ARMISelLowering.cpp revision 3e0dc0606aed30b1fa6e1abcecf2cbf5e9ac1af9
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75namespace {
76  class ARMCCState : public CCState {
77  public:
78    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
79               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
80               LLVMContext &C, ParmContext PC)
81        : CCState(CC, isVarArg, MF, TM, locs, C) {
82      assert(((PC == Call) || (PC == Prologue)) &&
83             "ARMCCState users must specify whether their context is call"
84             "or prologue generation.");
85      CallOrPrologue = PC;
86    }
87  };
88}
89
90// The APCS parameter registers.
91static const unsigned GPRArgRegs[] = {
92  ARM::R0, ARM::R1, ARM::R2, ARM::R3
93};
94
95void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
96                                       EVT PromotedBitwiseVT) {
97  if (VT != PromotedLdStVT) {
98    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
99    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
100                       PromotedLdStVT.getSimpleVT());
101
102    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
103    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
104                       PromotedLdStVT.getSimpleVT());
105  }
106
107  EVT ElemTy = VT.getVectorElementType();
108  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
109    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
110  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
111  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
112  if (ElemTy == MVT::i32) {
113    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
114    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
115    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
116    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
117  } else {
118    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
119    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
120    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
121    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
122  }
123  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
124  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
125  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
126  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
127  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
130  if (VT.isInteger()) {
131    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
132    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
133    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
134  }
135
136  // Promote all bit-wise operations.
137  if (VT.isInteger() && VT != PromotedBitwiseVT) {
138    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
139    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
140                       PromotedBitwiseVT.getSimpleVT());
141    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
142    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
143                       PromotedBitwiseVT.getSimpleVT());
144    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
145    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
146                       PromotedBitwiseVT.getSimpleVT());
147  }
148
149  // Neon does not support vector divide/remainder operations.
150  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
156}
157
158void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
159  addRegisterClass(VT, ARM::DPRRegisterClass);
160  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
161}
162
163void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
164  addRegisterClass(VT, ARM::QPRRegisterClass);
165  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
166}
167
168static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
169  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
170    return new TargetLoweringObjectFileMachO();
171
172  return new ARMElfTargetObjectFile();
173}
174
175ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
176    : TargetLowering(TM, createTLOF(TM)) {
177  Subtarget = &TM.getSubtarget<ARMSubtarget>();
178  RegInfo = TM.getRegisterInfo();
179  Itins = TM.getInstrItineraryData();
180
181  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
182
183  if (Subtarget->isTargetDarwin()) {
184    // Uses VFP for Thumb libfuncs if available.
185    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
186      // Single-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
188      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
189      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
190      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
191
192      // Double-precision floating-point arithmetic.
193      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
194      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
195      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
196      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
197
198      // Single-precision comparisons.
199      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
200      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
201      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
202      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
203      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
204      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
205      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
206      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
207
208      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
215      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
216
217      // Double-precision comparisons.
218      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
219      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
220      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
221      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
222      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
223      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
224      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
225      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
226
227      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
234      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
235
236      // Floating-point to integer conversions.
237      // i64 conversions are done via library routines even when generating VFP
238      // instructions, so use the same ones.
239      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
240      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
241      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
242      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
243
244      // Conversions between floating types.
245      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
246      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
247
248      // Integer to floating-point conversions.
249      // i64 conversions are done via library routines even when generating VFP
250      // instructions, so use the same ones.
251      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
252      // e.g., __floatunsidf vs. __floatunssidfvfp.
253      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
254      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
255      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
256      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
257    }
258  }
259
260  // These libcalls are not available in 32-bit.
261  setLibcallName(RTLIB::SHL_I128, 0);
262  setLibcallName(RTLIB::SRL_I128, 0);
263  setLibcallName(RTLIB::SRA_I128, 0);
264
265  if (Subtarget->isAAPCS_ABI()) {
266    // Double-precision floating-point arithmetic helper functions
267    // RTABI chapter 4.1.2, Table 2
268    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
269    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
270    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
271    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
272    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
276
277    // Double-precision floating-point comparison helper functions
278    // RTABI chapter 4.1.2, Table 3
279    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
280    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
281    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
282    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
283    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
284    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
286    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
287    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
288    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
289    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
290    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
291    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
292    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
293    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
294    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
295    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
303
304    // Single-precision floating-point arithmetic helper functions
305    // RTABI chapter 4.1.2, Table 4
306    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
307    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
308    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
309    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
310    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
314
315    // Single-precision floating-point comparison helper functions
316    // RTABI chapter 4.1.2, Table 5
317    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
318    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
319    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
320    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
321    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
322    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
324    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
325    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
326    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
327    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
328    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
329    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
330    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
331    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
332    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
333    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
341
342    // Floating-point to integer conversions.
343    // RTABI chapter 4.1.2, Table 6
344    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
345    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
346    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
347    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
348    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
349    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
350    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
351    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
352    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
360
361    // Conversions between floating types.
362    // RTABI chapter 4.1.2, Table 7
363    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
364    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
365    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
366    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
367
368    // Integer to floating-point conversions.
369    // RTABI chapter 4.1.2, Table 8
370    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
371    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
372    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
373    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
374    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
375    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
376    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
377    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
378    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
386
387    // Long long helper functions
388    // RTABI chapter 4.2, Table 9
389    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
390    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
391    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
392    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
393    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
394    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
395    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
401
402    // Integer division functions
403    // RTABI chapter 4.3.1
404    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
405    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
406    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
407    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
408    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
409    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
410    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
416
417    // Memory operations
418    // RTABI chapter 4.3.4
419    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
420    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
421    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
422  }
423
424  // Use divmod compiler-rt calls for iOS 5.0 and later.
425  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
426      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
427    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
428    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
429  }
430
431  if (Subtarget->isThumb1Only())
432    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
433  else
434    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
435  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
436      !Subtarget->isThumb1Only()) {
437    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
438    if (!Subtarget->isFPOnlySP())
439      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
440
441    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
442  }
443
444  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
445       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
446    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
447         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
448      setTruncStoreAction((MVT::SimpleValueType)VT,
449                          (MVT::SimpleValueType)InnerVT, Expand);
450    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
452    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
453  }
454
455  if (Subtarget->hasNEON()) {
456    addDRTypeForNEON(MVT::v2f32);
457    addDRTypeForNEON(MVT::v8i8);
458    addDRTypeForNEON(MVT::v4i16);
459    addDRTypeForNEON(MVT::v2i32);
460    addDRTypeForNEON(MVT::v1i64);
461
462    addQRTypeForNEON(MVT::v4f32);
463    addQRTypeForNEON(MVT::v2f64);
464    addQRTypeForNEON(MVT::v16i8);
465    addQRTypeForNEON(MVT::v8i16);
466    addQRTypeForNEON(MVT::v4i32);
467    addQRTypeForNEON(MVT::v2i64);
468
469    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
470    // neither Neon nor VFP support any arithmetic operations on it.
471    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
472    // supported for v4f32.
473    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
474    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
475    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
476    // FIXME: Code duplication: FDIV and FREM are expanded always, see
477    // ARMTargetLowering::addTypeForNEON method for details.
478    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
479    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
480    // FIXME: Create unittest.
481    // In another words, find a way when "copysign" appears in DAG with vector
482    // operands.
483    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
484    // FIXME: Code duplication: SETCC has custom operation action, see
485    // ARMTargetLowering::addTypeForNEON method for details.
486    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
487    // FIXME: Create unittest for FNEG and for FABS.
488    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
489    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
490    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
492    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
493    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
495    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
498    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
500    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
501    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
502    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
503    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
504    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
506
507    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
508    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
509    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
510    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
511    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
512    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
515    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
516    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
517
518    // Neon does not support some operations on v1i64 and v2i64 types.
519    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
520    // Custom handling for some quad-vector types to detect VMULL.
521    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
522    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
523    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
524    // Custom handling for some vector types to avoid expensive expansions
525    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
526    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
527    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
528    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
529    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
530    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
531    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
532    // a destination type that is wider than the source.
533    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
534    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
535
536    setTargetDAGCombine(ISD::INTRINSIC_VOID);
537    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
538    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
539    setTargetDAGCombine(ISD::SHL);
540    setTargetDAGCombine(ISD::SRL);
541    setTargetDAGCombine(ISD::SRA);
542    setTargetDAGCombine(ISD::SIGN_EXTEND);
543    setTargetDAGCombine(ISD::ZERO_EXTEND);
544    setTargetDAGCombine(ISD::ANY_EXTEND);
545    setTargetDAGCombine(ISD::SELECT_CC);
546    setTargetDAGCombine(ISD::BUILD_VECTOR);
547    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
548    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
549    setTargetDAGCombine(ISD::STORE);
550    setTargetDAGCombine(ISD::FP_TO_SINT);
551    setTargetDAGCombine(ISD::FP_TO_UINT);
552    setTargetDAGCombine(ISD::FDIV);
553
554    setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
555  }
556
557  computeRegisterProperties();
558
559  // ARM does not have f32 extending load.
560  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
561
562  // ARM does not have i1 sign extending load.
563  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
564
565  // ARM supports all 4 flavors of integer indexed load / store.
566  if (!Subtarget->isThumb1Only()) {
567    for (unsigned im = (unsigned)ISD::PRE_INC;
568         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
569      setIndexedLoadAction(im,  MVT::i1,  Legal);
570      setIndexedLoadAction(im,  MVT::i8,  Legal);
571      setIndexedLoadAction(im,  MVT::i16, Legal);
572      setIndexedLoadAction(im,  MVT::i32, Legal);
573      setIndexedStoreAction(im, MVT::i1,  Legal);
574      setIndexedStoreAction(im, MVT::i8,  Legal);
575      setIndexedStoreAction(im, MVT::i16, Legal);
576      setIndexedStoreAction(im, MVT::i32, Legal);
577    }
578  }
579
580  // i64 operation support.
581  setOperationAction(ISD::MUL,     MVT::i64, Expand);
582  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
583  if (Subtarget->isThumb1Only()) {
584    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
585    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
586  }
587  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
588      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
589    setOperationAction(ISD::MULHS, MVT::i32, Expand);
590
591  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
592  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
593  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
594  setOperationAction(ISD::SRL,       MVT::i64, Custom);
595  setOperationAction(ISD::SRA,       MVT::i64, Custom);
596
597  if (!Subtarget->isThumb1Only()) {
598    // FIXME: We should do this for Thumb1 as well.
599    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
600    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
601    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
602    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
603  }
604
605  // ARM does not have ROTL.
606  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
607  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
608  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
609  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
610    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
611
612  // Only ARMv6 has BSWAP.
613  if (!Subtarget->hasV6Ops())
614    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
615
616  // These are expanded into libcalls.
617  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
618    // v7M has a hardware divider
619    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
620    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
621  }
622  setOperationAction(ISD::SREM,  MVT::i32, Expand);
623  setOperationAction(ISD::UREM,  MVT::i32, Expand);
624  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
625  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
626
627  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
628  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
629  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
630  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
631  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
632
633  setOperationAction(ISD::TRAP, MVT::Other, Legal);
634
635  // Use the default implementation.
636  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
637  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
638  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
639  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
640  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
641  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
642  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
643  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
644  setExceptionPointerRegister(ARM::R0);
645  setExceptionSelectorRegister(ARM::R1);
646
647  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
648  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
649  // the default expansion.
650  // FIXME: This should be checking for v6k, not just v6.
651  if (Subtarget->hasDataBarrier() ||
652      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
653    // membarrier needs custom lowering; the rest are legal and handled
654    // normally.
655    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
656    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
657    // Custom lowering for 64-bit ops
658    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
659    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
660    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
661    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
662    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
663    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
664    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
665    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
666    setInsertFencesForAtomic(true);
667  } else {
668    // Set them all for expansion, which will force libcalls.
669    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
670    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
671    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
672    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
673    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
674    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
675    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
676    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
677    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
678    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
679    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
680    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
681    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
682    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
683    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
684    // Unordered/Monotonic case.
685    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
686    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
687    // Since the libcalls include locking, fold in the fences
688    setShouldFoldAtomicFences(true);
689  }
690
691  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
692
693  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
694  if (!Subtarget->hasV6Ops()) {
695    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
696    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
697  }
698  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
699
700  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
701      !Subtarget->isThumb1Only()) {
702    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
703    // iff target supports vfp2.
704    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
705    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
706  }
707
708  // We want to custom lower some of our intrinsics.
709  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
710  if (Subtarget->isTargetDarwin()) {
711    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
712    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
713    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
714  }
715
716  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
717  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
718  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
719  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
720  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
721  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
722  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
723  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
724  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
725
726  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
727  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
728  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
729  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
730  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
731
732  // We don't support sin/cos/fmod/copysign/pow
733  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
734  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
735  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
736  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
737  setOperationAction(ISD::FREM,      MVT::f64, Expand);
738  setOperationAction(ISD::FREM,      MVT::f32, Expand);
739  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
740      !Subtarget->isThumb1Only()) {
741    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
742    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
743  }
744  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
745  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
746
747  setOperationAction(ISD::FMA, MVT::f64, Expand);
748  setOperationAction(ISD::FMA, MVT::f32, Expand);
749
750  // Various VFP goodness
751  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
752    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
753    if (Subtarget->hasVFP2()) {
754      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
755      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
756      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
757      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
758    }
759    // Special handling for half-precision FP.
760    if (!Subtarget->hasFP16()) {
761      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
762      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
763    }
764  }
765
766  // We have target-specific dag combine patterns for the following nodes:
767  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
768  setTargetDAGCombine(ISD::ADD);
769  setTargetDAGCombine(ISD::SUB);
770  setTargetDAGCombine(ISD::MUL);
771
772  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
773    setTargetDAGCombine(ISD::OR);
774  if (Subtarget->hasNEON())
775    setTargetDAGCombine(ISD::AND);
776
777  setStackPointerRegisterToSaveRestore(ARM::SP);
778
779  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
780      !Subtarget->hasVFP2())
781    setSchedulingPreference(Sched::RegPressure);
782  else
783    setSchedulingPreference(Sched::Hybrid);
784
785  //// temporary - rewrite interface to use type
786  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
787  maxStoresPerMemset = 16;
788  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
789
790  // On ARM arguments smaller than 4 bytes are extended, so all arguments
791  // are at least 4 bytes aligned.
792  setMinStackArgumentAlignment(4);
793
794  benefitFromCodePlacementOpt = true;
795
796  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
797}
798
799// FIXME: It might make sense to define the representative register class as the
800// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
801// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
802// SPR's representative would be DPR_VFP2. This should work well if register
803// pressure tracking were modified such that a register use would increment the
804// pressure of the register class's representative and all of it's super
805// classes' representatives transitively. We have not implemented this because
806// of the difficulty prior to coalescing of modeling operand register classes
807// due to the common occurrence of cross class copies and subregister insertions
808// and extractions.
809std::pair<const TargetRegisterClass*, uint8_t>
810ARMTargetLowering::findRepresentativeClass(EVT VT) const{
811  const TargetRegisterClass *RRC = 0;
812  uint8_t Cost = 1;
813  switch (VT.getSimpleVT().SimpleTy) {
814  default:
815    return TargetLowering::findRepresentativeClass(VT);
816  // Use DPR as representative register class for all floating point
817  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
818  // the cost is 1 for both f32 and f64.
819  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
820  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
821    RRC = ARM::DPRRegisterClass;
822    // When NEON is used for SP, only half of the register file is available
823    // because operations that define both SP and DP results will be constrained
824    // to the VFP2 class (D0-D15). We currently model this constraint prior to
825    // coalescing by double-counting the SP regs. See the FIXME above.
826    if (Subtarget->useNEONForSinglePrecisionFP())
827      Cost = 2;
828    break;
829  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
830  case MVT::v4f32: case MVT::v2f64:
831    RRC = ARM::DPRRegisterClass;
832    Cost = 2;
833    break;
834  case MVT::v4i64:
835    RRC = ARM::DPRRegisterClass;
836    Cost = 4;
837    break;
838  case MVT::v8i64:
839    RRC = ARM::DPRRegisterClass;
840    Cost = 8;
841    break;
842  }
843  return std::make_pair(RRC, Cost);
844}
845
846const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
847  switch (Opcode) {
848  default: return 0;
849  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
850  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
851  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
852  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
853  case ARMISD::CALL:          return "ARMISD::CALL";
854  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
855  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
856  case ARMISD::tCALL:         return "ARMISD::tCALL";
857  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
858  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
859  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
860  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
861  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
862  case ARMISD::CMP:           return "ARMISD::CMP";
863  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
864  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
865  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
866  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
867  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
868  case ARMISD::CMOV:          return "ARMISD::CMOV";
869
870  case ARMISD::RBIT:          return "ARMISD::RBIT";
871
872  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
873  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
874  case ARMISD::SITOF:         return "ARMISD::SITOF";
875  case ARMISD::UITOF:         return "ARMISD::UITOF";
876
877  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
878  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
879  case ARMISD::RRX:           return "ARMISD::RRX";
880
881  case ARMISD::ADDC:          return "ARMISD::ADDC";
882  case ARMISD::ADDE:          return "ARMISD::ADDE";
883  case ARMISD::SUBC:          return "ARMISD::SUBC";
884  case ARMISD::SUBE:          return "ARMISD::SUBE";
885
886  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
887  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
888
889  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
890  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
891
892  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
893
894  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
895
896  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
897
898  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
899  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
900
901  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
902
903  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
904  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
905  case ARMISD::VCGE:          return "ARMISD::VCGE";
906  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
907  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
908  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
909  case ARMISD::VCGT:          return "ARMISD::VCGT";
910  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
911  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
912  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
913  case ARMISD::VTST:          return "ARMISD::VTST";
914
915  case ARMISD::VSHL:          return "ARMISD::VSHL";
916  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
917  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
918  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
919  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
920  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
921  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
922  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
923  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
924  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
925  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
926  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
927  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
928  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
929  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
930  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
931  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
932  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
933  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
934  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
935  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
936  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
937  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
938  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
939  case ARMISD::VDUP:          return "ARMISD::VDUP";
940  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
941  case ARMISD::VEXT:          return "ARMISD::VEXT";
942  case ARMISD::VREV64:        return "ARMISD::VREV64";
943  case ARMISD::VREV32:        return "ARMISD::VREV32";
944  case ARMISD::VREV16:        return "ARMISD::VREV16";
945  case ARMISD::VZIP:          return "ARMISD::VZIP";
946  case ARMISD::VUZP:          return "ARMISD::VUZP";
947  case ARMISD::VTRN:          return "ARMISD::VTRN";
948  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
949  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
950  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
951  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
952  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
953  case ARMISD::FMAX:          return "ARMISD::FMAX";
954  case ARMISD::FMIN:          return "ARMISD::FMIN";
955  case ARMISD::BFI:           return "ARMISD::BFI";
956  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
957  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
958  case ARMISD::VBSL:          return "ARMISD::VBSL";
959  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
960  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
961  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
962  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
963  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
964  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
965  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
966  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
967  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
968  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
969  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
970  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
971  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
972  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
973  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
974  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
975  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
976  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
977  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
978  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
979  }
980}
981
982EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
983  if (!VT.isVector()) return getPointerTy();
984  return VT.changeVectorElementTypeToInteger();
985}
986
987/// getRegClassFor - Return the register class that should be used for the
988/// specified value type.
989TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
990  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
991  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
992  // load / store 4 to 8 consecutive D registers.
993  if (Subtarget->hasNEON()) {
994    if (VT == MVT::v4i64)
995      return ARM::QQPRRegisterClass;
996    else if (VT == MVT::v8i64)
997      return ARM::QQQQPRRegisterClass;
998  }
999  return TargetLowering::getRegClassFor(VT);
1000}
1001
1002// Create a fast isel object.
1003FastISel *
1004ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1005  return ARM::createFastISel(funcInfo);
1006}
1007
1008/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1009/// be used for loads / stores from the global.
1010unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1011  return (Subtarget->isThumb1Only() ? 127 : 4095);
1012}
1013
1014Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1015  unsigned NumVals = N->getNumValues();
1016  if (!NumVals)
1017    return Sched::RegPressure;
1018
1019  for (unsigned i = 0; i != NumVals; ++i) {
1020    EVT VT = N->getValueType(i);
1021    if (VT == MVT::Glue || VT == MVT::Other)
1022      continue;
1023    if (VT.isFloatingPoint() || VT.isVector())
1024      return Sched::ILP;
1025  }
1026
1027  if (!N->isMachineOpcode())
1028    return Sched::RegPressure;
1029
1030  // Load are scheduled for latency even if there instruction itinerary
1031  // is not available.
1032  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1033  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1034
1035  if (MCID.getNumDefs() == 0)
1036    return Sched::RegPressure;
1037  if (!Itins->isEmpty() &&
1038      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1039    return Sched::ILP;
1040
1041  return Sched::RegPressure;
1042}
1043
1044//===----------------------------------------------------------------------===//
1045// Lowering Code
1046//===----------------------------------------------------------------------===//
1047
1048/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1049static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1050  switch (CC) {
1051  default: llvm_unreachable("Unknown condition code!");
1052  case ISD::SETNE:  return ARMCC::NE;
1053  case ISD::SETEQ:  return ARMCC::EQ;
1054  case ISD::SETGT:  return ARMCC::GT;
1055  case ISD::SETGE:  return ARMCC::GE;
1056  case ISD::SETLT:  return ARMCC::LT;
1057  case ISD::SETLE:  return ARMCC::LE;
1058  case ISD::SETUGT: return ARMCC::HI;
1059  case ISD::SETUGE: return ARMCC::HS;
1060  case ISD::SETULT: return ARMCC::LO;
1061  case ISD::SETULE: return ARMCC::LS;
1062  }
1063}
1064
1065/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1066static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1067                        ARMCC::CondCodes &CondCode2) {
1068  CondCode2 = ARMCC::AL;
1069  switch (CC) {
1070  default: llvm_unreachable("Unknown FP condition!");
1071  case ISD::SETEQ:
1072  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1073  case ISD::SETGT:
1074  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1075  case ISD::SETGE:
1076  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1077  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1078  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1079  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1080  case ISD::SETO:   CondCode = ARMCC::VC; break;
1081  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1082  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1083  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1084  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1085  case ISD::SETLT:
1086  case ISD::SETULT: CondCode = ARMCC::LT; break;
1087  case ISD::SETLE:
1088  case ISD::SETULE: CondCode = ARMCC::LE; break;
1089  case ISD::SETNE:
1090  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1091  }
1092}
1093
1094//===----------------------------------------------------------------------===//
1095//                      Calling Convention Implementation
1096//===----------------------------------------------------------------------===//
1097
1098#include "ARMGenCallingConv.inc"
1099
1100/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1101/// given CallingConvention value.
1102CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1103                                                 bool Return,
1104                                                 bool isVarArg) const {
1105  switch (CC) {
1106  default:
1107    llvm_unreachable("Unsupported calling convention");
1108  case CallingConv::Fast:
1109    if (Subtarget->hasVFP2() && !isVarArg) {
1110      if (!Subtarget->isAAPCS_ABI())
1111        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1112      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1113      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1114    }
1115    // Fallthrough
1116  case CallingConv::C: {
1117    // Use target triple & subtarget features to do actual dispatch.
1118    if (!Subtarget->isAAPCS_ABI())
1119      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1120    else if (Subtarget->hasVFP2() &&
1121             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1122             !isVarArg)
1123      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1124    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1125  }
1126  case CallingConv::ARM_AAPCS_VFP:
1127    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1128  case CallingConv::ARM_AAPCS:
1129    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1130  case CallingConv::ARM_APCS:
1131    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1132  }
1133}
1134
1135/// LowerCallResult - Lower the result values of a call into the
1136/// appropriate copies out of appropriate physical registers.
1137SDValue
1138ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1139                                   CallingConv::ID CallConv, bool isVarArg,
1140                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1141                                   DebugLoc dl, SelectionDAG &DAG,
1142                                   SmallVectorImpl<SDValue> &InVals) const {
1143
1144  // Assign locations to each value returned by this call.
1145  SmallVector<CCValAssign, 16> RVLocs;
1146  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1147                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1148  CCInfo.AnalyzeCallResult(Ins,
1149                           CCAssignFnForNode(CallConv, /* Return*/ true,
1150                                             isVarArg));
1151
1152  // Copy all of the result registers out of their specified physreg.
1153  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1154    CCValAssign VA = RVLocs[i];
1155
1156    SDValue Val;
1157    if (VA.needsCustom()) {
1158      // Handle f64 or half of a v2f64.
1159      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1160                                      InFlag);
1161      Chain = Lo.getValue(1);
1162      InFlag = Lo.getValue(2);
1163      VA = RVLocs[++i]; // skip ahead to next loc
1164      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1165                                      InFlag);
1166      Chain = Hi.getValue(1);
1167      InFlag = Hi.getValue(2);
1168      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1169
1170      if (VA.getLocVT() == MVT::v2f64) {
1171        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1172        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1173                          DAG.getConstant(0, MVT::i32));
1174
1175        VA = RVLocs[++i]; // skip ahead to next loc
1176        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1177        Chain = Lo.getValue(1);
1178        InFlag = Lo.getValue(2);
1179        VA = RVLocs[++i]; // skip ahead to next loc
1180        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1181        Chain = Hi.getValue(1);
1182        InFlag = Hi.getValue(2);
1183        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1184        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1185                          DAG.getConstant(1, MVT::i32));
1186      }
1187    } else {
1188      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1189                               InFlag);
1190      Chain = Val.getValue(1);
1191      InFlag = Val.getValue(2);
1192    }
1193
1194    switch (VA.getLocInfo()) {
1195    default: llvm_unreachable("Unknown loc info!");
1196    case CCValAssign::Full: break;
1197    case CCValAssign::BCvt:
1198      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1199      break;
1200    }
1201
1202    InVals.push_back(Val);
1203  }
1204
1205  return Chain;
1206}
1207
1208/// LowerMemOpCallTo - Store the argument to the stack.
1209SDValue
1210ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1211                                    SDValue StackPtr, SDValue Arg,
1212                                    DebugLoc dl, SelectionDAG &DAG,
1213                                    const CCValAssign &VA,
1214                                    ISD::ArgFlagsTy Flags) const {
1215  unsigned LocMemOffset = VA.getLocMemOffset();
1216  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1217  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1218  return DAG.getStore(Chain, dl, Arg, PtrOff,
1219                      MachinePointerInfo::getStack(LocMemOffset),
1220                      false, false, 0);
1221}
1222
1223void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1224                                         SDValue Chain, SDValue &Arg,
1225                                         RegsToPassVector &RegsToPass,
1226                                         CCValAssign &VA, CCValAssign &NextVA,
1227                                         SDValue &StackPtr,
1228                                         SmallVector<SDValue, 8> &MemOpChains,
1229                                         ISD::ArgFlagsTy Flags) const {
1230
1231  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1232                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1233  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1234
1235  if (NextVA.isRegLoc())
1236    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1237  else {
1238    assert(NextVA.isMemLoc());
1239    if (StackPtr.getNode() == 0)
1240      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1241
1242    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1243                                           dl, DAG, NextVA,
1244                                           Flags));
1245  }
1246}
1247
1248/// LowerCall - Lowering a call into a callseq_start <-
1249/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1250/// nodes.
1251SDValue
1252ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1253                             CallingConv::ID CallConv, bool isVarArg,
1254                             bool &isTailCall,
1255                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1256                             const SmallVectorImpl<SDValue> &OutVals,
1257                             const SmallVectorImpl<ISD::InputArg> &Ins,
1258                             DebugLoc dl, SelectionDAG &DAG,
1259                             SmallVectorImpl<SDValue> &InVals) const {
1260  MachineFunction &MF = DAG.getMachineFunction();
1261  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1262  bool IsSibCall = false;
1263  // Disable tail calls if they're not supported.
1264  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1265    isTailCall = false;
1266  if (isTailCall) {
1267    // Check if it's really possible to do a tail call.
1268    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1269                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1270                                                   Outs, OutVals, Ins, DAG);
1271    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1272    // detected sibcalls.
1273    if (isTailCall) {
1274      ++NumTailCalls;
1275      IsSibCall = true;
1276    }
1277  }
1278
1279  // Analyze operands of the call, assigning locations to each operand.
1280  SmallVector<CCValAssign, 16> ArgLocs;
1281  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1282                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1283  CCInfo.AnalyzeCallOperands(Outs,
1284                             CCAssignFnForNode(CallConv, /* Return*/ false,
1285                                               isVarArg));
1286
1287  // Get a count of how many bytes are to be pushed on the stack.
1288  unsigned NumBytes = CCInfo.getNextStackOffset();
1289
1290  // For tail calls, memory operands are available in our caller's stack.
1291  if (IsSibCall)
1292    NumBytes = 0;
1293
1294  // Adjust the stack pointer for the new arguments...
1295  // These operations are automatically eliminated by the prolog/epilog pass
1296  if (!IsSibCall)
1297    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1298
1299  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1300
1301  RegsToPassVector RegsToPass;
1302  SmallVector<SDValue, 8> MemOpChains;
1303
1304  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1305  // of tail call optimization, arguments are handled later.
1306  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1307       i != e;
1308       ++i, ++realArgIdx) {
1309    CCValAssign &VA = ArgLocs[i];
1310    SDValue Arg = OutVals[realArgIdx];
1311    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1312    bool isByVal = Flags.isByVal();
1313
1314    // Promote the value if needed.
1315    switch (VA.getLocInfo()) {
1316    default: llvm_unreachable("Unknown loc info!");
1317    case CCValAssign::Full: break;
1318    case CCValAssign::SExt:
1319      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1320      break;
1321    case CCValAssign::ZExt:
1322      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1323      break;
1324    case CCValAssign::AExt:
1325      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1326      break;
1327    case CCValAssign::BCvt:
1328      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1329      break;
1330    }
1331
1332    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1333    if (VA.needsCustom()) {
1334      if (VA.getLocVT() == MVT::v2f64) {
1335        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1336                                  DAG.getConstant(0, MVT::i32));
1337        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1338                                  DAG.getConstant(1, MVT::i32));
1339
1340        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1341                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1342
1343        VA = ArgLocs[++i]; // skip ahead to next loc
1344        if (VA.isRegLoc()) {
1345          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1346                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1347        } else {
1348          assert(VA.isMemLoc());
1349
1350          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1351                                                 dl, DAG, VA, Flags));
1352        }
1353      } else {
1354        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1355                         StackPtr, MemOpChains, Flags);
1356      }
1357    } else if (VA.isRegLoc()) {
1358      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1359    } else if (isByVal) {
1360      assert(VA.isMemLoc());
1361      unsigned offset = 0;
1362
1363      // True if this byval aggregate will be split between registers
1364      // and memory.
1365      if (CCInfo.isFirstByValRegValid()) {
1366        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1367        unsigned int i, j;
1368        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1369          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1370          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1371          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1372                                     MachinePointerInfo(),
1373                                     false, false, false, 0);
1374          MemOpChains.push_back(Load.getValue(1));
1375          RegsToPass.push_back(std::make_pair(j, Load));
1376        }
1377        offset = ARM::R4 - CCInfo.getFirstByValReg();
1378        CCInfo.clearFirstByValReg();
1379      }
1380
1381      unsigned LocMemOffset = VA.getLocMemOffset();
1382      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1383      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1384                                StkPtrOff);
1385      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1386      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1387      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1388                                         MVT::i32);
1389      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1390                                          Flags.getByValAlign(),
1391                                          /*isVolatile=*/false,
1392                                          /*AlwaysInline=*/false,
1393                                          MachinePointerInfo(0),
1394                                          MachinePointerInfo(0)));
1395
1396    } else if (!IsSibCall) {
1397      assert(VA.isMemLoc());
1398
1399      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1400                                             dl, DAG, VA, Flags));
1401    }
1402  }
1403
1404  if (!MemOpChains.empty())
1405    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1406                        &MemOpChains[0], MemOpChains.size());
1407
1408  // Build a sequence of copy-to-reg nodes chained together with token chain
1409  // and flag operands which copy the outgoing args into the appropriate regs.
