ARMISelLowering.cpp revision 1dd5a2f4e127a99914359cf39f19b3a9916d6be1
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62// This option should go away when Machine LICM is smart enough to hoist a
63// reg-to-reg VDUP.
64static cl::opt<bool>
65EnableARMVDUPsplat("arm-vdup-splat", cl::Hidden,
66  cl::desc("Generate VDUP for integer constant splats (TEMPORARY OPTION)."),
67  cl::init(false));
68
69static cl::opt<bool>
70EnableARMLongCalls("arm-long-calls", cl::Hidden,
71  cl::desc("Generate calls via indirect call instructions"),
72  cl::init(false));
73
74static cl::opt<bool>
75ARMInterworking("arm-interworking", cl::Hidden,
76  cl::desc("Enable / disable ARM interworking (for debugging only)"),
77  cl::init(true));
78
79void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
80                                       EVT PromotedBitwiseVT) {
81  if (VT != PromotedLdStVT) {
82    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
83    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
84                       PromotedLdStVT.getSimpleVT());
85
86    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
87    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
88                       PromotedLdStVT.getSimpleVT());
89  }
90
91  EVT ElemTy = VT.getVectorElementType();
92  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
93    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
94  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
95    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
96  if (ElemTy != MVT::i32) {
97    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
98    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
99    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
100    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
101  }
102  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
103  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
104  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
105  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
106  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
107  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
108  if (VT.isInteger()) {
109    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
110    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
111    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
112    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
113    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
114  }
115  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
116
117  // Promote all bit-wise operations.
118  if (VT.isInteger() && VT != PromotedBitwiseVT) {
119    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
120    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
121                       PromotedBitwiseVT.getSimpleVT());
122    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
123    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
124                       PromotedBitwiseVT.getSimpleVT());
125    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
126    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
127                       PromotedBitwiseVT.getSimpleVT());
128  }
129
130  // Neon does not support vector divide/remainder operations.
131  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
132  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
133  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
134  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
135  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
136  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
137}
138
139void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
140  addRegisterClass(VT, ARM::DPRRegisterClass);
141  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
142}
143
144void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
145  addRegisterClass(VT, ARM::QPRRegisterClass);
146  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
147}
148
149static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
150  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
151    return new TargetLoweringObjectFileMachO();
152
153  return new ARMElfTargetObjectFile();
154}
155
156ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
157    : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<ARMSubtarget>();
159  RegInfo = TM.getRegisterInfo();
160  Itins = TM.getInstrItineraryData();
161
162  if (Subtarget->isTargetDarwin()) {
163    // Uses VFP for Thumb libfuncs if available.
164    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
165      // Single-precision floating-point arithmetic.
166      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
167      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
168      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
169      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
170
171      // Double-precision floating-point arithmetic.
172      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
173      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
174      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
175      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
176
177      // Single-precision comparisons.
178      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
179      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
180      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
181      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
182      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
183      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
184      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
185      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
186
187      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
190      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
191      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
192      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
193      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
194      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
195
196      // Double-precision comparisons.
197      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
198      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
199      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
200      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
201      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
202      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
203      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
204      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
205
206      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
213      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
214
215      // Floating-point to integer conversions.
216      // i64 conversions are done via library routines even when generating VFP
217      // instructions, so use the same ones.
218      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
219      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
220      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
221      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
222
223      // Conversions between floating types.
224      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
225      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
226
227      // Integer to floating-point conversions.
228      // i64 conversions are done via library routines even when generating VFP
229      // instructions, so use the same ones.
230      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
231      // e.g., __floatunsidf vs. __floatunssidfvfp.
232      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
233      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
234      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
235      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
236    }
237  }
238
239  // These libcalls are not available in 32-bit.
240  setLibcallName(RTLIB::SHL_I128, 0);
241  setLibcallName(RTLIB::SRL_I128, 0);
242  setLibcallName(RTLIB::SRA_I128, 0);
243
244  if (Subtarget->isAAPCS_ABI()) {
245    // Double-precision floating-point arithmetic helper functions
246    // RTABI chapter 4.1.2, Table 2
247    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
248    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
249    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
250    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
251    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
252    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
253    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
254    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
255
256    // Double-precision floating-point comparison helper functions
257    // RTABI chapter 4.1.2, Table 3
258    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
259    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
260    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
261    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
262    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
263    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
264    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
265    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
266    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
267    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
268    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
269    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
270    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
271    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
272    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
273    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
274    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
278    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
279    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
280    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
281    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
282
283    // Single-precision floating-point arithmetic helper functions
284    // RTABI chapter 4.1.2, Table 4
285    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
286    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
287    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
288    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
289    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
293
294    // Single-precision floating-point comparison helper functions
295    // RTABI chapter 4.1.2, Table 5
296    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
297    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
298    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
299    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
300    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
301    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
302    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
303    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
304    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
305    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
306    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
307    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
308    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
309    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
310    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
311    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
312    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
316    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
317    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
318    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
319    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
320
321    // Floating-point to integer conversions.
322    // RTABI chapter 4.1.2, Table 6
323    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
324    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
325    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
326    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
327    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
328    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
329    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
330    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
331    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
339
340    // Conversions between floating types.
341    // RTABI chapter 4.1.2, Table 7
342    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
343    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
344    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
345    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
346
347    // Integer to floating-point conversions.
348    // RTABI chapter 4.1.2, Table 8
349    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
350    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
351    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
352    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
353    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
354    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
355    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
356    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
357    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
361    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
362    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
364    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
365
366    // Long long helper functions
367    // RTABI chapter 4.2, Table 9
368    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
369    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
370    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
371    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
372    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
373    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
374    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
380
381    // Integer division functions
382    // RTABI chapter 4.3.1
383    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
384    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
385    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
386    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
387    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
388    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
389    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
395  }
396
397  if (Subtarget->isThumb1Only())
398    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
399  else
400    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
401  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
402    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
403    if (!Subtarget->isFPOnlySP())
404      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
405
406    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
407  }
408
409  if (Subtarget->hasNEON()) {
410    addDRTypeForNEON(MVT::v2f32);
411    addDRTypeForNEON(MVT::v8i8);
412    addDRTypeForNEON(MVT::v4i16);
413    addDRTypeForNEON(MVT::v2i32);
414    addDRTypeForNEON(MVT::v1i64);
415
416    addQRTypeForNEON(MVT::v4f32);
417    addQRTypeForNEON(MVT::v2f64);
418    addQRTypeForNEON(MVT::v16i8);
419    addQRTypeForNEON(MVT::v8i16);
420    addQRTypeForNEON(MVT::v4i32);
421    addQRTypeForNEON(MVT::v2i64);
422
423    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
424    // neither Neon nor VFP support any arithmetic operations on it.
425    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
426    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
427    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
428    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
429    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
430    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
431    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
432    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
433    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
434    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
435    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
436    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
437    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
438    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
439    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
440    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
441    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
442    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
443    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
444    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
445    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
446    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
447    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
448    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
449
450    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
451
452    // Neon does not support some operations on v1i64 and v2i64 types.
453    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
454    // Custom handling for some quad-vector types to detect VMULL.
455    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
456    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
457    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
458    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
459    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
460
461    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
462    setTargetDAGCombine(ISD::SHL);
463    setTargetDAGCombine(ISD::SRL);
464    setTargetDAGCombine(ISD::SRA);
465    setTargetDAGCombine(ISD::SIGN_EXTEND);
466    setTargetDAGCombine(ISD::ZERO_EXTEND);
467    setTargetDAGCombine(ISD::ANY_EXTEND);
468    setTargetDAGCombine(ISD::SELECT_CC);
469    setTargetDAGCombine(ISD::BUILD_VECTOR);
470  }
471
472  computeRegisterProperties();
473
474  // ARM does not have f32 extending load.
475  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
476
477  // ARM does not have i1 sign extending load.
478  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
479
480  // ARM supports all 4 flavors of integer indexed load / store.
481  if (!Subtarget->isThumb1Only()) {
482    for (unsigned im = (unsigned)ISD::PRE_INC;
483         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
484      setIndexedLoadAction(im,  MVT::i1,  Legal);
485      setIndexedLoadAction(im,  MVT::i8,  Legal);
486      setIndexedLoadAction(im,  MVT::i16, Legal);
487      setIndexedLoadAction(im,  MVT::i32, Legal);
488      setIndexedStoreAction(im, MVT::i1,  Legal);
489      setIndexedStoreAction(im, MVT::i8,  Legal);
490      setIndexedStoreAction(im, MVT::i16, Legal);
491      setIndexedStoreAction(im, MVT::i32, Legal);
492    }
493  }
494
495  // i64 operation support.
496  if (Subtarget->isThumb1Only()) {
497    setOperationAction(ISD::MUL,     MVT::i64, Expand);
498    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
499    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
500    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
501    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
502  } else {
503    setOperationAction(ISD::MUL,     MVT::i64, Expand);
504    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
505    if (!Subtarget->hasV6Ops())
506      setOperationAction(ISD::MULHS, MVT::i32, Expand);
507  }
508  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
509  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
510  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
511  setOperationAction(ISD::SRL,       MVT::i64, Custom);
512  setOperationAction(ISD::SRA,       MVT::i64, Custom);
513
514  // ARM does not have ROTL.
515  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
516  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
517  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
518  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
519    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
520
521  // Only ARMv6 has BSWAP.
522  if (!Subtarget->hasV6Ops())
523    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
524
525  // These are expanded into libcalls.
526  if (!Subtarget->hasDivide()) {
527    // v7M has a hardware divider
528    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
529    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
530  }
531  setOperationAction(ISD::SREM,  MVT::i32, Expand);
532  setOperationAction(ISD::UREM,  MVT::i32, Expand);
533  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
534  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
535
536  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
537  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
538  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
539  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
540  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
541
542  setOperationAction(ISD::TRAP, MVT::Other, Legal);
543
544  // Use the default implementation.
545  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
546  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
547  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
548  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
549  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
550  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
551  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
552  // FIXME: Shouldn't need this, since no register is used, but the legalizer
553  // doesn't yet know how to not do that for SjLj.
554  setExceptionSelectorRegister(ARM::R0);
555  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
556  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
557  // the default expansion.
558  if (Subtarget->hasDataBarrier() ||
559      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
560    // membarrier needs custom lowering; the rest are legal and handled
561    // normally.
562    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
563  } else {
564    // Set them all for expansion, which will force libcalls.
565    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
566    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
567    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
568    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
569    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
570    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
571    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
584    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
585    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
586    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
587    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
588    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
589    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
590    // Since the libcalls include locking, fold in the fences
591    setShouldFoldAtomicFences(true);
592  }
593  // 64-bit versions are always libcalls (for now)
594  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
595  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
596  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
597  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
598  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
599  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
600  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
601  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
602
603  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
604  if (!Subtarget->hasV6Ops()) {
605    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
606    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
607  }
608  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
609
610  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
611    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
612    // iff target supports vfp2.
613    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
614    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
615  }
616
617  // We want to custom lower some of our intrinsics.
618  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
619  if (Subtarget->isTargetDarwin()) {
620    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
621    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
622  }
623
624  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
625  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
626  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
627  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
628  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
629  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
630  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
631  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
632  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
633
634  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
635  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
636  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
637  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
638  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
639
640  // We don't support sin/cos/fmod/copysign/pow
641  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
642  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
643  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
644  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
645  setOperationAction(ISD::FREM,      MVT::f64, Expand);
646  setOperationAction(ISD::FREM,      MVT::f32, Expand);
647  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
648    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
649    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
650  }
651  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
652  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
653
654  // Various VFP goodness
655  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
656    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
657    if (Subtarget->hasVFP2()) {
658      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
659      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
660      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
661      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
662    }
663    // Special handling for half-precision FP.
664    if (!Subtarget->hasFP16()) {
665      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
666      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
667    }
668  }
669
670  // We have target-specific dag combine patterns for the following nodes:
671  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
672  setTargetDAGCombine(ISD::ADD);
673  setTargetDAGCombine(ISD::SUB);
674  setTargetDAGCombine(ISD::MUL);
675
676  if (Subtarget->hasV6T2Ops())
677    setTargetDAGCombine(ISD::OR);
678
679  setStackPointerRegisterToSaveRestore(ARM::SP);
680
681  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
682    setSchedulingPreference(Sched::RegPressure);
683  else
684    setSchedulingPreference(Sched::Hybrid);
685
686  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
687
688  // On ARM arguments smaller than 4 bytes are extended, so all arguments
689  // are at least 4 bytes aligned.
690  setMinStackArgumentAlignment(4);
691
692  benefitFromCodePlacementOpt = true;
693}
694
695std::pair<const TargetRegisterClass*, uint8_t>
696ARMTargetLowering::findRepresentativeClass(EVT VT) const{
697  const TargetRegisterClass *RRC = 0;
698  uint8_t Cost = 1;
699  switch (VT.getSimpleVT().SimpleTy) {
700  default:
701    return TargetLowering::findRepresentativeClass(VT);
702  // Use DPR as representative register class for all floating point
703  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
704  // the cost is 1 for both f32 and f64.
705  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
706  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
707    RRC = ARM::DPRRegisterClass;
708    break;
709  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
710  case MVT::v4f32: case MVT::v2f64:
711    RRC = ARM::DPRRegisterClass;
712    Cost = 2;
713    break;
714  case MVT::v4i64:
715    RRC = ARM::DPRRegisterClass;
716    Cost = 4;
717    break;
718  case MVT::v8i64:
719    RRC = ARM::DPRRegisterClass;
720    Cost = 8;
721    break;
722  }
723  return std::make_pair(RRC, Cost);
724}
725
726const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
727  switch (Opcode) {
728  default: return 0;
729  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
730  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
731  case ARMISD::CALL:          return "ARMISD::CALL";
732  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
733  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
734  case ARMISD::tCALL:         return "ARMISD::tCALL";
735  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
736  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
737  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
738  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
739  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
740  case ARMISD::CMP:           return "ARMISD::CMP";
741  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
742  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
743  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
744  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
745  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
746  case ARMISD::CMOV:          return "ARMISD::CMOV";
747  case ARMISD::CNEG:          return "ARMISD::CNEG";
748
749  case ARMISD::RBIT:          return "ARMISD::RBIT";
750
751  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
752  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
753  case ARMISD::SITOF:         return "ARMISD::SITOF";
754  case ARMISD::UITOF:         return "ARMISD::UITOF";
755
756  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
757  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
758  case ARMISD::RRX:           return "ARMISD::RRX";
759
760  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
761  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
762
763  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
764  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
765
766  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
767
768  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
769
770  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
771
772  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
773  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
774
775  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
776  case ARMISD::VCGE:          return "ARMISD::VCGE";
777  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
778  case ARMISD::VCGT:          return "ARMISD::VCGT";
779  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
780  case ARMISD::VTST:          return "ARMISD::VTST";
781
782  case ARMISD::VSHL:          return "ARMISD::VSHL";
783  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
784  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
785  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
786  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
787  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
788  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
789  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
790  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
791  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
792  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
793  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
794  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
795  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
796  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
797  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
798  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
799  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
800  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
801  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
802  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
803  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
804  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
805  case ARMISD::VDUP:          return "ARMISD::VDUP";
806  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
807  case ARMISD::VEXT:          return "ARMISD::VEXT";
808  case ARMISD::VREV64:        return "ARMISD::VREV64";
809  case ARMISD::VREV32:        return "ARMISD::VREV32";
810  case ARMISD::VREV16:        return "ARMISD::VREV16";
811  case ARMISD::VZIP:          return "ARMISD::VZIP";
812  case ARMISD::VUZP:          return "ARMISD::VUZP";
813  case ARMISD::VTRN:          return "ARMISD::VTRN";
814  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
815  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
816  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
817  case ARMISD::FMAX:          return "ARMISD::FMAX";
818  case ARMISD::FMIN:          return "ARMISD::FMIN";
819  case ARMISD::BFI:           return "ARMISD::BFI";
820  }
821}
822
823/// getRegClassFor - Return the register class that should be used for the
824/// specified value type.
825TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
826  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
827  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
828  // load / store 4 to 8 consecutive D registers.
829  if (Subtarget->hasNEON()) {
830    if (VT == MVT::v4i64)
831      return ARM::QQPRRegisterClass;
832    else if (VT == MVT::v8i64)
833      return ARM::QQQQPRRegisterClass;
834  }
835  return TargetLowering::getRegClassFor(VT);
836}
837
838// Create a fast isel object.
839FastISel *
840ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
841  return ARM::createFastISel(funcInfo);
842}
843
844/// getFunctionAlignment - Return the Log2 alignment of this function.
845unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
846  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
847}
848
849/// getMaximalGlobalOffset - Returns the maximal possible offset which can
850/// be used for loads / stores from the global.
851unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
852  return (Subtarget->isThumb1Only() ? 127 : 4095);
853}
854
855Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
856  unsigned NumVals = N->getNumValues();
857  if (!NumVals)
858    return Sched::RegPressure;
859
860  for (unsigned i = 0; i != NumVals; ++i) {
861    EVT VT = N->getValueType(i);
862    if (VT.isFloatingPoint() || VT.isVector())
863      return Sched::Latency;
864  }
865
866  if (!N->isMachineOpcode())
867    return Sched::RegPressure;
868
869  // Load are scheduled for latency even if there instruction itinerary
870  // is not available.
871  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
872  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
873  if (TID.mayLoad())
874    return Sched::Latency;
875
876  if (!Itins->isEmpty() && Itins->getStageLatency(TID.getSchedClass()) > 2)
877    return Sched::Latency;
878  return Sched::RegPressure;
879}
880
881unsigned
882ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
883                                       MachineFunction &MF) const {
884  switch (RC->getID()) {
885  default:
886    return 0;
887  case ARM::tGPRRegClassID:
888    return RegInfo->hasFP(MF) ? 4 : 5;
889  case ARM::GPRRegClassID: {
890    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
891    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
892  }
893  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
894  case ARM::DPRRegClassID:
895    return 32 - 10;
896  }
897}
898
899//===----------------------------------------------------------------------===//
900// Lowering Code
901//===----------------------------------------------------------------------===//
902
903/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
904static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
905  switch (CC) {
906  default: llvm_unreachable("Unknown condition code!");
907  case ISD::SETNE:  return ARMCC::NE;
908  case ISD::SETEQ:  return ARMCC::EQ;
909  case ISD::SETGT:  return ARMCC::GT;
910  case ISD::SETGE:  return ARMCC::GE;
911  case ISD::SETLT:  return ARMCC::LT;
912  case ISD::SETLE:  return ARMCC::LE;
913  case ISD::SETUGT: return ARMCC::HI;
914  case ISD::SETUGE: return ARMCC::HS;
915  case ISD::SETULT: return ARMCC::LO;
916  case ISD::SETULE: return ARMCC::LS;
917  }
918}
919
920/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
921static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
922                        ARMCC::CondCodes &CondCode2) {
923  CondCode2 = ARMCC::AL;
924  switch (CC) {
925  default: llvm_unreachable("Unknown FP condition!");
926  case ISD::SETEQ:
927  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
928  case ISD::SETGT:
929  case ISD::SETOGT: CondCode = ARMCC::GT; break;
930  case ISD::SETGE:
931  case ISD::SETOGE: CondCode = ARMCC::GE; break;
932  case ISD::SETOLT: CondCode = ARMCC::MI; break;
933  case ISD::SETOLE: CondCode = ARMCC::LS; break;
934  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
935  case ISD::SETO:   CondCode = ARMCC::VC; break;
936  case ISD::SETUO:  CondCode = ARMCC::VS; break;
937  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
938  case ISD::SETUGT: CondCode = ARMCC::HI; break;
939  case ISD::SETUGE: CondCode = ARMCC::PL; break;
940  case ISD::SETLT:
941  case ISD::SETULT: CondCode = ARMCC::LT; break;
942  case ISD::SETLE:
943  case ISD::SETULE: CondCode = ARMCC::LE; break;
944  case ISD::SETNE:
945  case ISD::SETUNE: CondCode = ARMCC::NE; break;
946  }
947}
948
949//===----------------------------------------------------------------------===//
950//                      Calling Convention Implementation
951//===----------------------------------------------------------------------===//
952
953#include "ARMGenCallingConv.inc"
954
955/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
956/// given CallingConvention value.
957CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
958                                                 bool Return,
959                                                 bool isVarArg) const {
960  switch (CC) {
961  default:
962    llvm_unreachable("Unsupported calling convention");
963  case CallingConv::C:
964  case CallingConv::Fast:
965    // Use target triple & subtarget features to do actual dispatch.
