = copy0MBB;
3327
3328    // Update machine-CFG edges
3329    BB->addSuccessor(sinkMBB);
3330
3331    //  sinkMBB:
3332    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3333    //  ...
3334    BB = sinkMBB;
3335    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
3336      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
3337      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3338
3339    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3340    return BB;
3341  }
3342
3343  case ARM::tANDsp:
3344  case ARM::tADDspr_:
3345  case ARM::tSUBspi_:
3346  case ARM::t2SUBrSPi_:
3347  case ARM::t2SUBrSPi12_:
3348  case ARM::t2SUBrSPs_: {
3349    MachineFunction *MF = BB->getParent();
3350    unsigned DstReg = MI->getOperand(0).getReg();
3351    unsigned SrcReg = MI->getOperand(1).getReg();
3352    bool DstIsDead = MI->getOperand(0).isDead();
3353    bool SrcIsKill = MI->getOperand(1).isKill();
3354
3355    if (SrcReg != ARM::SP) {
3356      // Copy the source to SP from virtual register.
3357      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
3358      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3359        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
3360      BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
3361        .addReg(SrcReg, getKillRegState(SrcIsKill));
3362    }
3363
3364    unsigned OpOpc = 0;
3365    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
3366    switch (MI->getOpcode()) {
3367    default:
3368      llvm_unreachable("Unexpected pseudo instruction!");
3369    case ARM::tANDsp:
3370      OpOpc = ARM::tAND;
3371      NeedPred = true;
3372      break;
3373    case ARM::tADDspr_:
3374      OpOpc = ARM::tADDspr;
3375      break;
3376    case ARM::tSUBspi_:
3377      OpOpc = ARM::tSUBspi;
3378      break;
3379    case ARM::t2SUBrSPi_:
3380      OpOpc = ARM::t2SUBrSPi;
3381      NeedPred = true; NeedCC = true;
3382      break;
3383    case ARM::t2SUBrSPi12_:
3384      OpOpc = ARM::t2SUBrSPi12;
3385      NeedPred = true;
3386      break;
3387    case ARM::t2SUBrSPs_:
3388      OpOpc = ARM::t2SUBrSPs;
3389      NeedPred = true; NeedCC = true; NeedOp3 = true;
3390      break;
3391    }
3392    MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
3393    if (OpOpc == ARM::tAND)
3394      AddDefaultT1CC(MIB);
3395    MIB.addReg(ARM::SP);
3396    MIB.addOperand(MI->getOperand(2));
3397    if (NeedOp3)
3398      MIB.addOperand(MI->getOperand(3));
3399    if (NeedPred)
3400      AddDefaultPred(MIB);
3401    if (NeedCC)
3402      AddDefaultCC(MIB);
3403
3404    // Copy the result from SP to virtual register.
3405    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
3406    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3407      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
3408    BuildMI(BB, dl, TII->get(CopyOpc))
3409      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
3410      .addReg(ARM::SP);
3411    MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3412    return BB;
3413  }
3414  }
3415}
3416
3417//===----------------------------------------------------------------------===//
3418//                           ARM Optimization Hooks
3419//===----------------------------------------------------------------------===//
3420
3421static
3422SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
3423                            TargetLowering::DAGCombinerInfo &DCI) {
3424  SelectionDAG &DAG = DCI.DAG;
3425  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3426  EVT VT = N->getValueType(0);
3427  unsigned Opc = N->getOpcode();
3428  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
3429  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
3430  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
3431  ISD::CondCode CC = ISD::SETCC_INVALID;
3432
3433  if (isSlctCC) {
3434    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
3435  } else {
3436    SDValue CCOp = Slct.getOperand(0);
3437    if (CCOp.getOpcode() == ISD::SETCC)
3438      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
3439  }
3440
3441  bool DoXform = false;
3442  bool InvCC = false;
3443  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
3444          "Bad input!");
3445
3446  if (LHS.getOpcode() == ISD::Constant &&
3447      cast<ConstantSDNode>(LHS)->isNullValue()) {
3448    DoXform = true;
3449  } else if (CC != ISD::SETCC_INVALID &&
3450             RHS.getOpcode() == ISD::Constant &&
3451             cast<ConstantSDNode>(RHS)->isNullValue()) {
3452    std::swap(LHS, RHS);
3453    SDValue Op0 = Slct.getOperand(0);
3454    EVT OpVT = isSlctCC ? Op0.getValueType() :
3455                          Op0.getOperand(0).getValueType();
3456    bool isInt = OpVT.isInteger();
3457    CC = ISD::getSetCCInverse(CC, isInt);
3458
3459    if (!TLI.isCondCodeLegal(CC, OpVT))
3460      return SDValue();         // Inverse operator isn't legal.
3461
3462    DoXform = true;
3463    InvCC = true;
3464  }
3465
3466  if (DoXform) {
3467    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
3468    if (isSlctCC)
3469      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
3470                             Slct.getOperand(0), Slct.getOperand(1), CC);
3471    SDValue CCOp = Slct.getOperand(0);
3472    if (InvCC)
3473      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
3474                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
3475    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
3476                       CCOp, OtherOp, Result);
3477  }
3478  return SDValue();
3479}
3480
3481/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3482static SDValue PerformADDCombine(SDNode *N,
3483                                 TargetLowering::DAGCombinerInfo &DCI) {
3484  // added by evan in r37685 with no testcase.