1410  SDValue InFlag;
1411  // Tail call byval lowering might overwrite argument registers so in case of
1412  // tail call optimization the copies to registers are lowered later.
1413  if (!isTailCall)
1414    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1415      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1416                               RegsToPass[i].second, InFlag);
1417      InFlag = Chain.getValue(1);
1418    }
1419
1420  // For tail calls lower the arguments to the 'real' stack slot.
1421  if (isTailCall) {
1422    // Force all the incoming stack arguments to be loaded from the stack
1423    // before any new outgoing arguments are stored to the stack, because the
1424    // outgoing stack slots may alias the incoming argument stack slots, and
1425    // the alias isn't otherwise explicit. This is slightly more conservative
1426    // than necessary, because it means that each store effectively depends
1427    // on every argument instead of just those arguments it would clobber.
1428
1429    // Do not flag preceding copytoreg stuff together with the following stuff.
1430    InFlag = SDValue();
1431    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1432      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1433                               RegsToPass[i].second, InFlag);
1434      InFlag = Chain.getValue(1);
1435    }
1436    InFlag =SDValue();
1437  }
1438
1439  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1440  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1441  // node so that legalize doesn't hack it.
1442  bool isDirect = false;
1443  bool isARMFunc = false;
1444  bool isLocalARMFunc = false;
1445  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1446
1447  if (EnableARMLongCalls) {
1448    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1449            && "long-calls with non-static relocation model!");
1450    // Handle a global address or an external symbol. If it's not one of
1451    // those, the target's already in a register, so we don't need to do
1452    // anything extra.
1453    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1454      const GlobalValue *GV = G->getGlobal();
1455      // Create a constant pool entry for the callee address
1456      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1457      ARMConstantPoolValue *CPV =
1458        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1459
1460      // Get the address of the callee into a register
1461      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1462      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1463      Callee = DAG.getLoad(getPointerTy(), dl,
1464                           DAG.getEntryNode(), CPAddr,
1465                           MachinePointerInfo::getConstantPool(),
1466                           false, false, false, 0);
1467    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1468      const char *Sym = S->getSymbol();
1469
1470      // Create a constant pool entry for the callee address
1471      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1472      ARMConstantPoolValue *CPV =
1473        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1474                                      ARMPCLabelIndex, 0);
1475      // Get the address of the callee into a register
1476      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1477      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1478      Callee = DAG.getLoad(getPointerTy(), dl,
1479                           DAG.getEntryNode(), CPAddr,
1480                           MachinePointerInfo::getConstantPool(),
1481                           false, false, false, 0);
1482    }
1483  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1484    const GlobalValue *GV = G->getGlobal();
1485    isDirect = true;
1486    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1487    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1488                   getTargetMachine().getRelocationModel() != Reloc::Static;
1489    isARMFunc = !Subtarget->isThumb() || isStub;
1490    // ARM call to a local ARM function is predicable.
1491    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1492    // tBX takes a register source operand.
1493    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1494      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1495      ARMConstantPoolValue *CPV =
1496        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1497      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1498      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1499      Callee = DAG.getLoad(getPointerTy(), dl,
1500                           DAG.getEntryNode(), CPAddr,
1501                           MachinePointerInfo::getConstantPool(),
1502                           false, false, false, 0);
1503      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1504      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1505                           getPointerTy(), Callee, PICLabel);
1506    } else {
1507      // On ELF targets for PIC code, direct calls should go through the PLT
1508      unsigned OpFlags = 0;
1509      if (Subtarget->isTargetELF() &&
1510                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1511        OpFlags = ARMII::MO_PLT;
1512      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1513    }
1514  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1515    isDirect = true;
1516    bool isStub = Subtarget->isTargetDarwin() &&
1517                  getTargetMachine().getRelocationModel() != Reloc::Static;
1518    isARMFunc = !Subtarget->isThumb() || isStub;
1519    // tBX takes a register source operand.
1520    const char *Sym = S->getSymbol();
1521    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1522      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1523      ARMConstantPoolValue *CPV =
1524        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1525                                      ARMPCLabelIndex, 4);
1526      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1527      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1528      Callee = DAG.getLoad(getPointerTy(), dl,
1529                           DAG.getEntryNode(), CPAddr,
1530                           MachinePointerInfo::getConstantPool(),
1531                           false, false, false, 0);
1532      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1533      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1534                           getPointerTy(), Callee, PICLabel);
1535    } else {
1536      unsigned OpFlags = 0;
1537      // On ELF targets for PIC code, direct calls should go through the PLT
1538      if (Subtarget->isTargetELF() &&
1539                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1540        OpFlags = ARMII::MO_PLT;
1541      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1542    }
1543  }
1544
1545  // FIXME: handle tail calls differently.
1546  unsigned CallOpc;
1547  if (Subtarget->isThumb()) {
1548    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1549      CallOpc = ARMISD::CALL_NOLINK;
1550    else
1551      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1552  } else {
1553    CallOpc = (isDirect || Subtarget->hasV5TOps())
1554      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1555      : ARMISD::CALL_NOLINK;
1556  }
1557
1558  std::vector<SDValue> Ops;
1559  Ops.push_back(Chain);
1560  Ops.push_back(Callee);
1561
1562  // Add argument registers to the end of the list so that they are known live
1563  // into the call.
1564  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1565    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1566                                  RegsToPass[i].second.getValueType()));
1567
1568  if (InFlag.getNode())
1569    Ops.push_back(InFlag);
1570
1571  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1572  if (isTailCall)
1573    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1574
1575  // Returns a chain and a flag for retval copy to use.
1576  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1577  InFlag = Chain.getValue(1);
1578
1579  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1580                             DAG.getIntPtrConstant(0, true), InFlag);
1581  if (!Ins.empty())
1582    InFlag = Chain.getValue(1);
1583
1584  // Handle result values, copying them out of physregs into vregs that we
1585  // return.
1586  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1587                         dl, DAG, InVals);
1588}
1589
1590/// HandleByVal - Every parameter *after* a byval parameter is passed
1591/// on the stack.  Remember the next parameter register to allocate,
1592/// and then confiscate the rest of the parameter registers to insure
1593/// this.
1594void
1595llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1596  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1597  assert((State->getCallOrPrologue() == Prologue ||
1598          State->getCallOrPrologue() == Call) &&
1599         "unhandled ParmContext");
1600  if ((!State->isFirstByValRegValid()) &&
1601      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1602    State->setFirstByValReg(reg);
1603    // At a call site, a byval parameter that is split between
1604    // registers and memory needs its size truncated here.  In a
1605    // function prologue, such byval parameters are reassembled in
1606    // memory, and are not truncated.
1607    if (State->getCallOrPrologue() == Call) {
1608      unsigned excess = 4 * (ARM::R4 - reg);
1609      assert(size >= excess && "expected larger existing stack allocation");
1610      size -= excess;
1611    }
1612  }
1613  // Confiscate any remaining parameter registers to preclude their
1614  // assignment to subsequent parameters.
1615  while (State->AllocateReg(GPRArgRegs, 4))
1616    ;
1617}
1618
1619/// MatchingStackOffset - Return true if the given stack call argument is
1620/// already available in the same position (relatively) of the caller's
1621/// incoming argument stack.
1622static
1623bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1624                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1625                         const ARMInstrInfo *TII) {
1626  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1627  int FI = INT_MAX;
1628  if (Arg.getOpcode() == ISD::CopyFromReg) {
1629    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1630    if (!TargetRegisterInfo::isVirtualRegister(VR))
1631      return false;
1632    MachineInstr *Def = MRI->getVRegDef(VR);
1633    if (!Def)
1634      return false;
1635    if (!Flags.isByVal()) {
1636      if (!TII->isLoadFromStackSlot(Def, FI))
1637        return false;
1638    } else {
1639      return false;
1640    }
1641  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1642    if (Flags.isByVal())
1643      // ByVal argument is passed in as a pointer but it's now being
1644      // dereferenced. e.g.
1645      // define @foo(%struct.X* %A) {
1646      //   tail call @bar(%struct.X* byval %A)
1647      // }
1648      return false;
1649    SDValue Ptr = Ld->getBasePtr();
1650    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1651    if (!FINode)
1652      return false;
1653    FI = FINode->getIndex();
1654  } else
1655    return false;
1656
1657  assert(FI != INT_MAX);
1658  if (!MFI->isFixedObjectIndex(FI))
1659    return false;
1660  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1661}
1662
1663/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1664/// for tail call optimization. Targets which want to do tail call
1665/// optimization should implement this function.
1666bool
1667ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1668                                                     CallingConv::ID CalleeCC,
1669                                                     bool isVarArg,
1670                                                     bool isCalleeStructRet,
1671                                                     bool isCallerStructRet,
1672                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1673                                    const SmallVectorImpl<SDValue> &OutVals,
1674                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1675                                                     SelectionDAG& DAG) const {
1676  const Function *CallerF = DAG.getMachineFunction().getFunction();
1677  CallingConv::ID CallerCC = CallerF->getCallingConv();
1678  bool CCMatch = CallerCC == CalleeCC;
1679
1680  // Look for obvious safe cases to perform tail call optimization that do not
1681  // require ABI changes. This is what gcc calls sibcall.
1682
1683  // Do not sibcall optimize vararg calls unless the call site is not passing
1684  // any arguments.
1685  if (isVarArg && !Outs.empty())
1686    return false;
1687
1688  // Also avoid sibcall optimization if either caller or callee uses struct
1689  // return semantics.
1690  if (isCalleeStructRet || isCallerStructRet)
1691    return false;
1692
1693  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1694  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1695  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1696  // support in the assembler and linker to be used. This would need to be
1697  // fixed to fully support tail calls in Thumb1.
1698  //
1699  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1700  // LR.  This means if we need to reload LR, it takes an extra instructions,
1701  // which outweighs the value of the tail call; but here we don't know yet
1702  // whether LR is going to be used.  Probably the right approach is to
1703  // generate the tail call here and turn it back into CALL/RET in
1704  // emitEpilogue if LR is used.
1705
1706  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1707  // but we need to make sure there are enough registers; the only valid
1708  // registers are the 4 used for parameters.  We don't currently do this
1709  // case.
1710  if (Subtarget->isThumb1Only())
1711    return false;
1712
1713  // If the calling conventions do not match, then we'd better make sure the
1714  // results are returned in the same way as what the caller expects.
1715  if (!CCMatch) {
1716    SmallVector<CCValAssign, 16> RVLocs1;
1717    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1718                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1719    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1720
1721    SmallVector<CCValAssign, 16> RVLocs2;
1722    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1723                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1724    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1725
1726    if (RVLocs1.size() != RVLocs2.size())
1727      return false;
1728    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1729      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1730        return false;
1731      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1732        return false;
1733      if (RVLocs1[i].isRegLoc()) {
1734        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1735          return false;
1736      } else {
1737        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1738          return false;
1739      }
1740    }
1741  }
1742
1743  // If the callee takes no arguments then go on to check the results of the
1744  // call.
1745  if (!Outs.empty()) {
1746    // Check if stack adjustment is needed. For now, do not do this if any
1747    // argument is passed on the stack.
1748    SmallVector<CCValAssign, 16> ArgLocs;
1749    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1750                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1751    CCInfo.AnalyzeCallOperands(Outs,
1752                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1753    if (CCInfo.getNextStackOffset()) {
1754      MachineFunction &MF = DAG.getMachineFunction();
1755
1756      // Check if the arguments are already laid out in the right way as
1757      // the caller's fixed stack objects.
1758      MachineFrameInfo *MFI = MF.getFrameInfo();
1759      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1760      const ARMInstrInfo *TII =
1761        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1762      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1763           i != e;
1764           ++i, ++realArgIdx) {
1765        CCValAssign &VA = ArgLocs[i];
1766        EVT RegVT = VA.getLocVT();
1767        SDValue Arg = OutVals[realArgIdx];
1768        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1769        if (VA.getLocInfo() == CCValAssign::Indirect)
1770          return false;
1771        if (VA.needsCustom()) {
1772          // f64 and vector types are split into multiple registers or
1773          // register/stack-slot combinations.  The types will not match
1774          // the registers; give up on memory f64 refs until we figure
1775          // out what to do about this.
1776          if (!VA.isRegLoc())
1777            return false;
1778          if (!ArgLocs[++i].isRegLoc())
1779            return false;
1780          if (RegVT == MVT::v2f64) {
1781            if (!ArgLocs[++i].isRegLoc())
1782              return false;
1783            if (!ArgLocs[++i].isRegLoc())
1784              return false;
1785          }
1786        } else if (!VA.isRegLoc()) {
1787          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1788                                   MFI, MRI, TII))
1789            return false;
1790        }
1791      }
1792    }
1793  }
1794
1795  return true;
1796}
1797
1798SDValue
1799ARMTargetLowering::LowerReturn(SDValue Chain,
1800                               CallingConv::ID CallConv, bool isVarArg,
1801                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1802                               const SmallVectorImpl<SDValue> &OutVals,
1803                               DebugLoc dl, SelectionDAG &DAG) const {
1804
1805  // CCValAssign - represent the assignment of the return value to a location.
1806  SmallVector<CCValAssign, 16> RVLocs;
1807
1808  // CCState - Info about the registers and stack slots.
1809  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1810                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1811
1812  // Analyze outgoing return values.
1813  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1814                                               isVarArg));
1815
1816  // If this is the first return lowered for this function, add
1817  // the regs to the liveout set for the function.
1818  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1819    for (unsigned i = 0; i != RVLocs.size(); ++i)
1820      if (RVLocs[i].isRegLoc())
1821        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1822  }
1823
1824  SDValue Flag;
1825
1826  // Copy the result values into the output registers.
1827  for (unsigned i = 0, realRVLocIdx = 0;
1828       i != RVLocs.size();
1829       ++i, ++realRVLocIdx) {
1830    CCValAssign &VA = RVLocs[i];
1831    assert(VA.isRegLoc() && "Can only return in registers!");
1832
1833    SDValue Arg = OutVals[realRVLocIdx];
1834
1835    switch (VA.getLocInfo()) {
1836    default: llvm_unreachable("Unknown loc info!");
1837    case CCValAssign::Full: break;
1838    case CCValAssign::BCvt:
1839      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1840      break;
1841    }
1842
1843    if (VA.needsCustom()) {
1844      if (VA.getLocVT() == MVT::v2f64) {
1845        // Extract the first half and return it in two registers.
1846        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1847                                   DAG.getConstant(0, MVT::i32));
1848        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1849                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1850
1851        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1852        Flag = Chain.getValue(1);
1853        VA = RVLocs[++i]; // skip ahead to next loc
1854        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1855                                 HalfGPRs.getValue(1), Flag);
1856        Flag = Chain.getValue(1);
1857        VA = RVLocs[++i]; // skip ahead to next loc
1858
1859        // Extract the 2nd half and fall through to handle it as an f64 value.
1860        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1861                          DAG.getConstant(1, MVT::i32));
1862      }
1863      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1864      // available.
1865      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1866                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1867      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1868      Flag = Chain.getValue(1);
1869      VA = RVLocs[++i]; // skip ahead to next loc
1870      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1871                               Flag);
1872    } else
1873      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1874
1875    // Guarantee that all emitted copies are
1876    // stuck together, avoiding something bad.
1877    Flag = Chain.getValue(1);
1878  }
1879
1880  SDValue result;
1881  if (Flag.getNode())
1882    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1883  else // Return Void
1884    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1885
1886  return result;
1887}
1888
1889bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1890  if (N->getNumValues() != 1)
1891    return false;
1892  if (!N->hasNUsesOfValue(1, 0))
1893    return false;
1894
1895  unsigned NumCopies = 0;
1896  SDNode* Copies[2];
1897  SDNode *Use = *N->use_begin();
1898  if (Use->getOpcode() == ISD::CopyToReg) {
1899    Copies[NumCopies++] = Use;
1900  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1901    // f64 returned in a pair of GPRs.
1902    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1903         UI != UE; ++UI) {
1904      if (UI->getOpcode() != ISD::CopyToReg)
1905        return false;
1906      Copies[UI.getUse().getResNo()] = *UI;
1907      ++NumCopies;
1908    }
1909  } else if (Use->getOpcode() == ISD::BITCAST) {
1910    // f32 returned in a single GPR.
1911    if (!Use->hasNUsesOfValue(1, 0))
1912      return false;
1913    Use = *Use->use_begin();
1914    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1915      return false;
1916    Copies[NumCopies++] = Use;
1917  } else {
1918    return false;
1919  }
1920
1921  if (NumCopies != 1 && NumCopies != 2)
1922    return false;
1923
1924  bool HasRet = false;
1925  for (unsigned i = 0; i < NumCopies; ++i) {
1926    SDNode *Copy = Copies[i];
1927    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1928         UI != UE; ++UI) {
1929      if (UI->getOpcode() == ISD::CopyToReg) {
1930        SDNode *Use = *UI;
1931        if (Use == Copies[0] || Use == Copies[1])
1932          continue;
1933        return false;
1934      }
1935      if (UI->getOpcode() != ARMISD::RET_FLAG)
1936        return false;
1937      HasRet = true;
1938    }
1939  }
1940
1941  return HasRet;
1942}
1943
1944bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1945  if (!EnableARMTailCalls)
1946    return false;
1947
1948  if (!CI->isTailCall())
1949    return false;
1950
1951  return !Subtarget->isThumb1Only();
1952}
1953
1954// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1955// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1956// one of the above mentioned nodes. It has to be wrapped because otherwise
1957// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1958// be used to form addressing mode. These wrapped nodes will be selected
1959// into MOVi.
1960static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1961  EVT PtrVT = Op.getValueType();
1962  // FIXME there is no actual debug info here
1963  DebugLoc dl = Op.getDebugLoc();
1964  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1965  SDValue Res;
1966  if (CP->isMachineConstantPoolEntry())
1967    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1968                                    CP->getAlignment());
1969  else
1970    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1971                                    CP->getAlignment());
1972  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1973}
1974
1975unsigned ARMTargetLowering::getJumpTableEncoding() const {
1976  return MachineJumpTableInfo::EK_Inline;
1977}
1978
1979SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1980                                             SelectionDAG &DAG) const {
1981  MachineFunction &MF = DAG.getMachineFunction();
1982  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1983  unsigned ARMPCLabelIndex = 0;
1984  DebugLoc DL = Op.getDebugLoc();
1985  EVT PtrVT = getPointerTy();
1986  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1987  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1988  SDValue CPAddr;
1989  if (RelocM == Reloc::Static) {
1990    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1991  } else {
1992    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1993    ARMPCLabelIndex = AFI->createPICLabelUId();
1994    ARMConstantPoolValue *CPV =
1995      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
1996                                      ARMCP::CPBlockAddress, PCAdj);
1997    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1998  }
1999  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2000  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2001                               MachinePointerInfo::getConstantPool(),
2002                               false, false, false, 0);
2003  if (RelocM == Reloc::Static)
2004    return Result;
2005  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2006  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2007}
2008
2009// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2010SDValue
2011ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2012                                                 SelectionDAG &DAG) const {
2013  DebugLoc dl = GA->getDebugLoc();
2014  EVT PtrVT = getPointerTy();
2015  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2016  MachineFunction &MF = DAG.getMachineFunction();
2017  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2018  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2019  ARMConstantPoolValue *CPV =
2020    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2021                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2022  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2023  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2024  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2025                         MachinePointerInfo::getConstantPool(),
2026                         false, false, false, 0);
2027  SDValue Chain = Argument.getValue(1);
2028
2029  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2030  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2031
2032  // call __tls_get_addr.
2033  ArgListTy Args;
2034  ArgListEntry Entry;
2035  Entry.Node = Argument;
2036  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2037  Args.push_back(Entry);
2038  // FIXME: is there useful debug info available here?
2039  std::pair<SDValue, SDValue> CallResult =
2040    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2041                false, false, false, false,
2042                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2043                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2044  return CallResult.first;
2045}
2046
2047// Lower ISD::GlobalTLSAddress using the "initial exec" or
2048// "local exec" model.
2049SDValue
2050ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2051                                        SelectionDAG &DAG) const {
2052  const GlobalValue *GV = GA->getGlobal();
2053  DebugLoc dl = GA->getDebugLoc();
2054  SDValue Offset;
2055  SDValue Chain = DAG.getEntryNode();
2056  EVT PtrVT = getPointerTy();
2057  // Get the Thread Pointer
2058  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2059
2060  if (GV->isDeclaration()) {
2061    MachineFunction &MF = DAG.getMachineFunction();
2062    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2063    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2064    // Initial exec model.
2065    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2066    ARMConstantPoolValue *CPV =
2067      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2068                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2069                                      true);
2070    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2071    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2072    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2073                         MachinePointerInfo::getConstantPool(),
2074                         false, false, false, 0);
2075    Chain = Offset.getValue(1);
2076
2077    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2078    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2079
2080    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2081                         MachinePointerInfo::getConstantPool(),
2082                         false, false, false, 0);
2083  } else {
2084    // local exec model
2085    ARMConstantPoolValue *CPV =
2086      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2087    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2088    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2089    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2090                         MachinePointerInfo::getConstantPool(),
2091                         false, false, false, 0);
2092  }
2093
2094  // The address of the thread local variable is the add of the thread
2095  // pointer with the offset of the variable.
2096  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2097}
2098
2099SDValue
2100ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2101  // TODO: implement the "local dynamic" model
2102  assert(Subtarget->isTargetELF() &&
2103         "TLS not implemented for non-ELF targets");
2104  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2105  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2106  // otherwise use the "Local Exec" TLS Model
2107  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2108    return LowerToTLSGeneralDynamicModel(GA, DAG);
2109  else
2110    return LowerToTLSExecModels(GA, DAG);
2111}
2112
2113SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2114                                                 SelectionDAG &DAG) const {
2115  EVT PtrVT = getPointerTy();
2116  DebugLoc dl = Op.getDebugLoc();
2117  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2118  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2119  if (RelocM == Reloc::PIC_) {
2120    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2121    ARMConstantPoolValue *CPV =
2122      ARMConstantPoolConstant::Create(GV,
2123                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2124    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2125    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2126    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2127                                 CPAddr,
2128                                 MachinePointerInfo::getConstantPool(),
2129                                 false, false, false, 0);
2130    SDValue Chain = Result.getValue(1);
2131    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2132    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2133    if (!UseGOTOFF)
2134      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2135                           MachinePointerInfo::getGOT(),
2136                           false, false, false, 0);
2137    return Result;
2138  }
2139
2140  // If we have T2 ops, we can materialize the address directly via movt/movw
2141  // pair. This is always cheaper.
2142  if (Subtarget->useMovt()) {
2143    ++NumMovwMovt;
2144    // FIXME: Once remat is capable of dealing with instructions with register
2145    // operands, expand this into two nodes.
2146    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2147                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2148  } else {
2149    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2150    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2151    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2152                       MachinePointerInfo::getConstantPool(),
2153                       false, false, false, 0);
2154  }
2155}
2156
2157SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2158                                                    SelectionDAG &DAG) const {
2159  EVT PtrVT = getPointerTy();
2160  DebugLoc dl = Op.getDebugLoc();
2161  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2162  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2163  MachineFunction &MF = DAG.getMachineFunction();
2164  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2165
2166  // FIXME: Enable this for static codegen when tool issues are fixed.
2167  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2168    ++NumMovwMovt;
2169    // FIXME: Once remat is capable of dealing with instructions with register
2170    // operands, expand this into two nodes.
2171    if (RelocM == Reloc::Static)
2172      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2173                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2174
2175    unsigned Wrapper = (RelocM == Reloc::PIC_)
2176      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2177    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2178                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2179    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2180      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2181                           MachinePointerInfo::getGOT(),
2182                           false, false, false, 0);
2183    return Result;
2184  }
2185
2186  unsigned ARMPCLabelIndex = 0;
2187  SDValue CPAddr;
2188  if (RelocM == Reloc::Static) {
2189    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2190  } else {
2191    ARMPCLabelIndex = AFI->createPICLabelUId();
2192    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2193    ARMConstantPoolValue *CPV =
2194      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2195                                      PCAdj);
2196    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2197  }
2198  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2199
2200  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2201                               MachinePointerInfo::getConstantPool(),
2202                               false, false, false, 0);
2203  SDValue Chain = Result.getValue(1);
2204
2205  if (RelocM == Reloc::PIC_) {
2206    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2207    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2208  }
2209
2210  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2211    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2212                         false, false, false, 0);
2213
2214  return Result;
2215}
2216
2217SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2218                                                    SelectionDAG &DAG) const {
2219  assert(Subtarget->isTargetELF() &&
2220         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2221  MachineFunction &MF = DAG.getMachineFunction();
2222  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2223  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2224  EVT PtrVT = getPointerTy();
2225  DebugLoc dl = Op.getDebugLoc();
2226  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2227  ARMConstantPoolValue *CPV =
2228    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2229                                  ARMPCLabelIndex, PCAdj);
2230  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2231  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2232  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2233                               MachinePointerInfo::getConstantPool(),
2234                               false, false, false, 0);
2235  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2236  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2237}
2238
2239SDValue
2240ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2241  DebugLoc dl = Op.getDebugLoc();
2242  SDValue Val = DAG.getConstant(0, MVT::i32);
2243  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2244                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2245                     Op.getOperand(1), Val);
2246}
2247
2248SDValue
2249ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2250  DebugLoc dl = Op.getDebugLoc();
2251  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2252                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2253}
2254
2255SDValue
2256ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2257                                          const ARMSubtarget *Subtarget) const {
2258  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2259  DebugLoc dl = Op.getDebugLoc();
2260  switch (IntNo) {
2261  default: return SDValue();    // Don't custom lower most intrinsics.
2262  case Intrinsic::arm_thread_pointer: {
2263    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2264    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2265  }
2266  case Intrinsic::eh_sjlj_lsda: {
2267    MachineFunction &MF = DAG.getMachineFunction();
2268    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2269    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2270    EVT PtrVT = getPointerTy();
2271    DebugLoc dl = Op.getDebugLoc();
2272    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2273    SDValue CPAddr;
2274    unsigned PCAdj = (RelocM != Reloc::PIC_)
2275      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2276    ARMConstantPoolValue *CPV =
2277      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2278                                      ARMCP::CPLSDA, PCAdj);
2279    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2280    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2281    SDValue Result =
2282      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2283                  MachinePointerInfo::getConstantPool(),
2284                  false, false, false, 0);
2285
2286    if (RelocM == Reloc::PIC_) {
2287      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2288      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2289    }
2290    return Result;
2291  }
2292  case Intrinsic::arm_neon_vmulls:
2293  case Intrinsic::arm_neon_vmullu: {
2294    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2295      ? ARMISD::VMULLs : ARMISD::VMULLu;
2296    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2297                       Op.getOperand(1), Op.getOperand(2));
2298  }
2299  }
2300}
2301
2302static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2303                               const ARMSubtarget *Subtarget) {
2304  DebugLoc dl = Op.getDebugLoc();
2305  if (!Subtarget->hasDataBarrier()) {
2306    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2307    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2308    // here.
2309    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2310           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2311    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2312                       DAG.getConstant(0, MVT::i32));
2313  }
2314
2315  SDValue Op5 = Op.getOperand(5);
2316  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2317  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2318  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2319  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2320
2321  ARM_MB::MemBOpt DMBOpt;
2322  if (isDeviceBarrier)
2323    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2324  else
2325    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2326  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2327                     DAG.getConstant(DMBOpt, MVT::i32));
2328}
2329
2330
2331static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2332                                 const ARMSubtarget *Subtarget) {
2333  // FIXME: handle "fence singlethread" more efficiently.
2334  DebugLoc dl = Op.getDebugLoc();
2335  if (!Subtarget->hasDataBarrier()) {
2336    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2337    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2338    // here.
2339    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2340           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2341    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2342                       DAG.getConstant(0, MVT::i32));
2343  }
2344
2345  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2346                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2347}
2348
2349static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2350                             const ARMSubtarget *Subtarget) {
2351  // ARM pre v5TE and Thumb1 does not have preload instructions.
2352  if (!(Subtarget->isThumb2() ||
2353        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2354    // Just preserve the chain.
2355    return Op.getOperand(0);
2356
2357  DebugLoc dl = Op.getDebugLoc();
2358  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2359  if (!isRead &&
2360      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2361    // ARMv7 with MP extension has PLDW.
2362    return Op.getOperand(0);
2363
2364  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2365  if (Subtarget->isThumb()) {
2366    // Invert the bits.
2367    isRead = ~isRead & 1;
2368    isData = ~isData & 1;
2369  }
2370
2371  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2372                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2373                     DAG.getConstant(isData, MVT::i32));
2374}
2375
2376static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2377  MachineFunction &MF = DAG.getMachineFunction();
2378  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2379
2380  // vastart just stores the address of the VarArgsFrameIndex slot into the
2381  // memory location argument.
2382  DebugLoc dl = Op.getDebugLoc();
2383  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2384  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2385  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2386  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2387                      MachinePointerInfo(SV), false, false, 0);
2388}
2389
2390SDValue
2391ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2392                                        SDValue &Root, SelectionDAG &DAG,
2393                                        DebugLoc dl) const {
2394  MachineFunction &MF = DAG.getMachineFunction();
2395  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2396
2397  TargetRegisterClass *RC;
2398  if (AFI->isThumb1OnlyFunction())
2399    RC = ARM::tGPRRegisterClass;
2400  else
2401    RC = ARM::GPRRegisterClass;
2402
2403  // Transform the arguments stored in physical registers into virtual ones.
2404  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2405  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2406
2407  SDValue ArgValue2;
2408  if (NextVA.isMemLoc()) {
2409    MachineFrameInfo *MFI = MF.getFrameInfo();
2410    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2411
2412    // Create load node to retrieve arguments from the stack.
2413    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2414    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2415                            MachinePointerInfo::getFixedStack(FI),
2416                            false, false, false, 0);
2417  } else {
2418    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2419    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2420  }
2421
2422  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2423}
2424
2425void
2426ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2427                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2428  const {
2429  unsigned NumGPRs;
2430  if (CCInfo.isFirstByValRegValid())
2431    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2432  else {
2433    unsigned int firstUnalloced;
2434    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2435                                                sizeof(GPRArgRegs) /
2436                                                sizeof(GPRArgRegs[0]));
2437    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2438  }
2439
2440  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2441  VARegSize = NumGPRs * 4;
2442  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2443}
2444
2445// The remaining GPRs hold either the beginning of variable-argument
2446// data, or the beginning of an aggregate passed by value (usuall
2447// byval).  Either way, we allocate stack slots adjacent to the data
2448// provided by our caller, and store the unallocated registers there.
2449// If this is a variadic function, the va_list pointer will begin with
2450// these values; otherwise, this reassembles a (byval) structure that
2451// was split between registers and memory.
2452void
2453ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2454                                        DebugLoc dl, SDValue &Chain,
2455                                        unsigned ArgOffset) const {
2456  MachineFunction &MF = DAG.getMachineFunction();
2457  MachineFrameInfo *MFI = MF.getFrameInfo();
2458  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2459  unsigned firstRegToSaveIndex;
2460  if (CCInfo.isFirstByValRegValid())
2461    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2462  else {
2463    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2464      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2465  }
2466
2467  unsigned VARegSize, VARegSaveSize;
2468  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2469  if (VARegSaveSize) {
2470    // If this function is vararg, store any remaining integer argument regs
2471    // to their spots on the stack so that they may be loaded by deferencing
2472    // the result of va_next.