966    if (Subtarget->isAAPCS_ABI()) {
967      if (Subtarget->hasVFP2() &&
968          FloatABIType == FloatABI::Hard && !isVarArg)
969        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
970      else
971        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
972    } else
973        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
974  case CallingConv::ARM_AAPCS_VFP:
975    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
976  case CallingConv::ARM_AAPCS:
977    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
978  case CallingConv::ARM_APCS:
979    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
980  }
981}
982
983/// LowerCallResult - Lower the result values of a call into the
984/// appropriate copies out of appropriate physical registers.
985SDValue
986ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
987                                   CallingConv::ID CallConv, bool isVarArg,
988                                   const SmallVectorImpl<ISD::InputArg> &Ins,
989                                   DebugLoc dl, SelectionDAG &DAG,
990                                   SmallVectorImpl<SDValue> &InVals) const {
991
992  // Assign locations to each value returned by this call.
993  SmallVector<CCValAssign, 16> RVLocs;
994  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
995                 RVLocs, *DAG.getContext());
996  CCInfo.AnalyzeCallResult(Ins,
997                           CCAssignFnForNode(CallConv, /* Return*/ true,
998                                             isVarArg));
999
1000  // Copy all of the result registers out of their specified physreg.
1001  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1002    CCValAssign VA = RVLocs[i];
1003
1004    SDValue Val;
1005    if (VA.needsCustom()) {
1006      // Handle f64 or half of a v2f64.
1007      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1008                                      InFlag);
1009      Chain = Lo.getValue(1);
1010      InFlag = Lo.getValue(2);
1011      VA = RVLocs[++i]; // skip ahead to next loc
1012      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1013                                      InFlag);
1014      Chain = Hi.getValue(1);
1015      InFlag = Hi.getValue(2);
1016      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1017
1018      if (VA.getLocVT() == MVT::v2f64) {
1019        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1020        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1021                          DAG.getConstant(0, MVT::i32));
1022
1023        VA = RVLocs[++i]; // skip ahead to next loc
1024        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1025        Chain = Lo.getValue(1);
1026        InFlag = Lo.getValue(2);
1027        VA = RVLocs[++i]; // skip ahead to next loc
1028        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1029        Chain = Hi.getValue(1);
1030        InFlag = Hi.getValue(2);
1031        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1032        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1033                          DAG.getConstant(1, MVT::i32));
1034      }
1035    } else {
1036      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1037                               InFlag);
1038      Chain = Val.getValue(1);
1039      InFlag = Val.getValue(2);
1040    }
1041
1042    switch (VA.getLocInfo()) {
1043    default: llvm_unreachable("Unknown loc info!");
1044    case CCValAssign::Full: break;
1045    case CCValAssign::BCvt:
1046      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1047      break;
1048    }
1049
1050    InVals.push_back(Val);
1051  }
1052
1053  return Chain;
1054}
1055
1056/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1057/// by "Src" to address "Dst" of size "Size".  Alignment information is
1058/// specified by the specific parameter attribute.  The copy will be passed as
1059/// a byval function parameter.
1060/// Sometimes what we are copying is the end of a larger object, the part that
1061/// does not fit in registers.
1062static SDValue
1063CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1064                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1065                          DebugLoc dl) {
1066  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1067  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1068                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1069                       MachinePointerInfo(0), MachinePointerInfo(0));
1070}
1071
1072/// LowerMemOpCallTo - Store the argument to the stack.
1073SDValue
1074ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1075                                    SDValue StackPtr, SDValue Arg,
1076                                    DebugLoc dl, SelectionDAG &DAG,
1077                                    const CCValAssign &VA,
1078                                    ISD::ArgFlagsTy Flags) const {
1079  unsigned LocMemOffset = VA.getLocMemOffset();
1080  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1081  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1082  if (Flags.isByVal())
1083    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1084
1085  return DAG.getStore(Chain, dl, Arg, PtrOff,
1086                      MachinePointerInfo::getStack(LocMemOffset),
1087                      false, false, 0);
1088}
1089
1090void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1091                                         SDValue Chain, SDValue &Arg,
1092                                         RegsToPassVector &RegsToPass,
1093                                         CCValAssign &VA, CCValAssign &NextVA,
1094                                         SDValue &StackPtr,
1095                                         SmallVector<SDValue, 8> &MemOpChains,
1096                                         ISD::ArgFlagsTy Flags) const {
1097
1098  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1099                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1100  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1101
1102  if (NextVA.isRegLoc())
1103    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1104  else {
1105    assert(NextVA.isMemLoc());
1106    if (StackPtr.getNode() == 0)
1107      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1108
1109    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1110                                           dl, DAG, NextVA,
1111                                           Flags));
1112  }
1113}
1114
1115/// LowerCall - Lowering a call into a callseq_start <-
1116/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1117/// nodes.
1118SDValue
1119ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1120                             CallingConv::ID CallConv, bool isVarArg,
1121                             bool &isTailCall,
1122                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1123                             const SmallVectorImpl<SDValue> &OutVals,
1124                             const SmallVectorImpl<ISD::InputArg> &Ins,
1125                             DebugLoc dl, SelectionDAG &DAG,
1126                             SmallVectorImpl<SDValue> &InVals) const {
1127  MachineFunction &MF = DAG.getMachineFunction();
1128  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1129  bool IsSibCall = false;
1130  // Temporarily disable tail calls so things don't break.
1131  if (!EnableARMTailCalls)
1132    isTailCall = false;
1133  if (isTailCall) {
1134    // Check if it's really possible to do a tail call.
1135    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1136                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1137                                                   Outs, OutVals, Ins, DAG);
1138    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1139    // detected sibcalls.
1140    if (isTailCall) {
1141      ++NumTailCalls;
1142      IsSibCall = true;
1143    }
1144  }
1145
1146  // Analyze operands of the call, assigning locations to each operand.
1147  SmallVector<CCValAssign, 16> ArgLocs;
1148  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1149                 *DAG.getContext());
1150  CCInfo.AnalyzeCallOperands(Outs,
1151                             CCAssignFnForNode(CallConv, /* Return*/ false,
1152                                               isVarArg));
1153
1154  // Get a count of how many bytes are to be pushed on the stack.
1155  unsigned NumBytes = CCInfo.getNextStackOffset();
1156
1157  // For tail calls, memory operands are available in our caller's stack.
1158  if (IsSibCall)
1159    NumBytes = 0;
1160
1161  // Adjust the stack pointer for the new arguments...
1162  // These operations are automatically eliminated by the prolog/epilog pass
1163  if (!IsSibCall)
1164    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1165
1166  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1167
1168  RegsToPassVector RegsToPass;
1169  SmallVector<SDValue, 8> MemOpChains;
1170
1171  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1172  // of tail call optimization, arguments are handled later.
1173  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1174       i != e;
1175       ++i, ++realArgIdx) {
1176    CCValAssign &VA = ArgLocs[i];
1177    SDValue Arg = OutVals[realArgIdx];
1178    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1179
1180    // Promote the value if needed.
1181    switch (VA.getLocInfo()) {
1182    default: llvm_unreachable("Unknown loc info!");
1183    case CCValAssign::Full: break;
1184    case CCValAssign::SExt:
1185      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1186      break;
1187    case CCValAssign::ZExt:
1188      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1189      break;
1190    case CCValAssign::AExt:
1191      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1192      break;
1193    case CCValAssign::BCvt:
1194      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1195      break;
1196    }
1197
1198    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1199    if (VA.needsCustom()) {
1200      if (VA.getLocVT() == MVT::v2f64) {
1201        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1202                                  DAG.getConstant(0, MVT::i32));
1203        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1204                                  DAG.getConstant(1, MVT::i32));
1205
1206        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1207                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1208
1209        VA = ArgLocs[++i]; // skip ahead to next loc
1210        if (VA.isRegLoc()) {
1211          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1212                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1213        } else {
1214          assert(VA.isMemLoc());
1215
1216          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1217                                                 dl, DAG, VA, Flags));
1218        }
1219      } else {
1220        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1221                         StackPtr, MemOpChains, Flags);
1222      }
1223    } else if (VA.isRegLoc()) {
1224      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1225    } else if (!IsSibCall) {
1226      assert(VA.isMemLoc());
1227
1228      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1229                                             dl, DAG, VA, Flags));
1230    }
1231  }
1232
1233  if (!MemOpChains.empty())
1234    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1235                        &MemOpChains[0], MemOpChains.size());
1236
1237  // Build a sequence of copy-to-reg nodes chained together with token chain
1238  // and flag operands which copy the outgoing args into the appropriate regs.
1239  SDValue InFlag;
1240  // Tail call byval lowering might overwrite argument registers so in case of
1241  // tail call optimization the copies to registers are lowered later.
1242  if (!isTailCall)
1243    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1244      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1245                               RegsToPass[i].second, InFlag);
1246      InFlag = Chain.getValue(1);
1247    }
1248
1249  // For tail calls lower the arguments to the 'real' stack slot.
1250  if (isTailCall) {
1251    // Force all the incoming stack arguments to be loaded from the stack
1252    // before any new outgoing arguments are stored to the stack, because the
1253    // outgoing stack slots may alias the incoming argument stack slots, and
1254    // the alias isn't otherwise explicit. This is slightly more conservative
1255    // than necessary, because it means that each store effectively depends
1256    // on every argument instead of just those arguments it would clobber.
1257
1258    // Do not flag preceeding copytoreg stuff together with the following stuff.
1259    InFlag = SDValue();
1260    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1261      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1262                               RegsToPass[i].second, InFlag);
1263      InFlag = Chain.getValue(1);
1264    }
1265    InFlag =SDValue();
1266  }
1267
1268  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1269  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1270  // node so that legalize doesn't hack it.
1271  bool isDirect = false;
1272  bool isARMFunc = false;
1273  bool isLocalARMFunc = false;
1274  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1275
1276  if (EnableARMLongCalls) {
1277    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1278            && "long-calls with non-static relocation model!");
1279    // Handle a global address or an external symbol. If it's not one of
1280    // those, the target's already in a register, so we don't need to do
1281    // anything extra.
1282    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1283      const GlobalValue *GV = G->getGlobal();
1284      // Create a constant pool entry for the callee address
1285      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1286      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1287                                                           ARMPCLabelIndex,
1288                                                           ARMCP::CPValue, 0);
1289      // Get the address of the callee into a register
1290      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1291      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1292      Callee = DAG.getLoad(getPointerTy(), dl,
1293                           DAG.getEntryNode(), CPAddr,
1294                           MachinePointerInfo::getConstantPool(),
1295                           false, false, 0);
1296    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1297      const char *Sym = S->getSymbol();
1298
1299      // Create a constant pool entry for the callee address
1300      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1301      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1302                                                       Sym, ARMPCLabelIndex, 0);
1303      // Get the address of the callee into a register
1304      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1305      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1306      Callee = DAG.getLoad(getPointerTy(), dl,
1307                           DAG.getEntryNode(), CPAddr,
1308                           MachinePointerInfo::getConstantPool(),
1309                           false, false, 0);
1310    }
1311  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1312    const GlobalValue *GV = G->getGlobal();
1313    isDirect = true;
1314    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1315    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1316                   getTargetMachine().getRelocationModel() != Reloc::Static;
1317    isARMFunc = !Subtarget->isThumb() || isStub;
1318    // ARM call to a local ARM function is predicable.
1319    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1320    // tBX takes a register source operand.
1321    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1322      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1323      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1324                                                           ARMPCLabelIndex,
1325                                                           ARMCP::CPValue, 4);
1326      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1327      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1328      Callee = DAG.getLoad(getPointerTy(), dl,
1329                           DAG.getEntryNode(), CPAddr,
1330                           MachinePointerInfo::getConstantPool(),
1331                           false, false, 0);
1332      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1333      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1334                           getPointerTy(), Callee, PICLabel);
1335    } else {
1336      // On ELF targets for PIC code, direct calls should go through the PLT
1337      unsigned OpFlags = 0;
1338      if (Subtarget->isTargetELF() &&
1339                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1340        OpFlags = ARMII::MO_PLT;
1341      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1342    }
1343  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1344    isDirect = true;
1345    bool isStub = Subtarget->isTargetDarwin() &&
1346                  getTargetMachine().getRelocationModel() != Reloc::Static;
1347    isARMFunc = !Subtarget->isThumb() || isStub;
1348    // tBX takes a register source operand.
1349    const char *Sym = S->getSymbol();
1350    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1351      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1352      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1353                                                       Sym, ARMPCLabelIndex, 4);
1354      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1355      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1356      Callee = DAG.getLoad(getPointerTy(), dl,
1357                           DAG.getEntryNode(), CPAddr,
1358                           MachinePointerInfo::getConstantPool(),
1359                           false, false, 0);
1360      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1361      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1362                           getPointerTy(), Callee, PICLabel);
1363    } else {
1364      unsigned OpFlags = 0;
1365      // On ELF targets for PIC code, direct calls should go through the PLT
1366      if (Subtarget->isTargetELF() &&
1367                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1368        OpFlags = ARMII::MO_PLT;
1369      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1370    }
1371  }
1372
1373  // FIXME: handle tail calls differently.
1374  unsigned CallOpc;
1375  if (Subtarget->isThumb()) {
1376    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1377      CallOpc = ARMISD::CALL_NOLINK;
1378    else
1379      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1380  } else {
1381    CallOpc = (isDirect || Subtarget->hasV5TOps())
1382      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1383      : ARMISD::CALL_NOLINK;
1384  }
1385
1386  std::vector<SDValue> Ops;
1387  Ops.push_back(Chain);
1388  Ops.push_back(Callee);
1389
1390  // Add argument registers to the end of the list so that they are known live
1391  // into the call.
1392  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1393    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1394                                  RegsToPass[i].second.getValueType()));
1395
1396  if (InFlag.getNode())
1397    Ops.push_back(InFlag);
1398
1399  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1400  if (isTailCall)
1401    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1402
1403  // Returns a chain and a flag for retval copy to use.
1404  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1405  InFlag = Chain.getValue(1);
1406
1407  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1408                             DAG.getIntPtrConstant(0, true), InFlag);
1409  if (!Ins.empty())
1410    InFlag = Chain.getValue(1);
1411
1412  // Handle result values, copying them out of physregs into vregs that we
1413  // return.
1414  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1415                         dl, DAG, InVals);
1416}
1417
1418/// MatchingStackOffset - Return true if the given stack call argument is
1419/// already available in the same position (relatively) of the caller's
1420/// incoming argument stack.
1421static
1422bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1423                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1424                         const ARMInstrInfo *TII) {
1425  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1426  int FI = INT_MAX;
1427  if (Arg.getOpcode() == ISD::CopyFromReg) {
1428    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1429    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1430      return false;
1431    MachineInstr *Def = MRI->getVRegDef(VR);
1432    if (!Def)
1433      return false;
1434    if (!Flags.isByVal()) {
1435      if (!TII->isLoadFromStackSlot(Def, FI))
1436        return false;
1437    } else {
1438      return false;
1439    }
1440  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1441    if (Flags.isByVal())
1442      // ByVal argument is passed in as a pointer but it's now being
1443      // dereferenced. e.g.
1444      // define @foo(%struct.X* %A) {
1445      //   tail call @bar(%struct.X* byval %A)
1446      // }
1447      return false;
1448    SDValue Ptr = Ld->getBasePtr();
1449    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1450    if (!FINode)
1451      return false;
1452    FI = FINode->getIndex();
1453  } else
1454    return false;
1455
1456  assert(FI != INT_MAX);
1457  if (!MFI->isFixedObjectIndex(FI))
1458    return false;
1459  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1460}
1461
1462/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1463/// for tail call optimization. Targets which want to do tail call
1464/// optimization should implement this function.
1465bool
1466ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1467                                                     CallingConv::ID CalleeCC,
1468                                                     bool isVarArg,
1469                                                     bool isCalleeStructRet,
1470                                                     bool isCallerStructRet,
1471                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1472                                    const SmallVectorImpl<SDValue> &OutVals,
1473                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1474                                                     SelectionDAG& DAG) const {
1475  const Function *CallerF = DAG.getMachineFunction().getFunction();
1476  CallingConv::ID CallerCC = CallerF->getCallingConv();
1477  bool CCMatch = CallerCC == CalleeCC;
1478
1479  // Look for obvious safe cases to perform tail call optimization that do not
1480  // require ABI changes. This is what gcc calls sibcall.
1481
1482  // Do not sibcall optimize vararg calls unless the call site is not passing
1483  // any arguments.
1484  if (isVarArg && !Outs.empty())
1485    return false;
1486
1487  // Also avoid sibcall optimization if either caller or callee uses struct
1488  // return semantics.
1489  if (isCalleeStructRet || isCallerStructRet)
1490    return false;
1491
1492  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1493  // emitEpilogue is not ready for them.
1494  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1495  // LR.  This means if we need to reload LR, it takes an extra instructions,
1496  // which outweighs the value of the tail call; but here we don't know yet
1497  // whether LR is going to be used.  Probably the right approach is to
1498  // generate the tail call here and turn it back into CALL/RET in
1499  // emitEpilogue if LR is used.
1500  if (Subtarget->isThumb1Only())
1501    return false;
1502
1503  // For the moment, we can only do this to functions defined in this
1504  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1505  // or vice versa, is not easily fixed up in the linker unlike BL.
1506  // (We could do this by loading the address of the callee into a register;
1507  // that is an extra instruction over the direct call and burns a register
1508  // as well, so is not likely to be a win.)
1509
1510  // It might be safe to remove this restriction on non-Darwin.
1511
1512  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1513  // but we need to make sure there are enough registers; the only valid
1514  // registers are the 4 used for parameters.  We don't currently do this
1515  // case.
1516  if (isa<ExternalSymbolSDNode>(Callee))
1517      return false;
1518
1519  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1520    const GlobalValue *GV = G->getGlobal();
1521    if (GV->isDeclaration() || GV->isWeakForLinker())
1522      return false;
1523  }
1524
1525  // If the calling conventions do not match, then we'd better make sure the
1526  // results are returned in the same way as what the caller expects.
1527  if (!CCMatch) {
1528    SmallVector<CCValAssign, 16> RVLocs1;
1529    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1530                    RVLocs1, *DAG.getContext());
1531    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1532
1533    SmallVector<CCValAssign, 16> RVLocs2;
1534    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1535                    RVLocs2, *DAG.getContext());
1536    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1537
1538    if (RVLocs1.size() != RVLocs2.size())
1539      return false;
1540    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1541      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1542        return false;
1543      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1544        return false;
1545      if (RVLocs1[i].isRegLoc()) {
1546        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1547          return false;
1548      } else {
1549        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1550          return false;
1551      }
1552    }
1553  }
1554
1555  // If the callee takes no arguments then go on to check the results of the
1556  // call.
1557  if (!Outs.empty()) {
1558    // Check if stack adjustment is needed. For now, do not do this if any
1559    // argument is passed on the stack.
1560    SmallVector<CCValAssign, 16> ArgLocs;
1561    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1562                   ArgLocs, *DAG.getContext());
1563    CCInfo.AnalyzeCallOperands(Outs,
1564                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1565    if (CCInfo.getNextStackOffset()) {
1566      MachineFunction &MF = DAG.getMachineFunction();
1567
1568      // Check if the arguments are already laid out in the right way as
1569      // the caller's fixed stack objects.
1570      MachineFrameInfo *MFI = MF.getFrameInfo();
1571      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1572      const ARMInstrInfo *TII =
1573        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1574      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1575           i != e;
1576           ++i, ++realArgIdx) {
1577        CCValAssign &VA = ArgLocs[i];
1578        EVT RegVT = VA.getLocVT();
1579        SDValue Arg = OutVals[realArgIdx];
1580        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1581        if (VA.getLocInfo() == CCValAssign::Indirect)
1582          return false;
1583        if (VA.needsCustom()) {
1584          // f64 and vector types are split into multiple registers or
1585          // register/stack-slot combinations.  The types will not match
1586          // the registers; give up on memory f64 refs until we figure
1587          // out what to do about this.
1588          if (!VA.isRegLoc())
1589            return false;
1590          if (!ArgLocs[++i].isRegLoc())
1591            return false;
1592          if (RegVT == MVT::v2f64) {
1593            if (!ArgLocs[++i].isRegLoc())
1594              return false;
1595            if (!ArgLocs[++i].isRegLoc())
1596              return false;
1597          }
1598        } else if (!VA.isRegLoc()) {
1599          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1600                                   MFI, MRI, TII))
1601            return false;
1602        }
1603      }
1604    }
1605  }
1606
1607  return true;
1608}
1609
1610SDValue
1611ARMTargetLowering::LowerReturn(SDValue Chain,
1612                               CallingConv::ID CallConv, bool isVarArg,
1613                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1614                               const SmallVectorImpl<SDValue> &OutVals,
1615                               DebugLoc dl, SelectionDAG &DAG) const {
1616
1617  // CCValAssign - represent the assignment of the return value to a location.