3485  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3486
3487  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
3488  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
3489    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
3490    if (Result.getNode()) return Result;
3491  }
3492  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3493    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3494    if (Result.getNode()) return Result;
3495  }
3496
3497  return SDValue();
3498}
3499
3500/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
3501static SDValue PerformSUBCombine(SDNode *N,
3502                                 TargetLowering::DAGCombinerInfo &DCI) {
3503  // added by evan in r37685 with no testcase.
3504  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3505
3506  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
3507  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3508    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3509    if (Result.getNode()) return Result;
3510  }
3511
3512  return SDValue();
3513}
3514
3515/// PerformVMOVRRDCombine - Target-specific dag combine xforms for ARMISD::VMOVRRD.
3516static SDValue PerformVMOVRRDCombine(SDNode *N,
3517                                   TargetLowering::DAGCombinerInfo &DCI) {
3518  // fmrrd(fmdrr x, y) -> x,y
3519  SDValue InDouble = N->getOperand(0);
3520  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
3521    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
3522  return SDValue();
3523}
3524
3525/// getVShiftImm - Check if this is a valid build_vector for the immediate
3526/// operand of a vector shift operation, where all the elements of the
3527/// build_vector must have the same constant integer value.
3528static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3529  // Ignore bit_converts.
3530  while (Op.getOpcode() == ISD::BIT_CONVERT)
3531    Op = Op.getOperand(0);
3532  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3533  APInt SplatBits, SplatUndef;
3534  unsigned SplatBitSize;
3535  bool HasAnyUndefs;
3536  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3537                                      HasAnyUndefs, ElementBits) ||
3538      SplatBitSize > ElementBits)
3539    return false;
3540  Cnt = SplatBits.getSExtValue();
3541  return true;
3542}
3543
3544/// isVShiftLImm - Check if this is a valid build_vector for the immediate
3545/// operand of a vector shift left operation.  That value must be in the range:
3546///   0 <= Value < ElementBits for a left shift; or
3547///   0 <= Value <= ElementBits for a long left shift.
3548static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
3549  assert(VT.isVector() && "vector shift count is not a vector type");
3550  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3551  if (! getVShiftImm(Op, ElementBits, Cnt))
3552    return false;
3553  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
3554}
3555
3556/// isVShiftRImm - Check if this is a valid build_vector for the immediate
3557/// operand of a vector shift right operation.  For a shift opcode, the value
3558/// is positive, but for an intrinsic the value count must be negative. The
3559/// absolute value must be in the range:
3560///   1 <= |Value| <= ElementBits for a right shift; or
3561///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
3562static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
3563                         int64_t &Cnt) {
3564  assert(VT.isVector() && "vector shift count is not a vector type");
3565  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3566  if (! getVShiftImm(Op, ElementBits, Cnt))
3567    return false;
3568  if (isIntrinsic)
3569    Cnt = -Cnt;
3570  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
3571}
3572
3573/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
3574static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3575  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3576  switch (IntNo) {
3577  default:
3578    // Don't do anything for most intrinsics.
3579    break;
3580
3581  // Vector shifts: check for immediate versions and lower them.
3582  // Note: This is done during DAG combining instead of DAG legalizing because
3583  // the build_vectors for 64-bit vector element shift counts are generally
3584  // not legal, and it is hard to see their values after they get legalized to
3585  // loads from a constant pool.
3586  case Intrinsic::arm_neon_vshifts:
3587  case Intrinsic::arm_neon_vshiftu:
3588  case Intrinsic::arm_neon_vshiftls:
3589  case Intrinsic::arm_neon_vshiftlu:
3590  case Intrinsic::arm_neon_vshiftn:
3591  case Intrinsic::arm_neon_vrshifts:
3592  case Intrinsic::arm_neon_vrshiftu:
3593  case Intrinsic::arm_neon_vrshiftn:
3594  case Intrinsic::arm_neon_vqshifts:
3595  case Intrinsic::arm_neon_vqshiftu:
3596  case Intrinsic::arm_neon_vqshiftsu:
3597  case Intrinsic::arm_neon_vqshiftns:
3598  case Intrinsic::arm_neon_vqshiftnu:
3599  case Intrinsic::arm_neon_vqshiftnsu:
3600  case Intrinsic::arm_neon_vqrshiftns:
3601  case Intrinsic::arm_neon_vqrshiftnu:
3602  case Intrinsic::arm_neon_vqrshiftnsu: {
3603    EVT VT = N->getOperand(1).getValueType();
3604    int64_t Cnt;
3605    unsigned VShiftOpc = 0;
3606
3607    switch (IntNo) {
3608    case Intrinsic::arm_neon_vshifts:
3609    case Intrinsic::arm_neon_vshiftu:
3610      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
3611        VShiftOpc = ARMISD::VSHL;
3612        break;
3613      }
3614      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
3615        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
3616                     ARMISD::VSHRs : ARMISD::VSHRu);
3617        break;
3618      }
3619      return SDValue();
3620
3621    case Intrinsic::arm_neon_vshiftls:
3622    case Intrinsic::arm_neon_vshiftlu:
3623      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
3624        break;
3625      llvm_unreachable("invalid shift count for vshll intrinsic");
3626
3627    case Intrinsic::arm_neon_vrshifts:
3628    case Intrinsic::arm_neon_vrshiftu:
3629      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
3630        break;
3631      return SDValue();
3632
3633    case Intrinsic::arm_neon_vqshifts:
3634    case Intrinsic::arm_neon_vqshiftu:
3635      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3636        break;
3637      return SDValue();
3638
3639    case Intrinsic::arm_neon_vqshiftsu:
3640      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3641        break;
3642      llvm_unreachable("invalid shift count for vqshlu intrinsic");
3643
3644    case Intrinsic::arm_neon_vshiftn:
3645    case Intrinsic::arm_neon_vrshiftn:
3646    case Intrinsic::arm_neon_vqshiftns:
3647    case Intrinsic::arm_neon_vqshiftnu:
3648    case Intrinsic::arm_neon_vqshiftnsu:
3649    case Intrinsic::arm_neon_vqrshiftns:
3650    case Intrinsic::arm_neon_vqrshiftnu:
3651    case Intrinsic::arm_neon_vqrshiftnsu:
3652      // Narrowing shifts require an immediate right shift.