2473    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2474    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2475                                                     ArgOffset + VARegSaveSize
2476                                                     - VARegSize,
2477                                                     false));
2478    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2479                                    getPointerTy());
2480
2481    SmallVector<SDValue, 4> MemOps;
2482    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2483      TargetRegisterClass *RC;
2484      if (AFI->isThumb1OnlyFunction())
2485        RC = ARM::tGPRRegisterClass;
2486      else
2487        RC = ARM::GPRRegisterClass;
2488
2489      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2490      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2491      SDValue Store =
2492        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2493                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2494                     false, false, 0);
2495      MemOps.push_back(Store);
2496      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2497                        DAG.getConstant(4, getPointerTy()));
2498    }
2499    if (!MemOps.empty())
2500      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2501                          &MemOps[0], MemOps.size());
2502  } else
2503    // This will point to the next argument passed via stack.
2504    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2505}
2506
2507SDValue
2508ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2509                                        CallingConv::ID CallConv, bool isVarArg,
2510                                        const SmallVectorImpl<ISD::InputArg>
2511                                          &Ins,
2512                                        DebugLoc dl, SelectionDAG &DAG,
2513                                        SmallVectorImpl<SDValue> &InVals)
2514                                          const {
2515  MachineFunction &MF = DAG.getMachineFunction();
2516  MachineFrameInfo *MFI = MF.getFrameInfo();
2517
2518  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2519
2520  // Assign locations to all of the incoming arguments.
2521  SmallVector<CCValAssign, 16> ArgLocs;
2522  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2523                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2524  CCInfo.AnalyzeFormalArguments(Ins,
2525                                CCAssignFnForNode(CallConv, /* Return*/ false,
2526                                                  isVarArg));
2527
2528  SmallVector<SDValue, 16> ArgValues;
2529  int lastInsIndex = -1;
2530
2531  SDValue ArgValue;
2532  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2533    CCValAssign &VA = ArgLocs[i];
2534
2535    // Arguments stored in registers.
2536    if (VA.isRegLoc()) {
2537      EVT RegVT = VA.getLocVT();
2538
2539      if (VA.needsCustom()) {
2540        // f64 and vector types are split up into multiple registers or
2541        // combinations of registers and stack slots.
2542        if (VA.getLocVT() == MVT::v2f64) {
2543          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2544                                                   Chain, DAG, dl);
2545          VA = ArgLocs[++i]; // skip ahead to next loc
2546          SDValue ArgValue2;
2547          if (VA.isMemLoc()) {
2548            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2549            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2550            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2551                                    MachinePointerInfo::getFixedStack(FI),
2552                                    false, false, false, 0);
2553          } else {
2554            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2555                                             Chain, DAG, dl);
2556          }
2557          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2558          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2559                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2560          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2561                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2562        } else
2563          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2564
2565      } else {
2566        TargetRegisterClass *RC;
2567
2568        if (RegVT == MVT::f32)
2569          RC = ARM::SPRRegisterClass;
2570        else if (RegVT == MVT::f64)
2571          RC = ARM::DPRRegisterClass;
2572        else if (RegVT == MVT::v2f64)
2573          RC = ARM::QPRRegisterClass;
2574        else if (RegVT == MVT::i32)
2575          RC = (AFI->isThumb1OnlyFunction() ?
2576                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2577        else
2578          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2579
2580        // Transform the arguments in physical registers into virtual ones.
2581        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2582        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2583      }
2584
2585      // If this is an 8 or 16-bit value, it is really passed promoted
2586      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2587      // truncate to the right size.
2588      switch (VA.getLocInfo()) {
2589      default: llvm_unreachable("Unknown loc info!");
2590      case CCValAssign::Full: break;
2591      case CCValAssign::BCvt:
2592        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2593        break;
2594      case CCValAssign::SExt:
2595        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2596                               DAG.getValueType(VA.getValVT()));
2597        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2598        break;
2599      case CCValAssign::ZExt:
2600        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2601                               DAG.getValueType(VA.getValVT()));
2602        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2603        break;
2604      }
2605
2606      InVals.push_back(ArgValue);
2607
2608    } else { // VA.isRegLoc()
2609
2610      // sanity check
2611      assert(VA.isMemLoc());
2612      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2613
2614      int index = ArgLocs[i].getValNo();
2615
2616      // Some Ins[] entries become multiple ArgLoc[] entries.
2617      // Process them only once.
2618      if (index != lastInsIndex)
2619        {
2620          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2621          // FIXME: For now, all byval parameter objects are marked mutable.
2622          // This can be changed with more analysis.
2623          // In case of tail call optimization mark all arguments mutable.
2624          // Since they could be overwritten by lowering of arguments in case of
2625          // a tail call.
2626          if (Flags.isByVal()) {
2627            unsigned VARegSize, VARegSaveSize;
2628            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2629            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2630            unsigned Bytes = Flags.getByValSize() - VARegSize;
2631            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2632            int FI = MFI->CreateFixedObject(Bytes,
2633                                            VA.getLocMemOffset(), false);
2634            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2635          } else {
2636            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2637                                            VA.getLocMemOffset(), true);
2638
2639            // Create load nodes to retrieve arguments from the stack.
2640            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2641            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2642                                         MachinePointerInfo::getFixedStack(FI),
2643                                         false, false, false, 0));
2644          }
2645          lastInsIndex = index;
2646        }
2647    }
2648  }
2649
2650  // varargs
2651  if (isVarArg)
2652    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2653
2654  return Chain;
2655}
2656
2657/// isFloatingPointZero - Return true if this is +0.0.
2658static bool isFloatingPointZero(SDValue Op) {
2659  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2660    return CFP->getValueAPF().isPosZero();
2661  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2662    // Maybe this has already been legalized into the constant pool?
2663    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2664      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2665      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2666        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2667          return CFP->getValueAPF().isPosZero();
2668    }
2669  }
2670  return false;
2671}
2672
2673/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2674/// the given operands.
2675SDValue
2676ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2677                             SDValue &ARMcc, SelectionDAG &DAG,
2678                             DebugLoc dl) const {
2679  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2680    unsigned C = RHSC->getZExtValue();
2681    if (!isLegalICmpImmediate(C)) {
2682      // Constant does not fit, try adjusting it by one?
2683      switch (CC) {
2684      default: break;
2685      case ISD::SETLT:
2686      case ISD::SETGE:
2687        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2688          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2689          RHS = DAG.getConstant(C-1, MVT::i32);
2690        }
2691        break;
2692      case ISD::SETULT:
2693      case ISD::SETUGE:
2694        if (C != 0 && isLegalICmpImmediate(C-1)) {
2695          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2696          RHS = DAG.getConstant(C-1, MVT::i32);
2697        }
2698        break;
2699      case ISD::SETLE:
2700      case ISD::SETGT:
2701        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2702          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2703          RHS = DAG.getConstant(C+1, MVT::i32);
2704        }
2705        break;
2706      case ISD::SETULE:
2707      case ISD::SETUGT:
2708        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2709          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2710          RHS = DAG.getConstant(C+1, MVT::i32);
2711        }
2712        break;
2713      }
2714    }
2715  }
2716
2717  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2718  ARMISD::NodeType CompareType;
2719  switch (CondCode) {
2720  default:
2721    CompareType = ARMISD::CMP;
2722    break;
2723  case ARMCC::EQ:
2724  case ARMCC::NE:
2725    // Uses only Z Flag
2726    CompareType = ARMISD::CMPZ;
2727    break;
2728  }
2729  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2730  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2731}
2732
2733/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2734SDValue
2735ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2736                             DebugLoc dl) const {
2737  SDValue Cmp;
2738  if (!isFloatingPointZero(RHS))
2739    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2740  else
2741    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2742  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2743}
2744
2745/// duplicateCmp - Glue values can have only one use, so this function
2746/// duplicates a comparison node.
2747SDValue
2748ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2749  unsigned Opc = Cmp.getOpcode();
2750  DebugLoc DL = Cmp.getDebugLoc();
2751  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2752    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2753
2754  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2755  Cmp = Cmp.getOperand(0);
2756  Opc = Cmp.getOpcode();
2757  if (Opc == ARMISD::CMPFP)
2758    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2759  else {
2760    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2761    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2762  }
2763  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2764}
2765
2766SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2767  SDValue Cond = Op.getOperand(0);
2768  SDValue SelectTrue = Op.getOperand(1);
2769  SDValue SelectFalse = Op.getOperand(2);
2770  DebugLoc dl = Op.getDebugLoc();
2771
2772  // Convert:
2773  //
2774  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2775  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2776  //
2777  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2778    const ConstantSDNode *CMOVTrue =
2779      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2780    const ConstantSDNode *CMOVFalse =
2781      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2782
2783    if (CMOVTrue && CMOVFalse) {
2784      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2785      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2786
2787      SDValue True;
2788      SDValue False;
2789      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2790        True = SelectTrue;
2791        False = SelectFalse;
2792      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2793        True = SelectFalse;
2794        False = SelectTrue;
2795      }
2796
2797      if (True.getNode() && False.getNode()) {
2798        EVT VT = Op.getValueType();
2799        SDValue ARMcc = Cond.getOperand(2);
2800        SDValue CCR = Cond.getOperand(3);
2801        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2802        assert(True.getValueType() == VT);
2803        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2804      }
2805    }
2806  }
2807
2808  return DAG.getSelectCC(dl, Cond,
2809                         DAG.getConstant(0, Cond.getValueType()),
2810                         SelectTrue, SelectFalse, ISD::SETNE);
2811}
2812
2813SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2814  EVT VT = Op.getValueType();
2815  SDValue LHS = Op.getOperand(0);
2816  SDValue RHS = Op.getOperand(1);
2817  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2818  SDValue TrueVal = Op.getOperand(2);
2819  SDValue FalseVal = Op.getOperand(3);
2820  DebugLoc dl = Op.getDebugLoc();
2821
2822  if (LHS.getValueType() == MVT::i32) {
2823    SDValue ARMcc;
2824    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2825    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2826    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2827  }
2828
2829  ARMCC::CondCodes CondCode, CondCode2;
2830  FPCCToARMCC(CC, CondCode, CondCode2);
2831
2832  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2833  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2834  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2835  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2836                               ARMcc, CCR, Cmp);
2837  if (CondCode2 != ARMCC::AL) {
2838    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2839    // FIXME: Needs another CMP because flag can have but one use.
2840    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2841    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2842                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2843  }
2844  return Result;
2845}
2846
2847/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2848/// to morph to an integer compare sequence.
2849static bool canChangeToInt(SDValue Op, bool &SeenZero,
2850                           const ARMSubtarget *Subtarget) {
2851  SDNode *N = Op.getNode();
2852  if (!N->hasOneUse())
2853    // Otherwise it requires moving the value from fp to integer registers.
2854    return false;
2855  if (!N->getNumValues())
2856    return false;
2857  EVT VT = Op.getValueType();
2858  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2859    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2860    // vmrs are very slow, e.g. cortex-a8.
2861    return false;
2862
2863  if (isFloatingPointZero(Op)) {
2864    SeenZero = true;
2865    return true;
2866  }
2867  return ISD::isNormalLoad(N);
2868}
2869
2870static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2871  if (isFloatingPointZero(Op))
2872    return DAG.getConstant(0, MVT::i32);
2873
2874  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2875    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2876                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2877                       Ld->isVolatile(), Ld->isNonTemporal(),
2878                       Ld->isInvariant(), Ld->getAlignment());
2879
2880  llvm_unreachable("Unknown VFP cmp argument!");
2881}
2882
2883static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2884                           SDValue &RetVal1, SDValue &RetVal2) {
2885  if (isFloatingPointZero(Op)) {
2886    RetVal1 = DAG.getConstant(0, MVT::i32);
2887    RetVal2 = DAG.getConstant(0, MVT::i32);
2888    return;
2889  }
2890
2891  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2892    SDValue Ptr = Ld->getBasePtr();
2893    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2894                          Ld->getChain(), Ptr,
2895                          Ld->getPointerInfo(),
2896                          Ld->isVolatile(), Ld->isNonTemporal(),
2897                          Ld->isInvariant(), Ld->getAlignment());
2898
2899    EVT PtrType = Ptr.getValueType();
2900    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2901    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2902                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2903    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2904                          Ld->getChain(), NewPtr,
2905                          Ld->getPointerInfo().getWithOffset(4),
2906                          Ld->isVolatile(), Ld->isNonTemporal(),
2907                          Ld->isInvariant(), NewAlign);
2908    return;
2909  }
2910
2911  llvm_unreachable("Unknown VFP cmp argument!");
2912}
2913
2914/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2915/// f32 and even f64 comparisons to integer ones.
2916SDValue
2917ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2918  SDValue Chain = Op.getOperand(0);
2919  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2920  SDValue LHS = Op.getOperand(2);
2921  SDValue RHS = Op.getOperand(3);
2922  SDValue Dest = Op.getOperand(4);
2923  DebugLoc dl = Op.getDebugLoc();
2924
2925  bool SeenZero = false;
2926  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2927      canChangeToInt(RHS, SeenZero, Subtarget) &&
2928      // If one of the operand is zero, it's safe to ignore the NaN case since
2929      // we only care about equality comparisons.
2930      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2931    // If unsafe fp math optimization is enabled and there are no other uses of
2932    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2933    // to an integer comparison.
2934    if (CC == ISD::SETOEQ)
2935      CC = ISD::SETEQ;
2936    else if (CC == ISD::SETUNE)
2937      CC = ISD::SETNE;
2938
2939    SDValue ARMcc;
2940    if (LHS.getValueType() == MVT::f32) {
2941      LHS = bitcastf32Toi32(LHS, DAG);
2942      RHS = bitcastf32Toi32(RHS, DAG);
2943      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2944      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2945      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2946                         Chain, Dest, ARMcc, CCR, Cmp);
2947    }
2948
2949    SDValue LHS1, LHS2;
2950    SDValue RHS1, RHS2;
2951    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2952    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2953    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2954    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2955    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2956    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2957    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2958  }
2959
2960  return SDValue();
2961}
2962
2963SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2964  SDValue Chain = Op.getOperand(0);
2965  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2966  SDValue LHS = Op.getOperand(2);
2967  SDValue RHS = Op.getOperand(3);
2968  SDValue Dest = Op.getOperand(4);
2969  DebugLoc dl = Op.getDebugLoc();
2970
2971  if (LHS.getValueType() == MVT::i32) {
2972    SDValue ARMcc;
2973    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2974    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2975    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2976                       Chain, Dest, ARMcc, CCR, Cmp);
2977  }
2978
2979  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2980
2981  if (getTargetMachine().Options.UnsafeFPMath &&
2982      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2983       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2984    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2985    if (Result.getNode())
2986      return Result;
2987  }
2988
2989  ARMCC::CondCodes CondCode, CondCode2;
2990  FPCCToARMCC(CC, CondCode, CondCode2);
2991
2992  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2993  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2994  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2995  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2996  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2997  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2998  if (CondCode2 != ARMCC::AL) {
2999    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3000    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3001    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3002  }
3003  return Res;
3004}
3005
3006SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3007  SDValue Chain = Op.getOperand(0);
3008  SDValue Table = Op.getOperand(1);
3009  SDValue Index = Op.getOperand(2);
3010  DebugLoc dl = Op.getDebugLoc();
3011
3012  EVT PTy = getPointerTy();
3013  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3014  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3015  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3016  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3017  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3018  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3019  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3020  if (Subtarget->isThumb2()) {
3021    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3022    // which does another jump to the destination. This also makes it easier
3023    // to translate it to TBB / TBH later.
3024    // FIXME: This might not work if the function is extremely large.
3025    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3026                       Addr, Op.getOperand(2), JTI, UId);
3027  }
3028  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3029    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3030                       MachinePointerInfo::getJumpTable(),
3031                       false, false, false, 0);
3032    Chain = Addr.getValue(1);
3033    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3034    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3035  } else {
3036    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3037                       MachinePointerInfo::getJumpTable(),
3038                       false, false, false, 0);
3039    Chain = Addr.getValue(1);
3040    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3041  }
3042}
3043
3044static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3045  EVT VT = Op.getValueType();
3046  assert(VT.getVectorElementType() == MVT::i32 && "Unexpected custom lowering");
3047
3048  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3049    return Op;
3050  return DAG.UnrollVectorOp(Op.getNode());
3051}
3052
3053static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3054  EVT VT = Op.getValueType();
3055  if (VT.isVector())
3056    return LowerVectorFP_TO_INT(Op, DAG);
3057
3058  DebugLoc dl = Op.getDebugLoc();
3059  unsigned Opc;
3060
3061  switch (Op.getOpcode()) {
3062  default:
3063    assert(0 && "Invalid opcode!");
3064  case ISD::FP_TO_SINT:
3065    Opc = ARMISD::FTOSI;
3066    break;
3067  case ISD::FP_TO_UINT:
3068    Opc = ARMISD::FTOUI;
3069    break;
3070  }
3071  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3072  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3073}
3074
3075static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3076  EVT VT = Op.getValueType();
3077  DebugLoc dl = Op.getDebugLoc();
3078
3079  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3080    if (VT.getVectorElementType() == MVT::f32)
3081      return Op;
3082    return DAG.UnrollVectorOp(Op.getNode());
3083  }
3084
3085  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3086         "Invalid type for custom lowering!");
3087  if (VT != MVT::v4f32)
3088    return DAG.UnrollVectorOp(Op.getNode());
3089
3090  unsigned CastOpc;
3091  unsigned Opc;
3092  switch (Op.getOpcode()) {
3093  default:
3094    assert(0 && "Invalid opcode!");
3095  case ISD::SINT_TO_FP:
3096    CastOpc = ISD::SIGN_EXTEND;
3097    Opc = ISD::SINT_TO_FP;
3098    break;
3099  case ISD::UINT_TO_FP:
3100    CastOpc = ISD::ZERO_EXTEND;
3101    Opc = ISD::UINT_TO_FP;
3102    break;
3103  }
3104
3105  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3106  return DAG.getNode(Opc, dl, VT, Op);
3107}
3108
3109static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3110  EVT VT = Op.getValueType();
3111  if (VT.isVector())
3112    return LowerVectorINT_TO_FP(Op, DAG);
3113
3114  DebugLoc dl = Op.getDebugLoc();
3115  unsigned Opc;
3116
3117  switch (Op.getOpcode()) {
3118  default:
3119    assert(0 && "Invalid opcode!");
3120  case ISD::SINT_TO_FP:
3121    Opc = ARMISD::SITOF;
3122    break;
3123  case ISD::UINT_TO_FP:
3124    Opc = ARMISD::UITOF;
3125    break;
3126  }
3127
3128  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3129  return DAG.getNode(Opc, dl, VT, Op);
3130}
3131
3132SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3133  // Implement fcopysign with a fabs and a conditional fneg.
3134  SDValue Tmp0 = Op.getOperand(0);
3135  SDValue Tmp1 = Op.getOperand(1);
3136  DebugLoc dl = Op.getDebugLoc();
3137  EVT VT = Op.getValueType();
3138  EVT SrcVT = Tmp1.getValueType();
3139  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3140    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3141  bool UseNEON = !InGPR && Subtarget->hasNEON();
3142
3143  if (UseNEON) {
3144    // Use VBSL to copy the sign bit.
3145    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3146    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3147                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3148    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3149    if (VT == MVT::f64)
3150      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3151                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3152                         DAG.getConstant(32, MVT::i32));
3153    else /*if (VT == MVT::f32)*/
3154      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3155    if (SrcVT == MVT::f32) {
3156      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3157      if (VT == MVT::f64)
3158        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3159                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3160                           DAG.getConstant(32, MVT::i32));
3161    } else if (VT == MVT::f32)
3162      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3163                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3164                         DAG.getConstant(32, MVT::i32));
3165    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3166    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3167
3168    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3169                                            MVT::i32);
3170    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3171    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3172                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3173
3174    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3175                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3176                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3177    if (VT == MVT::f32) {
3178      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3179      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3180                        DAG.getConstant(0, MVT::i32));
3181    } else {
3182      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3183    }
3184
3185    return Res;
3186  }
3187
3188  // Bitcast operand 1 to i32.
3189  if (SrcVT == MVT::f64)
3190    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3191                       &Tmp1, 1).getValue(1);
3192  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3193
3194  // Or in the signbit with integer operations.
3195  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3196  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3197  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3198  if (VT == MVT::f32) {
3199    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3200                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3201    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3202                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3203  }
3204
3205  // f64: Or the high part with signbit and then combine two parts.
3206  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3207                     &Tmp0, 1);
3208  SDValue Lo = Tmp0.getValue(0);
3209  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3210  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3211  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3212}
3213
3214SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3215  MachineFunction &MF = DAG.getMachineFunction();
3216  MachineFrameInfo *MFI = MF.getFrameInfo();
3217  MFI->setReturnAddressIsTaken(true);
3218
3219  EVT VT = Op.getValueType();
3220  DebugLoc dl = Op.getDebugLoc();
3221  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3222  if (Depth) {
3223    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3224    SDValue Offset = DAG.getConstant(4, MVT::i32);
3225    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3226                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3227                       MachinePointerInfo(), false, false, false, 0);
3228  }
3229
3230  // Return LR, which contains the return address. Mark it an implicit live-in.
3231  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3232  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3233}
3234
3235SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3236  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3237  MFI->setFrameAddressIsTaken(true);
3238
3239  EVT VT = Op.getValueType();
3240  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3241  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3242  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3243    ? ARM::R7 : ARM::R11;
3244  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3245  while (Depth--)
3246    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3247                            MachinePointerInfo(),
3248                            false, false, false, 0);
3249  return FrameAddr;
3250}
3251
3252/// ExpandBITCAST - If the target supports VFP, this function is called to
3253/// expand a bit convert where either the source or destination type is i64 to
3254/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3255/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3256/// vectors), since the legalizer won't know what to do with that.
3257static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3258  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3259  DebugLoc dl = N->getDebugLoc();
3260  SDValue Op = N->getOperand(0);
3261
3262  // This function is only supposed to be called for i64 types, either as the
3263  // source or destination of the bit convert.
3264  EVT SrcVT = Op.getValueType();
3265  EVT DstVT = N->getValueType(0);
3266  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3267         "ExpandBITCAST called for non-i64 type");
3268
3269  // Turn i64->f64 into VMOVDRR.
3270  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3271    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3272                             DAG.getConstant(0, MVT::i32));
3273    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3274                             DAG.getConstant(1, MVT::i32));
3275    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3276                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3277  }
3278
3279  // Turn f64->i64 into VMOVRRD.
3280  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3281    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3282                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3283    // Merge the pieces into a single i64 value.
3284    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3285  }
3286
3287  return SDValue();
3288}
3289
3290/// getZeroVector - Returns a vector of specified type with all zero elements.
3291/// Zero vectors are used to represent vector negation and in those cases
3292/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3293/// not support i64 elements, so sometimes the zero vectors will need to be
3294/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3295/// zero vector.
3296static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3297  assert(VT.isVector() && "Expected a vector type");
3298  // The canonical modified immediate encoding of a zero vector is....0!
3299  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3300  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3301  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3302  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3303}
3304
3305/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3306/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3307SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3308                                                SelectionDAG &DAG) const {
3309  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3310  EVT VT = Op.getValueType();
3311  unsigned VTBits = VT.getSizeInBits();
3312  DebugLoc dl = Op.getDebugLoc();
3313  SDValue ShOpLo = Op.getOperand(0);
3314  SDValue ShOpHi = Op.getOperand(1);
3315  SDValue ShAmt  = Op.getOperand(2);
3316  SDValue ARMcc;
3317  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3318
3319  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3320
3321  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3322                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3323  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3324  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3325                                   DAG.getConstant(VTBits, MVT::i32));
3326  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3327  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3328  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3329
3330  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3331  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3332                          ARMcc, DAG, dl);
3333  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3334  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3335                           CCR, Cmp);
3336
3337  SDValue Ops[2] = { Lo, Hi };
3338  return DAG.getMergeValues(Ops, 2, dl);
3339}
3340
3341/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3342/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3343SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3344                                               SelectionDAG &DAG) const {
3345  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3346  EVT VT = Op.getValueType();
3347  unsigned VTBits = VT.getSizeInBits();
3348  DebugLoc dl = Op.getDebugLoc();
3349  SDValue ShOpLo = Op.getOperand(0);
3350  SDValue ShOpHi = Op.getOperand(1);
3351  SDValue ShAmt  = Op.getOperand(2);
3352  SDValue ARMcc;
3353
3354  assert(Op.getOpcode() == ISD::SHL_PARTS);
3355  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3356                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3357  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3358  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3359                                   DAG.getConstant(VTBits, MVT::i32));
3360  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3361  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3362
3363  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3364  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3365  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3366                          ARMcc, DAG, dl);
3367  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3368  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3369                           CCR, Cmp);
3370
3371  SDValue Ops[2] = { Lo, Hi };
3372  return DAG.getMergeValues(Ops, 2, dl);
3373}
3374
3375SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3376                                            SelectionDAG &DAG) const {
3377  // The rounding mode is in bits 23:22 of the FPSCR.
3378  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3379  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3380  // so that the shift + and get folded into a bitfield extract.
3381  DebugLoc dl = Op.getDebugLoc();
3382  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3383                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3384                                              MVT::i32));
3385  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3386                                  DAG.getConstant(1U << 22, MVT::i32));
3387  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3388                              DAG.getConstant(22, MVT::i32));
3389  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3390                     DAG.getConstant(3, MVT::i32));
3391}
3392
3393static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3394                         const ARMSubtarget *ST) {
3395  EVT VT = N->getValueType(0);
3396  DebugLoc dl = N->getDebugLoc();
3397
3398  if (!ST->hasV6T2Ops())
3399    return SDValue();
3400
3401  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3402  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3403}
3404
3405static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3406                          const ARMSubtarget *ST) {
3407  EVT VT = N->getValueType(0);
3408  DebugLoc dl = N->getDebugLoc();
3409
3410  if (!VT.isVector())
3411    return SDValue();
3412
3413  // Lower vector shifts on NEON to use VSHL.
3414  assert(ST->hasNEON() && "unexpected vector shift");
3415
3416  // Left shifts translate directly to the vshiftu intrinsic.
3417  if (N->getOpcode() == ISD::SHL)
3418    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3419                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3420                       N->getOperand(0), N->getOperand(1));
3421
3422  assert((N->getOpcode() == ISD::SRA ||
3423          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3424
3425  // NEON uses the same intrinsics for both left and right shifts.  For
3426  // right shifts, the shift amounts are negative, so negate the vector of
3427  // shift amounts.
3428  EVT ShiftVT = N->getOperand(1).getValueType();
3429  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3430                                     getZeroVector(ShiftVT, DAG, dl),
3431                                     N->getOperand(1));
3432  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3433                             Intrinsic::arm_neon_vshifts :
3434                             Intrinsic::arm_neon_vshiftu);
3435  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3436                     DAG.getConstant(vshiftInt, MVT::i32),
3437                     N->getOperand(0), NegatedCount);
3438}
3439
3440static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3441                                const ARMSubtarget *ST) {
3442  EVT VT = N->getValueType(0);
3443  DebugLoc dl = N->getDebugLoc();
3444
3445  // We can get here for a node like i32 = ISD::SHL i32, i64
3446  if (VT != MVT::i64)
3447    return SDValue();
3448
3449  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3450         "Unknown shift to lower!");
3451
3452  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3453  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3454      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3455    return SDValue();
3456
3457  // If we are in thumb mode, we don't have RRX.
3458  if (ST->isThumb1Only()) return SDValue();
3459
3460  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3461  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3462                           DAG.getConstant(0, MVT::i32));
3463  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3464                           DAG.getConstant(1, MVT::i32));
3465
3466  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3467  // captures the result into a carry flag.
3468  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3469  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3470
3471  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3472  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3473
3474  // Merge the pieces into a single i64 value.
3475 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3476}
3477
3478static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3479  SDValue TmpOp0, TmpOp1;
3480  bool Invert = false;
3481  bool Swap = false;
3482  unsigned Opc = 0;
3483
3484  SDValue Op0 = Op.getOperand(0);
3485  SDValue Op1 = Op.getOperand(1);
3486  SDValue CC = Op.getOperand(2);
3487  EVT VT = Op.getValueType();
3488  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3489  DebugLoc dl = Op.getDebugLoc();
3490
3491  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3492    switch (SetCCOpcode) {
3493    default: llvm_unreachable("Illegal FP comparison"); break;
3494    case ISD::SETUNE:
3495    case ISD::SETNE:  Invert = true; // Fallthrough
3496    case ISD::SETOEQ:
3497    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3498    case ISD::SETOLT:
3499    case ISD::SETLT: Swap = true; // Fallthrough
3500    case ISD::SETOGT:
3501    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3502    case ISD::SETOLE:
3503    case ISD::SETLE:  Swap = true; // Fallthrough
3504    case ISD::SETOGE:
3505    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3506    case ISD::SETUGE: Swap = true; // Fallthrough
3507    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3508    case ISD::SETUGT: Swap = true; // Fallthrough
3509    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3510    case ISD::SETUEQ: Invert = true; // Fallthrough
3511    case ISD::SETONE:
3512      // Expand this to (OLT | OGT).
3513      TmpOp0 = Op0;
3514      TmpOp1 = Op1;
3515      Opc = ISD::OR;
3516      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3517      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3518      break;
3519    case ISD::SETUO: Invert = true; // Fallthrough
3520    case ISD::SETO:
3521      // Expand this to (OLT | OGE).
3522      TmpOp0 = Op0;
3523      TmpOp1 = Op1;
3524      Opc = ISD::OR;
3525      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3526      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3527      break;
3528    }
3529  } else {
3530    // Integer comparisons.
3531    switch (SetCCOpcode) {
3532    default: llvm_unreachable("Illegal integer comparison"); break;
3533    case ISD::SETNE:  Invert = true;
3534    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3535    case ISD::SETLT:  Swap = true;
3536    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3537    case ISD::SETLE:  Swap = true;
3538    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3539    case ISD::SETULT: Swap = true;
3540    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3541    case ISD::SETULE: Swap = true;
3542    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3543    }
3544
3545    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3546    if (Opc == ARMISD::VCEQ) {
3547
3548      SDValue AndOp;
3549      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3550        AndOp = Op0;
3551      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3552        AndOp = Op1;
3553
3554      // Ignore bitconvert.
3555      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3556        AndOp = AndOp.getOperand(0);
3557
3558      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3559        Opc = ARMISD::VTST;
3560        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3561        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3562        Invert = !Invert;
3563      }
3564    }
3565  }
3566
3567  if (Swap)
3568    std::swap(Op0, Op1);
3569
3570  // If one of the operands is a constant vector zero, attempt to fold the
3571  // comparison to a specialized compare-against-zero form.
3572  SDValue SingleOp;
3573  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3574    SingleOp = Op0;
3575  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3576    if (Opc == ARMISD::VCGE)
3577      Opc = ARMISD::VCLEZ;
3578    else if (Opc == ARMISD::VCGT)
3579      Opc = ARMISD::VCLTZ;
3580    SingleOp = Op1;
3581  }
3582
3583  SDValue Result;
3584  if (SingleOp.getNode()) {
3585    switch (Opc) {
3586    case ARMISD::VCEQ:
3587      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3588    case ARMISD::VCGE:
3589      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3590    case ARMISD::VCLEZ:
3591      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3592    case ARMISD::VCGT:
3593      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3594    case ARMISD::VCLTZ:
3595      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3596    default:
3597      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3598    }
3599  } else {
3600     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3601  }
3602
3603  if (Invert)
3604    Result = DAG.getNOT(dl, Result, VT);
3605
3606  return Result;
3607}
3608
3609/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3610/// valid vector constant for a NEON instruction with a "modified immediate"
3611/// operand (e.g., VMOV).  If so, return the encoded value.
3612static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3613                                 unsigned SplatBitSize, SelectionDAG &DAG,
3614                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3615  unsigned OpCmode, Imm;
3616
3617  // SplatBitSize is set to the smallest size that splats the vector, so a
3618  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3619  // immediate instructions others than VMOV do not support the 8-bit encoding
3620  // of a zero vector, and the default encoding of zero is supposed to be the
3621  // 32-bit version.