1618  SmallVector<CCValAssign, 16> RVLocs;
1619
1620  // CCState - Info about the registers and stack slots.
1621  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1622                 *DAG.getContext());
1623
1624  // Analyze outgoing return values.
1625  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1626                                               isVarArg));
1627
1628  // If this is the first return lowered for this function, add
1629  // the regs to the liveout set for the function.
1630  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1631    for (unsigned i = 0; i != RVLocs.size(); ++i)
1632      if (RVLocs[i].isRegLoc())
1633        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1634  }
1635
1636  SDValue Flag;
1637
1638  // Copy the result values into the output registers.
1639  for (unsigned i = 0, realRVLocIdx = 0;
1640       i != RVLocs.size();
1641       ++i, ++realRVLocIdx) {
1642    CCValAssign &VA = RVLocs[i];
1643    assert(VA.isRegLoc() && "Can only return in registers!");
1644
1645    SDValue Arg = OutVals[realRVLocIdx];
1646
1647    switch (VA.getLocInfo()) {
1648    default: llvm_unreachable("Unknown loc info!");
1649    case CCValAssign::Full: break;
1650    case CCValAssign::BCvt:
1651      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1652      break;
1653    }
1654
1655    if (VA.needsCustom()) {
1656      if (VA.getLocVT() == MVT::v2f64) {
1657        // Extract the first half and return it in two registers.
1658        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1659                                   DAG.getConstant(0, MVT::i32));
1660        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1661                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1662
1663        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1664        Flag = Chain.getValue(1);
1665        VA = RVLocs[++i]; // skip ahead to next loc
1666        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1667                                 HalfGPRs.getValue(1), Flag);
1668        Flag = Chain.getValue(1);
1669        VA = RVLocs[++i]; // skip ahead to next loc
1670
1671        // Extract the 2nd half and fall through to handle it as an f64 value.
1672        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1673                          DAG.getConstant(1, MVT::i32));
1674      }
1675      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1676      // available.
1677      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1678                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1679      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1680      Flag = Chain.getValue(1);
1681      VA = RVLocs[++i]; // skip ahead to next loc
1682      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1683                               Flag);
1684    } else
1685      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1686
1687    // Guarantee that all emitted copies are
1688    // stuck together, avoiding something bad.
1689    Flag = Chain.getValue(1);
1690  }
1691
1692  SDValue result;
1693  if (Flag.getNode())
1694    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1695  else // Return Void
1696    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1697
1698  return result;
1699}
1700
1701// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1702// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1703// one of the above mentioned nodes. It has to be wrapped because otherwise
1704// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1705// be used to form addressing mode. These wrapped nodes will be selected
1706// into MOVi.
1707static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1708  EVT PtrVT = Op.getValueType();
1709  // FIXME there is no actual debug info here
1710  DebugLoc dl = Op.getDebugLoc();
1711  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1712  SDValue Res;
1713  if (CP->isMachineConstantPoolEntry())
1714    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1715                                    CP->getAlignment());
1716  else
1717    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1718                                    CP->getAlignment());
1719  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1720}
1721
1722unsigned ARMTargetLowering::getJumpTableEncoding() const {
1723  return MachineJumpTableInfo::EK_Inline;
1724}
1725
1726SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1727                                             SelectionDAG &DAG) const {
1728  MachineFunction &MF = DAG.getMachineFunction();
1729  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1730  unsigned ARMPCLabelIndex = 0;
1731  DebugLoc DL = Op.getDebugLoc();
1732  EVT PtrVT = getPointerTy();
1733  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1734  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1735  SDValue CPAddr;
1736  if (RelocM == Reloc::Static) {
1737    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1738  } else {
1739    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1740    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1741    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1742                                                         ARMCP::CPBlockAddress,
1743                                                         PCAdj);
1744    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1745  }
1746  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1747  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1748                               MachinePointerInfo::getConstantPool(),
1749                               false, false, 0);
1750  if (RelocM == Reloc::Static)
1751    return Result;
1752  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1753  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1754}
1755
1756// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1757SDValue
1758ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1759                                                 SelectionDAG &DAG) const {
1760  DebugLoc dl = GA->getDebugLoc();
1761  EVT PtrVT = getPointerTy();
1762  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1763  MachineFunction &MF = DAG.getMachineFunction();
1764  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1765  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1766  ARMConstantPoolValue *CPV =
1767    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1768                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1769  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1770  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1771  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1772                         MachinePointerInfo::getConstantPool(),
1773                         false, false, 0);
1774  SDValue Chain = Argument.getValue(1);
1775
1776  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1777  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1778
1779  // call __tls_get_addr.
1780  ArgListTy Args;
1781  ArgListEntry Entry;
1782  Entry.Node = Argument;
1783  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1784  Args.push_back(Entry);
1785  // FIXME: is there useful debug info available here?
1786  std::pair<SDValue, SDValue> CallResult =
1787    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1788                false, false, false, false,
1789                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1790                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1791  return CallResult.first;
1792}
1793
1794// Lower ISD::GlobalTLSAddress using the "initial exec" or
1795// "local exec" model.
1796SDValue
1797ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1798                                        SelectionDAG &DAG) const {
1799  const GlobalValue *GV = GA->getGlobal();
1800  DebugLoc dl = GA->getDebugLoc();
1801  SDValue Offset;
1802  SDValue Chain = DAG.getEntryNode();
1803  EVT PtrVT = getPointerTy();
1804  // Get the Thread Pointer
1805  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1806
1807  if (GV->isDeclaration()) {
1808    MachineFunction &MF = DAG.getMachineFunction();
1809    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1810    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1811    // Initial exec model.
1812    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1813    ARMConstantPoolValue *CPV =
1814      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1815                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1816    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1817    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1818    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1819                         MachinePointerInfo::getConstantPool(),
1820                         false, false, 0);
1821    Chain = Offset.getValue(1);
1822
1823    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1824    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1825
1826    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1827                         MachinePointerInfo::getConstantPool(),
1828                         false, false, 0);
1829  } else {
1830    // local exec model
1831    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1832    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1833    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1834    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1835                         MachinePointerInfo::getConstantPool(),
1836                         false, false, 0);
1837  }
1838
1839  // The address of the thread local variable is the add of the thread
1840  // pointer with the offset of the variable.
1841  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1842}
1843
1844SDValue
1845ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1846  // TODO: implement the "local dynamic" model
1847  assert(Subtarget->isTargetELF() &&
1848         "TLS not implemented for non-ELF targets");
1849  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1850  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1851  // otherwise use the "Local Exec" TLS Model
1852  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1853    return LowerToTLSGeneralDynamicModel(GA, DAG);
1854  else
1855    return LowerToTLSExecModels(GA, DAG);
1856}
1857
1858SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1859                                                 SelectionDAG &DAG) const {
1860  EVT PtrVT = getPointerTy();
1861  DebugLoc dl = Op.getDebugLoc();
1862  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1863  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1864  if (RelocM == Reloc::PIC_) {
1865    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1866    ARMConstantPoolValue *CPV =
1867      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1868    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1869    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1870    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1871                                 CPAddr,
1872                                 MachinePointerInfo::getConstantPool(),
1873                                 false, false, 0);
1874    SDValue Chain = Result.getValue(1);
1875    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1876    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1877    if (!UseGOTOFF)
1878      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1879                           MachinePointerInfo::getGOT(), false, false, 0);
1880    return Result;
1881  } else {
1882    // If we have T2 ops, we can materialize the address directly via movt/movw
1883    // pair. This is always cheaper.
1884    if (Subtarget->useMovt()) {
1885      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1886                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1887    } else {
1888      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1889      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1890      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1891                         MachinePointerInfo::getConstantPool(),
1892                         false, false, 0);
1893    }
1894  }
1895}
1896
1897SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1898                                                    SelectionDAG &DAG) const {
1899  MachineFunction &MF = DAG.getMachineFunction();
1900  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1901  unsigned ARMPCLabelIndex = 0;
1902  EVT PtrVT = getPointerTy();
1903  DebugLoc dl = Op.getDebugLoc();
1904  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1905  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1906  SDValue CPAddr;
1907  if (RelocM == Reloc::Static)
1908    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1909  else {
1910    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1911    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1912    ARMConstantPoolValue *CPV =
1913      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1914    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1915  }
1916  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1917
1918  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1919                               MachinePointerInfo::getConstantPool(),
1920                               false, false, 0);
1921  SDValue Chain = Result.getValue(1);
1922
1923  if (RelocM == Reloc::PIC_) {
1924    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1925    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1926  }
1927
1928  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1929    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1930                         false, false, 0);
1931
1932  return Result;
1933}
1934
1935SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1936                                                    SelectionDAG &DAG) const {
1937  assert(Subtarget->isTargetELF() &&
1938         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1939  MachineFunction &MF = DAG.getMachineFunction();
1940  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1941  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1942  EVT PtrVT = getPointerTy();
1943  DebugLoc dl = Op.getDebugLoc();
1944  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1945  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1946                                                       "_GLOBAL_OFFSET_TABLE_",
1947                                                       ARMPCLabelIndex, PCAdj);
1948  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1949  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1950  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1951                               MachinePointerInfo::getConstantPool(),
1952                               false, false, 0);
1953  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1954  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1955}
1956
1957SDValue
1958ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1959  DebugLoc dl = Op.getDebugLoc();
1960  SDValue Val = DAG.getConstant(0, MVT::i32);
1961  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1962                     Op.getOperand(1), Val);
1963}
1964
1965SDValue
1966ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1967  DebugLoc dl = Op.getDebugLoc();
1968  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1969                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1970}
1971
1972SDValue
1973ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1974                                          const ARMSubtarget *Subtarget) const {
1975  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1976  DebugLoc dl = Op.getDebugLoc();
1977  switch (IntNo) {
1978  default: return SDValue();    // Don't custom lower most intrinsics.
1979  case Intrinsic::arm_thread_pointer: {
1980    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1981    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1982  }
1983  case Intrinsic::eh_sjlj_lsda: {
1984    MachineFunction &MF = DAG.getMachineFunction();
1985    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1986    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1987    EVT PtrVT = getPointerTy();
1988    DebugLoc dl = Op.getDebugLoc();
1989    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1990    SDValue CPAddr;
1991    unsigned PCAdj = (RelocM != Reloc::PIC_)
1992      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1993    ARMConstantPoolValue *CPV =
1994      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1995                               ARMCP::CPLSDA, PCAdj);
1996    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1997    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1998    SDValue Result =
1999      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2000                  MachinePointerInfo::getConstantPool(),
2001                  false, false, 0);
2002
2003    if (RelocM == Reloc::PIC_) {
2004      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2005      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2006    }
2007    return Result;
2008  }
2009  }
2010}
2011
2012static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2013                               const ARMSubtarget *Subtarget) {
2014  DebugLoc dl = Op.getDebugLoc();
2015  SDValue Op5 = Op.getOperand(5);
2016  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
2017  // Some subtargets which have dmb and dsb instructions can handle barriers
2018  // directly. Some ARMv6 cpus can support them with the help of mcr
2019  // instruction. Thumb1 and pre-v6 ARM mode use a libcall instead and should
2020  // never get here.
2021  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
2022  if (Subtarget->hasDataBarrier())
2023    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
2024  else {
2025    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
2026           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2027    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
2028                       DAG.getConstant(0, MVT::i32));
2029  }
2030}
2031
2032static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2033  MachineFunction &MF = DAG.getMachineFunction();
2034  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2035
2036  // vastart just stores the address of the VarArgsFrameIndex slot into the
2037  // memory location argument.
2038  DebugLoc dl = Op.getDebugLoc();
2039  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2040  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2041  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2042  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2043                      MachinePointerInfo(SV), false, false, 0);
2044}
2045
2046SDValue
2047ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2048                                        SDValue &Root, SelectionDAG &DAG,
2049                                        DebugLoc dl) const {
2050  MachineFunction &MF = DAG.getMachineFunction();
2051  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2052
2053  TargetRegisterClass *RC;
2054  if (AFI->isThumb1OnlyFunction())
2055    RC = ARM::tGPRRegisterClass;
2056  else
2057    RC = ARM::GPRRegisterClass;
2058
2059  // Transform the arguments stored in physical registers into virtual ones.
2060  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2061  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2062
2063  SDValue ArgValue2;
2064  if (NextVA.isMemLoc()) {
2065    MachineFrameInfo *MFI = MF.getFrameInfo();
2066    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2067
2068    // Create load node to retrieve arguments from the stack.
2069    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2070    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2071                            MachinePointerInfo::getFixedStack(FI),
2072                            false, false, 0);
2073  } else {
2074    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2075    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2076  }
2077
2078  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2079}
2080
2081SDValue
2082ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2083                                        CallingConv::ID CallConv, bool isVarArg,
2084                                        const SmallVectorImpl<ISD::InputArg>
2085                                          &Ins,
2086                                        DebugLoc dl, SelectionDAG &DAG,
2087                                        SmallVectorImpl<SDValue> &InVals)
2088                                          const {
2089
2090  MachineFunction &MF = DAG.getMachineFunction();
2091  MachineFrameInfo *MFI = MF.getFrameInfo();
2092
2093  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2094
2095  // Assign locations to all of the incoming arguments.
2096  SmallVector<CCValAssign, 16> ArgLocs;
2097  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2098                 *DAG.getContext());
2099  CCInfo.AnalyzeFormalArguments(Ins,
2100                                CCAssignFnForNode(CallConv, /* Return*/ false,
2101                                                  isVarArg));
2102
2103  SmallVector<SDValue, 16> ArgValues;
2104
2105  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2106    CCValAssign &VA = ArgLocs[i];
2107
2108    // Arguments stored in registers.
2109    if (VA.isRegLoc()) {
2110      EVT RegVT = VA.getLocVT();
2111
2112      SDValue ArgValue;
2113      if (VA.needsCustom()) {
2114        // f64 and vector types are split up into multiple registers or
2115        // combinations of registers and stack slots.
2116        if (VA.getLocVT() == MVT::v2f64) {
2117          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2118                                                   Chain, DAG, dl);
2119          VA = ArgLocs[++i]; // skip ahead to next loc
2120          SDValue ArgValue2;
2121          if (VA.isMemLoc()) {
2122            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2123            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2124            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2125                                    MachinePointerInfo::getFixedStack(FI),
2126                                    false, false, 0);
2127          } else {
2128            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2129                                             Chain, DAG, dl);
2130          }
2131          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2132          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2133                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2134          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2135                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2136        } else
2137          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2138
2139      } else {
2140        TargetRegisterClass *RC;
2141
2142        if (RegVT == MVT::f32)
2143          RC = ARM::SPRRegisterClass;
2144        else if (RegVT == MVT::f64)
2145          RC = ARM::DPRRegisterClass;
2146        else if (RegVT == MVT::v2f64)
2147          RC = ARM::QPRRegisterClass;
2148        else if (RegVT == MVT::i32)
2149          RC = (AFI->isThumb1OnlyFunction() ?
2150                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2151        else
2152          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2153
2154        // Transform the arguments in physical registers into virtual ones.
2155        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2156        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2157      }
2158
2159      // If this is an 8 or 16-bit value, it is really passed promoted
2160      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2161      // truncate to the right size.
2162      switch (VA.getLocInfo()) {
2163      default: llvm_unreachable("Unknown loc info!");
2164      case CCValAssign::Full: break;
2165      case CCValAssign::BCvt:
2166        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2167        break;
2168      case CCValAssign::SExt:
2169        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2170                               DAG.getValueType(VA.getValVT()));
2171        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2172        break;
2173      case CCValAssign::ZExt:
2174        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2175                               DAG.getValueType(VA.getValVT()));
2176        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2177        break;
2178      }
2179
2180      InVals.push_back(ArgValue);
2181
2182    } else { // VA.isRegLoc()
2183
2184      // sanity check
2185      assert(VA.isMemLoc());
2186      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2187
2188      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2189      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2190
2191      // Create load nodes to retrieve arguments from the stack.
2192      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2193      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2194                                   MachinePointerInfo::getFixedStack(FI),
2195                                   false, false, 0));
2196    }
2197  }
2198
2199  // varargs
2200  if (isVarArg) {
2201    static const unsigned GPRArgRegs[] = {
2202      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2203    };
2204
2205    unsigned NumGPRs = CCInfo.getFirstUnallocated
2206      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2207
2208    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2209    unsigned VARegSize = (4 - NumGPRs) * 4;
2210    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2211    unsigned ArgOffset = CCInfo.getNextStackOffset();
2212    if (VARegSaveSize) {
2213      // If this function is vararg, store any remaining integer argument regs
2214      // to their spots on the stack so that they may be loaded by deferencing
2215      // the result of va_next.
2216      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2217      AFI->setVarArgsFrameIndex(
2218        MFI->CreateFixedObject(VARegSaveSize,
2219                               ArgOffset + VARegSaveSize - VARegSize,
2220                               true));
2221      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2222                                      getPointerTy());
2223
2224      SmallVector<SDValue, 4> MemOps;
2225      for (; NumGPRs < 4; ++NumGPRs) {
2226        TargetRegisterClass *RC;
2227        if (AFI->isThumb1OnlyFunction())
2228          RC = ARM::tGPRRegisterClass;
2229        else
2230          RC = ARM::GPRRegisterClass;
2231
2232        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2233        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2234        SDValue Store =
2235          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2236               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2237                       false, false, 0);
2238        MemOps.push_back(Store);
2239        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2240                          DAG.getConstant(4, getPointerTy()));
2241      }
2242      if (!MemOps.empty())
2243        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2244                            &MemOps[0], MemOps.size());
2245    } else
2246      // This will point to the next argument passed via stack.
2247      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2248  }
2249
2250  return Chain;
2251}
2252
2253/// isFloatingPointZero - Return true if this is +0.0.
2254static bool isFloatingPointZero(SDValue Op) {
2255  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2256    return CFP->getValueAPF().isPosZero();
2257  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2258    // Maybe this has already been legalized into the constant pool?
2259    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2260      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2261      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2262        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2263          return CFP->getValueAPF().isPosZero();
2264    }
2265  }
2266  return false;
2267}
2268
2269/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2270/// the given operands.
2271SDValue
2272ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2273                             SDValue &ARMcc, SelectionDAG &DAG,
2274                             DebugLoc dl) const {
2275  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2276    unsigned C = RHSC->getZExtValue();
2277    if (!isLegalICmpImmediate(C)) {
2278      // Constant does not fit, try adjusting it by one?
2279      switch (CC) {
2280      default: break;
2281      case ISD::SETLT:
2282      case ISD::SETGE:
2283        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2284          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2285          RHS = DAG.getConstant(C-1, MVT::i32);
2286        }
2287        break;
2288      case ISD::SETULT:
2289      case ISD::SETUGE:
2290        if (C != 0 && isLegalICmpImmediate(C-1)) {
2291          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2292          RHS = DAG.getConstant(C-1, MVT::i32);
2293        }
2294        break;
2295      case ISD::SETLE:
2296      case ISD::SETGT:
2297        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2298          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2299          RHS = DAG.getConstant(C+1, MVT::i32);
2300        }
2301        break;
2302      case ISD::SETULE:
2303      case ISD::SETUGT:
2304        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2305          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2306          RHS = DAG.getConstant(C+1, MVT::i32);
2307        }
2308        break;
2309      }
2310    }
2311  }
2312
2313  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2314  ARMISD::NodeType CompareType;
2315  switch (CondCode) {
2316  default:
2317    CompareType = ARMISD::CMP;
2318    break;
2319  case ARMCC::EQ:
2320  case ARMCC::NE:
2321    // Uses only Z Flag
2322    CompareType = ARMISD::CMPZ;
2323    break;
2324  }
2325  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2326  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2327}
2328
2329/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2330SDValue
2331ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2332                             DebugLoc dl) const {
2333  SDValue Cmp;
2334  if (!isFloatingPointZero(RHS))
2335    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2336  else
2337    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2338  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2339}
2340
2341SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2342  SDValue Cond = Op.getOperand(0);
2343  SDValue SelectTrue = Op.getOperand(1);
2344  SDValue SelectFalse = Op.getOperand(2);
2345  DebugLoc dl = Op.getDebugLoc();
2346
2347  // Convert:
2348  //
2349  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2350  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2351  //
2352  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2353    const ConstantSDNode *CMOVTrue =
2354      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2355    const ConstantSDNode *CMOVFalse =
2356      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2357
2358    if (CMOVTrue && CMOVFalse) {
2359      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2360      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2361
2362      SDValue True;
2363      SDValue False;
2364      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2365        True = SelectTrue;
2366        False = SelectFalse;
2367      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2368        True = SelectFalse;
2369        False = SelectTrue;
2370      }
2371
2372      if (True.getNode() && False.getNode()) {
2373        EVT VT = Cond.getValueType();
2374        SDValue ARMcc = Cond.getOperand(2);
2375        SDValue CCR = Cond.getOperand(3);
2376        SDValue Cmp = Cond.getOperand(4);
2377        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2378      }
2379    }
2380  }
2381
2382  return DAG.getSelectCC(dl, Cond,
2383                         DAG.getConstant(0, Cond.getValueType()),
2384                         SelectTrue, SelectFalse, ISD::SETNE);
2385}
2386
2387SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2388  EVT VT = Op.getValueType();
2389  SDValue LHS = Op.getOperand(0);
2390  SDValue RHS = Op.getOperand(1);
2391  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2392  SDValue TrueVal = Op.getOperand(2);
2393  SDValue FalseVal = Op.getOperand(3);
2394  DebugLoc dl = Op.getDebugLoc();
2395
2396  if (LHS.getValueType() == MVT::i32) {
2397    SDValue ARMcc;
2398    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2399    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2400    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2401  }
2402
2403  ARMCC::CondCodes CondCode, CondCode2;
2404  FPCCToARMCC(CC, CondCode, CondCode2);
2405
2406  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2407  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2408  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2409  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2410                               ARMcc, CCR, Cmp);
2411  if (CondCode2 != ARMCC::AL) {
2412    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2413    // FIXME: Needs another CMP because flag can have but one use.