3653      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
3654        break;
3655      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
3656
3657    default:
3658      llvm_unreachable("unhandled vector shift");
3659    }
3660
3661    switch (IntNo) {
3662    case Intrinsic::arm_neon_vshifts:
3663    case Intrinsic::arm_neon_vshiftu:
3664      // Opcode already set above.
3665      break;
3666    case Intrinsic::arm_neon_vshiftls:
3667    case Intrinsic::arm_neon_vshiftlu:
3668      if (Cnt == VT.getVectorElementType().getSizeInBits())
3669        VShiftOpc = ARMISD::VSHLLi;
3670      else
3671        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
3672                     ARMISD::VSHLLs : ARMISD::VSHLLu);
3673      break;
3674    case Intrinsic::arm_neon_vshiftn:
3675      VShiftOpc = ARMISD::VSHRN; break;
3676    case Intrinsic::arm_neon_vrshifts:
3677      VShiftOpc = ARMISD::VRSHRs; break;
3678    case Intrinsic::arm_neon_vrshiftu:
3679      VShiftOpc = ARMISD::VRSHRu; break;
3680    case Intrinsic::arm_neon_vrshiftn:
3681      VShiftOpc = ARMISD::VRSHRN; break;
3682    case Intrinsic::arm_neon_vqshifts:
3683      VShiftOpc = ARMISD::VQSHLs; break;
3684    case Intrinsic::arm_neon_vqshiftu:
3685      VShiftOpc = ARMISD::VQSHLu; break;
3686    case Intrinsic::arm_neon_vqshiftsu:
3687      VShiftOpc = ARMISD::VQSHLsu; break;
3688    case Intrinsic::arm_neon_vqshiftns:
3689      VShiftOpc = ARMISD::VQSHRNs; break;
3690    case Intrinsic::arm_neon_vqshiftnu:
3691      VShiftOpc = ARMISD::VQSHRNu; break;
3692    case Intrinsic::arm_neon_vqshiftnsu:
3693      VShiftOpc = ARMISD::VQSHRNsu; break;
3694    case Intrinsic::arm_neon_vqrshiftns:
3695      VShiftOpc = ARMISD::VQRSHRNs; break;
3696    case Intrinsic::arm_neon_vqrshiftnu:
3697      VShiftOpc = ARMISD::VQRSHRNu; break;
3698    case Intrinsic::arm_neon_vqrshiftnsu:
3699      VShiftOpc = ARMISD::VQRSHRNsu; break;
3700    }
3701
3702    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3703                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3704  }
3705
3706  case Intrinsic::arm_neon_vshiftins: {
3707    EVT VT = N->getOperand(1).getValueType();
3708    int64_t Cnt;
3709    unsigned VShiftOpc = 0;
3710
3711    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
3712      VShiftOpc = ARMISD::VSLI;
3713    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
3714      VShiftOpc = ARMISD::VSRI;
3715    else {
3716      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
3717    }
3718
3719    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3720                       N->getOperand(1), N->getOperand(2),
3721                       DAG.getConstant(Cnt, MVT::i32));
3722  }
3723
3724  case Intrinsic::arm_neon_vqrshifts:
3725  case Intrinsic::arm_neon_vqrshiftu:
3726    // No immediate versions of these to check for.
3727    break;
3728  }
3729
3730  return SDValue();
3731}
3732
3733/// PerformShiftCombine - Checks for immediate versions of vector shifts and
3734/// lowers them.  As with the vector shift intrinsics, this is done during DAG
3735/// combining instead of DAG legalizing because the build_vectors for 64-bit
3736/// vector element shift counts are generally not legal, and it is hard to see
3737/// their values after they get legalized to loads from a constant pool.
3738static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
3739                                   const ARMSubtarget *ST) {
3740  EVT VT = N->getValueType(0);
3741
3742  // Nothing to be done for scalar shifts.