3622  if (SplatBits == 0)
3623    SplatBitSize = 32;
3624
3625  switch (SplatBitSize) {
3626  case 8:
3627    if (type != VMOVModImm)
3628      return SDValue();
3629    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3630    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3631    OpCmode = 0xe;
3632    Imm = SplatBits;
3633    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3634    break;
3635
3636  case 16:
3637    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3638    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3639    if ((SplatBits & ~0xff) == 0) {
3640      // Value = 0x00nn: Op=x, Cmode=100x.
3641      OpCmode = 0x8;
3642      Imm = SplatBits;
3643      break;
3644    }
3645    if ((SplatBits & ~0xff00) == 0) {
3646      // Value = 0xnn00: Op=x, Cmode=101x.
3647      OpCmode = 0xa;
3648      Imm = SplatBits >> 8;
3649      break;
3650    }
3651    return SDValue();
3652
3653  case 32:
3654    // NEON's 32-bit VMOV supports splat values where:
3655    // * only one byte is nonzero, or
3656    // * the least significant byte is 0xff and the second byte is nonzero, or
3657    // * the least significant 2 bytes are 0xff and the third is nonzero.
3658    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3659    if ((SplatBits & ~0xff) == 0) {
3660      // Value = 0x000000nn: Op=x, Cmode=000x.
3661      OpCmode = 0;
3662      Imm = SplatBits;
3663      break;
3664    }
3665    if ((SplatBits & ~0xff00) == 0) {
3666      // Value = 0x0000nn00: Op=x, Cmode=001x.
3667      OpCmode = 0x2;
3668      Imm = SplatBits >> 8;
3669      break;
3670    }
3671    if ((SplatBits & ~0xff0000) == 0) {
3672      // Value = 0x00nn0000: Op=x, Cmode=010x.
3673      OpCmode = 0x4;
3674      Imm = SplatBits >> 16;
3675      break;
3676    }
3677    if ((SplatBits & ~0xff000000) == 0) {
3678      // Value = 0xnn000000: Op=x, Cmode=011x.
3679      OpCmode = 0x6;
3680      Imm = SplatBits >> 24;
3681      break;
3682    }
3683
3684    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3685    if (type == OtherModImm) return SDValue();
3686
3687    if ((SplatBits & ~0xffff) == 0 &&
3688        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3689      // Value = 0x0000nnff: Op=x, Cmode=1100.
3690      OpCmode = 0xc;
3691      Imm = SplatBits >> 8;
3692      SplatBits |= 0xff;
3693      break;
3694    }
3695
3696    if ((SplatBits & ~0xffffff) == 0 &&
3697        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3698      // Value = 0x00nnffff: Op=x, Cmode=1101.
3699      OpCmode = 0xd;
3700      Imm = SplatBits >> 16;
3701      SplatBits |= 0xffff;
3702      break;
3703    }
3704
3705    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3706    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3707    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3708    // and fall through here to test for a valid 64-bit splat.  But, then the
3709    // caller would also need to check and handle the change in size.
3710    return SDValue();
3711
3712  case 64: {
3713    if (type != VMOVModImm)
3714      return SDValue();
3715    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3716    uint64_t BitMask = 0xff;
3717    uint64_t Val = 0;
3718    unsigned ImmMask = 1;
3719    Imm = 0;
3720    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3721      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3722        Val |= BitMask;
3723        Imm |= ImmMask;
3724      } else if ((SplatBits & BitMask) != 0) {
3725        return SDValue();
3726      }
3727      BitMask <<= 8;
3728      ImmMask <<= 1;
3729    }
3730    // Op=1, Cmode=1110.
3731    OpCmode = 0x1e;
3732    SplatBits = Val;
3733    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3734    break;
3735  }
3736
3737  default:
3738    llvm_unreachable("unexpected size for isNEONModifiedImm");
3739    return SDValue();
3740  }
3741
3742  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3743  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3744}
3745
3746static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3747                       bool &ReverseVEXT, unsigned &Imm) {
3748  unsigned NumElts = VT.getVectorNumElements();
3749  ReverseVEXT = false;
3750
3751  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3752  if (M[0] < 0)
3753    return false;
3754
3755  Imm = M[0];
3756
3757  // If this is a VEXT shuffle, the immediate value is the index of the first
3758  // element.  The other shuffle indices must be the successive elements after
3759  // the first one.
3760  unsigned ExpectedElt = Imm;
3761  for (unsigned i = 1; i < NumElts; ++i) {
3762    // Increment the expected index.  If it wraps around, it may still be
3763    // a VEXT but the source vectors must be swapped.
3764    ExpectedElt += 1;
3765    if (ExpectedElt == NumElts * 2) {
3766      ExpectedElt = 0;
3767      ReverseVEXT = true;
3768    }
3769
3770    if (M[i] < 0) continue; // ignore UNDEF indices
3771    if (ExpectedElt != static_cast<unsigned>(M[i]))
3772      return false;
3773  }
3774
3775  // Adjust the index value if the source operands will be swapped.
3776  if (ReverseVEXT)
3777    Imm -= NumElts;
3778
3779  return true;
3780}
3781
3782/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3783/// instruction with the specified blocksize.  (The order of the elements
3784/// within each block of the vector is reversed.)
3785static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3786                       unsigned BlockSize) {
3787  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3788         "Only possible block sizes for VREV are: 16, 32, 64");
3789
3790  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3791  if (EltSz == 64)
3792    return false;
3793
3794  unsigned NumElts = VT.getVectorNumElements();
3795  unsigned BlockElts = M[0] + 1;
3796  // If the first shuffle index is UNDEF, be optimistic.
3797  if (M[0] < 0)
3798    BlockElts = BlockSize / EltSz;
3799
3800  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3801    return false;
3802
3803  for (unsigned i = 0; i < NumElts; ++i) {
3804    if (M[i] < 0) continue; // ignore UNDEF indices
3805    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3806      return false;
3807  }
3808
3809  return true;
3810}
3811
3812static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3813  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3814  // range, then 0 is placed into the resulting vector. So pretty much any mask
3815  // of 8 elements can work here.
3816  return VT == MVT::v8i8 && M.size() == 8;
3817}
3818
3819static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3820                       unsigned &WhichResult) {
3821  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3822  if (EltSz == 64)
3823    return false;
3824
3825  unsigned NumElts = VT.getVectorNumElements();
3826  WhichResult = (M[0] == 0 ? 0 : 1);
3827  for (unsigned i = 0; i < NumElts; i += 2) {
3828    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3829        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3830      return false;
3831  }
3832  return true;
3833}
3834
3835/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3836/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3837/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3838static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3839                                unsigned &WhichResult) {
3840  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3841  if (EltSz == 64)
3842    return false;
3843
3844  unsigned NumElts = VT.getVectorNumElements();
3845  WhichResult = (M[0] == 0 ? 0 : 1);
3846  for (unsigned i = 0; i < NumElts; i += 2) {
3847    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3848        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3849      return false;
3850  }
3851  return true;
3852}
3853
3854static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3855                       unsigned &WhichResult) {
3856  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3857  if (EltSz == 64)
3858    return false;
3859
3860  unsigned NumElts = VT.getVectorNumElements();
3861  WhichResult = (M[0] == 0 ? 0 : 1);
3862  for (unsigned i = 0; i != NumElts; ++i) {
3863    if (M[i] < 0) continue; // ignore UNDEF indices
3864    if ((unsigned) M[i] != 2 * i + WhichResult)
3865      return false;
3866  }
3867
3868  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3869  if (VT.is64BitVector() && EltSz == 32)
3870    return false;
3871
3872  return true;
3873}
3874
3875/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3876/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3877/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3878static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3879                                unsigned &WhichResult) {
3880  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3881  if (EltSz == 64)
3882    return false;
3883
3884  unsigned Half = VT.getVectorNumElements() / 2;
3885  WhichResult = (M[0] == 0 ? 0 : 1);
3886  for (unsigned j = 0; j != 2; ++j) {
3887    unsigned Idx = WhichResult;
3888    for (unsigned i = 0; i != Half; ++i) {
3889      int MIdx = M[i + j * Half];
3890      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3891        return false;
3892      Idx += 2;
3893    }
3894  }
3895
3896  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3897  if (VT.is64BitVector() && EltSz == 32)
3898    return false;
3899
3900  return true;
3901}
3902
3903static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3904                       unsigned &WhichResult) {
3905  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3906  if (EltSz == 64)
3907    return false;
3908
3909  unsigned NumElts = VT.getVectorNumElements();
3910  WhichResult = (M[0] == 0 ? 0 : 1);
3911  unsigned Idx = WhichResult * NumElts / 2;
3912  for (unsigned i = 0; i != NumElts; i += 2) {
3913    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3914        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3915      return false;
3916    Idx += 1;
3917  }
3918
3919  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3920  if (VT.is64BitVector() && EltSz == 32)
3921    return false;
3922
3923  return true;
3924}
3925
3926/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3927/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3928/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3929static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3930                                unsigned &WhichResult) {
3931  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3932  if (EltSz == 64)
3933    return false;
3934
3935  unsigned NumElts = VT.getVectorNumElements();
3936  WhichResult = (M[0] == 0 ? 0 : 1);
3937  unsigned Idx = WhichResult * NumElts / 2;
3938  for (unsigned i = 0; i != NumElts; i += 2) {
3939    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3940        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3941      return false;
3942    Idx += 1;
3943  }
3944
3945  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3946  if (VT.is64BitVector() && EltSz == 32)
3947    return false;
3948
3949  return true;
3950}
3951
3952// If N is an integer constant that can be moved into a register in one
3953// instruction, return an SDValue of such a constant (will become a MOV
3954// instruction).  Otherwise return null.
3955static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3956                                     const ARMSubtarget *ST, DebugLoc dl) {
3957  uint64_t Val;
3958  if (!isa<ConstantSDNode>(N))
3959    return SDValue();
3960  Val = cast<ConstantSDNode>(N)->getZExtValue();
3961
3962  if (ST->isThumb1Only()) {
3963    if (Val <= 255 || ~Val <= 255)
3964      return DAG.getConstant(Val, MVT::i32);
3965  } else {
3966    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3967      return DAG.getConstant(Val, MVT::i32);
3968  }
3969  return SDValue();
3970}
3971
3972// If this is a case we can't handle, return null and let the default
3973// expansion code take care of it.
3974SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3975                                             const ARMSubtarget *ST) const {
3976  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3977  DebugLoc dl = Op.getDebugLoc();
3978  EVT VT = Op.getValueType();
3979
3980  APInt SplatBits, SplatUndef;
3981  unsigned SplatBitSize;
3982  bool HasAnyUndefs;
3983  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3984    if (SplatBitSize <= 64) {
3985      // Check if an immediate VMOV works.
3986      EVT VmovVT;
3987      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3988                                      SplatUndef.getZExtValue(), SplatBitSize,
3989                                      DAG, VmovVT, VT.is128BitVector(),
3990                                      VMOVModImm);
3991      if (Val.getNode()) {
3992        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3993        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3994      }
3995
3996      // Try an immediate VMVN.
3997      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3998      Val = isNEONModifiedImm(NegatedImm,
3999                                      SplatUndef.getZExtValue(), SplatBitSize,
4000                                      DAG, VmovVT, VT.is128BitVector(),
4001                                      VMVNModImm);
4002      if (Val.getNode()) {
4003        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4004        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4005      }
4006
4007      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4008      if (VT == MVT::v2f32 || VT == MVT::v4f32) {
4009        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4010        if (ImmVal != -1) {
4011          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4012          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4013        }
4014      }
4015    }
4016  }
4017
4018  // Scan through the operands to see if only one value is used.
4019  unsigned NumElts = VT.getVectorNumElements();
4020  bool isOnlyLowElement = true;
4021  bool usesOnlyOneValue = true;
4022  bool isConstant = true;
4023  SDValue Value;
4024  for (unsigned i = 0; i < NumElts; ++i) {
4025    SDValue V = Op.getOperand(i);
4026    if (V.getOpcode() == ISD::UNDEF)
4027      continue;
4028    if (i > 0)
4029      isOnlyLowElement = false;
4030    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4031      isConstant = false;
4032
4033    if (!Value.getNode())
4034      Value = V;
4035    else if (V != Value)
4036      usesOnlyOneValue = false;
4037  }
4038
4039  if (!Value.getNode())
4040    return DAG.getUNDEF(VT);
4041
4042  if (isOnlyLowElement)
4043    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4044
4045  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4046
4047  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4048  // i32 and try again.
4049  if (usesOnlyOneValue && EltSize <= 32) {
4050    if (!isConstant)
4051      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4052    if (VT.getVectorElementType().isFloatingPoint()) {
4053      SmallVector<SDValue, 8> Ops;
4054      for (unsigned i = 0; i < NumElts; ++i)
4055        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4056                                  Op.getOperand(i)));
4057      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4058      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4059      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4060      if (Val.getNode())
4061        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4062    }
4063    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4064    if (Val.getNode())
4065      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4066  }
4067
4068  // If all elements are constants and the case above didn't get hit, fall back
4069  // to the default expansion, which will generate a load from the constant
4070  // pool.
4071  if (isConstant)
4072    return SDValue();
4073
4074  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4075  if (NumElts >= 4) {
4076    SDValue shuffle = ReconstructShuffle(Op, DAG);
4077    if (shuffle != SDValue())
4078      return shuffle;
4079  }
4080
4081  // Vectors with 32- or 64-bit elements can be built by directly assigning
4082  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4083  // will be legalized.
4084  if (EltSize >= 32) {
4085    // Do the expansion with floating-point types, since that is what the VFP
4086    // registers are defined to use, and since i64 is not legal.
4087    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4088    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4089    SmallVector<SDValue, 8> Ops;
4090    for (unsigned i = 0; i < NumElts; ++i)
4091      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4092    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4093    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4094  }
4095
4096  return SDValue();
4097}
4098
4099// Gather data to see if the operation can be modelled as a
4100// shuffle in combination with VEXTs.
4101SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4102                                              SelectionDAG &DAG) const {
4103  DebugLoc dl = Op.getDebugLoc();
4104  EVT VT = Op.getValueType();
4105  unsigned NumElts = VT.getVectorNumElements();
4106
4107  SmallVector<SDValue, 2> SourceVecs;
4108  SmallVector<unsigned, 2> MinElts;
4109  SmallVector<unsigned, 2> MaxElts;
4110
4111  for (unsigned i = 0; i < NumElts; ++i) {
4112    SDValue V = Op.getOperand(i);
4113    if (V.getOpcode() == ISD::UNDEF)
4114      continue;
4115    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4116      // A shuffle can only come from building a vector from various
4117      // elements of other vectors.
4118      return SDValue();
4119    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4120               VT.getVectorElementType()) {
4121      // This code doesn't know how to handle shuffles where the vector
4122      // element types do not match (this happens because type legalization
4123      // promotes the return type of EXTRACT_VECTOR_ELT).
4124      // FIXME: It might be appropriate to extend this code to handle
4125      // mismatched types.
4126      return SDValue();
4127    }
4128
4129    // Record this extraction against the appropriate vector if possible...
4130    SDValue SourceVec = V.getOperand(0);
4131    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4132    bool FoundSource = false;
4133    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4134      if (SourceVecs[j] == SourceVec) {
4135        if (MinElts[j] > EltNo)
4136          MinElts[j] = EltNo;
4137        if (MaxElts[j] < EltNo)
4138          MaxElts[j] = EltNo;
4139        FoundSource = true;
4140        break;
4141      }
4142    }
4143
4144    // Or record a new source if not...
4145    if (!FoundSource) {
4146      SourceVecs.push_back(SourceVec);
4147      MinElts.push_back(EltNo);
4148      MaxElts.push_back(EltNo);
4149    }
4150  }
4151
4152  // Currently only do something sane when at most two source vectors
4153  // involved.
4154  if (SourceVecs.size() > 2)
4155    return SDValue();
4156
4157  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4158  int VEXTOffsets[2] = {0, 0};
4159
4160  // This loop extracts the usage patterns of the source vectors
4161  // and prepares appropriate SDValues for a shuffle if possible.
4162  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4163    if (SourceVecs[i].getValueType() == VT) {
4164      // No VEXT necessary
4165      ShuffleSrcs[i] = SourceVecs[i];
4166      VEXTOffsets[i] = 0;
4167      continue;
4168    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4169      // It probably isn't worth padding out a smaller vector just to
4170      // break it down again in a shuffle.
4171      return SDValue();
4172    }
4173
4174    // Since only 64-bit and 128-bit vectors are legal on ARM and
4175    // we've eliminated the other cases...
4176    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4177           "unexpected vector sizes in ReconstructShuffle");
4178
4179    if (MaxElts[i] - MinElts[i] >= NumElts) {
4180      // Span too large for a VEXT to cope
4181      return SDValue();
4182    }
4183
4184    if (MinElts[i] >= NumElts) {
4185      // The extraction can just take the second half
4186      VEXTOffsets[i] = NumElts;
4187      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4188                                   SourceVecs[i],
4189                                   DAG.getIntPtrConstant(NumElts));
4190    } else if (MaxElts[i] < NumElts) {
4191      // The extraction can just take the first half
4192      VEXTOffsets[i] = 0;
4193      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4194                                   SourceVecs[i],
4195                                   DAG.getIntPtrConstant(0));
4196    } else {
4197      // An actual VEXT is needed
4198      VEXTOffsets[i] = MinElts[i];
4199      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4200                                     SourceVecs[i],
4201                                     DAG.getIntPtrConstant(0));
4202      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4203                                     SourceVecs[i],
4204                                     DAG.getIntPtrConstant(NumElts));
4205      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4206                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4207    }
4208  }
4209
4210  SmallVector<int, 8> Mask;
4211
4212  for (unsigned i = 0; i < NumElts; ++i) {
4213    SDValue Entry = Op.getOperand(i);
4214    if (Entry.getOpcode() == ISD::UNDEF) {
4215      Mask.push_back(-1);
4216      continue;
4217    }
4218
4219    SDValue ExtractVec = Entry.getOperand(0);
4220    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4221                                          .getOperand(1))->getSExtValue();
4222    if (ExtractVec == SourceVecs[0]) {
4223      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4224    } else {
4225      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4226    }
4227  }
4228
4229  // Final check before we try to produce nonsense...
4230  if (isShuffleMaskLegal(Mask, VT))
4231    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4232                                &Mask[0]);
4233
4234  return SDValue();
4235}
4236
4237/// isShuffleMaskLegal - Targets can use this to indicate that they only
4238/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4239/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4240/// are assumed to be legal.
4241bool
4242ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4243                                      EVT VT) const {
4244  if (VT.getVectorNumElements() == 4 &&
4245      (VT.is128BitVector() || VT.is64BitVector())) {
4246    unsigned PFIndexes[4];
4247    for (unsigned i = 0; i != 4; ++i) {
4248      if (M[i] < 0)
4249        PFIndexes[i] = 8;
4250      else
4251        PFIndexes[i] = M[i];
4252    }
4253
4254    // Compute the index in the perfect shuffle table.
4255    unsigned PFTableIndex =
4256      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4257    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4258    unsigned Cost = (PFEntry >> 30);
4259
4260    if (Cost <= 4)
4261      return true;
4262  }
4263
4264  bool ReverseVEXT;
4265  unsigned Imm, WhichResult;
4266
4267  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4268  return (EltSize >= 32 ||
4269          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4270          isVREVMask(M, VT, 64) ||
4271          isVREVMask(M, VT, 32) ||
4272          isVREVMask(M, VT, 16) ||
4273          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4274          isVTBLMask(M, VT) ||
4275          isVTRNMask(M, VT, WhichResult) ||
4276          isVUZPMask(M, VT, WhichResult) ||
4277          isVZIPMask(M, VT, WhichResult) ||
4278          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4279          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4280          isVZIP_v_undef_Mask(M, VT, WhichResult));
4281}
4282
4283/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4284/// the specified operations to build the shuffle.
4285static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4286                                      SDValue RHS, SelectionDAG &DAG,
4287                                      DebugLoc dl) {
4288  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4289  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4290  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4291
4292  enum {
4293    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4294    OP_VREV,
4295    OP_VDUP0,
4296    OP_VDUP1,
4297    OP_VDUP2,
4298    OP_VDUP3,
4299    OP_VEXT1,
4300    OP_VEXT2,
4301    OP_VEXT3,
4302    OP_VUZPL, // VUZP, left result
4303    OP_VUZPR, // VUZP, right result
4304    OP_VZIPL, // VZIP, left result
4305    OP_VZIPR, // VZIP, right result
4306    OP_VTRNL, // VTRN, left result
4307    OP_VTRNR  // VTRN, right result
4308  };
4309
4310  if (OpNum == OP_COPY) {
4311    if (LHSID == (1*9+2)*9+3) return LHS;
4312    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4313    return RHS;
4314  }
4315
4316  SDValue OpLHS, OpRHS;
4317  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4318  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4319  EVT VT = OpLHS.getValueType();
4320
4321  switch (OpNum) {
4322  default: llvm_unreachable("Unknown shuffle opcode!");
4323  case OP_VREV:
4324    // VREV divides the vector in half and swaps within the half.
4325    if (VT.getVectorElementType() == MVT::i32 ||
4326        VT.getVectorElementType() == MVT::f32)
4327      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4328    // vrev <4 x i16> -> VREV32
4329    if (VT.getVectorElementType() == MVT::i16)
4330      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4331    // vrev <4 x i8> -> VREV16
4332    assert(VT.getVectorElementType() == MVT::i8);
4333    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4334  case OP_VDUP0:
4335  case OP_VDUP1:
4336  case OP_VDUP2:
4337  case OP_VDUP3:
4338    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4339                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4340  case OP_VEXT1:
4341  case OP_VEXT2:
4342  case OP_VEXT3:
4343    return DAG.getNode(ARMISD::VEXT, dl, VT,
4344                       OpLHS, OpRHS,
4345                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4346  case OP_VUZPL:
4347  case OP_VUZPR:
4348    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4349                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4350  case OP_VZIPL:
4351  case OP_VZIPR:
4352    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4353                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4354  case OP_VTRNL:
4355  case OP_VTRNR:
4356    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4357                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4358  }
4359}
4360
4361static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4362                                       SmallVectorImpl<int> &ShuffleMask,
4363                                       SelectionDAG &DAG) {
4364  // Check to see if we can use the VTBL instruction.
4365  SDValue V1 = Op.getOperand(0);
4366  SDValue V2 = Op.getOperand(1);
4367  DebugLoc DL = Op.getDebugLoc();
4368
4369  SmallVector<SDValue, 8> VTBLMask;
4370  for (SmallVectorImpl<int>::iterator
4371         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4372    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4373
4374  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4375    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4376                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4377                                   &VTBLMask[0], 8));
4378
4379  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4380                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4381                                 &VTBLMask[0], 8));
4382}
4383
4384static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4385  SDValue V1 = Op.getOperand(0);
4386  SDValue V2 = Op.getOperand(1);
4387  DebugLoc dl = Op.getDebugLoc();
4388  EVT VT = Op.getValueType();
4389  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4390  SmallVector<int, 8> ShuffleMask;
4391
4392  // Convert shuffles that are directly supported on NEON to target-specific
4393  // DAG nodes, instead of keeping them as shuffles and matching them again
4394  // during code selection.  This is more efficient and avoids the possibility
4395  // of inconsistencies between legalization and selection.
4396  // FIXME: floating-point vectors should be canonicalized to integer vectors
4397  // of the same time so that they get CSEd properly.
4398  SVN->getMask(ShuffleMask);
4399
4400  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4401  if (EltSize <= 32) {
4402    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4403      int Lane = SVN->getSplatIndex();
4404      // If this is undef splat, generate it via "just" vdup, if possible.
4405      if (Lane == -1) Lane = 0;
4406
4407      // Test if V1 is a SCALAR_TO_VECTOR.
4408      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4409        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4410      }
4411      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4412      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4413      // reaches it).
4414      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4415          !isa<ConstantSDNode>(V1.getOperand(0))) {
4416        bool IsScalarToVector = true;
4417        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4418          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4419            IsScalarToVector = false;
4420            break;
4421          }
4422        if (IsScalarToVector)
4423          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4424      }
4425      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4426                         DAG.getConstant(Lane, MVT::i32));
4427    }
4428
4429    bool ReverseVEXT;
4430    unsigned Imm;
4431    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4432      if (ReverseVEXT)
4433        std::swap(V1, V2);
4434      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4435                         DAG.getConstant(Imm, MVT::i32));
4436    }
4437
4438    if (isVREVMask(ShuffleMask, VT, 64))
4439      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4440    if (isVREVMask(ShuffleMask, VT, 32))
4441      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4442    if (isVREVMask(ShuffleMask, VT, 16))
4443      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4444
4445    // Check for Neon shuffles that modify both input vectors in place.
4446    // If both results are used, i.e., if there are two shuffles with the same
4447    // source operands and with masks corresponding to both results of one of
4448    // these operations, DAG memoization will ensure that a single node is
4449    // used for both shuffles.
4450    unsigned WhichResult;
4451    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4452      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4453                         V1, V2).getValue(WhichResult);
4454    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4455      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4456                         V1, V2).getValue(WhichResult);
4457    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4458      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4459                         V1, V2).getValue(WhichResult);
4460
4461    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4462      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4463                         V1, V1).getValue(WhichResult);
4464    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4465      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4466                         V1, V1).getValue(WhichResult);
4467    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4468      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4469                         V1, V1).getValue(WhichResult);
4470  }
4471
4472  // If the shuffle is not directly supported and it has 4 elements, use
4473  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4474  unsigned NumElts = VT.getVectorNumElements();
4475  if (NumElts == 4) {
4476    unsigned PFIndexes[4];
4477    for (unsigned i = 0; i != 4; ++i) {
4478      if (ShuffleMask[i] < 0)
4479        PFIndexes[i] = 8;
4480      else
4481        PFIndexes[i] = ShuffleMask[i];
4482    }
4483
4484    // Compute the index in the perfect shuffle table.
4485    unsigned PFTableIndex =
4486      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4487    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4488    unsigned Cost = (PFEntry >> 30);
4489
4490    if (Cost <= 4)
4491      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4492  }
4493
4494  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4495  if (EltSize >= 32) {
4496    // Do the expansion with floating-point types, since that is what the VFP
4497    // registers are defined to use, and since i64 is not legal.
4498    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4499    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4500    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4501    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4502    SmallVector<SDValue, 8> Ops;
4503    for (unsigned i = 0; i < NumElts; ++i) {
4504      if (ShuffleMask[i] < 0)
4505        Ops.push_back(DAG.getUNDEF(EltVT));
4506      else
4507        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4508                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4509                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4510                                                  MVT::i32)));
4511    }
4512    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4513    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4514  }
4515
4516  if (VT == MVT::v8i8) {
4517    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4518    if (NewOp.getNode())
4519      return NewOp;
4520  }
4521
4522  return SDValue();
4523}
4524
4525static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4526  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4527  SDValue Lane = Op.getOperand(2);
4528  if (!isa<ConstantSDNode>(Lane))
4529    return SDValue();
4530
4531  return Op;
4532}
4533
4534static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4535  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4536  SDValue Lane = Op.getOperand(1);
4537  if (!isa<ConstantSDNode>(Lane))
4538    return SDValue();
4539
4540  SDValue Vec = Op.getOperand(0);
4541  if (Op.getValueType() == MVT::i32 &&
4542      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4543    DebugLoc dl = Op.getDebugLoc();
4544    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4545  }
4546
4547  return Op;
4548}
4549
4550static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4551  // The only time a CONCAT_VECTORS operation can have legal types is when
4552  // two 64-bit vectors are concatenated to a 128-bit vector.
4553  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4554         "unexpected CONCAT_VECTORS");
4555  DebugLoc dl = Op.getDebugLoc();
4556  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4557  SDValue Op0 = Op.getOperand(0);
4558  SDValue Op1 = Op.getOperand(1);
4559  if (Op0.getOpcode() != ISD::UNDEF)
4560    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4561                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4562                      DAG.getIntPtrConstant(0));
4563  if (Op1.getOpcode() != ISD::UNDEF)
4564    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4565                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4566                      DAG.getIntPtrConstant(1));
4567  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4568}
4569
4570/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4571/// element has been zero/sign-extended, depending on the isSigned parameter,
4572/// from an integer type half its size.
4573static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4574                                   bool isSigned) {
4575  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4576  EVT VT = N->getValueType(0);
4577  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4578    SDNode *BVN = N->getOperand(0).getNode();
4579    if (BVN->getValueType(0) != MVT::v4i32 ||
4580        BVN->getOpcode() != ISD::BUILD_VECTOR)
4581      return false;
4582    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4583    unsigned HiElt = 1 - LoElt;
4584    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4585    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4586    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4587    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4588    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4589      return false;
4590    if (isSigned) {
4591      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4592          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4593        return true;
4594    } else {
4595      if (Hi0->isNullValue() && Hi1->isNullValue())
4596        return true;
4597    }
4598    return false;
4599  }
4600
4601  if (N->getOpcode() != ISD::BUILD_VECTOR)
4602    return false;
4603
4604  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4605    SDNode *Elt = N->getOperand(i).getNode();
4606    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4607      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4608      unsigned HalfSize = EltSize / 2;
4609      if (isSigned) {
4610        if (!isIntN(HalfSize, C->getSExtValue()))
4611          return false;
4612      } else {
4613        if (!isUIntN(HalfSize, C->getZExtValue()))
4614          return false;
4615      }
4616      continue;
4617    }
4618    return false;
4619  }
4620
4621  return true;
4622}
4623
4624/// isSignExtended - Check if a node is a vector value that is sign-extended
4625/// or a constant BUILD_VECTOR with sign-extended elements.
4626static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4627  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4628    return true;
4629  if (isExtendedBUILD_VECTOR(N, DAG, true))
4630    return true;
4631  return false;
4632}
4633
4634/// isZeroExtended - Check if a node is a vector value that is zero-extended
4635/// or a constant BUILD_VECTOR with zero-extended elements.
4636static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4637  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4638    return true;
4639  if (isExtendedBUILD_VECTOR(N, DAG, false))
4640    return true;
4641  return false;
4642}
4643
4644/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4645/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4646static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4647  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4648    return N->getOperand(0);
4649  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4650    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4651                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4652                       LD->isNonTemporal(), LD->isInvariant(),
4653                       LD->getAlignment());
4654  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4655  // have been legalized as a BITCAST from v4i32.