2414    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2415    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2416                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2417  }
2418  return Result;
2419}
2420
2421/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2422/// to morph to an integer compare sequence.
2423static bool canChangeToInt(SDValue Op, bool &SeenZero,
2424                           const ARMSubtarget *Subtarget) {
2425  SDNode *N = Op.getNode();
2426  if (!N->hasOneUse())
2427    // Otherwise it requires moving the value from fp to integer registers.
2428    return false;
2429  if (!N->getNumValues())
2430    return false;
2431  EVT VT = Op.getValueType();
2432  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2433    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2434    // vmrs are very slow, e.g. cortex-a8.
2435    return false;
2436
2437  if (isFloatingPointZero(Op)) {
2438    SeenZero = true;
2439    return true;
2440  }
2441  return ISD::isNormalLoad(N);
2442}
2443
2444static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2445  if (isFloatingPointZero(Op))
2446    return DAG.getConstant(0, MVT::i32);
2447
2448  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2449    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2450                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2451                       Ld->isVolatile(), Ld->isNonTemporal(),
2452                       Ld->getAlignment());
2453
2454  llvm_unreachable("Unknown VFP cmp argument!");
2455}
2456
2457static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2458                           SDValue &RetVal1, SDValue &RetVal2) {
2459  if (isFloatingPointZero(Op)) {
2460    RetVal1 = DAG.getConstant(0, MVT::i32);
2461    RetVal2 = DAG.getConstant(0, MVT::i32);
2462    return;
2463  }
2464
2465  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2466    SDValue Ptr = Ld->getBasePtr();
2467    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2468                          Ld->getChain(), Ptr,
2469                          Ld->getPointerInfo(),
2470                          Ld->isVolatile(), Ld->isNonTemporal(),
2471                          Ld->getAlignment());
2472
2473    EVT PtrType = Ptr.getValueType();
2474    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2475    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2476                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2477    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2478                          Ld->getChain(), NewPtr,
2479                          Ld->getPointerInfo().getWithOffset(4),
2480                          Ld->isVolatile(), Ld->isNonTemporal(),
2481                          NewAlign);
2482    return;
2483  }
2484
2485  llvm_unreachable("Unknown VFP cmp argument!");
2486}
2487
2488/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2489/// f32 and even f64 comparisons to integer ones.
2490SDValue
2491ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2492  SDValue Chain = Op.getOperand(0);
2493  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2494  SDValue LHS = Op.getOperand(2);
2495  SDValue RHS = Op.getOperand(3);
2496  SDValue Dest = Op.getOperand(4);
2497  DebugLoc dl = Op.getDebugLoc();
2498
2499  bool SeenZero = false;
2500  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2501      canChangeToInt(RHS, SeenZero, Subtarget) &&
2502      // If one of the operand is zero, it's safe to ignore the NaN case since
2503      // we only care about equality comparisons.
2504      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2505    // If unsafe fp math optimization is enabled and there are no othter uses of
2506    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2507    // to an integer comparison.
2508    if (CC == ISD::SETOEQ)
2509      CC = ISD::SETEQ;
2510    else if (CC == ISD::SETUNE)
2511      CC = ISD::SETNE;
2512
2513    SDValue ARMcc;
2514    if (LHS.getValueType() == MVT::f32) {
2515      LHS = bitcastf32Toi32(LHS, DAG);
2516      RHS = bitcastf32Toi32(RHS, DAG);
2517      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2518      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2519      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2520                         Chain, Dest, ARMcc, CCR, Cmp);
2521    }
2522
2523    SDValue LHS1, LHS2;
2524    SDValue RHS1, RHS2;
2525    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2526    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2527    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2528    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2529    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2530    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2531    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2532  }
2533
2534  return SDValue();
2535}
2536
2537SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2538  SDValue Chain = Op.getOperand(0);
2539  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2540  SDValue LHS = Op.getOperand(2);
2541  SDValue RHS = Op.getOperand(3);
2542  SDValue Dest = Op.getOperand(4);
2543  DebugLoc dl = Op.getDebugLoc();
2544
2545  if (LHS.getValueType() == MVT::i32) {
2546    SDValue ARMcc;
2547    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2548    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2549    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2550                       Chain, Dest, ARMcc, CCR, Cmp);
2551  }
2552
2553  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2554
2555  if (UnsafeFPMath &&
2556      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2557       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2558    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2559    if (Result.getNode())
2560      return Result;
2561  }
2562
2563  ARMCC::CondCodes CondCode, CondCode2;
2564  FPCCToARMCC(CC, CondCode, CondCode2);
2565
2566  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2567  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2568  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2569  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2570  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2571  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2572  if (CondCode2 != ARMCC::AL) {
2573    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2574    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2575    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2576  }
2577  return Res;
2578}
2579
2580SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2581  SDValue Chain = Op.getOperand(0);
2582  SDValue Table = Op.getOperand(1);
2583  SDValue Index = Op.getOperand(2);
2584  DebugLoc dl = Op.getDebugLoc();
2585
2586  EVT PTy = getPointerTy();
2587  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2588  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2589  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2590  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2591  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2592  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2593  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2594  if (Subtarget->isThumb2()) {
2595    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2596    // which does another jump to the destination. This also makes it easier
2597    // to translate it to TBB / TBH later.
2598    // FIXME: This might not work if the function is extremely large.
2599    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2600                       Addr, Op.getOperand(2), JTI, UId);
2601  }
2602  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2603    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2604                       MachinePointerInfo::getJumpTable(),
2605                       false, false, 0);
2606    Chain = Addr.getValue(1);
2607    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2608    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2609  } else {
2610    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2611                       MachinePointerInfo::getJumpTable(), false, false, 0);
2612    Chain = Addr.getValue(1);
2613    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2614  }
2615}
2616
2617static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2618  DebugLoc dl = Op.getDebugLoc();
2619  unsigned Opc;
2620
2621  switch (Op.getOpcode()) {
2622  default:
2623    assert(0 && "Invalid opcode!");
2624  case ISD::FP_TO_SINT:
2625    Opc = ARMISD::FTOSI;
2626    break;
2627  case ISD::FP_TO_UINT:
2628    Opc = ARMISD::FTOUI;
2629    break;
2630  }
2631  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2632  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2633}
2634
2635static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2636  EVT VT = Op.getValueType();
2637  DebugLoc dl = Op.getDebugLoc();
2638  unsigned Opc;
2639
2640  switch (Op.getOpcode()) {
2641  default:
2642    assert(0 && "Invalid opcode!");
2643  case ISD::SINT_TO_FP:
2644    Opc = ARMISD::SITOF;
2645    break;
2646  case ISD::UINT_TO_FP:
2647    Opc = ARMISD::UITOF;
2648    break;
2649  }
2650
2651  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2652  return DAG.getNode(Opc, dl, VT, Op);
2653}
2654
2655SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2656  // Implement fcopysign with a fabs and a conditional fneg.
2657  SDValue Tmp0 = Op.getOperand(0);
2658  SDValue Tmp1 = Op.getOperand(1);
2659  DebugLoc dl = Op.getDebugLoc();
2660  EVT VT = Op.getValueType();
2661  EVT SrcVT = Tmp1.getValueType();
2662  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2663  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2664  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2665  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2666  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2667  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2668}
2669
2670SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2671  MachineFunction &MF = DAG.getMachineFunction();
2672  MachineFrameInfo *MFI = MF.getFrameInfo();
2673  MFI->setReturnAddressIsTaken(true);
2674
2675  EVT VT = Op.getValueType();
2676  DebugLoc dl = Op.getDebugLoc();
2677  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2678  if (Depth) {
2679    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2680    SDValue Offset = DAG.getConstant(4, MVT::i32);
2681    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2682                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2683                       MachinePointerInfo(), false, false, 0);
2684  }
2685
2686  // Return LR, which contains the return address. Mark it an implicit live-in.
2687  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2688  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2689}
2690
2691SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2692  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2693  MFI->setFrameAddressIsTaken(true);
2694
2695  EVT VT = Op.getValueType();
2696  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2697  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2698  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2699    ? ARM::R7 : ARM::R11;
2700  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2701  while (Depth--)
2702    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2703                            MachinePointerInfo(),
2704                            false, false, 0);
2705  return FrameAddr;
2706}
2707
2708/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2709/// expand a bit convert where either the source or destination type is i64 to
2710/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2711/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2712/// vectors), since the legalizer won't know what to do with that.
2713static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2714  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2715  DebugLoc dl = N->getDebugLoc();
2716  SDValue Op = N->getOperand(0);
2717
2718  // This function is only supposed to be called for i64 types, either as the
2719  // source or destination of the bit convert.
2720  EVT SrcVT = Op.getValueType();
2721  EVT DstVT = N->getValueType(0);
2722  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2723         "ExpandBIT_CONVERT called for non-i64 type");
2724
2725  // Turn i64->f64 into VMOVDRR.
2726  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2727    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2728                             DAG.getConstant(0, MVT::i32));
2729    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2730                             DAG.getConstant(1, MVT::i32));
2731    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2732                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2733  }
2734
2735  // Turn f64->i64 into VMOVRRD.
2736  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2737    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2738                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2739    // Merge the pieces into a single i64 value.
2740    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2741  }
2742
2743  return SDValue();
2744}
2745
2746/// getZeroVector - Returns a vector of specified type with all zero elements.
2747/// Zero vectors are used to represent vector negation and in those cases
2748/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2749/// not support i64 elements, so sometimes the zero vectors will need to be
2750/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2751/// zero vector.
2752static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2753  assert(VT.isVector() && "Expected a vector type");
2754  // The canonical modified immediate encoding of a zero vector is....0!
2755  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2756  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2757  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2758  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2759}
2760
2761/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2762/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2763SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2764                                                SelectionDAG &DAG) const {
2765  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2766  EVT VT = Op.getValueType();
2767  unsigned VTBits = VT.getSizeInBits();
2768  DebugLoc dl = Op.getDebugLoc();
2769  SDValue ShOpLo = Op.getOperand(0);
2770  SDValue ShOpHi = Op.getOperand(1);
2771  SDValue ShAmt  = Op.getOperand(2);
2772  SDValue ARMcc;
2773  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2774
2775  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2776
2777  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2778                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2779  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2780  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2781                                   DAG.getConstant(VTBits, MVT::i32));
2782  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2783  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2784  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2785
2786  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2787  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2788                          ARMcc, DAG, dl);
2789  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2790  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2791                           CCR, Cmp);
2792
2793  SDValue Ops[2] = { Lo, Hi };
2794  return DAG.getMergeValues(Ops, 2, dl);
2795}
2796
2797/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2798/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2799SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2800                                               SelectionDAG &DAG) const {
2801  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2802  EVT VT = Op.getValueType();
2803  unsigned VTBits = VT.getSizeInBits();
2804  DebugLoc dl = Op.getDebugLoc();
2805  SDValue ShOpLo = Op.getOperand(0);
2806  SDValue ShOpHi = Op.getOperand(1);
2807  SDValue ShAmt  = Op.getOperand(2);
2808  SDValue ARMcc;
2809
2810  assert(Op.getOpcode() == ISD::SHL_PARTS);
2811  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2812                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2813  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2814  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2815                                   DAG.getConstant(VTBits, MVT::i32));
2816  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2817  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2818
2819  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2820  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2821  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2822                          ARMcc, DAG, dl);
2823  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2824  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2825                           CCR, Cmp);
2826
2827  SDValue Ops[2] = { Lo, Hi };
2828  return DAG.getMergeValues(Ops, 2, dl);
2829}
2830
2831SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2832                                            SelectionDAG &DAG) const {
2833  // The rounding mode is in bits 23:22 of the FPSCR.
2834  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2835  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2836  // so that the shift + and get folded into a bitfield extract.
2837  DebugLoc dl = Op.getDebugLoc();
2838  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2839                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2840                                              MVT::i32));
2841  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2842                                  DAG.getConstant(1U << 22, MVT::i32));
2843  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2844                              DAG.getConstant(22, MVT::i32));
2845  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2846                     DAG.getConstant(3, MVT::i32));
2847}
2848
2849static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2850                         const ARMSubtarget *ST) {
2851  EVT VT = N->getValueType(0);
2852  DebugLoc dl = N->getDebugLoc();
2853
2854  if (!ST->hasV6T2Ops())
2855    return SDValue();
2856
2857  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2858  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2859}
2860
2861static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2862                          const ARMSubtarget *ST) {
2863  EVT VT = N->getValueType(0);
2864  DebugLoc dl = N->getDebugLoc();
2865
2866  // Lower vector shifts on NEON to use VSHL.
2867  if (VT.isVector()) {
2868    assert(ST->hasNEON() && "unexpected vector shift");
2869
2870    // Left shifts translate directly to the vshiftu intrinsic.
2871    if (N->getOpcode() == ISD::SHL)
2872      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2873                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2874                         N->getOperand(0), N->getOperand(1));
2875
2876    assert((N->getOpcode() == ISD::SRA ||
2877            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2878
2879    // NEON uses the same intrinsics for both left and right shifts.  For
2880    // right shifts, the shift amounts are negative, so negate the vector of
2881    // shift amounts.
2882    EVT ShiftVT = N->getOperand(1).getValueType();
2883    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2884                                       getZeroVector(ShiftVT, DAG, dl),
2885                                       N->getOperand(1));
2886    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2887                               Intrinsic::arm_neon_vshifts :
2888                               Intrinsic::arm_neon_vshiftu);
2889    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2890                       DAG.getConstant(vshiftInt, MVT::i32),
2891                       N->getOperand(0), NegatedCount);
2892  }
2893
2894  // We can get here for a node like i32 = ISD::SHL i32, i64
2895  if (VT != MVT::i64)
2896    return SDValue();
2897
2898  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2899         "Unknown shift to lower!");
2900
2901  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2902  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2903      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2904    return SDValue();
2905
2906  // If we are in thumb mode, we don't have RRX.
2907  if (ST->isThumb1Only()) return SDValue();
2908
2909  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2910  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2911                           DAG.getConstant(0, MVT::i32));
2912  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2913                           DAG.getConstant(1, MVT::i32));
2914
2915  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2916  // captures the result into a carry flag.
2917  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2918  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2919
2920  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2921  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2922
2923  // Merge the pieces into a single i64 value.
2924 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2925}
2926
2927static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2928  SDValue TmpOp0, TmpOp1;
2929  bool Invert = false;
2930  bool Swap = false;
2931  unsigned Opc = 0;
2932
2933  SDValue Op0 = Op.getOperand(0);
2934  SDValue Op1 = Op.getOperand(1);
2935  SDValue CC = Op.getOperand(2);
2936  EVT VT = Op.getValueType();
2937  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2938  DebugLoc dl = Op.getDebugLoc();
2939
2940  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2941    switch (SetCCOpcode) {
2942    default: llvm_unreachable("Illegal FP comparison"); break;
2943    case ISD::SETUNE:
2944    case ISD::SETNE:  Invert = true; // Fallthrough
2945    case ISD::SETOEQ:
2946    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2947    case ISD::SETOLT:
2948    case ISD::SETLT: Swap = true; // Fallthrough
2949    case ISD::SETOGT:
2950    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2951    case ISD::SETOLE:
2952    case ISD::SETLE:  Swap = true; // Fallthrough
2953    case ISD::SETOGE:
2954    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2955    case ISD::SETUGE: Swap = true; // Fallthrough
2956    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2957    case ISD::SETUGT: Swap = true; // Fallthrough
2958    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2959    case ISD::SETUEQ: Invert = true; // Fallthrough
2960    case ISD::SETONE:
2961      // Expand this to (OLT | OGT).
2962      TmpOp0 = Op0;
2963      TmpOp1 = Op1;
2964      Opc = ISD::OR;
2965      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2966      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2967      break;
2968    case ISD::SETUO: Invert = true; // Fallthrough
2969    case ISD::SETO:
2970      // Expand this to (OLT | OGE).
2971      TmpOp0 = Op0;
2972      TmpOp1 = Op1;
2973      Opc = ISD::OR;
2974      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2975      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2976      break;
2977    }
2978  } else {
2979    // Integer comparisons.
2980    switch (SetCCOpcode) {
2981    default: llvm_unreachable("Illegal integer comparison"); break;
2982    case ISD::SETNE:  Invert = true;
2983    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2984    case ISD::SETLT:  Swap = true;
2985    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2986    case ISD::SETLE:  Swap = true;
2987    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2988    case ISD::SETULT: Swap = true;
2989    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2990    case ISD::SETULE: Swap = true;
2991    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2992    }
2993
2994    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2995    if (Opc == ARMISD::VCEQ) {
2996
2997      SDValue AndOp;
2998      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2999        AndOp = Op0;
3000      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3001        AndOp = Op1;
3002
3003      // Ignore bitconvert.
3004      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
3005        AndOp = AndOp.getOperand(0);
3006
3007      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3008        Opc = ARMISD::VTST;
3009        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
3010        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
3011        Invert = !Invert;
3012      }
3013    }
3014  }
3015
3016  if (Swap)
3017    std::swap(Op0, Op1);
3018
3019  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3020
3021  if (Invert)
3022    Result = DAG.getNOT(dl, Result, VT);
3023
3024  return Result;
3025}
3026
3027/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3028/// valid vector constant for a NEON instruction with a "modified immediate"
3029/// operand (e.g., VMOV).  If so, return the encoded value.
3030static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3031                                 unsigned SplatBitSize, SelectionDAG &DAG,
3032                                 EVT &VT, bool is128Bits, bool isVMOV) {
3033  unsigned OpCmode, Imm;
3034
3035  // SplatBitSize is set to the smallest size that splats the vector, so a
3036  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3037  // immediate instructions others than VMOV do not support the 8-bit encoding
3038  // of a zero vector, and the default encoding of zero is supposed to be the
3039  // 32-bit version.
3040  if (SplatBits == 0)
3041    SplatBitSize = 32;
3042
3043  switch (SplatBitSize) {
3044  case 8:
3045    if (!isVMOV)
3046      return SDValue();
3047    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3048    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3049    OpCmode = 0xe;
3050    Imm = SplatBits;
3051    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3052    break;
3053
3054  case 16:
3055    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3056    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3057    if ((SplatBits & ~0xff) == 0) {
3058      // Value = 0x00nn: Op=x, Cmode=100x.
3059      OpCmode = 0x8;
3060      Imm = SplatBits;
3061      break;
3062    }
3063    if ((SplatBits & ~0xff00) == 0) {
3064      // Value = 0xnn00: Op=x, Cmode=101x.
3065      OpCmode = 0xa;
3066      Imm = SplatBits >> 8;
3067      break;
3068    }
3069    return SDValue();
3070
3071  case 32:
3072    // NEON's 32-bit VMOV supports splat values where:
3073    // * only one byte is nonzero, or
3074    // * the least significant byte is 0xff and the second byte is nonzero, or
3075    // * the least significant 2 bytes are 0xff and the third is nonzero.
3076    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3077    if ((SplatBits & ~0xff) == 0) {
3078      // Value = 0x000000nn: Op=x, Cmode=000x.