3743  if (! VT.isVector())
3744    return SDValue();
3745
3746  assert(ST->hasNEON() && "unexpected vector shift");
3747  int64_t Cnt;
3748
3749  switch (N->getOpcode()) {
3750  default: llvm_unreachable("unexpected shift opcode");
3751
3752  case ISD::SHL:
3753    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
3754      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
3755                         DAG.getConstant(Cnt, MVT::i32));
3756    break;
3757
3758  case ISD::SRA:
3759  case ISD::SRL:
3760    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
3761      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
3762                            ARMISD::VSHRs : ARMISD::VSHRu);
3763      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
3764                         DAG.getConstant(Cnt, MVT::i32));
3765    }
3766  }
3767  return SDValue();
3768}
3769
3770/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
3771/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
3772static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
3773                                    const ARMSubtarget *ST) {
3774  SDValue N0 = N->getOperand(0);
3775
3776  // Check for sign- and zero-extensions of vector extract operations of 8-
3777  // and 16-bit vector elements.  NEON supports these directly.  They are
3778  // handled during DAG combining because type legalization will promote them
3779  // to 32-bit types and it is messy to recognize the operations after that.
3780  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3781    SDValue Vec = N0.getOperand(0);
3782    SDValue Lane = N0.getOperand(1);
3783    EVT VT = N->getValueType(0);
3784    EVT EltVT = N0.getValueType();
3785    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3786
3787    if (VT == MVT::i32 &&
3788        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3789        TLI.isTypeLegal(Vec.getValueType())) {
3790
3791      unsigned Opc = 0;
3792      switch (N->getOpcode()) {
3793      default: llvm_unreachable("unexpected opcode");
3794      case ISD::SIGN_EXTEND:
3795        Opc = ARMISD::VGETLANEs;
3796        break;
3797      case ISD::ZERO_EXTEND:
3798      case ISD::ANY_EXTEND:
3799        Opc = ARMISD::VGETLANEu;
3800        break;
3801      }
3802      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3803    }
3804  }
3805
3806  return SDValue();
3807}
3808
3809SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
3810                                             DAGCombinerInfo &DCI) const {
3811  switch (N->getOpcode()) {
3812  default: break;
3813  case ISD::ADD:      return PerformADDCombine(N, DCI);
3814  case ISD::SUB:      return PerformSUBCombine(N, DCI);
3815  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
3816  case ISD::INTRINSIC_WO_CHAIN:
3817    return PerformIntrinsicCombine(N, DCI.DAG);
3818  case ISD::SHL:
3819  case ISD::SRA:
3820  case ISD::SRL:
3821    return PerformShiftCombine(N, DCI.DAG, Subtarget);
3822  case ISD::SIGN_EXTEND:
3823  case ISD::ZERO_EXTEND:
3824  case ISD::ANY_EXTEND:
3825    return PerformExtendCombine(N, DCI.DAG, Subtarget);
3826  }
3827  return SDValue();
3828}
3829
3830bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
3831  if (!Subtarget->hasV6Ops())
3832    // Pre-v6 does not support unaligned mem access.
3833    return false;
3834  else if (!Subtarget->hasV6Ops()) {
3835    // v6 may or may not support unaligned mem access.
3836    if (!Subtarget->isTargetDarwin())
3837      return false;
3838  }
3839
3840  switch (VT.getSimpleVT().SimpleTy) {
3841  default:
3842    return false;
3843  case MVT::i8:
3844  case MVT::i16:
3845  case MVT::i32:
3846    return true;
3847  // FIXME: VLD1 etc with standard alignment is legal.
3848  }
3849}
3850
3851static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
3852  if (V < 0)
3853    return false;
3854
3855  unsigned Scale = 1;
3856  switch (VT.getSimpleVT().SimpleTy) {
3857  default: return false;
3858  case MVT::i1:
3859  case MVT::i8:
3860    // Scale == 1;
3861    break;
3862  case MVT::i16:
3863    // Scale == 2;
3864    Scale = 2;
3865    break;
3866  case MVT::i32:
3867    // Scale == 4;
3868    Scale = 4;
3869    break;
3870  }
3871
3872  if ((V & (Scale - 1)) != 0)
3873    return false;
3874  V /= Scale;
3875  return V == (V & ((1LL << 5) - 1));
3876}
3877
3878static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
3879                                      const ARMSubtarget *Subtarget) {
3880  bool isNeg = false;
3881  if (V < 0) {
3882    isNeg = true;
3883    V = - V;
3884  }
3885
3886  switch (VT.getSimpleVT().SimpleTy) {
3887  default: return false;
3888  case MVT::i1:
3889  case MVT::i8:
3890  case MVT::i16:
3891  case MVT::i32:
3892    // + imm12 or - imm8
3893    if (isNeg)
3894      return V == (V & ((1LL << 8) - 1));
3895    return V == (V & ((1LL << 12) - 1));
3896  case MVT::f32:
3897  case MVT::f64:
3898    // Same as ARM mode. FIXME: NEON?