4656  if (N->getOpcode() == ISD::BITCAST) {
4657    SDNode *BVN = N->getOperand(0).getNode();
4658    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4659           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4660    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4661    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4662                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4663  }
4664  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4665  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4666  EVT VT = N->getValueType(0);
4667  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4668  unsigned NumElts = VT.getVectorNumElements();
4669  MVT TruncVT = MVT::getIntegerVT(EltSize);
4670  SmallVector<SDValue, 8> Ops;
4671  for (unsigned i = 0; i != NumElts; ++i) {
4672    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4673    const APInt &CInt = C->getAPIntValue();
4674    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4675  }
4676  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4677                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4678}
4679
4680static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4681  unsigned Opcode = N->getOpcode();
4682  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4683    SDNode *N0 = N->getOperand(0).getNode();
4684    SDNode *N1 = N->getOperand(1).getNode();
4685    return N0->hasOneUse() && N1->hasOneUse() &&
4686      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4687  }
4688  return false;
4689}
4690
4691static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4692  unsigned Opcode = N->getOpcode();
4693  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4694    SDNode *N0 = N->getOperand(0).getNode();
4695    SDNode *N1 = N->getOperand(1).getNode();
4696    return N0->hasOneUse() && N1->hasOneUse() &&
4697      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4698  }
4699  return false;
4700}
4701
4702static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4703  // Multiplications are only custom-lowered for 128-bit vectors so that
4704  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4705  EVT VT = Op.getValueType();
4706  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4707  SDNode *N0 = Op.getOperand(0).getNode();
4708  SDNode *N1 = Op.getOperand(1).getNode();
4709  unsigned NewOpc = 0;
4710  bool isMLA = false;
4711  bool isN0SExt = isSignExtended(N0, DAG);
4712  bool isN1SExt = isSignExtended(N1, DAG);
4713  if (isN0SExt && isN1SExt)
4714    NewOpc = ARMISD::VMULLs;
4715  else {
4716    bool isN0ZExt = isZeroExtended(N0, DAG);
4717    bool isN1ZExt = isZeroExtended(N1, DAG);
4718    if (isN0ZExt && isN1ZExt)
4719      NewOpc = ARMISD::VMULLu;
4720    else if (isN1SExt || isN1ZExt) {
4721      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4722      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4723      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4724        NewOpc = ARMISD::VMULLs;
4725        isMLA = true;
4726      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4727        NewOpc = ARMISD::VMULLu;
4728        isMLA = true;
4729      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4730        std::swap(N0, N1);
4731        NewOpc = ARMISD::VMULLu;
4732        isMLA = true;
4733      }
4734    }
4735
4736    if (!NewOpc) {
4737      if (VT == MVT::v2i64)
4738        // Fall through to expand this.  It is not legal.
4739        return SDValue();
4740      else
4741        // Other vector multiplications are legal.
4742        return Op;
4743    }
4744  }
4745
4746  // Legalize to a VMULL instruction.
4747  DebugLoc DL = Op.getDebugLoc();
4748  SDValue Op0;
4749  SDValue Op1 = SkipExtension(N1, DAG);
4750  if (!isMLA) {
4751    Op0 = SkipExtension(N0, DAG);
4752    assert(Op0.getValueType().is64BitVector() &&
4753           Op1.getValueType().is64BitVector() &&
4754           "unexpected types for extended operands to VMULL");
4755    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4756  }
4757
4758  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4759  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4760  //   vmull q0, d4, d6
4761  //   vmlal q0, d5, d6
4762  // is faster than
4763  //   vaddl q0, d4, d5
4764  //   vmovl q1, d6
4765  //   vmul  q0, q0, q1
4766  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4767  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4768  EVT Op1VT = Op1.getValueType();
4769  return DAG.getNode(N0->getOpcode(), DL, VT,
4770                     DAG.getNode(NewOpc, DL, VT,
4771                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4772                     DAG.getNode(NewOpc, DL, VT,
4773                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4774}
4775
4776static SDValue
4777LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4778  // Convert to float
4779  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4780  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4781  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4782  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4783  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4784  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4785  // Get reciprocal estimate.
4786  // float4 recip = vrecpeq_f32(yf);
4787  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4788                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4789  // Because char has a smaller range than uchar, we can actually get away
4790  // without any newton steps.  This requires that we use a weird bias
4791  // of 0xb000, however (again, this has been exhaustively tested).
4792  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4793  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4794  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4795  Y = DAG.getConstant(0xb000, MVT::i32);
4796  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4797  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4798  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4799  // Convert back to short.
4800  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4801  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4802  return X;
4803}
4804
4805static SDValue
4806LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4807  SDValue N2;
4808  // Convert to float.
4809  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4810  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4811  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4812  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4813  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4814  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4815
4816  // Use reciprocal estimate and one refinement step.
4817  // float4 recip = vrecpeq_f32(yf);
4818  // recip *= vrecpsq_f32(yf, recip);
4819  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4820                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4821  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4822                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4823                   N1, N2);
4824  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4825  // Because short has a smaller range than ushort, we can actually get away
4826  // with only a single newton step.  This requires that we use a weird bias
4827  // of 89, however (again, this has been exhaustively tested).
4828  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4829  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4830  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4831  N1 = DAG.getConstant(0x89, MVT::i32);
4832  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4833  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4834  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4835  // Convert back to integer and return.
4836  // return vmovn_s32(vcvt_s32_f32(result));
4837  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4838  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4839  return N0;
4840}
4841
4842static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4843  EVT VT = Op.getValueType();
4844  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4845         "unexpected type for custom-lowering ISD::SDIV");
4846
4847  DebugLoc dl = Op.getDebugLoc();
4848  SDValue N0 = Op.getOperand(0);
4849  SDValue N1 = Op.getOperand(1);
4850  SDValue N2, N3;
4851
4852  if (VT == MVT::v8i8) {
4853    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4854    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4855
4856    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4857                     DAG.getIntPtrConstant(4));
4858    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4859                     DAG.getIntPtrConstant(4));
4860    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4861                     DAG.getIntPtrConstant(0));
4862    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4863                     DAG.getIntPtrConstant(0));
4864
4865    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4866    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4867
4868    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4869    N0 = LowerCONCAT_VECTORS(N0, DAG);
4870
4871    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4872    return N0;
4873  }
4874  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4875}
4876
4877static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4878  EVT VT = Op.getValueType();
4879  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4880         "unexpected type for custom-lowering ISD::UDIV");
4881
4882  DebugLoc dl = Op.getDebugLoc();
4883  SDValue N0 = Op.getOperand(0);
4884  SDValue N1 = Op.getOperand(1);
4885  SDValue N2, N3;
4886
4887  if (VT == MVT::v8i8) {
4888    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4889    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4890
4891    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4892                     DAG.getIntPtrConstant(4));
4893    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4894                     DAG.getIntPtrConstant(4));
4895    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4896                     DAG.getIntPtrConstant(0));
4897    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4898                     DAG.getIntPtrConstant(0));
4899
4900    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4901    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4902
4903    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4904    N0 = LowerCONCAT_VECTORS(N0, DAG);
4905
4906    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4907                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4908                     N0);
4909    return N0;
4910  }
4911
4912  // v4i16 sdiv ... Convert to float.
4913  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4914  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4915  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4916  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4917  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4918  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4919
4920  // Use reciprocal estimate and two refinement steps.
4921  // float4 recip = vrecpeq_f32(yf);
4922  // recip *= vrecpsq_f32(yf, recip);
4923  // recip *= vrecpsq_f32(yf, recip);
4924  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4925                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4926  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4927                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4928                   BN1, N2);
4929  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4930  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4931                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4932                   BN1, N2);
4933  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4934  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4935  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4936  // and that it will never cause us to return an answer too large).
4937  // float4 result = as_float4(as_int4(xf*recip) + 2);
4938  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4939  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4940  N1 = DAG.getConstant(2, MVT::i32);
4941  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4942  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4943  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4944  // Convert back to integer and return.
4945  // return vmovn_u32(vcvt_s32_f32(result));
4946  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4947  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4948  return N0;
4949}
4950
4951static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4952  EVT VT = Op.getNode()->getValueType(0);
4953  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4954
4955  unsigned Opc;
4956  bool ExtraOp = false;
4957  switch (Op.getOpcode()) {
4958  default: assert(0 && "Invalid code");
4959  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4960  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4961  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4962  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4963  }
4964
4965  if (!ExtraOp)
4966    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4967                       Op.getOperand(1));
4968  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4969                     Op.getOperand(1), Op.getOperand(2));
4970}
4971
4972static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4973  // Monotonic load/store is legal for all targets
4974  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4975    return Op;
4976
4977  // Aquire/Release load/store is not legal for targets without a
4978  // dmb or equivalent available.
4979  return SDValue();
4980}
4981
4982
4983static void
4984ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4985                    SelectionDAG &DAG, unsigned NewOp) {
4986  DebugLoc dl = Node->getDebugLoc();
4987  assert (Node->getValueType(0) == MVT::i64 &&
4988          "Only know how to expand i64 atomics");
4989
4990  SmallVector<SDValue, 6> Ops;
4991  Ops.push_back(Node->getOperand(0)); // Chain
4992  Ops.push_back(Node->getOperand(1)); // Ptr
4993  // Low part of Val1
4994  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4995                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4996  // High part of Val1
4997  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4998                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4999  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5000    // High part of Val1
5001    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5002                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5003    // High part of Val2
5004    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5005                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5006  }
5007  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5008  SDValue Result =
5009    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5010                            cast<MemSDNode>(Node)->getMemOperand());
5011  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5012  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5013  Results.push_back(Result.getValue(2));
5014}
5015
5016SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5017  switch (Op.getOpcode()) {
5018  default: llvm_unreachable("Don't know how to custom lower this!");
5019  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5020  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5021  case ISD::GlobalAddress:
5022    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5023      LowerGlobalAddressELF(Op, DAG);
5024  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5025  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5026  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5027  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5028  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5029  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5030  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5031  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5032  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5033  case ISD::SINT_TO_FP:
5034  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5035  case ISD::FP_TO_SINT:
5036  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5037  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5038  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5039  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5040  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5041  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5042  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5043  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5044                                                               Subtarget);
5045  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5046  case ISD::SHL:
5047  case ISD::SRL:
5048  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5049  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5050  case ISD::SRL_PARTS:
5051  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5052  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5053  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5054  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5055  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5056  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5057  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5058  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5059  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5060  case ISD::MUL:           return LowerMUL(Op, DAG);
5061  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5062  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5063  case ISD::ADDC:
5064  case ISD::ADDE:
5065  case ISD::SUBC:
5066  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5067  case ISD::ATOMIC_LOAD:
5068  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5069  }
5070  return SDValue();
5071}
5072
5073/// ReplaceNodeResults - Replace the results of node with an illegal result
5074/// type with new values built out of custom code.
5075void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5076                                           SmallVectorImpl<SDValue>&Results,
5077                                           SelectionDAG &DAG) const {
5078  SDValue Res;
5079  switch (N->getOpcode()) {
5080  default:
5081    llvm_unreachable("Don't know how to custom expand this!");
5082    break;
5083  case ISD::BITCAST:
5084    Res = ExpandBITCAST(N, DAG);
5085    break;
5086  case ISD::SRL:
5087  case ISD::SRA:
5088    Res = Expand64BitShift(N, DAG, Subtarget);
5089    break;
5090  case ISD::ATOMIC_LOAD_ADD:
5091    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5092    return;
5093  case ISD::ATOMIC_LOAD_AND:
5094    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5095    return;
5096  case ISD::ATOMIC_LOAD_NAND:
5097    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5098    return;
5099  case ISD::ATOMIC_LOAD_OR:
5100    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5101    return;
5102  case ISD::ATOMIC_LOAD_SUB:
5103    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5104    return;
5105  case ISD::ATOMIC_LOAD_XOR:
5106    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5107    return;
5108  case ISD::ATOMIC_SWAP:
5109    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5110    return;
5111  case ISD::ATOMIC_CMP_SWAP:
5112    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5113    return;
5114  }
5115  if (Res.getNode())
5116    Results.push_back(Res);
5117}
5118
5119//===----------------------------------------------------------------------===//
5120//                           ARM Scheduler Hooks
5121//===----------------------------------------------------------------------===//
5122
5123MachineBasicBlock *
5124ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5125                                     MachineBasicBlock *BB,
5126                                     unsigned Size) const {
5127  unsigned dest    = MI->getOperand(0).getReg();
5128  unsigned ptr     = MI->getOperand(1).getReg();
5129  unsigned oldval  = MI->getOperand(2).getReg();
5130  unsigned newval  = MI->getOperand(3).getReg();
5131  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5132  DebugLoc dl = MI->getDebugLoc();
5133  bool isThumb2 = Subtarget->isThumb2();
5134
5135  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5136  unsigned scratch =
5137    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5138                                       : ARM::GPRRegisterClass);
5139
5140  if (isThumb2) {
5141    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5142    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5143    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5144  }
5145
5146  unsigned ldrOpc, strOpc;
5147  switch (Size) {
5148  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5149  case 1:
5150    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5151    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5152    break;
5153  case 2:
5154    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5155    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5156    break;
5157  case 4:
5158    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5159    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5160    break;
5161  }
5162
5163  MachineFunction *MF = BB->getParent();
5164  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5165  MachineFunction::iterator It = BB;
5166  ++It; // insert the new blocks after the current block
5167
5168  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5169  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5170  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5171  MF->insert(It, loop1MBB);
5172  MF->insert(It, loop2MBB);
5173  MF->insert(It, exitMBB);
5174
5175  // Transfer the remainder of BB and its successor edges to exitMBB.
5176  exitMBB->splice(exitMBB->begin(), BB,
5177                  llvm::next(MachineBasicBlock::iterator(MI)),
5178                  BB->end());
5179  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5180
5181  //  thisMBB:
5182  //   ...
5183  //   fallthrough --> loop1MBB
5184  BB->addSuccessor(loop1MBB);
5185
5186  // loop1MBB:
5187  //   ldrex dest, [ptr]
5188  //   cmp dest, oldval
5189  //   bne exitMBB
5190  BB = loop1MBB;
5191  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5192  if (ldrOpc == ARM::t2LDREX)
5193    MIB.addImm(0);
5194  AddDefaultPred(MIB);
5195  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5196                 .addReg(dest).addReg(oldval));
5197  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5198    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5199  BB->addSuccessor(loop2MBB);
5200  BB->addSuccessor(exitMBB);
5201
5202  // loop2MBB:
5203  //   strex scratch, newval, [ptr]
5204  //   cmp scratch, #0
5205  //   bne loop1MBB
5206  BB = loop2MBB;
5207  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5208  if (strOpc == ARM::t2STREX)
5209    MIB.addImm(0);
5210  AddDefaultPred(MIB);
5211  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5212                 .addReg(scratch).addImm(0));
5213  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5214    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5215  BB->addSuccessor(loop1MBB);
5216  BB->addSuccessor(exitMBB);
5217
5218  //  exitMBB:
5219  //   ...
5220  BB = exitMBB;
5221
5222  MI->eraseFromParent();   // The instruction is gone now.
5223
5224  return BB;
5225}
5226
5227MachineBasicBlock *
5228ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5229                                    unsigned Size, unsigned BinOpcode) const {
5230  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5231  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5232
5233  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5234  MachineFunction *MF = BB->getParent();
5235  MachineFunction::iterator It = BB;
5236  ++It;
5237
5238  unsigned dest = MI->getOperand(0).getReg();
5239  unsigned ptr = MI->getOperand(1).getReg();
5240  unsigned incr = MI->getOperand(2).getReg();
5241  DebugLoc dl = MI->getDebugLoc();
5242  bool isThumb2 = Subtarget->isThumb2();
5243
5244  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5245  if (isThumb2) {
5246    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5247    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5248  }
5249
5250  unsigned ldrOpc, strOpc;
5251  switch (Size) {
5252  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5253  case 1:
5254    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5255    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5256    break;
5257  case 2:
5258    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5259    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5260    break;
5261  case 4:
5262    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5263    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5264    break;
5265  }
5266
5267  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5268  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5269  MF->insert(It, loopMBB);
5270  MF->insert(It, exitMBB);
5271
5272  // Transfer the remainder of BB and its successor edges to exitMBB.
5273  exitMBB->splice(exitMBB->begin(), BB,
5274                  llvm::next(MachineBasicBlock::iterator(MI)),
5275                  BB->end());
5276  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5277
5278  TargetRegisterClass *TRC =
5279    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5280  unsigned scratch = MRI.createVirtualRegister(TRC);
5281  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5282
5283  //  thisMBB:
5284  //   ...
5285  //   fallthrough --> loopMBB
5286  BB->addSuccessor(loopMBB);
5287
5288  //  loopMBB:
5289  //   ldrex dest, ptr
5290  //   <binop> scratch2, dest, incr
5291  //   strex scratch, scratch2, ptr
5292  //   cmp scratch, #0
5293  //   bne- loopMBB
5294  //   fallthrough --> exitMBB
5295  BB = loopMBB;
5296  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5297  if (ldrOpc == ARM::t2LDREX)
5298    MIB.addImm(0);
5299  AddDefaultPred(MIB);
5300  if (BinOpcode) {
5301    // operand order needs to go the other way for NAND
5302    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5303      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5304                     addReg(incr).addReg(dest)).addReg(0);
5305    else
5306      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5307                     addReg(dest).addReg(incr)).addReg(0);
5308  }
5309
5310  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5311  if (strOpc == ARM::t2STREX)
5312    MIB.addImm(0);
5313  AddDefaultPred(MIB);
5314  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5315                 .addReg(scratch).addImm(0));
5316  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5317    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5318
5319  BB->addSuccessor(loopMBB);
5320  BB->addSuccessor(exitMBB);
5321
5322  //  exitMBB:
5323  //   ...
5324  BB = exitMBB;
5325
5326  MI->eraseFromParent();   // The instruction is gone now.
5327
5328  return BB;
5329}
5330
5331MachineBasicBlock *
5332ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5333                                          MachineBasicBlock *BB,
5334                                          unsigned Size,
5335                                          bool signExtend,
5336                                          ARMCC::CondCodes Cond) const {
5337  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5338
5339  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5340  MachineFunction *MF = BB->getParent();
5341  MachineFunction::iterator It = BB;
5342  ++It;
5343
5344  unsigned dest = MI->getOperand(0).getReg();
5345  unsigned ptr = MI->getOperand(1).getReg();
5346  unsigned incr = MI->getOperand(2).getReg();
5347  unsigned oldval = dest;
5348  DebugLoc dl = MI->getDebugLoc();
5349  bool isThumb2 = Subtarget->isThumb2();
5350
5351  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5352  if (isThumb2) {
5353    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5354    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5355  }
5356
5357  unsigned ldrOpc, strOpc, extendOpc;
5358  switch (Size) {
5359  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5360  case 1:
5361    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5362    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5363    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5364    break;
5365  case 2:
5366    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5367    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5368    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5369    break;
5370  case 4:
5371    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5372    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5373    extendOpc = 0;
5374    break;
5375  }
5376
5377  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5378  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5379  MF->insert(It, loopMBB);
5380  MF->insert(It, exitMBB);
5381
5382  // Transfer the remainder of BB and its successor edges to exitMBB.
5383  exitMBB->splice(exitMBB->begin(), BB,
5384                  llvm::next(MachineBasicBlock::iterator(MI)),
5385                  BB->end());
5386  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5387
5388  TargetRegisterClass *TRC =
5389    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5390  unsigned scratch = MRI.createVirtualRegister(TRC);
5391  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5392
5393  //  thisMBB:
5394  //   ...
5395  //   fallthrough --> loopMBB
5396  BB->addSuccessor(loopMBB);
5397
5398  //  loopMBB:
5399  //   ldrex dest, ptr
5400  //   (sign extend dest, if required)
5401  //   cmp dest, incr
5402  //   cmov.cond scratch2, dest, incr
5403  //   strex scratch, scratch2, ptr
5404  //   cmp scratch, #0
5405  //   bne- loopMBB
5406  //   fallthrough --> exitMBB
5407  BB = loopMBB;
5408  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5409  if (ldrOpc == ARM::t2LDREX)
5410    MIB.addImm(0);
5411  AddDefaultPred(MIB);
5412
5413  // Sign extend the value, if necessary.
5414  if (signExtend && extendOpc) {
5415    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5416    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5417                     .addReg(dest)
5418                     .addImm(0));
5419  }
5420
5421  // Build compare and cmov instructions.
5422  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5423                 .addReg(oldval).addReg(incr));
5424  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5425         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5426
5427  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5428  if (strOpc == ARM::t2STREX)
5429    MIB.addImm(0);
5430  AddDefaultPred(MIB);
5431  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5432                 .addReg(scratch).addImm(0));
5433  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5434    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5435
5436  BB->addSuccessor(loopMBB);
5437  BB->addSuccessor(exitMBB);
5438
5439  //  exitMBB:
5440  //   ...
5441  BB = exitMBB;
5442
5443  MI->eraseFromParent();   // The instruction is gone now.
5444
5445  return BB;
5446}
5447
5448MachineBasicBlock *
5449ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5450                                      unsigned Op1, unsigned Op2,
5451                                      bool NeedsCarry, bool IsCmpxchg) const {
5452  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5453  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5454
5455  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5456  MachineFunction *MF = BB->getParent();
5457  MachineFunction::iterator It = BB;
5458  ++It;
5459
5460  unsigned destlo = MI->getOperand(0).getReg();
5461  unsigned desthi = MI->getOperand(1).getReg();
5462  unsigned ptr = MI->getOperand(2).getReg();
5463  unsigned vallo = MI->getOperand(3).getReg();
5464  unsigned valhi = MI->getOperand(4).getReg();
5465  DebugLoc dl = MI->getDebugLoc();
5466  bool isThumb2 = Subtarget->isThumb2();
5467
5468  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5469  if (isThumb2) {
5470    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5471    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5472    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5473  }
5474
5475  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5476  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5477
5478  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5479  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5480  if (IsCmpxchg) {
5481    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5482    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5483  }
5484  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5485  MF->insert(It, loopMBB);
5486  if (IsCmpxchg) {
5487    MF->insert(It, contBB);
5488    MF->insert(It, cont2BB);
5489  }
5490  MF->insert(It, exitMBB);
5491
5492  // Transfer the remainder of BB and its successor edges to exitMBB.
5493  exitMBB->splice(exitMBB->begin(), BB,
5494                  llvm::next(MachineBasicBlock::iterator(MI)),
5495                  BB->end());
5496  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5497
5498  TargetRegisterClass *TRC =
5499    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5500  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5501
5502  //  thisMBB:
5503  //   ...
5504  //   fallthrough --> loopMBB
5505  BB->addSuccessor(loopMBB);
5506
5507  //  loopMBB:
5508  //   ldrexd r2, r3, ptr
5509  //   <binopa> r0, r2, incr
5510  //   <binopb> r1, r3, incr
5511  //   strexd storesuccess, r0, r1, ptr
5512  //   cmp storesuccess, #0
5513  //   bne- loopMBB
5514  //   fallthrough --> exitMBB
5515  //
5516  // Note that the registers are explicitly specified because there is not any
5517  // way to force the register allocator to allocate a register pair.
5518  //
5519  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5520  // need to properly enforce the restriction that the two output registers
5521  // for ldrexd must be different.
5522  BB = loopMBB;
5523  // Load
5524  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5525                 .addReg(ARM::R2, RegState::Define)
5526                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5527  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5528  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5529  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5530
5531  if (IsCmpxchg) {
5532    // Add early exit
5533    for (unsigned i = 0; i < 2; i++) {
5534      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5535                                                         ARM::CMPrr))
5536                     .addReg(i == 0 ? destlo : desthi)
5537                     .addReg(i == 0 ? vallo : valhi));
5538      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5539        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5540      BB->addSuccessor(exitMBB);
5541      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5542      BB = (i == 0 ? contBB : cont2BB);
5543    }
5544
5545    // Copy to physregs for strexd
5546    unsigned setlo = MI->getOperand(5).getReg();
5547    unsigned sethi = MI->getOperand(6).getReg();
5548    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5549    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5550  } else if (Op1) {
5551    // Perform binary operation
5552    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5553                   .addReg(destlo).addReg(vallo))
5554        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5555    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5556                   .addReg(desthi).addReg(valhi)).addReg(0);
5557  } else {
5558    // Copy to physregs for strexd
5559    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5560    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5561  }
5562
5563  // Store
5564  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5565                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5566  // Cmp+jump
5567  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5568                 .addReg(storesuccess).addImm(0));
5569  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5570    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5571
5572  BB->addSuccessor(loopMBB);
5573  BB->addSuccessor(exitMBB);
5574
5575  //  exitMBB:
5576  //   ...
5577  BB = exitMBB;
5578
5579  MI->eraseFromParent();   // The instruction is gone now.
5580
5581  return BB;
5582}
5583
5584/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5585/// registers the function context.
5586void ARMTargetLowering::
5587SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5588                       MachineBasicBlock *DispatchBB, int FI) const {
5589  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5590  DebugLoc dl = MI->getDebugLoc();
5591  MachineFunction *MF = MBB->getParent();
5592  MachineRegisterInfo *MRI = &MF->getRegInfo();
5593  MachineConstantPool *MCP = MF->getConstantPool();
5594  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5595  const Function *F = MF->getFunction();
5596
5597  bool isThumb = Subtarget->isThumb();
5598  bool isThumb2 = Subtarget->isThumb2();
5599
5600  unsigned PCLabelId = AFI->createPICLabelUId();
5601  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5602  ARMConstantPoolValue *CPV =
5603    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5604  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5605
5606  const TargetRegisterClass *TRC =
5607    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5608
5609  // Grab constant pool and fixed stack memory operands.
5610  MachineMemOperand *CPMMO =
5611    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5612                             MachineMemOperand::MOLoad, 4, 4);
5613
5614  MachineMemOperand *FIMMOSt =
5615    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5616                             MachineMemOperand::MOStore, 4, 4);
5617
5618  // Load the address of the dispatch MBB into the jump buffer.
5619  if (isThumb2) {
5620    // Incoming value: jbuf
5621    //   ldr.n  r5, LCPI1_1
5622    //   orr    r5, r5, #1
5623    //   add    r5, pc
5624    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5625    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5626    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5627                   .addConstantPoolIndex(CPI)
5628                   .addMemOperand(CPMMO));
5629    // Set the low bit because of thumb mode.
5630    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5631    AddDefaultCC(
5632      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5633                     .addReg(NewVReg1, RegState::Kill)
5634                     .addImm(0x01)));
5635    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5636    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5637      .addReg(NewVReg2, RegState::Kill)
5638      .addImm(PCLabelId);
5639    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5640                   .addReg(NewVReg3, RegState::Kill)
5641                   .addFrameIndex(FI)
5642                   .addImm(36)  // &jbuf[1] :: pc
5643                   .addMemOperand(FIMMOSt));
5644  } else if (isThumb) {
5645    // Incoming value: jbuf
5646    //   ldr.n  r1, LCPI1_4
5647    //   add    r1, pc
5648    //   mov    r2, #1
5649    //   orrs   r1, r2
5650    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5651    //   str    r1, [r2]
5652    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5653    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5654                   .addConstantPoolIndex(CPI)
5655                   .addMemOperand(CPMMO));
5656    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5657    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5658      .addReg(NewVReg1, RegState::Kill)
5659      .addImm(PCLabelId);
5660    // Set the low bit because of thumb mode.
5661    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5662    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5663                   .addReg(ARM::CPSR, RegState::Define)
5664                   .addImm(1));
5665    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5666    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5667                   .addReg(ARM::CPSR, RegState::Define)
5668                   .addReg(NewVReg2, RegState::Kill)
5669                   .addReg(NewVReg3, RegState::Kill));
5670    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5671    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5672                   .addFrameIndex(FI)
5673                   .addImm(36)); // &jbuf[1] :: pc
5674    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5675                   .addReg(NewVReg4, RegState::Kill)
5676                   .addReg(NewVReg5, RegState::Kill)
5677                   .addImm(0)
5678                   .addMemOperand(FIMMOSt));
5679  } else {
5680    // Incoming value: jbuf
5681    //   ldr  r1, LCPI1_1
5682    //   add  r1, pc, r1
5683    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5684    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5685    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5686                   .addConstantPoolIndex(CPI)
5687                   .addImm(0)
5688                   .addMemOperand(CPMMO));
5689    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5690    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5691                   .addReg(NewVReg1, RegState::Kill)
5692                   .addImm(PCLabelId));
5693    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5694                   .addReg(NewVReg2, RegState::Kill)
5695                   .addFrameIndex(FI)
5696                   .addImm(36)  // &jbuf[1] :: pc
5697                   .addMemOperand(FIMMOSt));
5698  }
5699}
5700
5701MachineBasicBlock *ARMTargetLowering::
5702EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5703  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5704  DebugLoc dl = MI->getDebugLoc();
5705  MachineFunction *MF = MBB->getParent();
5706  MachineRegisterInfo *MRI = &MF->getRegInfo();
5707  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5708  MachineFrameInfo *MFI = MF->getFrameInfo();
5709  int FI = MFI->getFunctionContextIndex();
5710
5711  const TargetRegisterClass *TRC =
5712    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5713
5714  // Get a mapping of the call site numbers to all of the landing pads they're
5715  // associated with.
5716  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5717  unsigned MaxCSNum = 0;
5718  MachineModuleInfo &MMI = MF->getMMI();
5719  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5720    if (!BB->isLandingPad()) continue;
5721
5722    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5723    // pad.
5724    for (MachineBasicBlock::iterator
5725           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5726      if (!II->isEHLabel()) continue;
5727
5728      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5729      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5730
5731      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5732      for (SmallVectorImpl<unsigned>::iterator
5733             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5734           CSI != CSE; ++CSI) {
5735        CallSiteNumToLPad[*CSI].push_back(BB);
5736        MaxCSNum = std::max(MaxCSNum, *CSI);
5737      }
5738      break;
5739    }
5740  }
5741
5742  // Get an ordered list of the machine basic blocks for the jump table.
5743  std::vector<MachineBasicBlock*> LPadList;
5744  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5745  LPadList.reserve(CallSiteNumToLPad.size());
5746  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5747    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5748    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5749           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5750      LPadList.push_back(*II);
5751      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5752    }
5753  }
5754
5755  assert(!LPadList.empty() &&
5756         "No landing pad destinations for the dispatch jump table!");
5757
5758  // Create the jump table and associated information.
5759  MachineJumpTableInfo *JTI =
5760    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5761  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5762  unsigned UId = AFI->createJumpTableUId();
5763
5764  // Create the MBBs for the dispatch code.
5765
5766  // Shove the dispatch's address into the return slot in the function context.
5767  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5768  DispatchBB->setIsLandingPad();
5769
5770  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5771  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5772  DispatchBB->addSuccessor(TrapBB);
5773
5774  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5775  DispatchBB->addSuccessor(DispContBB);
5776
5777  // Insert and MBBs.
5778  MF->insert(MF->end(), DispatchBB);
5779  MF->insert(MF->end(), DispContBB);
5780  MF->insert(MF->end(), TrapBB);
5781
5782  // Insert code into the entry block that creates and registers the function
5783  // context.
5784  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5785
5786  MachineMemOperand *FIMMOLd =
5787    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5788                             MachineMemOperand::MOLoad |
5789                             MachineMemOperand::MOVolatile, 4, 4);
5790
5791  BuildMI(DispatchBB, dl, TII->get(ARM::eh_sjlj_dispatchsetup));
5792
5793  unsigned NumLPads = LPadList.size();
5794  if (Subtarget->isThumb2()) {
5795    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5796    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5797                   .addFrameIndex(FI)
5798                   .addImm(4)
5799                   .addMemOperand(FIMMOLd));
5800
5801    if (NumLPads < 256) {
5802      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5803                     .addReg(NewVReg1)
5804                     .addImm(LPadList.size()));
5805    } else {
5806      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5807      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5808                     .addImm(NumLPads & 0xFFFF));
5809
5810      unsigned VReg2 = VReg1;
5811      if ((NumLPads & 0xFFFF0000) != 0) {
5812        VReg2 = MRI->createVirtualRegister(TRC);
5813        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5814                       .addReg(VReg1)
5815                       .addImm(NumLPads >> 16));
5816      }
5817
5818      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5819                     .addReg(NewVReg1)
5820                     .addReg(VReg2));
5821    }
5822
5823    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5824      .addMBB(TrapBB)
5825      .addImm(ARMCC::HI)
5826      .addReg(ARM::CPSR);
5827
5828    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5829    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5830                   .addJumpTableIndex(MJTI)
5831                   .addImm(UId));
5832
5833    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5834    AddDefaultCC(
5835      AddDefaultPred(
5836        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5837        .addReg(NewVReg3, RegState::Kill)
5838        .addReg(NewVReg1)
5839        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5840
5841    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5842      .addReg(NewVReg4, RegState::Kill)
5843      .addReg(NewVReg1)
5844      .addJumpTableIndex(MJTI)
5845      .addImm(UId);
5846  } else if (Subtarget->isThumb()) {
5847    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5848    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5849                   .addFrameIndex(FI)
5850                   .addImm(1)
5851                   .addMemOperand(FIMMOLd));
5852
5853    if (NumLPads < 256) {
5854      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5855                     .addReg(NewVReg1)
5856                     .addImm(NumLPads));
5857    } else {
5858      MachineConstantPool *ConstantPool = MF->getConstantPool();
5859      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5860      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5861
5862      // MachineConstantPool wants an explicit alignment.