3079      OpCmode = 0;
3080      Imm = SplatBits;
3081      break;
3082    }
3083    if ((SplatBits & ~0xff00) == 0) {
3084      // Value = 0x0000nn00: Op=x, Cmode=001x.
3085      OpCmode = 0x2;
3086      Imm = SplatBits >> 8;
3087      break;
3088    }
3089    if ((SplatBits & ~0xff0000) == 0) {
3090      // Value = 0x00nn0000: Op=x, Cmode=010x.
3091      OpCmode = 0x4;
3092      Imm = SplatBits >> 16;
3093      break;
3094    }
3095    if ((SplatBits & ~0xff000000) == 0) {
3096      // Value = 0xnn000000: Op=x, Cmode=011x.
3097      OpCmode = 0x6;
3098      Imm = SplatBits >> 24;
3099      break;
3100    }
3101
3102    if ((SplatBits & ~0xffff) == 0 &&
3103        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3104      // Value = 0x0000nnff: Op=x, Cmode=1100.
3105      OpCmode = 0xc;
3106      Imm = SplatBits >> 8;
3107      SplatBits |= 0xff;
3108      break;
3109    }
3110
3111    if ((SplatBits & ~0xffffff) == 0 &&
3112        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3113      // Value = 0x00nnffff: Op=x, Cmode=1101.
3114      OpCmode = 0xd;
3115      Imm = SplatBits >> 16;
3116      SplatBits |= 0xffff;
3117      break;
3118    }
3119
3120    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3121    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3122    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3123    // and fall through here to test for a valid 64-bit splat.  But, then the
3124    // caller would also need to check and handle the change in size.
3125    return SDValue();
3126
3127  case 64: {
3128    if (!isVMOV)
3129      return SDValue();
3130    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3131    uint64_t BitMask = 0xff;
3132    uint64_t Val = 0;
3133    unsigned ImmMask = 1;
3134    Imm = 0;
3135    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3136      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3137        Val |= BitMask;
3138        Imm |= ImmMask;
3139      } else if ((SplatBits & BitMask) != 0) {
3140        return SDValue();
3141      }
3142      BitMask <<= 8;
3143      ImmMask <<= 1;
3144    }
3145    // Op=1, Cmode=1110.
3146    OpCmode = 0x1e;
3147    SplatBits = Val;
3148    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3149    break;
3150  }
3151
3152  default:
3153    llvm_unreachable("unexpected size for isNEONModifiedImm");
3154    return SDValue();
3155  }
3156
3157  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3158  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3159}
3160
3161static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3162                       bool &ReverseVEXT, unsigned &Imm) {
3163  unsigned NumElts = VT.getVectorNumElements();
3164  ReverseVEXT = false;
3165
3166  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3167  if (M[0] < 0)
3168    return false;
3169
3170  Imm = M[0];
3171
3172  // If this is a VEXT shuffle, the immediate value is the index of the first
3173  // element.  The other shuffle indices must be the successive elements after
3174  // the first one.
3175  unsigned ExpectedElt = Imm;
3176  for (unsigned i = 1; i < NumElts; ++i) {
3177    // Increment the expected index.  If it wraps around, it may still be
3178    // a VEXT but the source vectors must be swapped.
3179    ExpectedElt += 1;
3180    if (ExpectedElt == NumElts * 2) {
3181      ExpectedElt = 0;
3182      ReverseVEXT = true;
3183    }
3184
3185    if (M[i] < 0) continue; // ignore UNDEF indices
3186    if (ExpectedElt != static_cast<unsigned>(M[i]))
3187      return false;
3188  }
3189
3190  // Adjust the index value if the source operands will be swapped.
3191  if (ReverseVEXT)
3192    Imm -= NumElts;
3193
3194  return true;
3195}
3196
3197/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3198/// instruction with the specified blocksize.  (The order of the elements
3199/// within each block of the vector is reversed.)
3200static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3201                       unsigned BlockSize) {
3202  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3203         "Only possible block sizes for VREV are: 16, 32, 64");
3204
3205  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3206  if (EltSz == 64)
3207    return false;
3208
3209  unsigned NumElts = VT.getVectorNumElements();
3210  unsigned BlockElts = M[0] + 1;
3211  // If the first shuffle index is UNDEF, be optimistic.
3212  if (M[0] < 0)
3213    BlockElts = BlockSize / EltSz;
3214
3215  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3216    return false;
3217
3218  for (unsigned i = 0; i < NumElts; ++i) {
3219    if (M[i] < 0) continue; // ignore UNDEF indices
3220    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3221      return false;
3222  }
3223
3224  return true;
3225}
3226
3227static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3228                       unsigned &WhichResult) {
3229  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3230  if (EltSz == 64)
3231    return false;
3232
3233  unsigned NumElts = VT.getVectorNumElements();
3234  WhichResult = (M[0] == 0 ? 0 : 1);
3235  for (unsigned i = 0; i < NumElts; i += 2) {
3236    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3237        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3238      return false;
3239  }
3240  return true;
3241}
3242
3243/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3244/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3245/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3246static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3247                                unsigned &WhichResult) {
3248  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3249  if (EltSz == 64)
3250    return false;
3251
3252  unsigned NumElts = VT.getVectorNumElements();
3253  WhichResult = (M[0] == 0 ? 0 : 1);
3254  for (unsigned i = 0; i < NumElts; i += 2) {
3255    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3256        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3257      return false;
3258  }
3259  return true;
3260}
3261
3262static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3263                       unsigned &WhichResult) {
3264  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3265  if (EltSz == 64)
3266    return false;
3267
3268  unsigned NumElts = VT.getVectorNumElements();
3269  WhichResult = (M[0] == 0 ? 0 : 1);
3270  for (unsigned i = 0; i != NumElts; ++i) {
3271    if (M[i] < 0) continue; // ignore UNDEF indices
3272    if ((unsigned) M[i] != 2 * i + WhichResult)
3273      return false;
3274  }
3275
3276  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3277  if (VT.is64BitVector() && EltSz == 32)
3278    return false;
3279
3280  return true;
3281}
3282
3283/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3284/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3285/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3286static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3287                                unsigned &WhichResult) {
3288  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3289  if (EltSz == 64)
3290    return false;
3291
3292  unsigned Half = VT.getVectorNumElements() / 2;
3293  WhichResult = (M[0] == 0 ? 0 : 1);
3294  for (unsigned j = 0; j != 2; ++j) {
3295    unsigned Idx = WhichResult;
3296    for (unsigned i = 0; i != Half; ++i) {
3297      int MIdx = M[i + j * Half];
3298      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3299        return false;
3300      Idx += 2;
3301    }
3302  }
3303
3304  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3305  if (VT.is64BitVector() && EltSz == 32)
3306    return false;
3307
3308  return true;
3309}
3310
3311static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3312                       unsigned &WhichResult) {
3313  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3314  if (EltSz == 64)
3315    return false;
3316
3317  unsigned NumElts = VT.getVectorNumElements();
3318  WhichResult = (M[0] == 0 ? 0 : 1);
3319  unsigned Idx = WhichResult * NumElts / 2;
3320  for (unsigned i = 0; i != NumElts; i += 2) {
3321    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3322        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3323      return false;
3324    Idx += 1;
3325  }
3326
3327  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3328  if (VT.is64BitVector() && EltSz == 32)
3329    return false;
3330
3331  return true;
3332}
3333
3334/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3335/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3336/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3337static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3338                                unsigned &WhichResult) {
3339  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3340  if (EltSz == 64)
3341    return false;
3342
3343  unsigned NumElts = VT.getVectorNumElements();
3344  WhichResult = (M[0] == 0 ? 0 : 1);
3345  unsigned Idx = WhichResult * NumElts / 2;
3346  for (unsigned i = 0; i != NumElts; i += 2) {
3347    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3348        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3349      return false;
3350    Idx += 1;
3351  }
3352
3353  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3354  if (VT.is64BitVector() && EltSz == 32)
3355    return false;
3356
3357  return true;
3358}
3359
3360// If N is an integer constant that can be moved into a register in one
3361// instruction, return an SDValue of such a constant (will become a MOV
3362// instruction).  Otherwise return null.
3363static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3364                                     const ARMSubtarget *ST, DebugLoc dl) {
3365  uint64_t Val;
3366  if (!isa<ConstantSDNode>(N))
3367    return SDValue();
3368  Val = cast<ConstantSDNode>(N)->getZExtValue();
3369
3370  if (ST->isThumb1Only()) {
3371    if (Val <= 255 || ~Val <= 255)
3372      return DAG.getConstant(Val, MVT::i32);
3373  } else {
3374    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3375      return DAG.getConstant(Val, MVT::i32);
3376  }
3377  return SDValue();
3378}
3379
3380// If this is a case we can't handle, return null and let the default
3381// expansion code take care of it.
3382static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3383                                 const ARMSubtarget *ST) {
3384  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3385  DebugLoc dl = Op.getDebugLoc();
3386  EVT VT = Op.getValueType();
3387
3388  APInt SplatBits, SplatUndef;
3389  unsigned SplatBitSize;
3390  bool HasAnyUndefs;
3391  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3392    if (SplatBitSize <= 64) {
3393      // Check if an immediate VMOV works.
3394      EVT VmovVT;
3395      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3396                                      SplatUndef.getZExtValue(), SplatBitSize,
3397                                      DAG, VmovVT, VT.is128BitVector(), true);
3398      if (Val.getNode()) {
3399        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3400        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3401      }
3402
3403      // Try an immediate VMVN.
3404      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3405                             ((1LL << SplatBitSize) - 1));
3406      Val = isNEONModifiedImm(NegatedImm,
3407                                      SplatUndef.getZExtValue(), SplatBitSize,
3408                                      DAG, VmovVT, VT.is128BitVector(), false);
3409      if (Val.getNode()) {
3410        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3411        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3412      }
3413    }
3414  }
3415
3416  // Scan through the operands to see if only one value is used.
3417  unsigned NumElts = VT.getVectorNumElements();
3418  bool isOnlyLowElement = true;
3419  bool usesOnlyOneValue = true;
3420  bool isConstant = true;
3421  SDValue Value;
3422  for (unsigned i = 0; i < NumElts; ++i) {
3423    SDValue V = Op.getOperand(i);
3424    if (V.getOpcode() == ISD::UNDEF)
3425      continue;
3426    if (i > 0)
3427      isOnlyLowElement = false;
3428    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3429      isConstant = false;
3430
3431    if (!Value.getNode())
3432      Value = V;
3433    else if (V != Value)
3434      usesOnlyOneValue = false;
3435  }
3436
3437  if (!Value.getNode())
3438    return DAG.getUNDEF(VT);
3439
3440  if (isOnlyLowElement)
3441    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3442
3443  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3444
3445  if (EnableARMVDUPsplat) {
3446    // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3447    // i32 and try again.
3448    if (usesOnlyOneValue && EltSize <= 32) {
3449      if (!isConstant)
3450        return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3451      if (VT.getVectorElementType().isFloatingPoint()) {
3452        SmallVector<SDValue, 8> Ops;
3453        for (unsigned i = 0; i < NumElts; ++i)
3454          Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3455                                    Op.getOperand(i)));
3456        SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3457                                  NumElts);
3458        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3459                           LowerBUILD_VECTOR(Val, DAG, ST));
3460      }
3461      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3462      if (Val.getNode())
3463        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3464    }
3465  }
3466
3467  // If all elements are constants and the case above didn't get hit, fall back
3468  // to the default expansion, which will generate a load from the constant
3469  // pool.
3470  if (isConstant)
3471    return SDValue();
3472
3473  if (!EnableARMVDUPsplat) {
3474    // Use VDUP for non-constant splats.
3475    if (usesOnlyOneValue && EltSize <= 32)
3476      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3477  }
3478
3479  // Vectors with 32- or 64-bit elements can be built by directly assigning
3480  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3481  // will be legalized.
3482  if (EltSize >= 32) {
3483    // Do the expansion with floating-point types, since that is what the VFP
3484    // registers are defined to use, and since i64 is not legal.
3485    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3486    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3487    SmallVector<SDValue, 8> Ops;
3488    for (unsigned i = 0; i < NumElts; ++i)
3489      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3490    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3491    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3492  }
3493
3494  return SDValue();
3495}
3496
3497/// isShuffleMaskLegal - Targets can use this to indicate that they only
3498/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3499/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3500/// are assumed to be legal.
3501bool
3502ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3503                                      EVT VT) const {
3504  if (VT.getVectorNumElements() == 4 &&
3505      (VT.is128BitVector() || VT.is64BitVector())) {
3506    unsigned PFIndexes[4];
3507    for (unsigned i = 0; i != 4; ++i) {
3508      if (M[i] < 0)
3509        PFIndexes[i] = 8;
3510      else
3511        PFIndexes[i] = M[i];
3512    }
3513
3514    // Compute the index in the perfect shuffle table.
3515    unsigned PFTableIndex =
3516      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3517    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3518    unsigned Cost = (PFEntry >> 30);
3519
3520    if (Cost <= 4)
3521      return true;
3522  }
3523
3524  bool ReverseVEXT;
3525  unsigned Imm, WhichResult;
3526
3527  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3528  return (EltSize >= 32 ||
3529          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3530          isVREVMask(M, VT, 64) ||
3531          isVREVMask(M, VT, 32) ||
3532          isVREVMask(M, VT, 16) ||
3533          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3534          isVTRNMask(M, VT, WhichResult) ||
3535          isVUZPMask(M, VT, WhichResult) ||
3536          isVZIPMask(M, VT, WhichResult) ||
3537          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3538          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3539          isVZIP_v_undef_Mask(M, VT, WhichResult));
3540}
3541
3542/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3543/// the specified operations to build the shuffle.
3544static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3545                                      SDValue RHS, SelectionDAG &DAG,
3546                                      DebugLoc dl) {
3547  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3548  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3549  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3550
3551  enum {
3552    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3553    OP_VREV,
3554    OP_VDUP0,
3555    OP_VDUP1,
3556    OP_VDUP2,
3557    OP_VDUP3,
3558    OP_VEXT1,
3559    OP_VEXT2,
3560    OP_VEXT3,
3561    OP_VUZPL, // VUZP, left result
3562    OP_VUZPR, // VUZP, right result
3563    OP_VZIPL, // VZIP, left result
3564    OP_VZIPR, // VZIP, right result
3565    OP_VTRNL, // VTRN, left result
3566    OP_VTRNR  // VTRN, right result
3567  };
3568
3569  if (OpNum == OP_COPY) {
3570    if (LHSID == (1*9+2)*9+3) return LHS;
3571    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3572    return RHS;
3573  }
3574
3575  SDValue OpLHS, OpRHS;
3576  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3577  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3578  EVT VT = OpLHS.getValueType();
3579
3580  switch (OpNum) {
3581  default: llvm_unreachable("Unknown shuffle opcode!");
3582  case OP_VREV:
3583    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3584  case OP_VDUP0:
3585  case OP_VDUP1:
3586  case OP_VDUP2:
3587  case OP_VDUP3:
3588    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3589                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3590  case OP_VEXT1:
3591  case OP_VEXT2:
3592  case OP_VEXT3:
3593    return DAG.getNode(ARMISD::VEXT, dl, VT,
3594                       OpLHS, OpRHS,
3595                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3596  case OP_VUZPL:
3597  case OP_VUZPR:
3598    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3599                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3600  case OP_VZIPL:
3601  case OP_VZIPR:
3602    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3603                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3604  case OP_VTRNL:
3605  case OP_VTRNR:
3606    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3607                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3608  }
3609}
3610
3611static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3612  SDValue V1 = Op.getOperand(0);
3613  SDValue V2 = Op.getOperand(1);
3614  DebugLoc dl = Op.getDebugLoc();
3615  EVT VT = Op.getValueType();
3616  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3617  SmallVector<int, 8> ShuffleMask;
3618
3619  // Convert shuffles that are directly supported on NEON to target-specific
3620  // DAG nodes, instead of keeping them as shuffles and matching them again
3621  // during code selection.  This is more efficient and avoids the possibility
3622  // of inconsistencies between legalization and selection.
3623  // FIXME: floating-point vectors should be canonicalized to integer vectors
3624  // of the same time so that they get CSEd properly.
3625  SVN->getMask(ShuffleMask);
3626
3627  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3628  if (EltSize <= 32) {
3629    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3630      int Lane = SVN->getSplatIndex();
3631      // If this is undef splat, generate it via "just" vdup, if possible.
3632      if (Lane == -1) Lane = 0;
3633
3634      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3635        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3636      }
3637      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3638                         DAG.getConstant(Lane, MVT::i32));
3639    }
3640
3641    bool ReverseVEXT;
3642    unsigned Imm;
3643    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3644      if (ReverseVEXT)
3645        std::swap(V1, V2);
3646      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3647                         DAG.getConstant(Imm, MVT::i32));
3648    }
3649
3650    if (isVREVMask(ShuffleMask, VT, 64))
3651      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3652    if (isVREVMask(ShuffleMask, VT, 32))
3653      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3654    if (isVREVMask(ShuffleMask, VT, 16))
3655      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3656
3657    // Check for Neon shuffles that modify both input vectors in place.
3658    // If both results are used, i.e., if there are two shuffles with the same
3659    // source operands and with masks corresponding to both results of one of
3660    // these operations, DAG memoization will ensure that a single node is
3661    // used for both shuffles.
3662    unsigned WhichResult;
3663    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3664      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3665                         V1, V2).getValue(WhichResult);
3666    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3667      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3668                         V1, V2).getValue(WhichResult);
3669    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3670      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3671                         V1, V2).getValue(WhichResult);
3672
3673    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3674      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3675                         V1, V1).getValue(WhichResult);
3676    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3677      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3678                         V1, V1).getValue(WhichResult);
3679    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3680      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3681                         V1, V1).getValue(WhichResult);
3682  }
3683
3684  // If the shuffle is not directly supported and it has 4 elements, use
3685  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3686  unsigned NumElts = VT.getVectorNumElements();
3687  if (NumElts == 4) {
3688    unsigned PFIndexes[4];
3689    for (unsigned i = 0; i != 4; ++i) {
3690      if (ShuffleMask[i] < 0)
3691        PFIndexes[i] = 8;
3692      else
3693        PFIndexes[i] = ShuffleMask[i];
3694    }
3695
3696    // Compute the index in the perfect shuffle table.
3697    unsigned PFTableIndex =
3698      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3699    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3700    unsigned Cost = (PFEntry >> 30);
3701
3702    if (Cost <= 4)
3703      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3704  }
3705
3706  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3707  if (EltSize >= 32) {
3708    // Do the expansion with floating-point types, since that is what the VFP
3709    // registers are defined to use, and since i64 is not legal.
3710    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3711    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3712    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3713    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3714    SmallVector<SDValue, 8> Ops;
3715    for (unsigned i = 0; i < NumElts; ++i) {
3716      if (ShuffleMask[i] < 0)
3717        Ops.push_back(DAG.getUNDEF(EltVT));
3718      else
3719        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3720                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3721                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3722                                                  MVT::i32)));
3723    }
3724    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3725    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3726  }
3727
3728  return SDValue();
3729}
3730
3731static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3732  EVT VT = Op.getValueType();
3733  DebugLoc dl = Op.getDebugLoc();
3734  SDValue Vec = Op.getOperand(0);
3735  SDValue Lane = Op.getOperand(1);
3736  assert(VT == MVT::i32 &&
3737         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3738         "unexpected type for custom-lowering vector extract");
3739  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3740}
3741
3742static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3743  // The only time a CONCAT_VECTORS operation can have legal types is when
3744  // two 64-bit vectors are concatenated to a 128-bit vector.
3745  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3746         "unexpected CONCAT_VECTORS");
3747  DebugLoc dl = Op.getDebugLoc();
3748  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3749  SDValue Op0 = Op.getOperand(0);
3750  SDValue Op1 = Op.getOperand(1);
3751  if (Op0.getOpcode() != ISD::UNDEF)
3752    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3753                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3754                      DAG.getIntPtrConstant(0));
3755  if (Op1.getOpcode() != ISD::UNDEF)
3756    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3757                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3758                      DAG.getIntPtrConstant(1));
3759  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3760}
3761
3762/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
3763/// an extending load, return the unextended value.