3899    if (!Subtarget->hasVFP2())
3900      return false;
3901    if ((V & 3) != 0)
3902      return false;
3903    V >>= 2;
3904    return V == (V & ((1LL << 8) - 1));
3905  }
3906}
3907
3908/// isLegalAddressImmediate - Return true if the integer value can be used
3909/// as the offset of the target addressing mode for load / store of the
3910/// given type.
3911static bool isLegalAddressImmediate(int64_t V, EVT VT,
3912                                    const ARMSubtarget *Subtarget) {
3913  if (V == 0)
3914    return true;
3915
3916  if (!VT.isSimple())
3917    return false;
3918
3919  if (Subtarget->isThumb1Only())
3920    return isLegalT1AddressImmediate(V, VT);
3921  else if (Subtarget->isThumb2())
3922    return isLegalT2AddressImmediate(V, VT, Subtarget);
3923
3924  // ARM mode.
3925  if (V < 0)
3926    V = - V;
3927  switch (VT.getSimpleVT().SimpleTy) {
3928  default: return false;
3929  case MVT::i1:
3930  case MVT::i8:
3931  case MVT::i32:
3932    // +- imm12
3933    return V == (V & ((1LL << 12) - 1));
3934  case MVT::i16:
3935    // +- imm8
3936    return V == (V & ((1LL << 8) - 1));
3937  case MVT::f32:
3938  case MVT::f64:
3939    if (!Subtarget->hasVFP2()) // FIXME: NEON?
3940      return false;
3941    if ((V & 3) != 0)
3942      return false;
3943    V >>= 2;
3944    return V == (V & ((1LL << 8) - 1));
3945  }
3946}
3947
3948bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
3949                                                      EVT VT) const {
3950  int Scale = AM.Scale;
3951  if (Scale < 0)
3952    return false;
3953
3954  switch (VT.getSimpleVT().SimpleTy) {
3955  default: return false;
3956  case MVT::i1:
3957  case MVT::i8:
3958  case MVT::i16:
3959  case MVT::i32:
3960    if (Scale == 1)
3961      return true;
3962    // r + r << imm
3963    Scale = Scale & ~1;
3964    return Scale == 2 || Scale == 4 || Scale == 8;
3965  case MVT::i64:
3966    // r + r
3967    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3968      return true;
3969    return false;
3970  case MVT::isVoid:
3971    // Note, we allow "void" uses (basically, uses that aren't loads or
3972    // stores), because arm allows folding a scale into many arithmetic
3973    // operations.  This should be made more precise and revisited later.
3974
3975    // Allow r << imm, but the imm has to be a multiple of two.
3976    if (Scale & 1) return false;
3977    return isPowerOf2_32(Scale);
3978  }
3979}
3980
3981/// isLegalAddressingMode - Return true if the addressing mode represented
3982/// by AM is legal for this target, for a load/store of the specified type.
3983bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3984                                              const Type *Ty) const {
3985  EVT VT = getValueType(Ty, true);
3986  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
3987    return false;
3988
3989  // Can never fold addr of global into load/store.
3990  if (AM.BaseGV)
3991    return false;
3992
3993  switch (AM.Scale) {
3994  case 0:  // no scale reg, must be "r+i" or "r", or "i".
3995    break;
3996  case 1:
3997    if (Subtarget->isThumb1Only())
3998      return false;
3999    // FALL THROUGH.
4000  default:
4001    // ARM doesn't support any R+R*scale+imm addr modes.
4002    if (AM.BaseOffs)
4003      return false;
4004
4005    if (!VT.isSimple())
4006      return false;
4007
4008    if (Subtarget->isThumb2())
4009      return isLegalT2ScaledAddressingMode(AM, VT);
4010
4011    int Scale = AM.Scale;
4012    switch (VT.getSimpleVT().SimpleTy) {
4013    default: return false;
4014    case MVT::i1:
4015    case MVT::i8:
4016    case MVT::i32:
4017      if (Scale < 0) Scale = -Scale;
4018      if (Scale == 1)
4019        return true;
4020      // r + r << imm
4021      return isPowerOf2_32(Scale & ~1);
4022    case MVT::i16:
4023    case MVT::i64:
4024      // r + r
4025      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4026        return true;
4027      return false;
4028
4029    case MVT::isVoid:
4030      // Note, we allow "void" uses (basically, uses that aren't loads or
4031      // stores), because arm allows folding a scale into many arithmetic
4032      // operations.  This should be made more precise and revisited later.
4033
4034      // Allow r << imm, but the imm has to be a multiple of two.
4035      if (Scale & 1) return false;
4036      return isPowerOf2_32(Scale);
4037    }
4038    break;
4039  }
4040  return true;
4041}
4042
4043/// isLegalICmpImmediate - Return true if the specified immediate is legal
4044/// icmp immediate, that is the target has icmp instructions which can compare
4045/// a register against the immediate without having to materialize the
4046/// immediate into a register.