5863      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5864      if (Align == 0)
5865        Align = getTargetData()->getTypeAllocSize(C->getType());
5866      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5867
5868      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5869      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5870                     .addReg(VReg1, RegState::Define)
5871                     .addConstantPoolIndex(Idx));
5872      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5873                     .addReg(NewVReg1)
5874                     .addReg(VReg1));
5875    }
5876
5877    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5878      .addMBB(TrapBB)
5879      .addImm(ARMCC::HI)
5880      .addReg(ARM::CPSR);
5881
5882    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5883    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5884                   .addReg(ARM::CPSR, RegState::Define)
5885                   .addReg(NewVReg1)
5886                   .addImm(2));
5887
5888    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5889    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5890                   .addJumpTableIndex(MJTI)
5891                   .addImm(UId));
5892
5893    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5894    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5895                   .addReg(ARM::CPSR, RegState::Define)
5896                   .addReg(NewVReg2, RegState::Kill)
5897                   .addReg(NewVReg3));
5898
5899    MachineMemOperand *JTMMOLd =
5900      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5901                               MachineMemOperand::MOLoad, 4, 4);
5902
5903    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5904    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5905                   .addReg(NewVReg4, RegState::Kill)
5906                   .addImm(0)
5907                   .addMemOperand(JTMMOLd));
5908
5909    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5910    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5911                   .addReg(ARM::CPSR, RegState::Define)
5912                   .addReg(NewVReg5, RegState::Kill)
5913                   .addReg(NewVReg3));
5914
5915    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5916      .addReg(NewVReg6, RegState::Kill)
5917      .addJumpTableIndex(MJTI)
5918      .addImm(UId);
5919  } else {
5920    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5921    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5922                   .addFrameIndex(FI)
5923                   .addImm(4)
5924                   .addMemOperand(FIMMOLd));
5925
5926    if (NumLPads < 256) {
5927      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5928                     .addReg(NewVReg1)
5929                     .addImm(NumLPads));
5930    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
5931      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5932      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
5933                     .addImm(NumLPads & 0xFFFF));
5934
5935      unsigned VReg2 = VReg1;
5936      if ((NumLPads & 0xFFFF0000) != 0) {
5937        VReg2 = MRI->createVirtualRegister(TRC);
5938        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
5939                       .addReg(VReg1)
5940                       .addImm(NumLPads >> 16));
5941      }
5942
5943      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5944                     .addReg(NewVReg1)
5945                     .addReg(VReg2));
5946    } else {
5947      MachineConstantPool *ConstantPool = MF->getConstantPool();
5948      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5949      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5950
5951      // MachineConstantPool wants an explicit alignment.
5952      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5953      if (Align == 0)
5954        Align = getTargetData()->getTypeAllocSize(C->getType());
5955      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5956
5957      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5958      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
5959                     .addReg(VReg1, RegState::Define)
5960                     .addConstantPoolIndex(Idx)
5961                     .addImm(0));
5962      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5963                     .addReg(NewVReg1)
5964                     .addReg(VReg1, RegState::Kill));
5965    }
5966
5967    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5968      .addMBB(TrapBB)
5969      .addImm(ARMCC::HI)
5970      .addReg(ARM::CPSR);
5971
5972    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5973    AddDefaultCC(
5974      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
5975                     .addReg(NewVReg1)
5976                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5977    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5978    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
5979                   .addJumpTableIndex(MJTI)
5980                   .addImm(UId));
5981
5982    MachineMemOperand *JTMMOLd =
5983      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5984                               MachineMemOperand::MOLoad, 4, 4);
5985    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5986    AddDefaultPred(
5987      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
5988      .addReg(NewVReg3, RegState::Kill)
5989      .addReg(NewVReg4)
5990      .addImm(0)
5991      .addMemOperand(JTMMOLd));
5992
5993    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5994      .addReg(NewVReg5, RegState::Kill)
5995      .addReg(NewVReg4)
5996      .addJumpTableIndex(MJTI)
5997      .addImm(UId);
5998  }
5999
6000  // Add the jump table entries as successors to the MBB.
6001  MachineBasicBlock *PrevMBB = 0;
6002  for (std::vector<MachineBasicBlock*>::iterator
6003         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6004    MachineBasicBlock *CurMBB = *I;
6005    if (PrevMBB != CurMBB)
6006      DispContBB->addSuccessor(CurMBB);
6007    PrevMBB = CurMBB;
6008  }
6009
6010  // N.B. the order the invoke BBs are processed in doesn't matter here.
6011  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6012  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6013  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
6014  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6015  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6016         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6017    MachineBasicBlock *BB = *I;
6018
6019    // Remove the landing pad successor from the invoke block and replace it
6020    // with the new dispatch block.
6021    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6022                                                  BB->succ_end());
6023    while (!Successors.empty()) {
6024      MachineBasicBlock *SMBB = Successors.pop_back_val();
6025      if (SMBB->isLandingPad()) {
6026        BB->removeSuccessor(SMBB);
6027        MBBLPads.push_back(SMBB);
6028      }
6029    }
6030
6031    BB->addSuccessor(DispatchBB);
6032
6033    // Find the invoke call and mark all of the callee-saved registers as
6034    // 'implicit defined' so that they're spilled. This prevents code from
6035    // moving instructions to before the EH block, where they will never be
6036    // executed.
6037    for (MachineBasicBlock::reverse_iterator
6038           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6039      if (!II->isCall()) continue;
6040
6041      DenseMap<unsigned, bool> DefRegs;
6042      for (MachineInstr::mop_iterator
6043             OI = II->operands_begin(), OE = II->operands_end();
6044           OI != OE; ++OI) {
6045        if (!OI->isReg()) continue;
6046        DefRegs[OI->getReg()] = true;
6047      }
6048
6049      MachineInstrBuilder MIB(&*II);
6050
6051      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6052        unsigned Reg = SavedRegs[i];
6053        if (Subtarget->isThumb2() &&
6054            !ARM::tGPRRegisterClass->contains(Reg) &&
6055            !ARM::hGPRRegisterClass->contains(Reg))
6056          continue;
6057        else if (Subtarget->isThumb1Only() &&
6058                 !ARM::tGPRRegisterClass->contains(Reg))
6059          continue;
6060        else if (!Subtarget->isThumb() &&
6061                 !ARM::GPRRegisterClass->contains(Reg))
6062          continue;
6063        if (!DefRegs[Reg])
6064          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6065      }
6066
6067      break;
6068    }
6069  }
6070
6071  // Mark all former landing pads as non-landing pads. The dispatch is the only
6072  // landing pad now.
6073  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6074         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6075    (*I)->setIsLandingPad(false);
6076
6077  // The instruction is gone now.
6078  MI->eraseFromParent();
6079
6080  return MBB;
6081}
6082
6083static
6084MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6085  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6086       E = MBB->succ_end(); I != E; ++I)
6087    if (*I != Succ)
6088      return *I;
6089  llvm_unreachable("Expecting a BB with two successors!");
6090}
6091
6092MachineBasicBlock *
6093ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6094                                               MachineBasicBlock *BB) const {
6095  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6096  DebugLoc dl = MI->getDebugLoc();
6097  bool isThumb2 = Subtarget->isThumb2();
6098  switch (MI->getOpcode()) {
6099  default: {
6100    MI->dump();
6101    llvm_unreachable("Unexpected instr type to insert");
6102  }
6103  // The Thumb2 pre-indexed stores have the same MI operands, they just
6104  // define them differently in the .td files from the isel patterns, so
6105  // they need pseudos.
6106  case ARM::t2STR_preidx:
6107    MI->setDesc(TII->get(ARM::t2STR_PRE));
6108    return BB;
6109  case ARM::t2STRB_preidx:
6110    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6111    return BB;
6112  case ARM::t2STRH_preidx:
6113    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6114    return BB;
6115
6116  case ARM::STRi_preidx:
6117  case ARM::STRBi_preidx: {
6118    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6119      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6120    // Decode the offset.
6121    unsigned Offset = MI->getOperand(4).getImm();
6122    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6123    Offset = ARM_AM::getAM2Offset(Offset);
6124    if (isSub)
6125      Offset = -Offset;
6126
6127    MachineMemOperand *MMO = *MI->memoperands_begin();
6128    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6129      .addOperand(MI->getOperand(0))  // Rn_wb
6130      .addOperand(MI->getOperand(1))  // Rt
6131      .addOperand(MI->getOperand(2))  // Rn
6132      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6133      .addOperand(MI->getOperand(5))  // pred
6134      .addOperand(MI->getOperand(6))
6135      .addMemOperand(MMO);
6136    MI->eraseFromParent();
6137    return BB;
6138  }
6139  case ARM::STRr_preidx:
6140  case ARM::STRBr_preidx:
6141  case ARM::STRH_preidx: {
6142    unsigned NewOpc;
6143    switch (MI->getOpcode()) {
6144    default: llvm_unreachable("unexpected opcode!");
6145    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6146    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6147    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6148    }
6149    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6150    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6151      MIB.addOperand(MI->getOperand(i));
6152    MI->eraseFromParent();
6153    return BB;
6154  }
6155  case ARM::ATOMIC_LOAD_ADD_I8:
6156     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6157  case ARM::ATOMIC_LOAD_ADD_I16:
6158     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6159  case ARM::ATOMIC_LOAD_ADD_I32:
6160     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6161
6162  case ARM::ATOMIC_LOAD_AND_I8:
6163     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6164  case ARM::ATOMIC_LOAD_AND_I16:
6165     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6166  case ARM::ATOMIC_LOAD_AND_I32:
6167     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6168
6169  case ARM::ATOMIC_LOAD_OR_I8:
6170     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6171  case ARM::ATOMIC_LOAD_OR_I16:
6172     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6173  case ARM::ATOMIC_LOAD_OR_I32:
6174     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6175
6176  case ARM::ATOMIC_LOAD_XOR_I8:
6177     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6178  case ARM::ATOMIC_LOAD_XOR_I16:
6179     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6180  case ARM::ATOMIC_LOAD_XOR_I32:
6181     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6182
6183  case ARM::ATOMIC_LOAD_NAND_I8:
6184     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6185  case ARM::ATOMIC_LOAD_NAND_I16:
6186     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6187  case ARM::ATOMIC_LOAD_NAND_I32:
6188     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6189
6190  case ARM::ATOMIC_LOAD_SUB_I8:
6191     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6192  case ARM::ATOMIC_LOAD_SUB_I16:
6193     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6194  case ARM::ATOMIC_LOAD_SUB_I32:
6195     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6196
6197  case ARM::ATOMIC_LOAD_MIN_I8:
6198     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6199  case ARM::ATOMIC_LOAD_MIN_I16:
6200     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6201  case ARM::ATOMIC_LOAD_MIN_I32:
6202     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6203
6204  case ARM::ATOMIC_LOAD_MAX_I8:
6205     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6206  case ARM::ATOMIC_LOAD_MAX_I16:
6207     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6208  case ARM::ATOMIC_LOAD_MAX_I32:
6209     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6210
6211  case ARM::ATOMIC_LOAD_UMIN_I8:
6212     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6213  case ARM::ATOMIC_LOAD_UMIN_I16:
6214     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6215  case ARM::ATOMIC_LOAD_UMIN_I32:
6216     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6217
6218  case ARM::ATOMIC_LOAD_UMAX_I8:
6219     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6220  case ARM::ATOMIC_LOAD_UMAX_I16:
6221     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6222  case ARM::ATOMIC_LOAD_UMAX_I32:
6223     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6224
6225  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6226  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6227  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6228
6229  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6230  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6231  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6232
6233
6234  case ARM::ATOMADD6432:
6235    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6236                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6237                              /*NeedsCarry*/ true);
6238  case ARM::ATOMSUB6432:
6239    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6240                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6241                              /*NeedsCarry*/ true);
6242  case ARM::ATOMOR6432:
6243    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6244                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6245  case ARM::ATOMXOR6432:
6246    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6247                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6248  case ARM::ATOMAND6432:
6249    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6250                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6251  case ARM::ATOMSWAP6432:
6252    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6253  case ARM::ATOMCMPXCHG6432:
6254    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6255                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6256                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6257
6258  case ARM::tMOVCCr_pseudo: {
6259    // To "insert" a SELECT_CC instruction, we actually have to insert the
6260    // diamond control-flow pattern.  The incoming instruction knows the
6261    // destination vreg to set, the condition code register to branch on, the
6262    // true/false values to select between, and a branch opcode to use.
6263    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6264    MachineFunction::iterator It = BB;
6265    ++It;
6266
6267    //  thisMBB:
6268    //  ...
6269    //   TrueVal = ...
6270    //   cmpTY ccX, r1, r2
6271    //   bCC copy1MBB
6272    //   fallthrough --> copy0MBB
6273    MachineBasicBlock *thisMBB  = BB;
6274    MachineFunction *F = BB->getParent();
6275    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6276    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6277    F->insert(It, copy0MBB);
6278    F->insert(It, sinkMBB);
6279
6280    // Transfer the remainder of BB and its successor edges to sinkMBB.
6281    sinkMBB->splice(sinkMBB->begin(), BB,
6282                    llvm::next(MachineBasicBlock::iterator(MI)),
6283                    BB->end());
6284    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6285
6286    BB->addSuccessor(copy0MBB);
6287    BB->addSuccessor(sinkMBB);
6288
6289    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6290      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6291
6292    //  copy0MBB:
6293    //   %FalseValue = ...
6294    //   # fallthrough to sinkMBB
6295    BB = copy0MBB;
6296
6297    // Update machine-CFG edges
6298    BB->addSuccessor(sinkMBB);
6299
6300    //  sinkMBB:
6301    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6302    //  ...
6303    BB = sinkMBB;
6304    BuildMI(*BB, BB->begin(), dl,
6305            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6306      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6307      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6308
6309    MI->eraseFromParent();   // The pseudo instruction is gone now.
6310    return BB;
6311  }
6312
6313  case ARM::BCCi64:
6314  case ARM::BCCZi64: {
6315    // If there is an unconditional branch to the other successor, remove it.
6316    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6317
6318    // Compare both parts that make up the double comparison separately for
6319    // equality.
6320    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6321
6322    unsigned LHS1 = MI->getOperand(1).getReg();
6323    unsigned LHS2 = MI->getOperand(2).getReg();
6324    if (RHSisZero) {
6325      AddDefaultPred(BuildMI(BB, dl,
6326                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6327                     .addReg(LHS1).addImm(0));
6328      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6329        .addReg(LHS2).addImm(0)
6330        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6331    } else {
6332      unsigned RHS1 = MI->getOperand(3).getReg();
6333      unsigned RHS2 = MI->getOperand(4).getReg();
6334      AddDefaultPred(BuildMI(BB, dl,
6335                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6336                     .addReg(LHS1).addReg(RHS1));
6337      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6338        .addReg(LHS2).addReg(RHS2)
6339        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6340    }
6341
6342    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6343    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6344    if (MI->getOperand(0).getImm() == ARMCC::NE)
6345      std::swap(destMBB, exitMBB);
6346
6347    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6348      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6349    if (isThumb2)
6350      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6351    else
6352      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6353
6354    MI->eraseFromParent();   // The pseudo instruction is gone now.
6355    return BB;
6356  }
6357
6358  case ARM::Int_eh_sjlj_setjmp:
6359  case ARM::Int_eh_sjlj_setjmp_nofp:
6360  case ARM::tInt_eh_sjlj_setjmp:
6361  case ARM::t2Int_eh_sjlj_setjmp:
6362  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6363    EmitSjLjDispatchBlock(MI, BB);
6364    return BB;
6365
6366  case ARM::ABS:
6367  case ARM::t2ABS: {
6368    // To insert an ABS instruction, we have to insert the
6369    // diamond control-flow pattern.  The incoming instruction knows the
6370    // source vreg to test against 0, the destination vreg to set,
6371    // the condition code register to branch on, the
6372    // true/false values to select between, and a branch opcode to use.
6373    // It transforms
6374    //     V1 = ABS V0
6375    // into
6376    //     V2 = MOVS V0
6377    //     BCC                      (branch to SinkBB if V0 >= 0)
6378    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6379    //     SinkBB: V1 = PHI(V2, V3)
6380    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6381    MachineFunction::iterator BBI = BB;
6382    ++BBI;
6383    MachineFunction *Fn = BB->getParent();
6384    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6385    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6386    Fn->insert(BBI, RSBBB);
6387    Fn->insert(BBI, SinkBB);
6388
6389    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6390    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6391    bool isThumb2 = Subtarget->isThumb2();
6392    MachineRegisterInfo &MRI = Fn->getRegInfo();
6393    // In Thumb mode S must not be specified if source register is the SP or
6394    // PC and if destination register is the SP, so restrict register class
6395    unsigned NewMovDstReg = MRI.createVirtualRegister(
6396      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6397    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6398      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6399
6400    // Transfer the remainder of BB and its successor edges to sinkMBB.
6401    SinkBB->splice(SinkBB->begin(), BB,
6402      llvm::next(MachineBasicBlock::iterator(MI)),
6403      BB->end());
6404    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6405
6406    BB->addSuccessor(RSBBB);
6407    BB->addSuccessor(SinkBB);
6408
6409    // fall through to SinkMBB
6410    RSBBB->addSuccessor(SinkBB);
6411
6412    // insert a movs at the end of BB
6413    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6414      NewMovDstReg)
6415      .addReg(ABSSrcReg, RegState::Kill)
6416      .addImm((unsigned)ARMCC::AL).addReg(0)
6417      .addReg(ARM::CPSR, RegState::Define);
6418
6419    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6420    BuildMI(BB, dl,
6421      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6422      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6423
6424    // insert rsbri in RSBBB
6425    // Note: BCC and rsbri will be converted into predicated rsbmi
6426    // by if-conversion pass
6427    BuildMI(*RSBBB, RSBBB->begin(), dl,
6428      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6429      .addReg(NewMovDstReg, RegState::Kill)
6430      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6431
6432    // insert PHI in SinkBB,
6433    // reuse ABSDstReg to not change uses of ABS instruction
6434    BuildMI(*SinkBB, SinkBB->begin(), dl,
6435      TII->get(ARM::PHI), ABSDstReg)
6436      .addReg(NewRsbDstReg).addMBB(RSBBB)
6437      .addReg(NewMovDstReg).addMBB(BB);
6438
6439    // remove ABS instruction
6440    MI->eraseFromParent();
6441
6442    // return last added BB
6443    return SinkBB;
6444  }
6445  }
6446}
6447
6448void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6449                                                      SDNode *Node) const {
6450  if (!MI->hasPostISelHook()) {
6451    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6452           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6453    return;
6454  }
6455
6456  const MCInstrDesc *MCID = &MI->getDesc();
6457  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6458  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6459  // operand is still set to noreg. If needed, set the optional operand's
6460  // register to CPSR, and remove the redundant implicit def.
6461  //
6462  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6463
6464  // Rename pseudo opcodes.
6465  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6466  if (NewOpc) {
6467    const ARMBaseInstrInfo *TII =
6468      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6469    MCID = &TII->get(NewOpc);
6470
6471    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6472           "converted opcode should be the same except for cc_out");
6473
6474    MI->setDesc(*MCID);
6475
6476    // Add the optional cc_out operand
6477    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6478  }
6479  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6480
6481  // Any ARM instruction that sets the 's' bit should specify an optional
6482  // "cc_out" operand in the last operand position.
6483  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6484    assert(!NewOpc && "Optional cc_out operand required");
6485    return;
6486  }
6487  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6488  // since we already have an optional CPSR def.
6489  bool definesCPSR = false;
6490  bool deadCPSR = false;
6491  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6492       i != e; ++i) {
6493    const MachineOperand &MO = MI->getOperand(i);
6494    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6495      definesCPSR = true;
6496      if (MO.isDead())
6497        deadCPSR = true;
6498      MI->RemoveOperand(i);
6499      break;
6500    }
6501  }
6502  if (!definesCPSR) {
6503    assert(!NewOpc && "Optional cc_out operand required");
6504    return;
6505  }
6506  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6507  if (deadCPSR) {
6508    assert(!MI->getOperand(ccOutIdx).getReg() &&
6509           "expect uninitialized optional cc_out operand");
6510    return;
6511  }
6512
6513  // If this instruction was defined with an optional CPSR def and its dag node
6514  // had a live implicit CPSR def, then activate the optional CPSR def.
6515  MachineOperand &MO = MI->getOperand(ccOutIdx);
6516  MO.setReg(ARM::CPSR);
6517  MO.setIsDef(true);
6518}
6519
6520//===----------------------------------------------------------------------===//
6521//                           ARM Optimization Hooks
6522//===----------------------------------------------------------------------===//
6523
6524static
6525SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6526                            TargetLowering::DAGCombinerInfo &DCI) {
6527  SelectionDAG &DAG = DCI.DAG;
6528  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6529  EVT VT = N->getValueType(0);
6530  unsigned Opc = N->getOpcode();
6531  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6532  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6533  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6534  ISD::CondCode CC = ISD::SETCC_INVALID;
6535
6536  if (isSlctCC) {
6537    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6538  } else {
6539    SDValue CCOp = Slct.getOperand(0);
6540    if (CCOp.getOpcode() == ISD::SETCC)
6541      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6542  }
6543
6544  bool DoXform = false;
6545  bool InvCC = false;
6546  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6547          "Bad input!");
6548
6549  if (LHS.getOpcode() == ISD::Constant &&
6550      cast<ConstantSDNode>(LHS)->isNullValue()) {
6551    DoXform = true;
6552  } else if (CC != ISD::SETCC_INVALID &&
6553             RHS.getOpcode() == ISD::Constant &&
6554             cast<ConstantSDNode>(RHS)->isNullValue()) {
6555    std::swap(LHS, RHS);
6556    SDValue Op0 = Slct.getOperand(0);
6557    EVT OpVT = isSlctCC ? Op0.getValueType() :
6558                          Op0.getOperand(0).getValueType();
6559    bool isInt = OpVT.isInteger();
6560    CC = ISD::getSetCCInverse(CC, isInt);
6561
6562    if (!TLI.isCondCodeLegal(CC, OpVT))
6563      return SDValue();         // Inverse operator isn't legal.
6564
6565    DoXform = true;
6566    InvCC = true;
6567  }
6568
6569  if (DoXform) {
6570    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6571    if (isSlctCC)
6572      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6573                             Slct.getOperand(0), Slct.getOperand(1), CC);
6574    SDValue CCOp = Slct.getOperand(0);
6575    if (InvCC)
6576      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6577                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6578    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6579                       CCOp, OtherOp, Result);
6580  }
6581  return SDValue();
6582}
6583
6584// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6585// (only after legalization).
6586static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6587                                 TargetLowering::DAGCombinerInfo &DCI,
6588                                 const ARMSubtarget *Subtarget) {
6589
6590  // Only perform optimization if after legalize, and if NEON is available. We
6591  // also expected both operands to be BUILD_VECTORs.
6592  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6593      || N0.getOpcode() != ISD::BUILD_VECTOR
6594      || N1.getOpcode() != ISD::BUILD_VECTOR)
6595    return SDValue();
6596
6597  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6598  EVT VT = N->getValueType(0);
6599  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6600    return SDValue();
6601
6602  // Check that the vector operands are of the right form.
6603  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6604  // operands, where N is the size of the formed vector.
6605  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6606  // index such that we have a pair wise add pattern.
6607
6608  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6609  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6610    return SDValue();
6611  SDValue Vec = N0->getOperand(0)->getOperand(0);
6612  SDNode *V = Vec.getNode();
6613  unsigned nextIndex = 0;
6614
6615  // For each operands to the ADD which are BUILD_VECTORs,
6616  // check to see if each of their operands are an EXTRACT_VECTOR with
6617  // the same vector and appropriate index.
6618  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6619    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6620        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6621
6622      SDValue ExtVec0 = N0->getOperand(i);
6623      SDValue ExtVec1 = N1->getOperand(i);
6624
6625      // First operand is the vector, verify its the same.
6626      if (V != ExtVec0->getOperand(0).getNode() ||
6627          V != ExtVec1->getOperand(0).getNode())
6628        return SDValue();
6629
6630      // Second is the constant, verify its correct.
6631      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6632      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6633
6634      // For the constant, we want to see all the even or all the odd.
6635      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6636          || C1->getZExtValue() != nextIndex+1)
6637        return SDValue();
6638
6639      // Increment index.
6640      nextIndex+=2;
6641    } else
6642      return SDValue();
6643  }
6644
6645  // Create VPADDL node.
6646  SelectionDAG &DAG = DCI.DAG;
6647  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6648
6649  // Build operand list.
6650  SmallVector<SDValue, 8> Ops;
6651  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6652                                TLI.getPointerTy()));
6653
6654  // Input is the vector.
6655  Ops.push_back(Vec);
6656
6657  // Get widened type and narrowed type.
6658  MVT widenType;
6659  unsigned numElem = VT.getVectorNumElements();
6660  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6661    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6662    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6663    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6664    default:
6665      assert(0 && "Invalid vector element type for padd optimization.");
6666  }
6667
6668  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6669                            widenType, &Ops[0], Ops.size());
6670  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6671}
6672
6673/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6674/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6675/// called with the default operands, and if that fails, with commuted
6676/// operands.
6677static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6678                                          TargetLowering::DAGCombinerInfo &DCI,
6679                                          const ARMSubtarget *Subtarget){
6680
6681  // Attempt to create vpaddl for this add.
6682  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6683  if (Result.getNode())
6684    return Result;
6685
6686  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6687  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6688    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6689    if (Result.getNode()) return Result;
6690  }
6691  return SDValue();
6692}
6693
6694/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6695///
6696static SDValue PerformADDCombine(SDNode *N,
6697                                 TargetLowering::DAGCombinerInfo &DCI,
6698                                 const ARMSubtarget *Subtarget) {
6699  SDValue N0 = N->getOperand(0);
6700  SDValue N1 = N->getOperand(1);
6701
6702  // First try with the default operand order.
6703  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6704  if (Result.getNode())
6705    return Result;
6706
6707  // If that didn't work, try again with the operands commuted.
6708  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6709}
6710
6711/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6712///
6713static SDValue PerformSUBCombine(SDNode *N,
6714                                 TargetLowering::DAGCombinerInfo &DCI) {
6715  SDValue N0 = N->getOperand(0);
6716  SDValue N1 = N->getOperand(1);
6717
6718  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6719  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6720    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6721    if (Result.getNode()) return Result;
6722  }
6723
6724  return SDValue();
6725}
6726
6727/// PerformVMULCombine
6728/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6729/// special multiplier accumulator forwarding.
6730///   vmul d3, d0, d2
6731///   vmla d3, d1, d2
6732/// is faster than
6733///   vadd d3, d0, d1
6734///   vmul d3, d3, d2
6735static SDValue PerformVMULCombine(SDNode *N,
6736                                  TargetLowering::DAGCombinerInfo &DCI,
6737                                  const ARMSubtarget *Subtarget) {
6738  if (!Subtarget->hasVMLxForwarding())
6739    return SDValue();
6740
6741  SelectionDAG &DAG = DCI.DAG;
6742  SDValue N0 = N->getOperand(0);
6743  SDValue N1 = N->getOperand(1);
6744  unsigned Opcode = N0.getOpcode();
6745  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6746      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6747    Opcode = N1.getOpcode();
6748    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6749        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6750      return SDValue();
6751    std::swap(N0, N1);
6752  }
6753
6754  EVT VT = N->getValueType(0);
6755  DebugLoc DL = N->getDebugLoc();
6756  SDValue N00 = N0->getOperand(0);
6757  SDValue N01 = N0->getOperand(1);
6758  return DAG.getNode(Opcode, DL, VT,
6759                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6760                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6761}
6762
6763static SDValue PerformMULCombine(SDNode *N,
6764                                 TargetLowering::DAGCombinerInfo &DCI,
6765                                 const ARMSubtarget *Subtarget) {
6766  SelectionDAG &DAG = DCI.DAG;
6767
6768  if (Subtarget->isThumb1Only())
6769    return SDValue();
6770
6771  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6772    return SDValue();
6773
6774  EVT VT = N->getValueType(0);
6775  if (VT.is64BitVector() || VT.is128BitVector())
6776    return PerformVMULCombine(N, DCI, Subtarget);
6777  if (VT != MVT::i32)
6778    return SDValue();
6779
6780  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6781  if (!C)
6782    return SDValue();
6783
6784  uint64_t MulAmt = C->getZExtValue();
6785  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6786  ShiftAmt = ShiftAmt & (32 - 1);
6787  SDValue V = N->getOperand(0);
6788  DebugLoc DL = N->getDebugLoc();
6789
6790  SDValue Res;
6791  MulAmt >>= ShiftAmt;
6792  if (isPowerOf2_32(MulAmt - 1)) {
6793    // (mul x, 2^N + 1) => (add (shl x, N), x)
6794    Res = DAG.getNode(ISD::ADD, DL, VT,
6795                      V, DAG.getNode(ISD::SHL, DL, VT,
6796                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6797                                                        MVT::i32)));
6798  } else if (isPowerOf2_32(MulAmt + 1)) {
6799    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6800    Res = DAG.getNode(ISD::SUB, DL, VT,
6801                      DAG.getNode(ISD::SHL, DL, VT,
6802                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6803                                                     MVT::i32)),
6804                                                     V);
6805  } else
6806    return SDValue();
6807
6808  if (ShiftAmt != 0)
6809    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6810                      DAG.getConstant(ShiftAmt, MVT::i32));
6811
6812  // Do not add new nodes to DAG combiner worklist.
6813  DCI.CombineTo(N, Res, false);
6814  return SDValue();
6815}
6816
6817static SDValue PerformANDCombine(SDNode *N,
6818                                TargetLowering::DAGCombinerInfo &DCI) {
6819
6820  // Attempt to use immediate-form VBIC
6821  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6822  DebugLoc dl = N->getDebugLoc();
6823  EVT VT = N->getValueType(0);
6824  SelectionDAG &DAG = DCI.DAG;
6825
6826  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6827    return SDValue();
6828
6829  APInt SplatBits, SplatUndef;
6830  unsigned SplatBitSize;
6831  bool HasAnyUndefs;
6832  if (BVN &&
6833      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6834    if (SplatBitSize <= 64) {
6835      EVT VbicVT;
6836      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6837                                      SplatUndef.getZExtValue(), SplatBitSize,
6838                                      DAG, VbicVT, VT.is128BitVector(),
6839                                      OtherModImm);
6840      if (Val.getNode()) {
6841        SDValue Input =
6842          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6843        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6844        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6845      }
6846    }
6847  }
6848
6849  return SDValue();
6850}
6851
6852/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6853static SDValue PerformORCombine(SDNode *N,
6854                                TargetLowering::DAGCombinerInfo &DCI,
6855                                const ARMSubtarget *Subtarget) {
6856  // Attempt to use immediate-form VORR
6857  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6858  DebugLoc dl = N->getDebugLoc();
6859  EVT VT = N->getValueType(0);
6860  SelectionDAG &DAG = DCI.DAG;
6861
6862  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6863    return SDValue();
6864
6865  APInt SplatBits, SplatUndef;
6866  unsigned SplatBitSize;
6867  bool HasAnyUndefs;
6868  if (BVN && Subtarget->hasNEON() &&
6869      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6870    if (SplatBitSize <= 64) {
6871      EVT VorrVT;
6872      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6873                                      SplatUndef.getZExtValue(), SplatBitSize,
6874                                      DAG, VorrVT, VT.is128BitVector(),
6875                                      OtherModImm);
6876      if (Val.getNode()) {
6877        SDValue Input =
6878          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6879        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6880        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6881      }
6882    }
6883  }
6884
6885  SDValue N0 = N->getOperand(0);
6886  if (N0.getOpcode() != ISD::AND)
6887    return SDValue();
6888  SDValue N1 = N->getOperand(1);
6889
6890  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6891  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6892      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6893    APInt SplatUndef;
6894    unsigned SplatBitSize;
6895    bool HasAnyUndefs;
6896
6897    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6898    APInt SplatBits0;
6899    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6900                                  HasAnyUndefs) && !HasAnyUndefs) {
6901      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6902      APInt SplatBits1;
6903      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6904                                    HasAnyUndefs) && !HasAnyUndefs &&
6905          SplatBits0 == ~SplatBits1) {
6906        // Canonicalize the vector type to make instruction selection simpler.