3764static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3765  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3766    return N->getOperand(0);
3767  LoadSDNode *LD = cast<LoadSDNode>(N);
3768  return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3769                     LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3770                     LD->isNonTemporal(), LD->getAlignment());
3771}
3772
3773static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
3774  // Multiplications are only custom-lowered for 128-bit vectors so that
3775  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
3776  EVT VT = Op.getValueType();
3777  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
3778  SDNode *N0 = Op.getOperand(0).getNode();
3779  SDNode *N1 = Op.getOperand(1).getNode();
3780  unsigned NewOpc = 0;
3781  if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
3782      (N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
3783    NewOpc = ARMISD::VMULLs;
3784  } else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
3785             (N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
3786    NewOpc = ARMISD::VMULLu;
3787  } else if (VT.getSimpleVT().SimpleTy == MVT::v2i64) {
3788    // Fall through to expand this.  It is not legal.
3789    return SDValue();
3790  } else {
3791    // Other vector multiplications are legal.
3792    return Op;
3793  }
3794
3795  // Legalize to a VMULL instruction.
3796  DebugLoc DL = Op.getDebugLoc();
3797  SDValue Op0 = SkipExtension(N0, DAG);
3798  SDValue Op1 = SkipExtension(N1, DAG);
3799
3800  assert(Op0.getValueType().is64BitVector() &&
3801         Op1.getValueType().is64BitVector() &&
3802         "unexpected types for extended operands to VMULL");
3803  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
3804}
3805
3806SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3807  switch (Op.getOpcode()) {
3808  default: llvm_unreachable("Don't know how to custom lower this!");
3809  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3810  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3811  case ISD::GlobalAddress:
3812    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3813      LowerGlobalAddressELF(Op, DAG);
3814  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3815  case ISD::SELECT:        return LowerSELECT(Op, DAG);
3816  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3817  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3818  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3819  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3820  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3821  case ISD::SINT_TO_FP:
3822  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3823  case ISD::FP_TO_SINT:
3824  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3825  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3826  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3827  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3828  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3829  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3830  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3831  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3832                                                               Subtarget);
3833  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3834  case ISD::SHL:
3835  case ISD::SRL:
3836  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3837  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3838  case ISD::SRL_PARTS:
3839  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3840  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3841  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3842  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3843  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3844  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3845  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3846  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
3847  case ISD::MUL:           return LowerMUL(Op, DAG);
3848  }
3849  return SDValue();
3850}
3851
3852/// ReplaceNodeResults - Replace the results of node with an illegal result
3853/// type with new values built out of custom code.
3854void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3855                                           SmallVectorImpl<SDValue>&Results,
3856                                           SelectionDAG &DAG) const {
3857  SDValue Res;
3858  switch (N->getOpcode()) {
3859  default:
3860    llvm_unreachable("Don't know how to custom expand this!");
3861    break;
3862  case ISD::BIT_CONVERT:
3863    Res = ExpandBIT_CONVERT(N, DAG);
3864    break;
3865  case ISD::SRL:
3866  case ISD::SRA:
3867    Res = LowerShift(N, DAG, Subtarget);
3868    break;
3869  }
3870  if (Res.getNode())
3871    Results.push_back(Res);
3872}
3873
3874//===----------------------------------------------------------------------===//
3875//                           ARM Scheduler Hooks
3876//===----------------------------------------------------------------------===//
3877
3878MachineBasicBlock *
3879ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3880                                     MachineBasicBlock *BB,
3881                                     unsigned Size) const {
3882  unsigned dest    = MI->getOperand(0).getReg();
3883  unsigned ptr     = MI->getOperand(1).getReg();
3884  unsigned oldval  = MI->getOperand(2).getReg();
3885  unsigned newval  = MI->getOperand(3).getReg();
3886  unsigned scratch = BB->getParent()->getRegInfo()
3887    .createVirtualRegister(ARM::GPRRegisterClass);
3888  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3889  DebugLoc dl = MI->getDebugLoc();
3890  bool isThumb2 = Subtarget->isThumb2();
3891
3892  unsigned ldrOpc, strOpc;
3893  switch (Size) {
3894  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3895  case 1:
3896    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3897    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3898    break;
3899  case 2:
3900    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3901    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3902    break;
3903  case 4:
3904    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3905    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3906    break;
3907  }
3908
3909  MachineFunction *MF = BB->getParent();
3910  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3911  MachineFunction::iterator It = BB;
3912  ++It; // insert the new blocks after the current block
3913
3914  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3915  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3916  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3917  MF->insert(It, loop1MBB);
3918  MF->insert(It, loop2MBB);
3919  MF->insert(It, exitMBB);
3920
3921  // Transfer the remainder of BB and its successor edges to exitMBB.
3922  exitMBB->splice(exitMBB->begin(), BB,
3923                  llvm::next(MachineBasicBlock::iterator(MI)),
3924                  BB->end());
3925  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3926
3927  //  thisMBB:
3928  //   ...
3929  //   fallthrough --> loop1MBB
3930  BB->addSuccessor(loop1MBB);
3931
3932  // loop1MBB:
3933  //   ldrex dest, [ptr]
3934  //   cmp dest, oldval
3935  //   bne exitMBB
3936  BB = loop1MBB;
3937  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3938  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3939                 .addReg(dest).addReg(oldval));
3940  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3941    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3942  BB->addSuccessor(loop2MBB);
3943  BB->addSuccessor(exitMBB);
3944
3945  // loop2MBB:
3946  //   strex scratch, newval, [ptr]
3947  //   cmp scratch, #0
3948  //   bne loop1MBB
3949  BB = loop2MBB;
3950  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3951                 .addReg(ptr));
3952  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3953                 .addReg(scratch).addImm(0));
3954  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3955    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3956  BB->addSuccessor(loop1MBB);
3957  BB->addSuccessor(exitMBB);
3958
3959  //  exitMBB:
3960  //   ...
3961  BB = exitMBB;
3962
3963  MI->eraseFromParent();   // The instruction is gone now.
3964
3965  return BB;
3966}
3967
3968MachineBasicBlock *
3969ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3970                                    unsigned Size, unsigned BinOpcode) const {
3971  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3972  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3973
3974  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3975  MachineFunction *MF = BB->getParent();
3976  MachineFunction::iterator It = BB;
3977  ++It;
3978
3979  unsigned dest = MI->getOperand(0).getReg();
3980  unsigned ptr = MI->getOperand(1).getReg();
3981  unsigned incr = MI->getOperand(2).getReg();
3982  DebugLoc dl = MI->getDebugLoc();
3983
3984  bool isThumb2 = Subtarget->isThumb2();
3985  unsigned ldrOpc, strOpc;
3986  switch (Size) {
3987  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3988  case 1:
3989    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3990    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3991    break;
3992  case 2:
3993    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3994    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3995    break;
3996  case 4:
3997    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3998    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3999    break;
4000  }
4001
4002  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4003  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4004  MF->insert(It, loopMBB);
4005  MF->insert(It, exitMBB);
4006
4007  // Transfer the remainder of BB and its successor edges to exitMBB.
4008  exitMBB->splice(exitMBB->begin(), BB,
4009                  llvm::next(MachineBasicBlock::iterator(MI)),
4010                  BB->end());
4011  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4012
4013  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4014  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4015  unsigned scratch2 = (!BinOpcode) ? incr :
4016    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4017
4018  //  thisMBB:
4019  //   ...
4020  //   fallthrough --> loopMBB
4021  BB->addSuccessor(loopMBB);
4022
4023  //  loopMBB:
4024  //   ldrex dest, ptr
4025  //   <binop> scratch2, dest, incr
4026  //   strex scratch, scratch2, ptr
4027  //   cmp scratch, #0
4028  //   bne- loopMBB
4029  //   fallthrough --> exitMBB
4030  BB = loopMBB;
4031  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4032  if (BinOpcode) {
4033    // operand order needs to go the other way for NAND
4034    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4035      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4036                     addReg(incr).addReg(dest)).addReg(0);
4037    else
4038      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4039                     addReg(dest).addReg(incr)).addReg(0);
4040  }
4041
4042  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4043                 .addReg(ptr));
4044  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4045                 .addReg(scratch).addImm(0));
4046  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4047    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4048
4049  BB->addSuccessor(loopMBB);
4050  BB->addSuccessor(exitMBB);
4051
4052  //  exitMBB:
4053  //   ...
4054  BB = exitMBB;
4055
4056  MI->eraseFromParent();   // The instruction is gone now.
4057
4058  return BB;
4059}
4060
4061static
4062MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4063  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4064       E = MBB->succ_end(); I != E; ++I)
4065    if (*I != Succ)
4066      return *I;
4067  llvm_unreachable("Expecting a BB with two successors!");
4068}
4069
4070MachineBasicBlock *
4071ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4072                                               MachineBasicBlock *BB) const {
4073  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4074  DebugLoc dl = MI->getDebugLoc();
4075  bool isThumb2 = Subtarget->isThumb2();
4076  switch (MI->getOpcode()) {
4077  default:
4078    MI->dump();
4079    llvm_unreachable("Unexpected instr type to insert");
4080
4081  case ARM::ATOMIC_LOAD_ADD_I8:
4082     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4083  case ARM::ATOMIC_LOAD_ADD_I16:
4084     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4085  case ARM::ATOMIC_LOAD_ADD_I32:
4086     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4087
4088  case ARM::ATOMIC_LOAD_AND_I8:
4089     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4090  case ARM::ATOMIC_LOAD_AND_I16:
4091     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4092  case ARM::ATOMIC_LOAD_AND_I32:
4093     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4094
4095  case ARM::ATOMIC_LOAD_OR_I8:
4096     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4097  case ARM::ATOMIC_LOAD_OR_I16:
4098     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4099  case ARM::ATOMIC_LOAD_OR_I32:
4100     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4101
4102  case ARM::ATOMIC_LOAD_XOR_I8:
4103     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4104  case ARM::ATOMIC_LOAD_XOR_I16:
4105     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4106  case ARM::ATOMIC_LOAD_XOR_I32:
4107     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4108
4109  case ARM::ATOMIC_LOAD_NAND_I8:
4110     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4111  case ARM::ATOMIC_LOAD_NAND_I16:
4112     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4113  case ARM::ATOMIC_LOAD_NAND_I32:
4114     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4115
4116  case ARM::ATOMIC_LOAD_SUB_I8:
4117     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4118  case ARM::ATOMIC_LOAD_SUB_I16:
4119     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4120  case ARM::ATOMIC_LOAD_SUB_I32:
4121     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4122
4123  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4124  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4125  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4126
4127  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4128  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4129  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4130
4131  case ARM::tMOVCCr_pseudo: {
4132    // To "insert" a SELECT_CC instruction, we actually have to insert the
4133    // diamond control-flow pattern.  The incoming instruction knows the
4134    // destination vreg to set, the condition code register to branch on, the
4135    // true/false values to select between, and a branch opcode to use.
4136    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4137    MachineFunction::iterator It = BB;
4138    ++It;
4139
4140    //  thisMBB:
4141    //  ...
4142    //   TrueVal = ...
4143    //   cmpTY ccX, r1, r2
4144    //   bCC copy1MBB
4145    //   fallthrough --> copy0MBB
4146    MachineBasicBlock *thisMBB  = BB;
4147    MachineFunction *F = BB->getParent();
4148    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4149    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4150    F->insert(It, copy0MBB);
4151    F->insert(It, sinkMBB);
4152
4153    // Transfer the remainder of BB and its successor edges to sinkMBB.
4154    sinkMBB->splice(sinkMBB->begin(), BB,
4155                    llvm::next(MachineBasicBlock::iterator(MI)),
4156                    BB->end());
4157    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4158
4159    BB->addSuccessor(copy0MBB);
4160    BB->addSuccessor(sinkMBB);
4161
4162    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4163      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4164
4165    //  copy0MBB:
4166    //   %FalseValue = ...
4167    //   # fallthrough to sinkMBB
4168    BB = copy0MBB;
4169
4170    // Update machine-CFG edges
4171    BB->addSuccessor(sinkMBB);
4172
4173    //  sinkMBB:
4174    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4175    //  ...
4176    BB = sinkMBB;
4177    BuildMI(*BB, BB->begin(), dl,
4178            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4179      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4180      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4181
4182    MI->eraseFromParent();   // The pseudo instruction is gone now.
4183    return BB;
4184  }
4185
4186  case ARM::BCCi64:
4187  case ARM::BCCZi64: {
4188    // Compare both parts that make up the double comparison separately for
4189    // equality.
4190    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4191
4192    unsigned LHS1 = MI->getOperand(1).getReg();
4193    unsigned LHS2 = MI->getOperand(2).getReg();
4194    if (RHSisZero) {
4195      AddDefaultPred(BuildMI(BB, dl,
4196                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4197                     .addReg(LHS1).addImm(0));
4198      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4199        .addReg(LHS2).addImm(0)
4200        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4201    } else {
4202      unsigned RHS1 = MI->getOperand(3).getReg();
4203      unsigned RHS2 = MI->getOperand(4).getReg();
4204      AddDefaultPred(BuildMI(BB, dl,
4205                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4206                     .addReg(LHS1).addReg(RHS1));
4207      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4208        .addReg(LHS2).addReg(RHS2)
4209        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4210    }
4211
4212    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4213    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4214    if (MI->getOperand(0).getImm() == ARMCC::NE)
4215      std::swap(destMBB, exitMBB);
4216
4217    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4218      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4219    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4220      .addMBB(exitMBB);
4221
4222    MI->eraseFromParent();   // The pseudo instruction is gone now.
4223    return BB;
4224  }
4225  }
4226}
4227
4228//===----------------------------------------------------------------------===//
4229//                           ARM Optimization Hooks
4230//===----------------------------------------------------------------------===//
4231
4232static
4233SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4234                            TargetLowering::DAGCombinerInfo &DCI) {
4235  SelectionDAG &DAG = DCI.DAG;
4236  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4237  EVT VT = N->getValueType(0);
4238  unsigned Opc = N->getOpcode();
4239  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4240  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4241  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4242  ISD::CondCode CC = ISD::SETCC_INVALID;
4243
4244  if (isSlctCC) {
4245    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4246  } else {
4247    SDValue CCOp = Slct.getOperand(0);
4248    if (CCOp.getOpcode() == ISD::SETCC)
4249      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4250  }
4251
4252  bool DoXform = false;
4253  bool InvCC = false;
4254  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4255          "Bad input!");
4256
4257  if (LHS.getOpcode() == ISD::Constant &&
4258      cast<ConstantSDNode>(LHS)->isNullValue()) {
4259    DoXform = true;
4260  } else if (CC != ISD::SETCC_INVALID &&
4261             RHS.getOpcode() == ISD::Constant &&
4262             cast<ConstantSDNode>(RHS)->isNullValue()) {
4263    std::swap(LHS, RHS);
4264    SDValue Op0 = Slct.getOperand(0);
4265    EVT OpVT = isSlctCC ? Op0.getValueType() :
4266                          Op0.getOperand(0).getValueType();
4267    bool isInt = OpVT.isInteger();
4268    CC = ISD::getSetCCInverse(CC, isInt);
4269
4270    if (!TLI.isCondCodeLegal(CC, OpVT))
4271      return SDValue();         // Inverse operator isn't legal.
4272
4273    DoXform = true;
4274    InvCC = true;
4275  }
4276
4277  if (DoXform) {
4278    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4279    if (isSlctCC)
4280      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4281                             Slct.getOperand(0), Slct.getOperand(1), CC);
4282    SDValue CCOp = Slct.getOperand(0);
4283    if (InvCC)
4284      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4285                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4286    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4287                       CCOp, OtherOp, Result);
4288  }
4289  return SDValue();
4290}
4291
4292/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4293/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4294/// called with the default operands, and if that fails, with commuted
4295/// operands.
4296static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4297                                         TargetLowering::DAGCombinerInfo &DCI) {
4298  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4299  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4300    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4301    if (Result.getNode()) return Result;
4302  }
4303  return SDValue();
4304}
4305
4306/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4307///
4308static SDValue PerformADDCombine(SDNode *N,
4309                                 TargetLowering::DAGCombinerInfo &DCI) {
4310  SDValue N0 = N->getOperand(0);
4311  SDValue N1 = N->getOperand(1);
4312
4313  // First try with the default operand order.
4314  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4315  if (Result.getNode())
4316    return Result;
4317
4318  // If that didn't work, try again with the operands commuted.
4319  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4320}
4321
4322/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4323///
4324static SDValue PerformSUBCombine(SDNode *N,
4325                                 TargetLowering::DAGCombinerInfo &DCI) {
4326  SDValue N0 = N->getOperand(0);
4327  SDValue N1 = N->getOperand(1);
4328
4329  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4330  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4331    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4332    if (Result.getNode()) return Result;
4333  }
4334
4335  return SDValue();
4336}
4337
4338static SDValue PerformMULCombine(SDNode *N,
4339                                 TargetLowering::DAGCombinerInfo &DCI,
4340                                 const ARMSubtarget *Subtarget) {
4341  SelectionDAG &DAG = DCI.DAG;
4342
4343  if (Subtarget->isThumb1Only())
4344    return SDValue();
4345
4346  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4347    return SDValue();
4348
4349  EVT VT = N->getValueType(0);
4350  if (VT != MVT::i32)
4351    return SDValue();
4352
4353  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4354  if (!C)
4355    return SDValue();
4356
4357  uint64_t MulAmt = C->getZExtValue();
4358  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4359  ShiftAmt = ShiftAmt & (32 - 1);
4360  SDValue V = N->getOperand(0);
4361  DebugLoc DL = N->getDebugLoc();
4362
4363  SDValue Res;
4364  MulAmt >>= ShiftAmt;
4365  if (isPowerOf2_32(MulAmt - 1)) {
4366    // (mul x, 2^N + 1) => (add (shl x, N), x)
4367    Res = DAG.getNode(ISD::ADD, DL, VT,
4368                      V, DAG.getNode(ISD::SHL, DL, VT,
4369                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4370                                                        MVT::i32)));
4371  } else if (isPowerOf2_32(MulAmt + 1)) {
4372    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4373    Res = DAG.getNode(ISD::SUB, DL, VT,
4374                      DAG.getNode(ISD::SHL, DL, VT,
4375                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4376                                                     MVT::i32)),
4377                                                     V);
4378  } else
4379    return SDValue();
4380
4381  if (ShiftAmt != 0)
4382    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4383                      DAG.getConstant(ShiftAmt, MVT::i32));
4384
4385  // Do not add new nodes to DAG combiner worklist.
4386  DCI.CombineTo(N, Res, false);
4387  return SDValue();
4388}
4389
4390/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4391static SDValue PerformORCombine(SDNode *N,
4392                                TargetLowering::DAGCombinerInfo &DCI,
4393                                const ARMSubtarget *Subtarget) {
4394  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4395  // reasonable.
4396
4397  // BFI is only available on V6T2+
4398  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4399    return SDValue();
4400
4401  SelectionDAG &DAG = DCI.DAG;
4402  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4403  DebugLoc DL = N->getDebugLoc();
4404  // 1) or (and A, mask), val => ARMbfi A, val, mask
4405  //      iff (val & mask) == val
4406  //
4407  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4408  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4409  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4410  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4411  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4412  //  (i.e., copy a bitfield value into another bitfield of the same width)
4413  if (N0.getOpcode() != ISD::AND)
4414    return SDValue();
4415
4416  EVT VT = N->getValueType(0);
4417  if (VT != MVT::i32)
4418    return SDValue();
4419
4420
4421  // The value and the mask need to be constants so we can verify this is
4422  // actually a bitfield set. If the mask is 0xffff, we can do better
4423  // via a movt instruction, so don't use BFI in that case.
4424  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4425  if (!C)
4426    return SDValue();
4427  unsigned Mask = C->getZExtValue();
4428  if (Mask == 0xffff)
4429    return SDValue();
4430  SDValue Res;
4431  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4432  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4433    unsigned Val = C->getZExtValue();
4434    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4435      return SDValue();
4436    Val >>= CountTrailingZeros_32(~Mask);
4437
4438    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4439                      DAG.getConstant(Val, MVT::i32),
4440                      DAG.getConstant(Mask, MVT::i32));
4441
4442    // Do not add new nodes to DAG combiner worklist.
4443    DCI.CombineTo(N, Res, false);
4444  } else if (N1.getOpcode() == ISD::AND) {
4445    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4446    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4447    if (!C)
4448      return SDValue();
4449    unsigned Mask2 = C->getZExtValue();
4450
4451    if (ARM::isBitFieldInvertedMask(Mask) &&
4452        ARM::isBitFieldInvertedMask(~Mask2) &&
4453        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4454      // The pack halfword instruction works better for masks that fit it,
4455      // so use that when it's available.