4047bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
4048  if (!Subtarget->isThumb())
4049    return ARM_AM::getSOImmVal(Imm) != -1;
4050  if (Subtarget->isThumb2())
4051    return ARM_AM::getT2SOImmVal(Imm) != -1;
4052  return Imm >= 0 && Imm <= 255;
4053}
4054
4055static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
4056                                      bool isSEXTLoad, SDValue &Base,
4057                                      SDValue &Offset, bool &isInc,
4058                                      SelectionDAG &DAG) {
4059  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4060    return false;
4061
4062  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
4063    // AddressingMode 3
4064    Base = Ptr->getOperand(0);
4065    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4066      int RHSC = (int)RHS->getZExtValue();
4067      if (RHSC < 0 && RHSC > -256) {
4068        assert(Ptr->getOpcode() == ISD::ADD);
4069        isInc = false;
4070        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4071        return true;
4072      }
4073    }
4074    isInc = (Ptr->getOpcode() == ISD::ADD);
4075    Offset = Ptr->getOperand(1);
4076    return true;
4077  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
4078    // AddressingMode 2
4079    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4080      int RHSC = (int)RHS->getZExtValue();
4081      if (RHSC < 0 && RHSC > -0x1000) {
4082        assert(Ptr->getOpcode() == ISD::ADD);
4083        isInc = false;
4084        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4085        Base = Ptr->getOperand(0);
4086        return true;
4087      }
4088    }
4089
4090    if (Ptr->getOpcode() == ISD::ADD) {
4091      isInc = true;
4092      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
4093      if (ShOpcVal != ARM_AM::no_shift) {
4094        Base = Ptr->getOperand(1);
4095        Offset = Ptr->getOperand(0);
4096      } else {
4097        Base = Ptr->getOperand(0);
4098        Offset = Ptr->getOperand(1);
4099      }
4100      return true;
4101    }
4102
4103    isInc = (Ptr->getOpcode() == ISD::ADD);
4104    Base = Ptr->getOperand(0);
4105    Offset = Ptr->getOperand(1);
4106    return true;
4107  }
4108
4109  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
4110  return false;
4111}
4112
4113static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
4114                                     bool isSEXTLoad, SDValue &Base,
4115                                     SDValue &Offset, bool &isInc,
4116                                     SelectionDAG &DAG) {
4117  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4118    return false;
4119
4120  Base = Ptr->getOperand(0);
4121  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4122    int RHSC = (int)RHS->getZExtValue();
4123    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
4124      assert(Ptr->getOpcode() == ISD::ADD);
4125      isInc = false;
4126      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4127      return true;
4128    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
4129      isInc = Ptr->getOpcode() == ISD::ADD;
4130      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
4131      return true;
4132    }
4133  }
4134
4135  return false;
4136}
4137
4138/// getPreIndexedAddressParts - returns true by value, base pointer and
4139/// offset pointer and addressing mode by reference if the node's address
4140/// can be legally represented as pre-indexed load / store address.
4141bool
4142ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
4143                                             SDValue &Offset,
4144                                             ISD::MemIndexedMode &AM,
4145                                             SelectionDAG &DAG) const {
4146  if (Subtarget->isThumb1Only())
4147    return false;
4148
4149  EVT VT;
4150  SDValue Ptr;
4151  bool isSEXTLoad = false;
4152  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4153    Ptr = LD->getBasePtr();
4154    VT  = LD->getMemoryVT();
4155    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4156  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4157    Ptr = ST->getBasePtr();
4158    VT  = ST->getMemoryVT();
4159  } else
4160    return false;
4161
4162  bool isInc;
4163  bool isLegal = false;
4164  if (Subtarget->isThumb2())
4165    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4166                                       Offset, isInc, DAG);
4167  else
4168    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4169                                        Offset, isInc, DAG);
4170  if (!isLegal)
4171    return false;
4172
4173  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
4174  return true;
4175}
4176
4177/// getPostIndexedAddressParts - returns true by value, base pointer and
4178/// offset pointer and addressing mode by reference if this node can be
4179/// combined with a load / store to form a post-indexed load / store.
4180bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
4181                                                   SDValue &Base,
4182                                                   SDValue &Offset,
4183                                                   ISD::MemIndexedMode &AM,
4184                                                   SelectionDAG &DAG) const {
4185  if (Subtarget->isThumb1Only())
4186    return false;
4187
4188  EVT VT;
4189  SDValue Ptr;
4190  bool isSEXTLoad = false;
4191  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4192    VT  = LD->getMemoryVT();
4193    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4194  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4195    VT  = ST->getMemoryVT();
4196  } else
4197    return false;
4198
4199  bool isInc;
4200  bool isLegal = false;
4201  if (Subtarget->isThumb2())
4202    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4203                                        isInc, DAG);
4204  else
4205    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4206                                        isInc, DAG);
4207  if (!isLegal)
4208    return false;
4209
4210  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
4211  return true;
4212}
4213
4214void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4215                                                       const APInt &Mask,
4216                                                       APInt &KnownZero,
4217                                                       APInt &KnownOne,
4218                                                       const SelectionDAG &DAG,
4219                                                       unsigned Depth) const {
4220  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4221  switch (Op.getOpcode()) {
4222  default: break;
4223  case ARMISD::CMOV: {
4224    // Bits are known zero/one if known on the LHS and RHS.