6907        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6908        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6909                                     N0->getOperand(1), N0->getOperand(0),
6910                                     N1->getOperand(0));
6911        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6912      }
6913    }
6914  }
6915
6916  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6917  // reasonable.
6918
6919  // BFI is only available on V6T2+
6920  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6921    return SDValue();
6922
6923  DebugLoc DL = N->getDebugLoc();
6924  // 1) or (and A, mask), val => ARMbfi A, val, mask
6925  //      iff (val & mask) == val
6926  //
6927  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6928  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6929  //          && mask == ~mask2
6930  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6931  //          && ~mask == mask2
6932  //  (i.e., copy a bitfield value into another bitfield of the same width)
6933
6934  if (VT != MVT::i32)
6935    return SDValue();
6936
6937  SDValue N00 = N0.getOperand(0);
6938
6939  // The value and the mask need to be constants so we can verify this is
6940  // actually a bitfield set. If the mask is 0xffff, we can do better
6941  // via a movt instruction, so don't use BFI in that case.
6942  SDValue MaskOp = N0.getOperand(1);
6943  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6944  if (!MaskC)
6945    return SDValue();
6946  unsigned Mask = MaskC->getZExtValue();
6947  if (Mask == 0xffff)
6948    return SDValue();
6949  SDValue Res;
6950  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6951  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6952  if (N1C) {
6953    unsigned Val = N1C->getZExtValue();
6954    if ((Val & ~Mask) != Val)
6955      return SDValue();
6956
6957    if (ARM::isBitFieldInvertedMask(Mask)) {
6958      Val >>= CountTrailingZeros_32(~Mask);
6959
6960      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6961                        DAG.getConstant(Val, MVT::i32),
6962                        DAG.getConstant(Mask, MVT::i32));
6963
6964      // Do not add new nodes to DAG combiner worklist.
6965      DCI.CombineTo(N, Res, false);
6966      return SDValue();
6967    }
6968  } else if (N1.getOpcode() == ISD::AND) {
6969    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6970    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6971    if (!N11C)
6972      return SDValue();
6973    unsigned Mask2 = N11C->getZExtValue();
6974
6975    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6976    // as is to match.
6977    if (ARM::isBitFieldInvertedMask(Mask) &&
6978        (Mask == ~Mask2)) {
6979      // The pack halfword instruction works better for masks that fit it,
6980      // so use that when it's available.
6981      if (Subtarget->hasT2ExtractPack() &&
6982          (Mask == 0xffff || Mask == 0xffff0000))
6983        return SDValue();
6984      // 2a
6985      unsigned amt = CountTrailingZeros_32(Mask2);
6986      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6987                        DAG.getConstant(amt, MVT::i32));
6988      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6989                        DAG.getConstant(Mask, MVT::i32));
6990      // Do not add new nodes to DAG combiner worklist.
6991      DCI.CombineTo(N, Res, false);
6992      return SDValue();
6993    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6994               (~Mask == Mask2)) {
6995      // The pack halfword instruction works better for masks that fit it,
6996      // so use that when it's available.
6997      if (Subtarget->hasT2ExtractPack() &&
6998          (Mask2 == 0xffff || Mask2 == 0xffff0000))
6999        return SDValue();
7000      // 2b
7001      unsigned lsb = CountTrailingZeros_32(Mask);
7002      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7003                        DAG.getConstant(lsb, MVT::i32));
7004      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7005                        DAG.getConstant(Mask2, MVT::i32));
7006      // Do not add new nodes to DAG combiner worklist.
7007      DCI.CombineTo(N, Res, false);
7008      return SDValue();
7009    }
7010  }
7011
7012  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7013      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7014      ARM::isBitFieldInvertedMask(~Mask)) {
7015    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7016    // where lsb(mask) == #shamt and masked bits of B are known zero.
7017    SDValue ShAmt = N00.getOperand(1);
7018    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7019    unsigned LSB = CountTrailingZeros_32(Mask);
7020    if (ShAmtC != LSB)
7021      return SDValue();
7022
7023    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7024                      DAG.getConstant(~Mask, MVT::i32));
7025
7026    // Do not add new nodes to DAG combiner worklist.
7027    DCI.CombineTo(N, Res, false);
7028  }
7029
7030  return SDValue();
7031}
7032
7033/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7034/// the bits being cleared by the AND are not demanded by the BFI.
7035static SDValue PerformBFICombine(SDNode *N,
7036                                 TargetLowering::DAGCombinerInfo &DCI) {
7037  SDValue N1 = N->getOperand(1);
7038  if (N1.getOpcode() == ISD::AND) {
7039    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7040    if (!N11C)
7041      return SDValue();
7042    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7043    unsigned LSB = CountTrailingZeros_32(~InvMask);
7044    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7045    unsigned Mask = (1 << Width)-1;
7046    unsigned Mask2 = N11C->getZExtValue();
7047    if ((Mask & (~Mask2)) == 0)
7048      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7049                             N->getOperand(0), N1.getOperand(0),
7050                             N->getOperand(2));
7051  }
7052  return SDValue();
7053}
7054
7055/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7056/// ARMISD::VMOVRRD.
7057static SDValue PerformVMOVRRDCombine(SDNode *N,
7058                                     TargetLowering::DAGCombinerInfo &DCI) {
7059  // vmovrrd(vmovdrr x, y) -> x,y
7060  SDValue InDouble = N->getOperand(0);
7061  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7062    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7063
7064  // vmovrrd(load f64) -> (load i32), (load i32)
7065  SDNode *InNode = InDouble.getNode();
7066  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7067      InNode->getValueType(0) == MVT::f64 &&
7068      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7069      !cast<LoadSDNode>(InNode)->isVolatile()) {
7070    // TODO: Should this be done for non-FrameIndex operands?
7071    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7072
7073    SelectionDAG &DAG = DCI.DAG;
7074    DebugLoc DL = LD->getDebugLoc();
7075    SDValue BasePtr = LD->getBasePtr();
7076    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7077                                 LD->getPointerInfo(), LD->isVolatile(),
7078                                 LD->isNonTemporal(), LD->isInvariant(),
7079                                 LD->getAlignment());
7080
7081    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7082                                    DAG.getConstant(4, MVT::i32));
7083    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7084                                 LD->getPointerInfo(), LD->isVolatile(),
7085                                 LD->isNonTemporal(), LD->isInvariant(),
7086                                 std::min(4U, LD->getAlignment() / 2));
7087
7088    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7089    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7090    DCI.RemoveFromWorklist(LD);
7091    DAG.DeleteNode(LD);
7092    return Result;
7093  }
7094
7095  return SDValue();
7096}
7097
7098/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7099/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7100static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7101  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7102  SDValue Op0 = N->getOperand(0);
7103  SDValue Op1 = N->getOperand(1);
7104  if (Op0.getOpcode() == ISD::BITCAST)
7105    Op0 = Op0.getOperand(0);
7106  if (Op1.getOpcode() == ISD::BITCAST)
7107    Op1 = Op1.getOperand(0);
7108  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7109      Op0.getNode() == Op1.getNode() &&
7110      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7111    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7112                       N->getValueType(0), Op0.getOperand(0));
7113  return SDValue();
7114}
7115
7116/// PerformSTORECombine - Target-specific dag combine xforms for
7117/// ISD::STORE.
7118static SDValue PerformSTORECombine(SDNode *N,
7119                                   TargetLowering::DAGCombinerInfo &DCI) {
7120  // Bitcast an i64 store extracted from a vector to f64.
7121  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7122  StoreSDNode *St = cast<StoreSDNode>(N);
7123  SDValue StVal = St->getValue();
7124  if (!ISD::isNormalStore(St) || St->isVolatile())
7125    return SDValue();
7126
7127  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7128      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
7129    SelectionDAG  &DAG = DCI.DAG;
7130    DebugLoc DL = St->getDebugLoc();
7131    SDValue BasePtr = St->getBasePtr();
7132    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7133                                  StVal.getNode()->getOperand(0), BasePtr,
7134                                  St->getPointerInfo(), St->isVolatile(),
7135                                  St->isNonTemporal(), St->getAlignment());
7136
7137    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7138                                    DAG.getConstant(4, MVT::i32));
7139    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7140                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7141                        St->isNonTemporal(),
7142                        std::min(4U, St->getAlignment() / 2));
7143  }
7144
7145  if (StVal.getValueType() != MVT::i64 ||
7146      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7147    return SDValue();
7148
7149  SelectionDAG &DAG = DCI.DAG;
7150  DebugLoc dl = StVal.getDebugLoc();
7151  SDValue IntVec = StVal.getOperand(0);
7152  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7153                                 IntVec.getValueType().getVectorNumElements());
7154  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7155  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7156                               Vec, StVal.getOperand(1));
7157  dl = N->getDebugLoc();
7158  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7159  // Make the DAGCombiner fold the bitcasts.
7160  DCI.AddToWorklist(Vec.getNode());
7161  DCI.AddToWorklist(ExtElt.getNode());
7162  DCI.AddToWorklist(V.getNode());
7163  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7164                      St->getPointerInfo(), St->isVolatile(),
7165                      St->isNonTemporal(), St->getAlignment(),
7166                      St->getTBAAInfo());
7167}
7168
7169/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7170/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7171/// i64 vector to have f64 elements, since the value can then be loaded
7172/// directly into a VFP register.
7173static bool hasNormalLoadOperand(SDNode *N) {
7174  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7175  for (unsigned i = 0; i < NumElts; ++i) {
7176    SDNode *Elt = N->getOperand(i).getNode();
7177    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7178      return true;
7179  }
7180  return false;
7181}
7182
7183/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7184/// ISD::BUILD_VECTOR.
7185static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7186                                          TargetLowering::DAGCombinerInfo &DCI){
7187  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7188  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7189  // into a pair of GPRs, which is fine when the value is used as a scalar,
7190  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7191  SelectionDAG &DAG = DCI.DAG;
7192  if (N->getNumOperands() == 2) {
7193    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7194    if (RV.getNode())
7195      return RV;
7196  }
7197
7198  // Load i64 elements as f64 values so that type legalization does not split
7199  // them up into i32 values.
7200  EVT VT = N->getValueType(0);
7201  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7202    return SDValue();
7203  DebugLoc dl = N->getDebugLoc();
7204  SmallVector<SDValue, 8> Ops;
7205  unsigned NumElts = VT.getVectorNumElements();
7206  for (unsigned i = 0; i < NumElts; ++i) {
7207    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7208    Ops.push_back(V);
7209    // Make the DAGCombiner fold the bitcast.
7210    DCI.AddToWorklist(V.getNode());
7211  }
7212  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7213  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7214  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7215}
7216
7217/// PerformInsertEltCombine - Target-specific dag combine xforms for
7218/// ISD::INSERT_VECTOR_ELT.
7219static SDValue PerformInsertEltCombine(SDNode *N,
7220                                       TargetLowering::DAGCombinerInfo &DCI) {
7221  // Bitcast an i64 load inserted into a vector to f64.
7222  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7223  EVT VT = N->getValueType(0);
7224  SDNode *Elt = N->getOperand(1).getNode();
7225  if (VT.getVectorElementType() != MVT::i64 ||
7226      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7227    return SDValue();
7228
7229  SelectionDAG &DAG = DCI.DAG;
7230  DebugLoc dl = N->getDebugLoc();
7231  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7232                                 VT.getVectorNumElements());
7233  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7234  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7235  // Make the DAGCombiner fold the bitcasts.
7236  DCI.AddToWorklist(Vec.getNode());
7237  DCI.AddToWorklist(V.getNode());
7238  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7239                               Vec, V, N->getOperand(2));
7240  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7241}
7242
7243/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7244/// ISD::VECTOR_SHUFFLE.
7245static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7246  // The LLVM shufflevector instruction does not require the shuffle mask
7247  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7248  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7249  // operands do not match the mask length, they are extended by concatenating
7250  // them with undef vectors.  That is probably the right thing for other
7251  // targets, but for NEON it is better to concatenate two double-register
7252  // size vector operands into a single quad-register size vector.  Do that
7253  // transformation here:
7254  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7255  //   shuffle(concat(v1, v2), undef)
7256  SDValue Op0 = N->getOperand(0);
7257  SDValue Op1 = N->getOperand(1);
7258  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7259      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7260      Op0.getNumOperands() != 2 ||
7261      Op1.getNumOperands() != 2)
7262    return SDValue();
7263  SDValue Concat0Op1 = Op0.getOperand(1);
7264  SDValue Concat1Op1 = Op1.getOperand(1);
7265  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7266      Concat1Op1.getOpcode() != ISD::UNDEF)
7267    return SDValue();
7268  // Skip the transformation if any of the types are illegal.
7269  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7270  EVT VT = N->getValueType(0);
7271  if (!TLI.isTypeLegal(VT) ||
7272      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7273      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7274    return SDValue();
7275
7276  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7277                                  Op0.getOperand(0), Op1.getOperand(0));
7278  // Translate the shuffle mask.
7279  SmallVector<int, 16> NewMask;
7280  unsigned NumElts = VT.getVectorNumElements();
7281  unsigned HalfElts = NumElts/2;
7282  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7283  for (unsigned n = 0; n < NumElts; ++n) {
7284    int MaskElt = SVN->getMaskElt(n);
7285    int NewElt = -1;
7286    if (MaskElt < (int)HalfElts)
7287      NewElt = MaskElt;
7288    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7289      NewElt = HalfElts + MaskElt - NumElts;
7290    NewMask.push_back(NewElt);
7291  }
7292  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7293                              DAG.getUNDEF(VT), NewMask.data());
7294}
7295
7296/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7297/// NEON load/store intrinsics to merge base address updates.
7298static SDValue CombineBaseUpdate(SDNode *N,
7299                                 TargetLowering::DAGCombinerInfo &DCI) {
7300  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7301    return SDValue();
7302
7303  SelectionDAG &DAG = DCI.DAG;
7304  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7305                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7306  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7307  SDValue Addr = N->getOperand(AddrOpIdx);
7308
7309  // Search for a use of the address operand that is an increment.
7310  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7311         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7312    SDNode *User = *UI;
7313    if (User->getOpcode() != ISD::ADD ||
7314        UI.getUse().getResNo() != Addr.getResNo())
7315      continue;
7316
7317    // Check that the add is independent of the load/store.  Otherwise, folding
7318    // it would create a cycle.
7319    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7320      continue;
7321
7322    // Find the new opcode for the updating load/store.
7323    bool isLoad = true;
7324    bool isLaneOp = false;
7325    unsigned NewOpc = 0;
7326    unsigned NumVecs = 0;
7327    if (isIntrinsic) {
7328      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7329      switch (IntNo) {
7330      default: assert(0 && "unexpected intrinsic for Neon base update");
7331      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7332        NumVecs = 1; break;
7333      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7334        NumVecs = 2; break;
7335      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7336        NumVecs = 3; break;
7337      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7338        NumVecs = 4; break;
7339      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7340        NumVecs = 2; isLaneOp = true; break;
7341      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7342        NumVecs = 3; isLaneOp = true; break;
7343      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7344        NumVecs = 4; isLaneOp = true; break;
7345      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7346        NumVecs = 1; isLoad = false; break;
7347      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7348        NumVecs = 2; isLoad = false; break;
7349      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7350        NumVecs = 3; isLoad = false; break;
7351      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7352        NumVecs = 4; isLoad = false; break;
7353      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7354        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7355      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7356        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7357      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7358        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7359      }
7360    } else {
7361      isLaneOp = true;
7362      switch (N->getOpcode()) {
7363      default: assert(0 && "unexpected opcode for Neon base update");
7364      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7365      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7366      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7367      }
7368    }
7369
7370    // Find the size of memory referenced by the load/store.
7371    EVT VecTy;
7372    if (isLoad)
7373      VecTy = N->getValueType(0);
7374    else
7375      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7376    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7377    if (isLaneOp)
7378      NumBytes /= VecTy.getVectorNumElements();
7379
7380    // If the increment is a constant, it must match the memory ref size.
7381    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7382    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7383      uint64_t IncVal = CInc->getZExtValue();
7384      if (IncVal != NumBytes)
7385        continue;
7386    } else if (NumBytes >= 3 * 16) {
7387      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7388      // separate instructions that make it harder to use a non-constant update.
7389      continue;
7390    }
7391
7392    // Create the new updating load/store node.
7393    EVT Tys[6];
7394    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7395    unsigned n;
7396    for (n = 0; n < NumResultVecs; ++n)
7397      Tys[n] = VecTy;
7398    Tys[n++] = MVT::i32;
7399    Tys[n] = MVT::Other;
7400    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7401    SmallVector<SDValue, 8> Ops;
7402    Ops.push_back(N->getOperand(0)); // incoming chain
7403    Ops.push_back(N->getOperand(AddrOpIdx));
7404    Ops.push_back(Inc);
7405    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7406      Ops.push_back(N->getOperand(i));
7407    }
7408    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7409    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7410                                           Ops.data(), Ops.size(),
7411                                           MemInt->getMemoryVT(),
7412                                           MemInt->getMemOperand());
7413
7414    // Update the uses.
7415    std::vector<SDValue> NewResults;
7416    for (unsigned i = 0; i < NumResultVecs; ++i) {
7417      NewResults.push_back(SDValue(UpdN.getNode(), i));
7418    }
7419    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7420    DCI.CombineTo(N, NewResults);
7421    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7422
7423    break;
7424  }
7425  return SDValue();
7426}
7427
7428/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7429/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7430/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7431/// return true.
7432static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7433  SelectionDAG &DAG = DCI.DAG;
7434  EVT VT = N->getValueType(0);
7435  // vldN-dup instructions only support 64-bit vectors for N > 1.
7436  if (!VT.is64BitVector())
7437    return false;
7438
7439  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7440  SDNode *VLD = N->getOperand(0).getNode();
7441  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7442    return false;
7443  unsigned NumVecs = 0;
7444  unsigned NewOpc = 0;
7445  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7446  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7447    NumVecs = 2;
7448    NewOpc = ARMISD::VLD2DUP;
7449  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7450    NumVecs = 3;
7451    NewOpc = ARMISD::VLD3DUP;
7452  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7453    NumVecs = 4;
7454    NewOpc = ARMISD::VLD4DUP;
7455  } else {
7456    return false;
7457  }
7458
7459  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7460  // numbers match the load.
7461  unsigned VLDLaneNo =
7462    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7463  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7464       UI != UE; ++UI) {
7465    // Ignore uses of the chain result.
7466    if (UI.getUse().getResNo() == NumVecs)
7467      continue;
7468    SDNode *User = *UI;
7469    if (User->getOpcode() != ARMISD::VDUPLANE ||
7470        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7471      return false;
7472  }
7473
7474  // Create the vldN-dup node.
7475  EVT Tys[5];
7476  unsigned n;
7477  for (n = 0; n < NumVecs; ++n)
7478    Tys[n] = VT;
7479  Tys[n] = MVT::Other;
7480  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7481  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7482  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7483  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7484                                           Ops, 2, VLDMemInt->getMemoryVT(),
7485                                           VLDMemInt->getMemOperand());
7486
7487  // Update the uses.
7488  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7489       UI != UE; ++UI) {
7490    unsigned ResNo = UI.getUse().getResNo();
7491    // Ignore uses of the chain result.
7492    if (ResNo == NumVecs)
7493      continue;
7494    SDNode *User = *UI;
7495    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7496  }
7497
7498  // Now the vldN-lane intrinsic is dead except for its chain result.
7499  // Update uses of the chain.
7500  std::vector<SDValue> VLDDupResults;
7501  for (unsigned n = 0; n < NumVecs; ++n)
7502    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7503  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7504  DCI.CombineTo(VLD, VLDDupResults);
7505
7506  return true;
7507}
7508
7509/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7510/// ARMISD::VDUPLANE.
7511static SDValue PerformVDUPLANECombine(SDNode *N,
7512                                      TargetLowering::DAGCombinerInfo &DCI) {
7513  SDValue Op = N->getOperand(0);
7514
7515  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7516  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7517  if (CombineVLDDUP(N, DCI))
7518    return SDValue(N, 0);
7519
7520  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7521  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7522  while (Op.getOpcode() == ISD::BITCAST)
7523    Op = Op.getOperand(0);
7524  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7525    return SDValue();
7526
7527  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7528  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7529  // The canonical VMOV for a zero vector uses a 32-bit element size.
7530  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7531  unsigned EltBits;
7532  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7533    EltSize = 8;
7534  EVT VT = N->getValueType(0);
7535  if (EltSize > VT.getVectorElementType().getSizeInBits())
7536    return SDValue();
7537
7538  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7539}
7540
7541// isConstVecPow2 - Return true if each vector element is a power of 2, all
7542// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7543static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7544{
7545  integerPart cN;
7546  integerPart c0 = 0;
7547  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7548       I != E; I++) {
7549    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7550    if (!C)
7551      return false;
7552
7553    bool isExact;
7554    APFloat APF = C->getValueAPF();
7555    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7556        != APFloat::opOK || !isExact)
7557      return false;
7558
7559    c0 = (I == 0) ? cN : c0;
7560    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7561      return false;
7562  }
7563  C = c0;
7564  return true;
7565}
7566
7567/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7568/// can replace combinations of VMUL and VCVT (floating-point to integer)
7569/// when the VMUL has a constant operand that is a power of 2.
7570///
7571/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7572///  vmul.f32        d16, d17, d16
7573///  vcvt.s32.f32    d16, d16
7574/// becomes:
7575///  vcvt.s32.f32    d16, d16, #3
7576static SDValue PerformVCVTCombine(SDNode *N,
7577                                  TargetLowering::DAGCombinerInfo &DCI,
7578                                  const ARMSubtarget *Subtarget) {
7579  SelectionDAG &DAG = DCI.DAG;
7580  SDValue Op = N->getOperand(0);
7581
7582  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7583      Op.getOpcode() != ISD::FMUL)
7584    return SDValue();
7585
7586  uint64_t C;
7587  SDValue N0 = Op->getOperand(0);
7588  SDValue ConstVec = Op->getOperand(1);
7589  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7590
7591  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7592      !isConstVecPow2(ConstVec, isSigned, C))
7593    return SDValue();
7594
7595  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7596    Intrinsic::arm_neon_vcvtfp2fxu;
7597  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7598                     N->getValueType(0),
7599                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7600                     DAG.getConstant(Log2_64(C), MVT::i32));
7601}
7602
7603/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7604/// can replace combinations of VCVT (integer to floating-point) and VDIV
7605/// when the VDIV has a constant operand that is a power of 2.
7606///
7607/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7608///  vcvt.f32.s32    d16, d16
7609///  vdiv.f32        d16, d17, d16
7610/// becomes:
7611///  vcvt.f32.s32    d16, d16, #3
7612static SDValue PerformVDIVCombine(SDNode *N,
7613                                  TargetLowering::DAGCombinerInfo &DCI,
7614                                  const ARMSubtarget *Subtarget) {
7615  SelectionDAG &DAG = DCI.DAG;
7616  SDValue Op = N->getOperand(0);
7617  unsigned OpOpcode = Op.getNode()->getOpcode();
7618
7619  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7620      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7621    return SDValue();
7622
7623  uint64_t C;
7624  SDValue ConstVec = N->getOperand(1);
7625  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7626
7627  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7628      !isConstVecPow2(ConstVec, isSigned, C))
7629    return SDValue();
7630
7631  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7632    Intrinsic::arm_neon_vcvtfxu2fp;
7633  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7634                     Op.getValueType(),
7635                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7636                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7637}
7638
7639/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7640/// operand of a vector shift operation, where all the elements of the
7641/// build_vector must have the same constant integer value.
7642static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7643  // Ignore bit_converts.
7644  while (Op.getOpcode() == ISD::BITCAST)
7645    Op = Op.getOperand(0);
7646  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7647  APInt SplatBits, SplatUndef;
7648  unsigned SplatBitSize;
7649  bool HasAnyUndefs;
7650  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7651                                      HasAnyUndefs, ElementBits) ||
7652      SplatBitSize > ElementBits)
7653    return false;
7654  Cnt = SplatBits.getSExtValue();
7655  return true;
7656}
7657
7658/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7659/// operand of a vector shift left operation.  That value must be in the range:
7660///   0 <= Value < ElementBits for a left shift; or
7661///   0 <= Value <= ElementBits for a long left shift.
7662static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7663  assert(VT.isVector() && "vector shift count is not a vector type");
7664  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7665  if (! getVShiftImm(Op, ElementBits, Cnt))
7666    return false;
7667  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7668}
7669
7670/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7671/// operand of a vector shift right operation.  For a shift opcode, the value
7672/// is positive, but for an intrinsic the value count must be negative. The
7673/// absolute value must be in the range:
7674///   1 <= |Value| <= ElementBits for a right shift; or
7675///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7676static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7677                         int64_t &Cnt) {
7678  assert(VT.isVector() && "vector shift count is not a vector type");
7679  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7680  if (! getVShiftImm(Op, ElementBits, Cnt))
7681    return false;
7682  if (isIntrinsic)
7683    Cnt = -Cnt;
7684  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7685}
7686
7687/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7688static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7689  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7690  switch (IntNo) {
7691  default:
7692    // Don't do anything for most intrinsics.
7693    break;
7694
7695  // Vector shifts: check for immediate versions and lower them.
7696  // Note: This is done during DAG combining instead of DAG legalizing because
7697  // the build_vectors for 64-bit vector element shift counts are generally
7698  // not legal, and it is hard to see their values after they get legalized to
7699  // loads from a constant pool.
7700  case Intrinsic::arm_neon_vshifts:
7701  case Intrinsic::arm_neon_vshiftu:
7702  case Intrinsic::arm_neon_vshiftls:
7703  case Intrinsic::arm_neon_vshiftlu:
7704  case Intrinsic::arm_neon_vshiftn:
7705  case Intrinsic::arm_neon_vrshifts:
7706  case Intrinsic::arm_neon_vrshiftu:
7707  case Intrinsic::arm_neon_vrshiftn:
7708  case Intrinsic::arm_neon_vqshifts:
7709  case Intrinsic::arm_neon_vqshiftu:
7710  case Intrinsic::arm_neon_vqshiftsu:
7711  case Intrinsic::arm_neon_vqshiftns:
7712  case Intrinsic::arm_neon_vqshiftnu:
7713  case Intrinsic::arm_neon_vqshiftnsu:
7714  case Intrinsic::arm_neon_vqrshiftns:
7715  case Intrinsic::arm_neon_vqrshiftnu:
7716  case Intrinsic::arm_neon_vqrshiftnsu: {
7717    EVT VT = N->getOperand(1).getValueType();
7718    int64_t Cnt;
7719    unsigned VShiftOpc = 0;
7720
7721    switch (IntNo) {
7722    case Intrinsic::arm_neon_vshifts:
7723    case Intrinsic::arm_neon_vshiftu:
7724      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7725        VShiftOpc = ARMISD::VSHL;
7726        break;
7727      }
7728      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7729        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7730                     ARMISD::VSHRs : ARMISD::VSHRu);
7731        break;
7732      }
7733      return SDValue();
7734
7735    case Intrinsic::arm_neon_vshiftls:
7736    case Intrinsic::arm_neon_vshiftlu:
7737      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7738        break;
7739      llvm_unreachable("invalid shift count for vshll intrinsic");
7740
7741    case Intrinsic::arm_neon_vrshifts:
7742    case Intrinsic::arm_neon_vrshiftu:
7743      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7744        break;
7745      return SDValue();
7746
7747    case Intrinsic::arm_neon_vqshifts:
7748    case Intrinsic::arm_neon_vqshiftu:
7749      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7750        break;
7751      return SDValue();
7752
7753    case Intrinsic::arm_neon_vqshiftsu:
7754      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7755        break;
7756      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7757
7758    case Intrinsic::arm_neon_vshiftn:
7759    case Intrinsic::arm_neon_vrshiftn:
7760    case Intrinsic::arm_neon_vqshiftns:
7761    case Intrinsic::arm_neon_vqshiftnu:
7762    case Intrinsic::arm_neon_vqshiftnsu:
7763    case Intrinsic::arm_neon_vqrshiftns:
7764    case Intrinsic::arm_neon_vqrshiftnu:
7765    case Intrinsic::arm_neon_vqrshiftnsu:
7766      // Narrowing shifts require an immediate right shift.
7767      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7768        break;
7769      llvm_unreachable("invalid shift count for narrowing vector shift "
7770                       "intrinsic");
7771
7772    default:
7773      llvm_unreachable("unhandled vector shift");
7774    }
7775
7776    switch (IntNo) {
7777    case Intrinsic::arm_neon_vshifts:
7778    case Intrinsic::arm_neon_vshiftu:
7779      // Opcode already set above.
7780      break;
7781    case Intrinsic::arm_neon_vshiftls:
7782    case Intrinsic::arm_neon_vshiftlu:
7783      if (Cnt == VT.getVectorElementType().getSizeInBits())
7784        VShiftOpc = ARMISD::VSHLLi;
7785      else
7786        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7787                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7788      break;
7789    case Intrinsic::arm_neon_vshiftn:
7790      VShiftOpc = ARMISD::VSHRN; break;
7791    case Intrinsic::arm_neon_vrshifts:
7792      VShiftOpc = ARMISD::VRSHRs; break;
7793    case Intrinsic::arm_neon_vrshiftu:
7794      VShiftOpc = ARMISD::VRSHRu; break;
7795    case Intrinsic::arm_neon_vrshiftn:
7796      VShiftOpc = ARMISD::VRSHRN; break;
7797    case Intrinsic::arm_neon_vqshifts:
7798      VShiftOpc = ARMISD::VQSHLs; break;
7799    case Intrinsic::arm_neon_vqshiftu:
7800      VShiftOpc = ARMISD::VQSHLu; break;
7801    case Intrinsic::arm_neon_vqshiftsu:
7802      VShiftOpc = ARMISD::VQSHLsu; break;
7803    case Intrinsic::arm_neon_vqshiftns:
7804      VShiftOpc = ARMISD::VQSHRNs; break;
7805    case Intrinsic::arm_neon_vqshiftnu:
7806      VShiftOpc = ARMISD::VQSHRNu; break;
7807    case Intrinsic::arm_neon_vqshiftnsu:
7808      VShiftOpc = ARMISD::VQSHRNsu; break;
7809    case Intrinsic::arm_neon_vqrshiftns:
7810      VShiftOpc = ARMISD::VQRSHRNs; break;
7811    case Intrinsic::arm_neon_vqrshiftnu:
7812      VShiftOpc = ARMISD::VQRSHRNu; break;
7813    case Intrinsic::arm_neon_vqrshiftnsu:
7814      VShiftOpc = ARMISD::VQRSHRNsu; break;
7815    }
7816
7817    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7818                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7819  }
7820
7821  case Intrinsic::arm_neon_vshiftins: {
7822    EVT VT = N->getOperand(1).getValueType();
7823    int64_t Cnt;
7824    unsigned VShiftOpc = 0;
7825
7826    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7827      VShiftOpc = ARMISD::VSLI;
7828    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7829      VShiftOpc = ARMISD::VSRI;
7830    else {
7831      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7832    }
7833
7834    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7835                       N->getOperand(1), N->getOperand(2),
7836                       DAG.getConstant(Cnt, MVT::i32));
7837  }
7838
7839  case Intrinsic::arm_neon_vqrshifts:
7840  case Intrinsic::arm_neon_vqrshiftu:
7841    // No immediate versions of these to check for.