4456      if (Subtarget->hasT2ExtractPack() &&
4457          (Mask == 0xffff || Mask == 0xffff0000))
4458        return SDValue();
4459      // 2a
4460      unsigned lsb = CountTrailingZeros_32(Mask2);
4461      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4462                        DAG.getConstant(lsb, MVT::i32));
4463      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4464                        DAG.getConstant(Mask, MVT::i32));
4465      // Do not add new nodes to DAG combiner worklist.
4466      DCI.CombineTo(N, Res, false);
4467    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4468               ARM::isBitFieldInvertedMask(Mask2) &&
4469               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4470      // The pack halfword instruction works better for masks that fit it,
4471      // so use that when it's available.
4472      if (Subtarget->hasT2ExtractPack() &&
4473          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4474        return SDValue();
4475      // 2b
4476      unsigned lsb = CountTrailingZeros_32(Mask);
4477      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4478                        DAG.getConstant(lsb, MVT::i32));
4479      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4480                                DAG.getConstant(Mask2, MVT::i32));
4481      // Do not add new nodes to DAG combiner worklist.
4482      DCI.CombineTo(N, Res, false);
4483    }
4484  }
4485
4486  return SDValue();
4487}
4488
4489/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4490/// ARMISD::VMOVRRD.
4491static SDValue PerformVMOVRRDCombine(SDNode *N,
4492                                     TargetLowering::DAGCombinerInfo &DCI) {
4493  // vmovrrd(vmovdrr x, y) -> x,y
4494  SDValue InDouble = N->getOperand(0);
4495  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4496    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4497  return SDValue();
4498}
4499
4500/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4501/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4502static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4503  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4504  SDValue Op0 = N->getOperand(0);
4505  SDValue Op1 = N->getOperand(1);
4506  if (Op0.getOpcode() == ISD::BIT_CONVERT)
4507    Op0 = Op0.getOperand(0);
4508  if (Op1.getOpcode() == ISD::BIT_CONVERT)
4509    Op1 = Op1.getOperand(0);
4510  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4511      Op0.getNode() == Op1.getNode() &&
4512      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4513    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4514                       N->getValueType(0), Op0.getOperand(0));
4515  return SDValue();
4516}
4517
4518/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4519/// ISD::BUILD_VECTOR.
4520static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
4521  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4522  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4523  // into a pair of GPRs, which is fine when the value is used as a scalar,
4524  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4525  if (N->getNumOperands() == 2)
4526    return PerformVMOVDRRCombine(N, DAG);
4527
4528  return SDValue();
4529}
4530
4531/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4532/// ARMISD::VDUPLANE.
4533static SDValue PerformVDUPLANECombine(SDNode *N, SelectionDAG &DAG) {
4534  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4535  // redundant.
4536  SDValue Op = N->getOperand(0);
4537  EVT VT = N->getValueType(0);
4538
4539  // Ignore bit_converts.
4540  while (Op.getOpcode() == ISD::BIT_CONVERT)
4541    Op = Op.getOperand(0);
4542  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4543    return SDValue();
4544
4545  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4546  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4547  // The canonical VMOV for a zero vector uses a 32-bit element size.
4548  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4549  unsigned EltBits;
4550  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4551    EltSize = 8;
4552  if (EltSize > VT.getVectorElementType().getSizeInBits())
4553    return SDValue();
4554
4555  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4556}
4557
4558/// getVShiftImm - Check if this is a valid build_vector for the immediate
4559/// operand of a vector shift operation, where all the elements of the
4560/// build_vector must have the same constant integer value.
4561static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4562  // Ignore bit_converts.
4563  while (Op.getOpcode() == ISD::BIT_CONVERT)
4564    Op = Op.getOperand(0);
4565  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4566  APInt SplatBits, SplatUndef;
4567  unsigned SplatBitSize;
4568  bool HasAnyUndefs;
4569  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4570                                      HasAnyUndefs, ElementBits) ||
4571      SplatBitSize > ElementBits)
4572    return false;
4573  Cnt = SplatBits.getSExtValue();
4574  return true;
4575}
4576
4577/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4578/// operand of a vector shift left operation.  That value must be in the range:
4579///   0 <= Value < ElementBits for a left shift; or
4580///   0 <= Value <= ElementBits for a long left shift.
4581static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4582  assert(VT.isVector() && "vector shift count is not a vector type");
4583  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4584  if (! getVShiftImm(Op, ElementBits, Cnt))
4585    return false;
4586  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4587}
4588
4589/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4590/// operand of a vector shift right operation.  For a shift opcode, the value
4591/// is positive, but for an intrinsic the value count must be negative. The
4592/// absolute value must be in the range:
4593///   1 <= |Value| <= ElementBits for a right shift; or
4594///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4595static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4596                         int64_t &Cnt) {
4597  assert(VT.isVector() && "vector shift count is not a vector type");
4598  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4599  if (! getVShiftImm(Op, ElementBits, Cnt))
4600    return false;
4601  if (isIntrinsic)
4602    Cnt = -Cnt;
4603  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4604}
4605
4606/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4607static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4608  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4609  switch (IntNo) {
4610  default:
4611    // Don't do anything for most intrinsics.
4612    break;
4613
4614  // Vector shifts: check for immediate versions and lower them.
4615  // Note: This is done during DAG combining instead of DAG legalizing because
4616  // the build_vectors for 64-bit vector element shift counts are generally
4617  // not legal, and it is hard to see their values after they get legalized to
4618  // loads from a constant pool.
4619  case Intrinsic::arm_neon_vshifts:
4620  case Intrinsic::arm_neon_vshiftu:
4621  case Intrinsic::arm_neon_vshiftls:
4622  case Intrinsic::arm_neon_vshiftlu:
4623  case Intrinsic::arm_neon_vshiftn:
4624  case Intrinsic::arm_neon_vrshifts:
4625  case Intrinsic::arm_neon_vrshiftu:
4626  case Intrinsic::arm_neon_vrshiftn:
4627  case Intrinsic::arm_neon_vqshifts:
4628  case Intrinsic::arm_neon_vqshiftu:
4629  case Intrinsic::arm_neon_vqshiftsu:
4630  case Intrinsic::arm_neon_vqshiftns:
4631  case Intrinsic::arm_neon_vqshiftnu:
4632  case Intrinsic::arm_neon_vqshiftnsu:
4633  case Intrinsic::arm_neon_vqrshiftns:
4634  case Intrinsic::arm_neon_vqrshiftnu:
4635  case Intrinsic::arm_neon_vqrshiftnsu: {
4636    EVT VT = N->getOperand(1).getValueType();
4637    int64_t Cnt;
4638    unsigned VShiftOpc = 0;
4639
4640    switch (IntNo) {
4641    case Intrinsic::arm_neon_vshifts:
4642    case Intrinsic::arm_neon_vshiftu:
4643      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4644        VShiftOpc = ARMISD::VSHL;
4645        break;
4646      }
4647      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4648        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4649                     ARMISD::VSHRs : ARMISD::VSHRu);
4650        break;
4651      }
4652      return SDValue();
4653
4654    case Intrinsic::arm_neon_vshiftls:
4655    case Intrinsic::arm_neon_vshiftlu:
4656      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4657        break;
4658      llvm_unreachable("invalid shift count for vshll intrinsic");
4659
4660    case Intrinsic::arm_neon_vrshifts:
4661    case Intrinsic::arm_neon_vrshiftu:
4662      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4663        break;
4664      return SDValue();
4665
4666    case Intrinsic::arm_neon_vqshifts:
4667    case Intrinsic::arm_neon_vqshiftu:
4668      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4669        break;
4670      return SDValue();
4671
4672    case Intrinsic::arm_neon_vqshiftsu:
4673      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4674        break;
4675      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4676
4677    case Intrinsic::arm_neon_vshiftn:
4678    case Intrinsic::arm_neon_vrshiftn:
4679    case Intrinsic::arm_neon_vqshiftns:
4680    case Intrinsic::arm_neon_vqshiftnu:
4681    case Intrinsic::arm_neon_vqshiftnsu:
4682    case Intrinsic::arm_neon_vqrshiftns:
4683    case Intrinsic::arm_neon_vqrshiftnu:
4684    case Intrinsic::arm_neon_vqrshiftnsu:
4685      // Narrowing shifts require an immediate right shift.
4686      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4687        break;
4688      llvm_unreachable("invalid shift count for narrowing vector shift "
4689                       "intrinsic");
4690
4691    default:
4692      llvm_unreachable("unhandled vector shift");
4693    }
4694
4695    switch (IntNo) {
4696    case Intrinsic::arm_neon_vshifts:
4697    case Intrinsic::arm_neon_vshiftu:
4698      // Opcode already set above.
4699      break;
4700    case Intrinsic::arm_neon_vshiftls:
4701    case Intrinsic::arm_neon_vshiftlu:
4702      if (Cnt == VT.getVectorElementType().getSizeInBits())
4703        VShiftOpc = ARMISD::VSHLLi;
4704      else
4705        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4706                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4707      break;
4708    case Intrinsic::arm_neon_vshiftn:
4709      VShiftOpc = ARMISD::VSHRN; break;
4710    case Intrinsic::arm_neon_vrshifts:
4711      VShiftOpc = ARMISD::VRSHRs; break;
4712    case Intrinsic::arm_neon_vrshiftu:
4713      VShiftOpc = ARMISD::VRSHRu; break;
4714    case Intrinsic::arm_neon_vrshiftn:
4715      VShiftOpc = ARMISD::VRSHRN; break;
4716    case Intrinsic::arm_neon_vqshifts:
4717      VShiftOpc = ARMISD::VQSHLs; break;
4718    case Intrinsic::arm_neon_vqshiftu:
4719      VShiftOpc = ARMISD::VQSHLu; break;
4720    case Intrinsic::arm_neon_vqshiftsu:
4721      VShiftOpc = ARMISD::VQSHLsu; break;
4722    case Intrinsic::arm_neon_vqshiftns:
4723      VShiftOpc = ARMISD::VQSHRNs; break;
4724    case Intrinsic::arm_neon_vqshiftnu:
4725      VShiftOpc = ARMISD::VQSHRNu; break;
4726    case Intrinsic::arm_neon_vqshiftnsu:
4727      VShiftOpc = ARMISD::VQSHRNsu; break;
4728    case Intrinsic::arm_neon_vqrshiftns:
4729      VShiftOpc = ARMISD::VQRSHRNs; break;
4730    case Intrinsic::arm_neon_vqrshiftnu:
4731      VShiftOpc = ARMISD::VQRSHRNu; break;
4732    case Intrinsic::arm_neon_vqrshiftnsu:
4733      VShiftOpc = ARMISD::VQRSHRNsu; break;
4734    }
4735
4736    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4737                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4738  }
4739
4740  case Intrinsic::arm_neon_vshiftins: {
4741    EVT VT = N->getOperand(1).getValueType();
4742    int64_t Cnt;
4743    unsigned VShiftOpc = 0;
4744
4745    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4746      VShiftOpc = ARMISD::VSLI;
4747    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4748      VShiftOpc = ARMISD::VSRI;
4749    else {
4750      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4751    }
4752
4753    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4754                       N->getOperand(1), N->getOperand(2),
4755                       DAG.getConstant(Cnt, MVT::i32));
4756  }
4757
4758  case Intrinsic::arm_neon_vqrshifts:
4759  case Intrinsic::arm_neon_vqrshiftu:
4760    // No immediate versions of these to check for.
4761    break;
4762  }
4763
4764  return SDValue();
4765}
4766
4767/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4768/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4769/// combining instead of DAG legalizing because the build_vectors for 64-bit
4770/// vector element shift counts are generally not legal, and it is hard to see
4771/// their values after they get legalized to loads from a constant pool.
4772static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4773                                   const ARMSubtarget *ST) {
4774  EVT VT = N->getValueType(0);
4775
4776  // Nothing to be done for scalar shifts.
4777  if (! VT.isVector())
4778    return SDValue();
4779
4780  assert(ST->hasNEON() && "unexpected vector shift");
4781  int64_t Cnt;
4782
4783  switch (N->getOpcode()) {
4784  default: llvm_unreachable("unexpected shift opcode");
4785
4786  case ISD::SHL:
4787    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4788      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4789                         DAG.getConstant(Cnt, MVT::i32));
4790    break;
4791
4792  case ISD::SRA:
4793  case ISD::SRL:
4794    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4795      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4796                            ARMISD::VSHRs : ARMISD::VSHRu);
4797      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4798                         DAG.getConstant(Cnt, MVT::i32));
4799    }
4800  }
4801  return SDValue();
4802}
4803
4804/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4805/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4806static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4807                                    const ARMSubtarget *ST) {
4808  SDValue N0 = N->getOperand(0);
4809
4810  // Check for sign- and zero-extensions of vector extract operations of 8-
4811  // and 16-bit vector elements.  NEON supports these directly.  They are
4812  // handled during DAG combining because type legalization will promote them
4813  // to 32-bit types and it is messy to recognize the operations after that.
4814  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4815    SDValue Vec = N0.getOperand(0);
4816    SDValue Lane = N0.getOperand(1);
4817    EVT VT = N->getValueType(0);
4818    EVT EltVT = N0.getValueType();
4819    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4820
4821    if (VT == MVT::i32 &&
4822        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4823        TLI.isTypeLegal(Vec.getValueType())) {
4824
4825      unsigned Opc = 0;
4826      switch (N->getOpcode()) {
4827      default: llvm_unreachable("unexpected opcode");
4828      case ISD::SIGN_EXTEND:
4829        Opc = ARMISD::VGETLANEs;
4830        break;
4831      case ISD::ZERO_EXTEND:
4832      case ISD::ANY_EXTEND:
4833        Opc = ARMISD::VGETLANEu;
4834        break;
4835      }
4836      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4837    }
4838  }
4839
4840  return SDValue();
4841}
4842
4843/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4844/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4845static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4846                                       const ARMSubtarget *ST) {
4847  // If the target supports NEON, try to use vmax/vmin instructions for f32
4848  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4849  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4850  // a NaN; only do the transformation when it matches that behavior.
4851
4852  // For now only do this when using NEON for FP operations; if using VFP, it
4853  // is not obvious that the benefit outweighs the cost of switching to the
4854  // NEON pipeline.
4855  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4856      N->getValueType(0) != MVT::f32)
4857    return SDValue();
4858
4859  SDValue CondLHS = N->getOperand(0);
4860  SDValue CondRHS = N->getOperand(1);
4861  SDValue LHS = N->getOperand(2);
4862  SDValue RHS = N->getOperand(3);
4863  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4864
4865  unsigned Opcode = 0;
4866  bool IsReversed;
4867  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4868    IsReversed = false; // x CC y ? x : y
4869  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4870    IsReversed = true ; // x CC y ? y : x
4871  } else {
4872    return SDValue();
4873  }
4874
4875  bool IsUnordered;
4876  switch (CC) {
4877  default: break;
4878  case ISD::SETOLT:
4879  case ISD::SETOLE:
4880  case ISD::SETLT:
4881  case ISD::SETLE:
4882  case ISD::SETULT:
4883  case ISD::SETULE:
4884    // If LHS is NaN, an ordered comparison will be false and the result will
4885    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4886    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4887    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4888    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4889      break;
4890    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4891    // will return -0, so vmin can only be used for unsafe math or if one of
4892    // the operands is known to be nonzero.
4893    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4894        !UnsafeFPMath &&
4895        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4896      break;
4897    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4898    break;
4899
4900  case ISD::SETOGT:
4901  case ISD::SETOGE:
4902  case ISD::SETGT:
4903  case ISD::SETGE:
4904  case ISD::SETUGT:
4905  case ISD::SETUGE:
4906    // If LHS is NaN, an ordered comparison will be false and the result will
4907    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4908    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4909    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4910    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4911      break;
4912    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4913    // will return +0, so vmax can only be used for unsafe math or if one of
4914    // the operands is known to be nonzero.
4915    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4916        !UnsafeFPMath &&
4917        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4918      break;
4919    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4920    break;
4921  }
4922
4923  if (!Opcode)
4924    return SDValue();
4925  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4926}
4927
4928SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4929                                             DAGCombinerInfo &DCI) const {
4930  switch (N->getOpcode()) {
4931  default: break;
4932  case ISD::ADD:        return PerformADDCombine(N, DCI);
4933  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4934  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4935  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
4936  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4937  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
4938  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
4939  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI.DAG);
4940  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4941  case ISD::SHL:
4942  case ISD::SRA:
4943  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4944  case ISD::SIGN_EXTEND:
4945  case ISD::ZERO_EXTEND:
4946  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4947  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4948  }
4949  return SDValue();
4950}
4951
4952bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4953  if (!Subtarget->allowsUnalignedMem())
4954    return false;
4955
4956  switch (VT.getSimpleVT().SimpleTy) {
4957  default:
4958    return false;
4959  case MVT::i8:
4960  case MVT::i16:
4961  case MVT::i32:
4962    return true;
4963  // FIXME: VLD1 etc with standard alignment is legal.
4964  }
4965}
4966
4967static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4968  if (V < 0)
4969    return false;
4970
4971  unsigned Scale = 1;
4972  switch (VT.getSimpleVT().SimpleTy) {
4973  default: return false;
4974  case MVT::i1:
4975  case MVT::i8:
4976    // Scale == 1;
4977    break;
4978  case MVT::i16:
4979    // Scale == 2;
4980    Scale = 2;
4981    break;
4982  case MVT::i32:
4983    // Scale == 4;
4984    Scale = 4;
4985    break;
4986  }
4987
4988  if ((V & (Scale - 1)) != 0)
4989    return false;
4990  V /= Scale;
4991  return V == (V & ((1LL << 5) - 1));
4992}
4993
4994static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4995                                      const ARMSubtarget *Subtarget) {
4996  bool isNeg = false;
4997  if (V < 0) {
4998    isNeg = true;
4999    V = - V;
5000  }
5001
5002  switch (VT.getSimpleVT().SimpleTy) {
5003  default: return false;
5004  case MVT::i1:
5005  case MVT::i8:
5006  case MVT::i16:
5007  case MVT::i32:
5008    // + imm12 or - imm8
5009    if (isNeg)
5010      return V == (V & ((1LL << 8) - 1));
5011    return V == (V & ((1LL << 12) - 1));
5012  case MVT::f32:
5013  case MVT::f64:
5014    // Same as ARM mode. FIXME: NEON?
5015    if (!Subtarget->hasVFP2())
5016      return false;
5017    if ((V & 3) != 0)
5018      return false;
5019    V >>= 2;
5020    return V == (V & ((1LL << 8) - 1));
5021  }
5022}
5023
5024/// isLegalAddressImmediate - Return true if the integer value can be used
5025/// as the offset of the target addressing mode for load / store of the
5026/// given type.
5027static bool isLegalAddressImmediate(int64_t V, EVT VT,
5028                                    const ARMSubtarget *Subtarget) {
5029  if (V == 0)
5030    return true;
5031
5032  if (!VT.isSimple())
5033    return false;
5034
5035  if (Subtarget->isThumb1Only())
5036    return isLegalT1AddressImmediate(V, VT);
5037  else if (Subtarget->isThumb2())
5038    return isLegalT2AddressImmediate(V, VT, Subtarget);
5039
5040  // ARM mode.
5041  if (V < 0)
5042    V = - V;
5043  switch (VT.getSimpleVT().SimpleTy) {
5044  default: return false;
5045  case MVT::i1:
5046  case MVT::i8:
5047  case MVT::i32:
5048    // +- imm12
5049    return V == (V & ((1LL << 12) - 1));
5050  case MVT::i16:
5051    // +- imm8
5052    return V == (V & ((1LL << 8) - 1));
5053  case MVT::f32:
5054  case MVT::f64:
5055    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5056      return false;
5057    if ((V & 3) != 0)
5058      return false;
5059    V >>= 2;
5060    return V == (V & ((1LL << 8) - 1));
5061  }
5062}
5063
5064bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5065                                                      EVT VT) const {
5066  int Scale = AM.Scale;
5067  if (Scale < 0)
5068    return false;
5069
5070  switch (VT.getSimpleVT().SimpleTy) {
5071  default: return false;
5072  case MVT::i1:
5073  case MVT::i8:
5074  case MVT::i16:
5075  case MVT::i32:
5076    if (Scale == 1)
5077      return true;
5078    // r + r << imm
5079    Scale = Scale & ~1;
5080    return Scale == 2 || Scale == 4 || Scale == 8;
5081  case MVT::i64:
5082    // r + r
5083    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5084      return true;
5085    return false;
5086  case MVT::isVoid:
5087    // Note, we allow "void" uses (basically, uses that aren't loads or
5088    // stores), because arm allows folding a scale into many arithmetic
5089    // operations.  This should be made more precise and revisited later.
5090
5091    // Allow r << imm, but the imm has to be a multiple of two.