4225    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
4226    if (KnownZero == 0 && KnownOne == 0) return;
4227
4228    APInt KnownZeroRHS, KnownOneRHS;
4229    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
4230                          KnownZeroRHS, KnownOneRHS, Depth+1);
4231    KnownZero &= KnownZeroRHS;
4232    KnownOne  &= KnownOneRHS;
4233    return;
4234  }
4235  }
4236}
4237
4238//===----------------------------------------------------------------------===//
4239//                           ARM Inline Assembly Support
4240//===----------------------------------------------------------------------===//
4241
4242/// getConstraintType - Given a constraint letter, return the type of
4243/// constraint it is for this target.
4244ARMTargetLowering::ConstraintType
4245ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
4246  if (Constraint.size() == 1) {
4247    switch (Constraint[0]) {
4248    default:  break;
4249    case 'l': return C_RegisterClass;
4250    case 'w': return C_RegisterClass;
4251    }
4252  }
4253  return TargetLowering::getConstraintType(Constraint);
4254}
4255
4256std::pair<unsigned, const TargetRegisterClass*>
4257ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4258                                                EVT VT) const {
4259  if (Constraint.size() == 1) {
4260    // GCC RS6000 Constraint Letters
4261    switch (Constraint[0]) {
4262    case 'l':
4263      if (Subtarget->isThumb1Only())
4264        return std::make_pair(0U, ARM::tGPRRegisterClass);
4265      else
4266        return std::make_pair(0U, ARM::GPRRegisterClass);
4267    case 'r':
4268      return std::make_pair(0U, ARM::GPRRegisterClass);
4269    case 'w':
4270      if (VT == MVT::f32)
4271        return std::make_pair(0U, ARM::SPRRegisterClass);
4272      if (VT.getSizeInBits() == 64)
4273        return std::make_pair(0U, ARM::DPRRegisterClass);
4274      if (VT.getSizeInBits() == 128)
4275        return std::make_pair(0U, ARM::QPRRegisterClass);
4276      break;
4277    }
4278  }
4279  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4280}
4281
4282std::vector<unsigned> ARMTargetLowering::
4283getRegClassForInlineAsmConstraint(const std::string &Constraint,
4284                                  EVT VT) const {
4285  if (Constraint.size() != 1)
4286    return std::vector<unsigned>();
4287
4288  switch (Constraint[0]) {      // GCC ARM Constraint Letters
4289  default: break;
4290  case 'l':
4291    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4292                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4293                                 0);
4294  case 'r':
4295    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4296                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4297                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
4298                                 ARM::R12, ARM::LR, 0);
4299  case 'w':
4300    if (VT == MVT::f32)
4301      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
4302                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
4303                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
4304                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
4305                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
4306                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
4307                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
4308                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
4309    if (VT.getSizeInBits() == 64)
4310      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
4311                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
4312                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
4313                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
4314    if (VT.getSizeInBits() == 128)
4315      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
4316                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
4317      break;
4318  }
4319
4320  return std::vector<unsigned>();
4321}
4322
4323/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4324/// vector.  If it is invalid, don't add anything to Ops.
4325void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4326                                                     char Constraint,
4327                                                     bool hasMemory,
4328                                                     std::vector<SDValue>&Ops,
4329                                                     SelectionDAG &DAG) const {
4330  SDValue Result(0, 0);
4331
4332  switch (Constraint) {
4333  default: break;
4334  case 'I': case 'J': case 'K': case 'L':
4335  case 'M': case 'N': case 'O':
4336    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4337    if (!C)
4338      return;
4339
4340    int64_t CVal64 = C->getSExtValue();
4341    int CVal = (int) CVal64;
4342    // None of these constraints allow values larger than 32 bits.  Check
4343    // that the value fits in an int.
4344    if (CVal != CVal64)
4345      return;
4346
4347    switch (Constraint) {
4348      case 'I':
4349        if (Subtarget->isThumb1Only()) {
4350          // This must be a constant between 0 and 255, for ADD
4351          // immediates.
4352          if (CVal >= 0 && CVal <= 255)
4353            break;
4354        } else if (Subtarget->isThumb2()) {
4355          // A constant that can be used as an immediate value in a
4356          // data-processing instruction.
4357          if (ARM_AM::getT2SOImmVal(CVal) != -1)
4358            break;
4359        } else {
4360          // A constant that can be used as an immediate value in a
4361          // data-processing instruction.
4362          if (ARM_AM::getSOImmVal(CVal) != -1)
4363            break;
4364        }
4365        return;
4366
4367      case 'J':
4368        if (Subtarget->isThumb()) {  // FIXME thumb2
4369          // This must be a constant between -255 and -1, for negated ADD
4370          // immediates. This can be used in GCC with an "n" modifier that
4371          // prints the negated value, for use with SUB instructions. It is
4372          // not useful otherwise but is implemented for compatibility.
4373          if (CVal >= -255 && CVal <= -1)
4374            break;
4375        } else {
4376          // This must be a constant between -4095 and 4095. It is not clear
4377          // what this constraint is intended for. Implemented for
4378          // compatibility with GCC.
4379          if (CVal >= -4095 && CVal <= 4095)
4380            break;
4381        }
4382        return;
4383
4384      case 'K':
4385        if (Subtarget->isThumb1Only()) {
4386          // A 32-bit value where only one byte has a nonzero value. Exclude
4387          // zero to match GCC. This constraint is used by GCC internally for
4388          // constants that can be loaded with a move/shift combination.