5092    if (Scale & 1) return false;
5093    return isPowerOf2_32(Scale);
5094  }
5095}
5096
5097/// isLegalAddressingMode - Return true if the addressing mode represented
5098/// by AM is legal for this target, for a load/store of the specified type.
5099bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5100                                              const Type *Ty) const {
5101  EVT VT = getValueType(Ty, true);
5102  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5103    return false;
5104
5105  // Can never fold addr of global into load/store.
5106  if (AM.BaseGV)
5107    return false;
5108
5109  switch (AM.Scale) {
5110  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5111    break;
5112  case 1:
5113    if (Subtarget->isThumb1Only())
5114      return false;
5115    // FALL THROUGH.
5116  default:
5117    // ARM doesn't support any R+R*scale+imm addr modes.
5118    if (AM.BaseOffs)
5119      return false;
5120
5121    if (!VT.isSimple())
5122      return false;
5123
5124    if (Subtarget->isThumb2())
5125      return isLegalT2ScaledAddressingMode(AM, VT);
5126
5127    int Scale = AM.Scale;
5128    switch (VT.getSimpleVT().SimpleTy) {
5129    default: return false;
5130    case MVT::i1:
5131    case MVT::i8:
5132    case MVT::i32:
5133      if (Scale < 0) Scale = -Scale;
5134      if (Scale == 1)
5135        return true;
5136      // r + r << imm
5137      return isPowerOf2_32(Scale & ~1);
5138    case MVT::i16:
5139    case MVT::i64:
5140      // r + r
5141      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5142        return true;
5143      return false;
5144
5145    case MVT::isVoid:
5146      // Note, we allow "void" uses (basically, uses that aren't loads or
5147      // stores), because arm allows folding a scale into many arithmetic
5148      // operations.  This should be made more precise and revisited later.
5149
5150      // Allow r << imm, but the imm has to be a multiple of two.
5151      if (Scale & 1) return false;
5152      return isPowerOf2_32(Scale);
5153    }
5154    break;
5155  }
5156  return true;
5157}
5158
5159/// isLegalICmpImmediate - Return true if the specified immediate is legal
5160/// icmp immediate, that is the target has icmp instructions which can compare
5161/// a register against the immediate without having to materialize the
5162/// immediate into a register.
5163bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5164  if (!Subtarget->isThumb())
5165    return ARM_AM::getSOImmVal(Imm) != -1;
5166  if (Subtarget->isThumb2())
5167    return ARM_AM::getT2SOImmVal(Imm) != -1;
5168  return Imm >= 0 && Imm <= 255;
5169}
5170
5171static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5172                                      bool isSEXTLoad, SDValue &Base,
5173                                      SDValue &Offset, bool &isInc,
5174                                      SelectionDAG &DAG) {
5175  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5176    return false;
5177
5178  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5179    // AddressingMode 3
5180    Base = Ptr->getOperand(0);
5181    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5182      int RHSC = (int)RHS->getZExtValue();
5183      if (RHSC < 0 && RHSC > -256) {
5184        assert(Ptr->getOpcode() == ISD::ADD);
5185        isInc = false;
5186        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5187        return true;
5188      }
5189    }
5190    isInc = (Ptr->getOpcode() == ISD::ADD);
5191    Offset = Ptr->getOperand(1);
5192    return true;
5193  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5194    // AddressingMode 2
5195    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5196      int RHSC = (int)RHS->getZExtValue();
5197      if (RHSC < 0 && RHSC > -0x1000) {
5198        assert(Ptr->getOpcode() == ISD::ADD);
5199        isInc = false;
5200        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5201        Base = Ptr->getOperand(0);
5202        return true;
5203      }
5204    }
5205
5206    if (Ptr->getOpcode() == ISD::ADD) {
5207      isInc = true;
5208      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5209      if (ShOpcVal != ARM_AM::no_shift) {
5210        Base = Ptr->getOperand(1);
5211        Offset = Ptr->getOperand(0);
5212      } else {
5213        Base = Ptr->getOperand(0);
5214        Offset = Ptr->getOperand(1);
5215      }
5216      return true;
5217    }
5218
5219    isInc = (Ptr->getOpcode() == ISD::ADD);
5220    Base = Ptr->getOperand(0);
5221    Offset = Ptr->getOperand(1);
5222    return true;
5223  }
5224
5225  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5226  return false;
5227}
5228
5229static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5230                                     bool isSEXTLoad, SDValue &Base,
5231                                     SDValue &Offset, bool &isInc,
5232                                     SelectionDAG &DAG) {
5233  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5234    return false;
5235
5236  Base = Ptr->getOperand(0);
5237  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5238    int RHSC = (int)RHS->getZExtValue();
5239    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5240      assert(Ptr->getOpcode() == ISD::ADD);
5241      isInc = false;
5242      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5243      return true;
5244    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5245      isInc = Ptr->getOpcode() == ISD::ADD;
5246      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5247      return true;
5248    }
5249  }
5250
5251  return false;
5252}
5253
5254/// getPreIndexedAddressParts - returns true by value, base pointer and
5255/// offset pointer and addressing mode by reference if the node's address
5256/// can be legally represented as pre-indexed load / store address.
5257bool
5258ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5259                                             SDValue &Offset,
5260                                             ISD::MemIndexedMode &AM,
5261                                             SelectionDAG &DAG) const {
5262  if (Subtarget->isThumb1Only())
5263    return false;
5264
5265  EVT VT;
5266  SDValue Ptr;
5267  bool isSEXTLoad = false;
5268  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5269    Ptr = LD->getBasePtr();
5270    VT  = LD->getMemoryVT();
5271    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5272  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5273    Ptr = ST->getBasePtr();
5274    VT  = ST->getMemoryVT();
5275  } else
5276    return false;
5277
5278  bool isInc;
5279  bool isLegal = false;
5280  if (Subtarget->isThumb2())
5281    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5282                                       Offset, isInc, DAG);
5283  else
5284    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5285                                        Offset, isInc, DAG);
5286  if (!isLegal)
5287    return false;
5288
5289  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5290  return true;
5291}
5292
5293/// getPostIndexedAddressParts - returns true by value, base pointer and
5294/// offset pointer and addressing mode by reference if this node can be
5295/// combined with a load / store to form a post-indexed load / store.
5296bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5297                                                   SDValue &Base,
5298                                                   SDValue &Offset,
5299                                                   ISD::MemIndexedMode &AM,
5300                                                   SelectionDAG &DAG) const {
5301  if (Subtarget->isThumb1Only())
5302    return false;
5303
5304  EVT VT;
5305  SDValue Ptr;
5306  bool isSEXTLoad = false;
5307  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5308    VT  = LD->getMemoryVT();
5309    Ptr = LD->getBasePtr();
5310    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5311  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5312    VT  = ST->getMemoryVT();
5313    Ptr = ST->getBasePtr();
5314  } else
5315    return false;
5316
5317  bool isInc;
5318  bool isLegal = false;
5319  if (Subtarget->isThumb2())
5320    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5321                                       isInc, DAG);
5322  else
5323    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5324                                        isInc, DAG);
5325  if (!isLegal)
5326    return false;
5327
5328  if (Ptr != Base) {
5329    // Swap base ptr and offset to catch more post-index load / store when
5330    // it's legal. In Thumb2 mode, offset must be an immediate.
5331    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5332        !Subtarget->isThumb2())
5333      std::swap(Base, Offset);
5334
5335    // Post-indexed load / store update the base pointer.
5336    if (Ptr != Base)
5337      return false;
5338  }
5339
5340  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5341  return true;
5342}
5343
5344void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5345                                                       const APInt &Mask,
5346                                                       APInt &KnownZero,
5347                                                       APInt &KnownOne,
5348                                                       const SelectionDAG &DAG,
5349                                                       unsigned Depth) const {
5350  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5351  switch (Op.getOpcode()) {
5352  default: break;
5353  case ARMISD::CMOV: {
5354    // Bits are known zero/one if known on the LHS and RHS.
5355    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5356    if (KnownZero == 0 && KnownOne == 0) return;
5357
5358    APInt KnownZeroRHS, KnownOneRHS;
5359    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5360                          KnownZeroRHS, KnownOneRHS, Depth+1);
5361    KnownZero &= KnownZeroRHS;
5362    KnownOne  &= KnownOneRHS;
5363    return;
5364  }
5365  }
5366}
5367
5368//===----------------------------------------------------------------------===//
5369//                           ARM Inline Assembly Support
5370//===----------------------------------------------------------------------===//
5371
5372/// getConstraintType - Given a constraint letter, return the type of
5373/// constraint it is for this target.
5374ARMTargetLowering::ConstraintType
5375ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5376  if (Constraint.size() == 1) {
5377    switch (Constraint[0]) {
5378    default:  break;
5379    case 'l': return C_RegisterClass;
5380    case 'w': return C_RegisterClass;
5381    }
5382  }
5383  return TargetLowering::getConstraintType(Constraint);
5384}
5385
5386std::pair<unsigned, const TargetRegisterClass*>
5387ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5388                                                EVT VT) const {
5389  if (Constraint.size() == 1) {
5390    // GCC ARM Constraint Letters
5391    switch (Constraint[0]) {
5392    case 'l':
5393      if (Subtarget->isThumb())
5394        return std::make_pair(0U, ARM::tGPRRegisterClass);
5395      else
5396        return std::make_pair(0U, ARM::GPRRegisterClass);
5397    case 'r':
5398      return std::make_pair(0U, ARM::GPRRegisterClass);
5399    case 'w':
5400      if (VT == MVT::f32)
5401        return std::make_pair(0U, ARM::SPRRegisterClass);
5402      if (VT.getSizeInBits() == 64)
5403        return std::make_pair(0U, ARM::DPRRegisterClass);
5404      if (VT.getSizeInBits() == 128)
5405        return std::make_pair(0U, ARM::QPRRegisterClass);
5406      break;
5407    }
5408  }
5409  if (StringRef("{cc}").equals_lower(Constraint))
5410    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5411
5412  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5413}
5414
5415std::vector<unsigned> ARMTargetLowering::
5416getRegClassForInlineAsmConstraint(const std::string &Constraint,
5417                                  EVT VT) const {
5418  if (Constraint.size() != 1)
5419    return std::vector<unsigned>();
5420
5421  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5422  default: break;
5423  case 'l':
5424    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5425                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5426                                 0);
5427  case 'r':
5428    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5429                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5430                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5431                                 ARM::R12, ARM::LR, 0);
5432  case 'w':
5433    if (VT == MVT::f32)
5434      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5435                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5436                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5437                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5438                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5439                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5440                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5441                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5442    if (VT.getSizeInBits() == 64)
5443      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5444                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5445                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5446                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5447    if (VT.getSizeInBits() == 128)
5448      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5449                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5450      break;
5451  }
5452
5453  return std::vector<unsigned>();
5454}
5455
5456/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5457/// vector.  If it is invalid, don't add anything to Ops.
5458void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5459                                                     char Constraint,
5460                                                     std::vector<SDValue>&Ops,
5461                                                     SelectionDAG &DAG) const {
5462  SDValue Result(0, 0);
5463
5464  switch (Constraint) {
5465  default: break;
5466  case 'I': case 'J': case 'K': case 'L':
5467  case 'M': case 'N': case 'O':
5468    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5469    if (!C)
5470      return;
5471
5472    int64_t CVal64 = C->getSExtValue();
5473    int CVal = (int) CVal64;
5474    // None of these constraints allow values larger than 32 bits.  Check
5475    // that the value fits in an int.
5476    if (CVal != CVal64)
5477      return;
5478
5479    switch (Constraint) {
5480      case 'I':
5481        if (Subtarget->isThumb1Only()) {
5482          // This must be a constant between 0 and 255, for ADD
5483          // immediates.
5484          if (CVal >= 0 && CVal <= 255)
5485            break;
5486        } else if (Subtarget->isThumb2()) {
5487          // A constant that can be used as an immediate value in a
5488          // data-processing instruction.
5489          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5490            break;
5491        } else {
5492          // A constant that can be used as an immediate value in a
5493          // data-processing instruction.
5494          if (ARM_AM::getSOImmVal(CVal) != -1)
5495            break;
5496        }
5497        return;
5498
5499      case 'J':
5500        if (Subtarget->isThumb()) {  // FIXME thumb2
5501          // This must be a constant between -255 and -1, for negated ADD
5502          // immediates. This can be used in GCC with an "n" modifier that
5503          // prints the negated value, for use with SUB instructions. It is
5504          // not useful otherwise but is implemented for compatibility.
5505          if (CVal >= -255 && CVal <= -1)
5506            break;
5507        } else {
5508          // This must be a constant between -4095 and 4095. It is not clear
5509          // what this constraint is intended for. Implemented for
5510          // compatibility with GCC.
5511          if (CVal >= -4095 && CVal <= 4095)
5512            break;
5513        }
5514        return;
5515
5516      case 'K':
5517        if (Subtarget->isThumb1Only()) {
5518          // A 32-bit value where only one byte has a nonzero value. Exclude
5519          // zero to match GCC. This constraint is used by GCC internally for
5520          // constants that can be loaded with a move/shift combination.
5521          // It is not useful otherwise but is implemented for compatibility.
5522          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5523            break;
5524        } else if (Subtarget->isThumb2()) {
5525          // A constant whose bitwise inverse can be used as an immediate
5526          // value in a data-processing instruction. This can be used in GCC
5527          // with a "B" modifier that prints the inverted value, for use with
5528          // BIC and MVN instructions. It is not useful otherwise but is
5529          // implemented for compatibility.
5530          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5531            break;
5532        } else {
5533          // A constant whose bitwise inverse can be used as an immediate
5534          // value in a data-processing instruction. This can be used in GCC
5535          // with a "B" modifier that prints the inverted value, for use with
5536          // BIC and MVN instructions. It is not useful otherwise but is
5537          // implemented for compatibility.
5538          if (ARM_AM::getSOImmVal(~CVal) != -1)
5539            break;
5540        }
5541        return;
5542
5543      case 'L':
5544        if (Subtarget->isThumb1Only()) {
5545          // This must be a constant between -7 and 7,
5546          // for 3-operand ADD/SUB immediate instructions.
5547          if (CVal >= -7 && CVal < 7)
5548            break;
5549        } else if (Subtarget->isThumb2()) {
5550          // A constant whose negation can be used as an immediate value in a
5551          // data-processing instruction. This can be used in GCC with an "n"
5552          // modifier that prints the negated value, for use with SUB
5553          // instructions. It is not useful otherwise but is implemented for
5554          // compatibility.
5555          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5556            break;
5557        } else {
5558          // A constant whose negation can be used as an immediate value in a
5559          // data-processing instruction. This can be used in GCC with an "n"
5560          // modifier that prints the negated value, for use with SUB
5561          // instructions. It is not useful otherwise but is implemented for
5562          // compatibility.
5563          if (ARM_AM::getSOImmVal(-CVal) != -1)
5564            break;
5565        }
5566        return;
5567
5568      case 'M':
5569        if (Subtarget->isThumb()) { // FIXME thumb2
5570          // This must be a multiple of 4 between 0 and 1020, for
5571          // ADD sp + immediate.
5572          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5573            break;
5574        } else {
5575          // A power of two or a constant between 0 and 32.  This is used in
5576          // GCC for the shift amount on shifted register operands, but it is
5577          // useful in general for any shift amounts.
5578          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5579            break;
5580        }
5581        return;
5582
5583      case 'N':
5584        if (Subtarget->isThumb()) {  // FIXME thumb2
5585          // This must be a constant between 0 and 31, for shift amounts.
5586          if (CVal >= 0 && CVal <= 31)
5587            break;
5588        }
5589        return;
5590
5591      case 'O':
5592        if (Subtarget->isThumb()) {  // FIXME thumb2
5593          // This must be a multiple of 4 between -508 and 508, for
5594          // ADD/SUB sp = sp + immediate.
5595          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5596            break;
5597        }
5598        return;
5599    }
5600    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5601    break;
5602  }
5603
5604  if (Result.getNode()) {
5605    Ops.push_back(Result);
5606    return;
5607  }
5608  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5609}
5610
5611bool
5612ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5613  // The ARM target isn't yet aware of offsets.
5614  return false;
5615}
5616
5617int ARM::getVFPf32Imm(const APFloat &FPImm) {
5618  APInt Imm = FPImm.bitcastToAPInt();
5619  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5620  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5621  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5622
5623  // We can handle 4 bits of mantissa.
5624  // mantissa = (16+UInt(e:f:g:h))/16.
5625  if (Mantissa & 0x7ffff)
5626    return -1;
5627  Mantissa >>= 19;
5628  if ((Mantissa & 0xf) != Mantissa)
5629    return -1;
5630
5631  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5632  if (Exp < -3 || Exp > 4)
5633    return -1;
5634  Exp = ((Exp+3) & 0x7) ^ 4;
5635
5636  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5637}
5638
5639int ARM::getVFPf64Imm(const APFloat &FPImm) {
5640  APInt Imm = FPImm.bitcastToAPInt();
5641  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5642  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5643  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5644
5645  // We can handle 4 bits of mantissa.
5646  // mantissa = (16+UInt(e:f:g:h))/16.
5647  if (Mantissa & 0xffffffffffffLL)
5648    return -1;
5649  Mantissa >>= 48;
5650  if ((Mantissa & 0xf) != Mantissa)
5651    return -1;
5652
5653  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5654  if (Exp < -3 || Exp > 4)
5655    return -1;
5656  Exp = ((Exp+3) & 0x7) ^ 4;
5657
5658  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5659}
5660
5661bool ARM::isBitFieldInvertedMask(unsigned v) {
5662  if (v == 0xffffffff)
5663    return 0;
5664  // there can be 1's on either or both "outsides", all the "inside"
5665  // bits must be 0's
5666  unsigned int lsb = 0, msb = 31;
5667  while (v & (1 << msb)) --msb;
5668  while (v & (1 << lsb)) ++lsb;
5669  for (unsigned int i = lsb; i <= msb; ++i) {
5670    if (v & (1 << i))
5671      return 0;
5672  }
5673  return 1;
5674}
5675
5676/// isFPImmLegal - Returns true if the target can instruction select the
5677/// specified FP immediate natively. If false, the legalizer will
5678/// materialize the FP immediate as a load from a constant pool.
5679bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5680  if (!Subtarget->hasVFP3())
5681    return false;
5682  if (VT == MVT::f32)
5683    return ARM::getVFPf32Imm(Imm) != -1;
5684  if (VT == MVT::f64)
5685    return ARM::getVFPf64Imm(Imm) != -1;
5686  return false;
5687}
5688
5689/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5690/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5691/// specified in the intrinsic calls.
5692bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5693                                           const CallInst &I,
5694                                           unsigned Intrinsic) const {
5695  switch (Intrinsic) {
5696  case Intrinsic::arm_neon_vld1:
5697  case Intrinsic::arm_neon_vld2:
5698  case Intrinsic::arm_neon_vld3:
5699  case Intrinsic::arm_neon_vld4:
5700  case Intrinsic::arm_neon_vld2lane:
5701  case Intrinsic::arm_neon_vld3lane:
5702  case Intrinsic::arm_neon_vld4lane: {
5703    Info.opc = ISD::INTRINSIC_W_CHAIN;
5704    // Conservatively set memVT to the entire set of vectors loaded.
5705    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
5706    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5707    Info.ptrVal = I.getArgOperand(0);
5708    Info.offset = 0;
5709    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5710    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5711    Info.vol = false; // volatile loads with NEON intrinsics not supported
5712    Info.readMem = true;
5713    Info.writeMem = false;
5714    return true;
5715  }
5716  case Intrinsic::arm_neon_vst1:
5717  case Intrinsic::arm_neon_vst2:
5718  case Intrinsic::arm_neon_vst3:
5719  case Intrinsic::arm_neon_vst4:
5720  case Intrinsic::arm_neon_vst2lane:
5721  case Intrinsic::arm_neon_vst3lane:
5722  case Intrinsic::arm_neon_vst4lane: {
5723    Info.opc = ISD::INTRINSIC_VOID;
5724    // Conservatively set memVT to the entire set of vectors stored.
5725    unsigned NumElts = 0;
5726    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5727      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
5728      if (!ArgTy->isVectorTy())
5729        break;
5730      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
5731    }
5732    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5733    Info.ptrVal = I.getArgOperand(0);
5734    Info.offset = 0;
5735    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5736    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5737    Info.vol = false; // volatile stores with NEON intrinsics not supported
5738    Info.readMem = false;
5739    Info.writeMem = true;
5740    return true;
5741  }
5742  default:
5743    break;
5744  }
5745
5746  return false;
5747}
5748