4389          // It is not useful otherwise but is implemented for compatibility.
4390          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
4391            break;
4392        } else if (Subtarget->isThumb2()) {
4393          // A constant whose bitwise inverse can be used as an immediate
4394          // value in a data-processing instruction. This can be used in GCC
4395          // with a "B" modifier that prints the inverted value, for use with
4396          // BIC and MVN instructions. It is not useful otherwise but is
4397          // implemented for compatibility.
4398          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
4399            break;
4400        } else {
4401          // A constant whose bitwise inverse can be used as an immediate
4402          // value in a data-processing instruction. This can be used in GCC
4403          // with a "B" modifier that prints the inverted value, for use with
4404          // BIC and MVN instructions. It is not useful otherwise but is
4405          // implemented for compatibility.
4406          if (ARM_AM::getSOImmVal(~CVal) != -1)
4407            break;
4408        }
4409        return;
4410
4411      case 'L':
4412        if (Subtarget->isThumb1Only()) {
4413          // This must be a constant between -7 and 7,
4414          // for 3-operand ADD/SUB immediate instructions.
4415          if (CVal >= -7 && CVal < 7)
4416            break;
4417        } else if (Subtarget->isThumb2()) {
4418          // A constant whose negation can be used as an immediate value in a
4419          // data-processing instruction. This can be used in GCC with an "n"
4420          // modifier that prints the negated value, for use with SUB
4421          // instructions. It is not useful otherwise but is implemented for
4422          // compatibility.
4423          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
4424            break;
4425        } else {
4426          // A constant whose negation can be used as an immediate value in a
4427          // data-processing instruction. This can be used in GCC with an "n"
4428          // modifier that prints the negated value, for use with SUB
4429          // instructions. It is not useful otherwise but is implemented for
4430          // compatibility.
4431          if (ARM_AM::getSOImmVal(-CVal) != -1)
4432            break;
4433        }
4434        return;
4435
4436      case 'M':
4437        if (Subtarget->isThumb()) { // FIXME thumb2
4438          // This must be a multiple of 4 between 0 and 1020, for
4439          // ADD sp + immediate.
4440          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
4441            break;
4442        } else {
4443          // A power of two or a constant between 0 and 32.  This is used in
4444          // GCC for the shift amount on shifted register operands, but it is
4445          // useful in general for any shift amounts.
4446          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
4447            break;
4448        }
4449        return;
4450
4451      case 'N':
4452        if (Subtarget->isThumb()) {  // FIXME thumb2
4453          // This must be a constant between 0 and 31, for shift amounts.
4454          if (CVal >= 0 && CVal <= 31)
4455            break;
4456        }
4457        return;
4458
4459      case 'O':
4460        if (Subtarget->isThumb()) {  // FIXME thumb2
4461          // This must be a multiple of 4 between -508 and 508, for
4462          // ADD/SUB sp = sp + immediate.
4463          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
4464            break;
4465        }
4466        return;
4467    }
4468    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4469    break;
4470  }
4471
4472  if (Result.getNode()) {
4473    Ops.push_back(Result);
4474    return;
4475  }
4476  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
4477                                                      Ops, DAG);
4478}
4479
4480bool
4481ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4482  // The ARM target isn't yet aware of offsets.
4483  return false;
4484}
4485
4486int ARM::getVFPf32Imm(const APFloat &FPImm) {
4487  APInt Imm = FPImm.bitcastToAPInt();
4488  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
4489  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
4490  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
4491
4492  // We can handle 4 bits of mantissa.
4493  // mantissa = (16+UInt(e:f:g:h))/16.
4494  if (Mantissa & 0x7ffff)
4495    return -1;
4496  Mantissa >>= 19;
4497  if ((Mantissa & 0xf) != Mantissa)
4498    return -1;
4499
4500  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4501  if (Exp < -3 || Exp > 4)
4502    return -1;
4503  Exp = ((Exp+3) & 0x7) ^ 4;
4504
4505  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4506}
4507
4508int ARM::getVFPf64Imm(const APFloat &FPImm) {
4509  APInt Imm = FPImm.bitcastToAPInt();
4510  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
4511  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
4512  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
4513
4514  // We can handle 4 bits of mantissa.
4515  // mantissa = (16+UInt(e:f:g:h))/16.
4516  if (Mantissa & 0xffffffffffffLL)
4517    return -1;
4518  Mantissa >>= 48;
4519  if ((Mantissa & 0xf) != Mantissa)
4520    return -1;
4521
4522  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4523  if (Exp < -3 || Exp > 4)
4524    return -1;
4525  Exp = ((Exp+3) & 0x7) ^ 4;
4526
4527  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4528}
4529
4530/// isFPImmLegal - Returns true if the target can instruction select the
4531/// specified FP immediate natively. If false, the legalizer will
4532/// materialize the FP immediate as a load from a constant pool.
4533bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4534  if (!Subtarget->hasVFP3())
4535    return false;
4536  if (VT == MVT::f32)
4537    return ARM::getVFPf32Imm(Imm) != -1;
4538  if (VT == MVT::f64)
4539    return ARM::getVFPf64Imm(Imm) != -1;
4540  return false;
4541}
4542