7842    break;
7843  }
7844
7845  return SDValue();
7846}
7847
7848/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7849/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7850/// combining instead of DAG legalizing because the build_vectors for 64-bit
7851/// vector element shift counts are generally not legal, and it is hard to see
7852/// their values after they get legalized to loads from a constant pool.
7853static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7854                                   const ARMSubtarget *ST) {
7855  EVT VT = N->getValueType(0);
7856
7857  // Nothing to be done for scalar shifts.
7858  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7859  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7860    return SDValue();
7861
7862  assert(ST->hasNEON() && "unexpected vector shift");
7863  int64_t Cnt;
7864
7865  switch (N->getOpcode()) {
7866  default: llvm_unreachable("unexpected shift opcode");
7867
7868  case ISD::SHL:
7869    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7870      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7871                         DAG.getConstant(Cnt, MVT::i32));
7872    break;
7873
7874  case ISD::SRA:
7875  case ISD::SRL:
7876    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7877      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7878                            ARMISD::VSHRs : ARMISD::VSHRu);
7879      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7880                         DAG.getConstant(Cnt, MVT::i32));
7881    }
7882  }
7883  return SDValue();
7884}
7885
7886/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7887/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7888static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7889                                    const ARMSubtarget *ST) {
7890  SDValue N0 = N->getOperand(0);
7891
7892  // Check for sign- and zero-extensions of vector extract operations of 8-
7893  // and 16-bit vector elements.  NEON supports these directly.  They are
7894  // handled during DAG combining because type legalization will promote them
7895  // to 32-bit types and it is messy to recognize the operations after that.
7896  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7897    SDValue Vec = N0.getOperand(0);
7898    SDValue Lane = N0.getOperand(1);
7899    EVT VT = N->getValueType(0);
7900    EVT EltVT = N0.getValueType();
7901    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7902
7903    if (VT == MVT::i32 &&
7904        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7905        TLI.isTypeLegal(Vec.getValueType()) &&
7906        isa<ConstantSDNode>(Lane)) {
7907
7908      unsigned Opc = 0;
7909      switch (N->getOpcode()) {
7910      default: llvm_unreachable("unexpected opcode");
7911      case ISD::SIGN_EXTEND:
7912        Opc = ARMISD::VGETLANEs;
7913        break;
7914      case ISD::ZERO_EXTEND:
7915      case ISD::ANY_EXTEND:
7916        Opc = ARMISD::VGETLANEu;
7917        break;
7918      }
7919      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7920    }
7921  }
7922
7923  return SDValue();
7924}
7925
7926/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7927/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7928static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7929                                       const ARMSubtarget *ST) {
7930  // If the target supports NEON, try to use vmax/vmin instructions for f32
7931  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7932  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7933  // a NaN; only do the transformation when it matches that behavior.
7934
7935  // For now only do this when using NEON for FP operations; if using VFP, it
7936  // is not obvious that the benefit outweighs the cost of switching to the
7937  // NEON pipeline.
7938  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7939      N->getValueType(0) != MVT::f32)
7940    return SDValue();
7941
7942  SDValue CondLHS = N->getOperand(0);
7943  SDValue CondRHS = N->getOperand(1);
7944  SDValue LHS = N->getOperand(2);
7945  SDValue RHS = N->getOperand(3);
7946  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7947
7948  unsigned Opcode = 0;
7949  bool IsReversed;
7950  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7951    IsReversed = false; // x CC y ? x : y
7952  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7953    IsReversed = true ; // x CC y ? y : x
7954  } else {
7955    return SDValue();
7956  }
7957
7958  bool IsUnordered;
7959  switch (CC) {
7960  default: break;
7961  case ISD::SETOLT:
7962  case ISD::SETOLE:
7963  case ISD::SETLT:
7964  case ISD::SETLE:
7965  case ISD::SETULT:
7966  case ISD::SETULE:
7967    // If LHS is NaN, an ordered comparison will be false and the result will
7968    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7969    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7970    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7971    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7972      break;
7973    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7974    // will return -0, so vmin can only be used for unsafe math or if one of
7975    // the operands is known to be nonzero.
7976    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7977        !DAG.getTarget().Options.UnsafeFPMath &&
7978        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7979      break;
7980    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7981    break;
7982
7983  case ISD::SETOGT:
7984  case ISD::SETOGE:
7985  case ISD::SETGT:
7986  case ISD::SETGE:
7987  case ISD::SETUGT:
7988  case ISD::SETUGE:
7989    // If LHS is NaN, an ordered comparison will be false and the result will
7990    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7991    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7992    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7993    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7994      break;
7995    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7996    // will return +0, so vmax can only be used for unsafe math or if one of
7997    // the operands is known to be nonzero.
7998    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
7999        !DAG.getTarget().Options.UnsafeFPMath &&
8000        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8001      break;
8002    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8003    break;
8004  }
8005
8006  if (!Opcode)
8007    return SDValue();
8008  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8009}
8010
8011/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8012SDValue
8013ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8014  SDValue Cmp = N->getOperand(4);
8015  if (Cmp.getOpcode() != ARMISD::CMPZ)
8016    // Only looking at EQ and NE cases.
8017    return SDValue();
8018
8019  EVT VT = N->getValueType(0);
8020  DebugLoc dl = N->getDebugLoc();
8021  SDValue LHS = Cmp.getOperand(0);
8022  SDValue RHS = Cmp.getOperand(1);
8023  SDValue FalseVal = N->getOperand(0);
8024  SDValue TrueVal = N->getOperand(1);
8025  SDValue ARMcc = N->getOperand(2);
8026  ARMCC::CondCodes CC =
8027    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8028
8029  // Simplify
8030  //   mov     r1, r0
8031  //   cmp     r1, x
8032  //   mov     r0, y
8033  //   moveq   r0, x
8034  // to
8035  //   cmp     r0, x
8036  //   movne   r0, y
8037  //
8038  //   mov     r1, r0
8039  //   cmp     r1, x
8040  //   mov     r0, x
8041  //   movne   r0, y
8042  // to
8043  //   cmp     r0, x
8044  //   movne   r0, y
8045  /// FIXME: Turn this into a target neutral optimization?
8046  SDValue Res;
8047  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8048    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8049                      N->getOperand(3), Cmp);
8050  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8051    SDValue ARMcc;
8052    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8053    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8054                      N->getOperand(3), NewCmp);
8055  }
8056
8057  if (Res.getNode()) {
8058    APInt KnownZero, KnownOne;
8059    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
8060    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
8061    // Capture demanded bits information that would be otherwise lost.
8062    if (KnownZero == 0xfffffffe)
8063      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8064                        DAG.getValueType(MVT::i1));
8065    else if (KnownZero == 0xffffff00)
8066      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8067                        DAG.getValueType(MVT::i8));
8068    else if (KnownZero == 0xffff0000)
8069      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8070                        DAG.getValueType(MVT::i16));
8071  }
8072
8073  return Res;
8074}
8075
8076SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8077                                             DAGCombinerInfo &DCI) const {
8078  switch (N->getOpcode()) {
8079  default: break;
8080  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8081  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8082  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8083  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8084  case ISD::AND:        return PerformANDCombine(N, DCI);
8085  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8086  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8087  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8088  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8089  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8090  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8091  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8092  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8093  case ISD::FP_TO_SINT:
8094  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8095  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8096  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8097  case ISD::SHL:
8098  case ISD::SRA:
8099  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8100  case ISD::SIGN_EXTEND:
8101  case ISD::ZERO_EXTEND:
8102  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8103  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8104  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8105  case ARMISD::VLD2DUP:
8106  case ARMISD::VLD3DUP:
8107  case ARMISD::VLD4DUP:
8108    return CombineBaseUpdate(N, DCI);
8109  case ISD::INTRINSIC_VOID:
8110  case ISD::INTRINSIC_W_CHAIN:
8111    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8112    case Intrinsic::arm_neon_vld1:
8113    case Intrinsic::arm_neon_vld2:
8114    case Intrinsic::arm_neon_vld3:
8115    case Intrinsic::arm_neon_vld4:
8116    case Intrinsic::arm_neon_vld2lane:
8117    case Intrinsic::arm_neon_vld3lane:
8118    case Intrinsic::arm_neon_vld4lane:
8119    case Intrinsic::arm_neon_vst1:
8120    case Intrinsic::arm_neon_vst2:
8121    case Intrinsic::arm_neon_vst3:
8122    case Intrinsic::arm_neon_vst4:
8123    case Intrinsic::arm_neon_vst2lane:
8124    case Intrinsic::arm_neon_vst3lane:
8125    case Intrinsic::arm_neon_vst4lane:
8126      return CombineBaseUpdate(N, DCI);
8127    default: break;
8128    }
8129    break;
8130  }
8131  return SDValue();
8132}
8133
8134bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8135                                                          EVT VT) const {
8136  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8137}
8138
8139bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8140  if (!Subtarget->allowsUnalignedMem())
8141    return false;
8142
8143  switch (VT.getSimpleVT().SimpleTy) {
8144  default:
8145    return false;
8146  case MVT::i8:
8147  case MVT::i16:
8148  case MVT::i32:
8149    return true;
8150  // FIXME: VLD1 etc with standard alignment is legal.
8151  }
8152}
8153
8154static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8155                       unsigned AlignCheck) {
8156  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8157          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8158}
8159
8160EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8161                                           unsigned DstAlign, unsigned SrcAlign,
8162                                           bool IsZeroVal,
8163                                           bool MemcpyStrSrc,
8164                                           MachineFunction &MF) const {
8165  const Function *F = MF.getFunction();
8166
8167  // See if we can use NEON instructions for this...
8168  if (IsZeroVal &&
8169      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8170      Subtarget->hasNEON()) {
8171    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8172      return MVT::v4i32;
8173    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8174      return MVT::v2i32;
8175    }
8176  }
8177
8178  // Lowering to i32/i16 if the size permits.
8179  if (Size >= 4) {
8180    return MVT::i32;
8181  } else if (Size >= 2) {
8182    return MVT::i16;
8183  }
8184
8185  // Let the target-independent logic figure it out.
8186  return MVT::Other;
8187}
8188
8189static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8190  if (V < 0)
8191    return false;
8192
8193  unsigned Scale = 1;
8194  switch (VT.getSimpleVT().SimpleTy) {
8195  default: return false;
8196  case MVT::i1:
8197  case MVT::i8:
8198    // Scale == 1;
8199    break;
8200  case MVT::i16:
8201    // Scale == 2;
8202    Scale = 2;
8203    break;
8204  case MVT::i32:
8205    // Scale == 4;
8206    Scale = 4;
8207    break;
8208  }
8209
8210  if ((V & (Scale - 1)) != 0)
8211    return false;
8212  V /= Scale;
8213  return V == (V & ((1LL << 5) - 1));
8214}
8215
8216static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8217                                      const ARMSubtarget *Subtarget) {
8218  bool isNeg = false;
8219  if (V < 0) {
8220    isNeg = true;
8221    V = - V;
8222  }
8223
8224  switch (VT.getSimpleVT().SimpleTy) {
8225  default: return false;
8226  case MVT::i1:
8227  case MVT::i8:
8228  case MVT::i16:
8229  case MVT::i32:
8230    // + imm12 or - imm8
8231    if (isNeg)
8232      return V == (V & ((1LL << 8) - 1));
8233    return V == (V & ((1LL << 12) - 1));
8234  case MVT::f32:
8235  case MVT::f64:
8236    // Same as ARM mode. FIXME: NEON?
8237    if (!Subtarget->hasVFP2())
8238      return false;
8239    if ((V & 3) != 0)
8240      return false;
8241    V >>= 2;
8242    return V == (V & ((1LL << 8) - 1));
8243  }
8244}
8245
8246/// isLegalAddressImmediate - Return true if the integer value can be used
8247/// as the offset of the target addressing mode for load / store of the
8248/// given type.
8249static bool isLegalAddressImmediate(int64_t V, EVT VT,
8250                                    const ARMSubtarget *Subtarget) {
8251  if (V == 0)
8252    return true;
8253
8254  if (!VT.isSimple())
8255    return false;
8256
8257  if (Subtarget->isThumb1Only())
8258    return isLegalT1AddressImmediate(V, VT);
8259  else if (Subtarget->isThumb2())
8260    return isLegalT2AddressImmediate(V, VT, Subtarget);
8261
8262  // ARM mode.
8263  if (V < 0)
8264    V = - V;
8265  switch (VT.getSimpleVT().SimpleTy) {
8266  default: return false;
8267  case MVT::i1:
8268  case MVT::i8:
8269  case MVT::i32:
8270    // +- imm12
8271    return V == (V & ((1LL << 12) - 1));
8272  case MVT::i16:
8273    // +- imm8
8274    return V == (V & ((1LL << 8) - 1));
8275  case MVT::f32:
8276  case MVT::f64:
8277    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8278      return false;
8279    if ((V & 3) != 0)
8280      return false;
8281    V >>= 2;
8282    return V == (V & ((1LL << 8) - 1));
8283  }
8284}
8285
8286bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8287                                                      EVT VT) const {
8288  int Scale = AM.Scale;
8289  if (Scale < 0)
8290    return false;
8291
8292  switch (VT.getSimpleVT().SimpleTy) {
8293  default: return false;
8294  case MVT::i1:
8295  case MVT::i8:
8296  case MVT::i16:
8297  case MVT::i32:
8298    if (Scale == 1)
8299      return true;
8300    // r + r << imm
8301    Scale = Scale & ~1;
8302    return Scale == 2 || Scale == 4 || Scale == 8;
8303  case MVT::i64:
8304    // r + r
8305    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8306      return true;
8307    return false;
8308  case MVT::isVoid:
8309    // Note, we allow "void" uses (basically, uses that aren't loads or
8310    // stores), because arm allows folding a scale into many arithmetic
8311    // operations.  This should be made more precise and revisited later.
8312
8313    // Allow r << imm, but the imm has to be a multiple of two.
8314    if (Scale & 1) return false;
8315    return isPowerOf2_32(Scale);
8316  }
8317}
8318
8319/// isLegalAddressingMode - Return true if the addressing mode represented
8320/// by AM is legal for this target, for a load/store of the specified type.
8321bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8322                                              Type *Ty) const {
8323  EVT VT = getValueType(Ty, true);
8324  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8325    return false;
8326
8327  // Can never fold addr of global into load/store.
8328  if (AM.BaseGV)
8329    return false;
8330
8331  switch (AM.Scale) {
8332  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8333    break;
8334  case 1:
8335    if (Subtarget->isThumb1Only())
8336      return false;
8337    // FALL THROUGH.
8338  default:
8339    // ARM doesn't support any R+R*scale+imm addr modes.
8340    if (AM.BaseOffs)
8341      return false;
8342
8343    if (!VT.isSimple())
8344      return false;
8345
8346    if (Subtarget->isThumb2())
8347      return isLegalT2ScaledAddressingMode(AM, VT);
8348
8349    int Scale = AM.Scale;
8350    switch (VT.getSimpleVT().SimpleTy) {
8351    default: return false;
8352    case MVT::i1:
8353    case MVT::i8:
8354    case MVT::i32:
8355      if (Scale < 0) Scale = -Scale;
8356      if (Scale == 1)
8357        return true;
8358      // r + r << imm
8359      return isPowerOf2_32(Scale & ~1);
8360    case MVT::i16:
8361    case MVT::i64:
8362      // r + r
8363      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8364        return true;
8365      return false;
8366
8367    case MVT::isVoid:
8368      // Note, we allow "void" uses (basically, uses that aren't loads or
8369      // stores), because arm allows folding a scale into many arithmetic
8370      // operations.  This should be made more precise and revisited later.
8371
8372      // Allow r << imm, but the imm has to be a multiple of two.
8373      if (Scale & 1) return false;
8374      return isPowerOf2_32(Scale);
8375    }
8376    break;
8377  }
8378  return true;
8379}
8380
8381/// isLegalICmpImmediate - Return true if the specified immediate is legal
8382/// icmp immediate, that is the target has icmp instructions which can compare
8383/// a register against the immediate without having to materialize the
8384/// immediate into a register.
8385bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8386  if (!Subtarget->isThumb())
8387    return ARM_AM::getSOImmVal(Imm) != -1;
8388  if (Subtarget->isThumb2())
8389    return ARM_AM::getT2SOImmVal(Imm) != -1;
8390  return Imm >= 0 && Imm <= 255;
8391}
8392
8393/// isLegalAddImmediate - Return true if the specified immediate is legal
8394/// add immediate, that is the target has add instructions which can add
8395/// a register with the immediate without having to materialize the
8396/// immediate into a register.
8397bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8398  return ARM_AM::getSOImmVal(Imm) != -1;
8399}
8400
8401static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8402                                      bool isSEXTLoad, SDValue &Base,
8403                                      SDValue &Offset, bool &isInc,
8404                                      SelectionDAG &DAG) {
8405  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8406    return false;
8407
8408  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8409    // AddressingMode 3
8410    Base = Ptr->getOperand(0);
8411    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8412      int RHSC = (int)RHS->getZExtValue();
8413      if (RHSC < 0 && RHSC > -256) {
8414        assert(Ptr->getOpcode() == ISD::ADD);
8415        isInc = false;
8416        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8417        return true;
8418      }
8419    }
8420    isInc = (Ptr->getOpcode() == ISD::ADD);
8421    Offset = Ptr->getOperand(1);
8422    return true;
8423  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8424    // AddressingMode 2
8425    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8426      int RHSC = (int)RHS->getZExtValue();
8427      if (RHSC < 0 && RHSC > -0x1000) {
8428        assert(Ptr->getOpcode() == ISD::ADD);
8429        isInc = false;
8430        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8431        Base = Ptr->getOperand(0);
8432        return true;
8433      }
8434    }
8435
8436    if (Ptr->getOpcode() == ISD::ADD) {
8437      isInc = true;
8438      ARM_AM::ShiftOpc ShOpcVal=
8439        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8440      if (ShOpcVal != ARM_AM::no_shift) {
8441        Base = Ptr->getOperand(1);
8442        Offset = Ptr->getOperand(0);
8443      } else {
8444        Base = Ptr->getOperand(0);
8445        Offset = Ptr->getOperand(1);
8446      }
8447      return true;
8448    }
8449
8450    isInc = (Ptr->getOpcode() == ISD::ADD);
8451    Base = Ptr->getOperand(0);
8452    Offset = Ptr->getOperand(1);
8453    return true;
8454  }
8455
8456  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8457  return false;
8458}
8459
8460static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8461                                     bool isSEXTLoad, SDValue &Base,
8462                                     SDValue &Offset, bool &isInc,
8463                                     SelectionDAG &DAG) {
8464  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8465    return false;
8466
8467  Base = Ptr->getOperand(0);
8468  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8469    int RHSC = (int)RHS->getZExtValue();
8470    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8471      assert(Ptr->getOpcode() == ISD::ADD);
8472      isInc = false;
8473      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8474      return true;
8475    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8476      isInc = Ptr->getOpcode() == ISD::ADD;
8477      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8478      return true;
8479    }
8480  }
8481
8482  return false;
8483}
8484
8485/// getPreIndexedAddressParts - returns true by value, base pointer and
8486/// offset pointer and addressing mode by reference if the node's address
8487/// can be legally represented as pre-indexed load / store address.
8488bool
8489ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8490                                             SDValue &Offset,
8491                                             ISD::MemIndexedMode &AM,
8492                                             SelectionDAG &DAG) const {
8493  if (Subtarget->isThumb1Only())
8494    return false;
8495
8496  EVT VT;
8497  SDValue Ptr;
8498  bool isSEXTLoad = false;
8499  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8500    Ptr = LD->getBasePtr();
8501    VT  = LD->getMemoryVT();
8502    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8503  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8504    Ptr = ST->getBasePtr();
8505    VT  = ST->getMemoryVT();
8506  } else
8507    return false;
8508
8509  bool isInc;
8510  bool isLegal = false;
8511  if (Subtarget->isThumb2())
8512    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8513                                       Offset, isInc, DAG);
8514  else
8515    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8516                                        Offset, isInc, DAG);
8517  if (!isLegal)
8518    return false;
8519
8520  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8521  return true;
8522}
8523
8524/// getPostIndexedAddressParts - returns true by value, base pointer and
8525/// offset pointer and addressing mode by reference if this node can be
8526/// combined with a load / store to form a post-indexed load / store.
8527bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8528                                                   SDValue &Base,
8529                                                   SDValue &Offset,
8530                                                   ISD::MemIndexedMode &AM,
8531                                                   SelectionDAG &DAG) const {
8532  if (Subtarget->isThumb1Only())
8533    return false;
8534
8535  EVT VT;
8536  SDValue Ptr;
8537  bool isSEXTLoad = false;
8538  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8539    VT  = LD->getMemoryVT();
8540    Ptr = LD->getBasePtr();
8541    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8542  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8543    VT  = ST->getMemoryVT();
8544    Ptr = ST->getBasePtr();
8545  } else
8546    return false;
8547
8548  bool isInc;
8549  bool isLegal = false;
8550  if (Subtarget->isThumb2())
8551    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8552                                       isInc, DAG);
8553  else
8554    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8555                                        isInc, DAG);
8556  if (!isLegal)
8557    return false;
8558
8559  if (Ptr != Base) {
8560    // Swap base ptr and offset to catch more post-index load / store when
8561    // it's legal. In Thumb2 mode, offset must be an immediate.
8562    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8563        !Subtarget->isThumb2())
8564      std::swap(Base, Offset);
8565
8566    // Post-indexed load / store update the base pointer.
8567    if (Ptr != Base)
8568      return false;
8569  }
8570
8571  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8572  return true;
8573}
8574
8575void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8576                                                       const APInt &Mask,
8577                                                       APInt &KnownZero,
8578                                                       APInt &KnownOne,
8579                                                       const SelectionDAG &DAG,
8580                                                       unsigned Depth) const {
8581  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8582  switch (Op.getOpcode()) {
8583  default: break;
8584  case ARMISD::CMOV: {
8585    // Bits are known zero/one if known on the LHS and RHS.
8586    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8587    if (KnownZero == 0 && KnownOne == 0) return;
8588
8589    APInt KnownZeroRHS, KnownOneRHS;
8590    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8591                          KnownZeroRHS, KnownOneRHS, Depth+1);
8592    KnownZero &= KnownZeroRHS;
8593    KnownOne  &= KnownOneRHS;
8594    return;
8595  }
8596  }
8597}
8598
8599//===----------------------------------------------------------------------===//
8600//                           ARM Inline Assembly Support
8601//===----------------------------------------------------------------------===//
8602
8603bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8604  // Looking for "rev" which is V6+.
8605  if (!Subtarget->hasV6Ops())
8606    return false;
8607
8608  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8609  std::string AsmStr = IA->getAsmString();
8610  SmallVector<StringRef, 4> AsmPieces;
8611  SplitString(AsmStr, AsmPieces, ";\n");
8612
8613  switch (AsmPieces.size()) {
8614  default: return false;
8615  case 1:
8616    AsmStr = AsmPieces[0];
8617    AsmPieces.clear();
8618    SplitString(AsmStr, AsmPieces, " \t,");
8619
8620    // rev $0, $1
8621    if (AsmPieces.size() == 3 &&
8622        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8623        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8624      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8625      if (Ty && Ty->getBitWidth() == 32)
8626        return IntrinsicLowering::LowerToByteSwap(CI);
8627    }
8628    break;
8629  }
8630
8631  return false;
8632}
8633
8634/// getConstraintType - Given a constraint letter, return the type of
8635/// constraint it is for this target.
8636ARMTargetLowering::ConstraintType
8637ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8638  if (Constraint.size() == 1) {
8639    switch (Constraint[0]) {
8640    default:  break;
8641    case 'l': return C_RegisterClass;
8642    case 'w': return C_RegisterClass;
8643    case 'h': return C_RegisterClass;
8644    case 'x': return C_RegisterClass;
8645    case 't': return C_RegisterClass;
8646    case 'j': return C_Other; // Constant for movw.
8647      // An address with a single base register. Due to the way we
8648      // currently handle addresses it is the same as an 'r' memory constraint.
8649    case 'Q': return C_Memory;
8650    }
8651  } else if (Constraint.size() == 2) {
8652    switch (Constraint[0]) {
8653    default: break;
8654    // All 'U+' constraints are addresses.
8655    case 'U': return C_Memory;
8656    }
8657  }
8658  return TargetLowering::getConstraintType(Constraint);
8659}
8660
8661/// Examine constraint type and operand type and determine a weight value.
8662/// This object must already have been set up with the operand type
8663/// and the current alternative constraint selected.
8664TargetLowering::ConstraintWeight
8665ARMTargetLowering::getSingleConstraintMatchWeight(
8666    AsmOperandInfo &info, const char *constraint) const {
8667  ConstraintWeight weight = CW_Invalid;
8668  Value *CallOperandVal = info.CallOperandVal;
8669    // If we don't have a value, we can't do a match,
8670    // but allow it at the lowest weight.
8671  if (CallOperandVal == NULL)
8672    return CW_Default;
8673  Type *type = CallOperandVal->getType();
8674  // Look at the constraint type.
8675  switch (*constraint) {
8676  default:
8677    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8678    break;
8679  case 'l':
8680    if (type->isIntegerTy()) {
8681      if (Subtarget->isThumb())
8682        weight = CW_SpecificReg;
8683      else
8684        weight = CW_Register;
8685    }
8686    break;
8687  case 'w':
8688    if (type->isFloatingPointTy())
8689      weight = CW_Register;
8690    break;
8691  }
8692  return weight;
8693}
8694
8695typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8696RCPair
8697ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8698                                                EVT VT) const {
8699  if (Constraint.size() == 1) {
8700    // GCC ARM Constraint Letters
8701    switch (Constraint[0]) {
8702    case 'l': // Low regs or general regs.
8703      if (Subtarget->isThumb())
8704        return RCPair(0U, ARM::tGPRRegisterClass);
8705      else
8706        return RCPair(0U, ARM::GPRRegisterClass);
8707    case 'h': // High regs or no regs.
8708      if (Subtarget->isThumb())
8709        return RCPair(0U, ARM::hGPRRegisterClass);
8710      break;
8711    case 'r':
8712      return RCPair(0U, ARM::GPRRegisterClass);
8713    case 'w':
8714      if (VT == MVT::f32)
8715        return RCPair(0U, ARM::SPRRegisterClass);
8716      if (VT.getSizeInBits() == 64)
8717        return RCPair(0U, ARM::DPRRegisterClass);
8718      if (VT.getSizeInBits() == 128)
8719        return RCPair(0U, ARM::QPRRegisterClass);
8720      break;
8721    case 'x':
8722      if (VT == MVT::f32)
8723        return RCPair(0U, ARM::SPR_8RegisterClass);
8724      if (VT.getSizeInBits() == 64)
8725        return RCPair(0U, ARM::DPR_8RegisterClass);
8726      if (VT.getSizeInBits() == 128)
8727        return RCPair(0U, ARM::QPR_8RegisterClass);
8728      break;
8729    case 't':
8730      if (VT == MVT::f32)
8731        return RCPair(0U, ARM::SPRRegisterClass);
8732      break;
8733    }
8734  }
8735  if (StringRef("{cc}").equals_lower(Constraint))
8736    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8737
8738  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8739}
8740
8741/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8742/// vector.  If it is invalid, don't add anything to Ops.
8743void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8744                                                     std::string &Constraint,
8745                                                     std::vector<SDValue>&Ops,
8746                                                     SelectionDAG &DAG) const {
8747  SDValue Result(0, 0);
8748
8749  // Currently only support length 1 constraints.
8750  if (Constraint.length() != 1) return;
8751
8752  char ConstraintLetter = Constraint[0];
8753  switch (ConstraintLetter) {
8754  default: break;
8755  case 'j':
8756  case 'I': case 'J': case 'K': case 'L':
8757  case 'M': case 'N': case 'O':
8758    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8759    if (!C)
8760      return;
8761
8762    int64_t CVal64 = C->getSExtValue();
8763    int CVal = (int) CVal64;
8764    // None of these constraints allow values larger than 32 bits.  Check
8765    // that the value fits in an int.
8766    if (CVal != CVal64)
8767      return;
8768
8769    switch (ConstraintLetter) {
8770      case 'j':
8771        // Constant suitable for movw, must be between 0 and
8772        // 65535.
8773        if (Subtarget->hasV6T2Ops())
8774          if (CVal >= 0 && CVal <= 65535)
8775            break;
8776        return;
8777      case 'I':
8778        if (Subtarget->isThumb1Only()) {
8779          // This must be a constant between 0 and 255, for ADD
8780          // immediates.
8781          if (CVal >= 0 && CVal <= 255)
8782            break;
8783        } else if (Subtarget->isThumb2()) {
8784          // A constant that can be used as an immediate value in a
8785          // data-processing instruction.
8786          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8787            break;
8788        } else {
8789          // A constant that can be used as an immediate value in a
8790          // data-processing instruction.
8791          if (ARM_AM::getSOImmVal(CVal) != -1)
8792            break;
8793        }
8794        return;
8795
8796      case 'J':
8797        if (Subtarget->isThumb()) {  // FIXME thumb2
8798          // This must be a constant between -255 and -1, for negated ADD
8799          // immediates. This can be used in GCC with an "n" modifier that
8800          // prints the negated value, for use with SUB instructions. It is
8801          // not useful otherwise but is implemented for compatibility.
8802          if (CVal >= -255 && CVal <= -1)
8803            break;
8804        } else {
8805          // This must be a constant between -4095 and 4095. It is not clear
8806          // what this constraint is intended for. Implemented for
8807          // compatibility with GCC.
8808          if (CVal >= -4095 && CVal <= 4095)
8809            break;
8810        }
8811        return;
8812
8813      case 'K':
8814        if (Subtarget->isThumb1Only()) {
8815          // A 32-bit value where only one byte has a nonzero value. Exclude
8816          // zero to match GCC. This constraint is used by GCC internally for
8817          // constants that can be loaded with a move/shift combination.
8818          // It is not useful otherwise but is implemented for compatibility.
8819          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8820            break;
8821        } else if (Subtarget->isThumb2()) {
8822          // A constant whose bitwise inverse can be used as an immediate
8823          // value in a data-processing instruction. This can be used in GCC
8824          // with a "B" modifier that prints the inverted value, for use with
8825          // BIC and MVN instructions. It is not useful otherwise but is
8826          // implemented for compatibility.
8827          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8828            break;
8829        } else {
8830          // A constant whose bitwise inverse can be used as an immediate
8831          // value in a data-processing instruction. This can be used in GCC
8832          // with a "B" modifier that prints the inverted value, for use with
8833          // BIC and MVN instructions. It is not useful otherwise but is
8834          // implemented for compatibility.
8835          if (ARM_AM::getSOImmVal(~CVal) != -1)
8836            break;
8837        }
8838        return;
8839
8840      case 'L':
8841        if (Subtarget->isThumb1Only()) {
8842          // This must be a constant between -7 and 7,
8843          // for 3-operand ADD/SUB immediate instructions.
8844          if (CVal >= -7 && CVal < 7)
8845            break;
8846        } else if (Subtarget->isThumb2()) {
8847          // A constant whose negation can be used as an immediate value in a
8848          // data-processing instruction. This can be used in GCC with an "n"
8849          // modifier that prints the negated value, for use with SUB
8850          // instructions. It is not useful otherwise but is implemented for
8851          // compatibility.
8852          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8853            break;
8854        } else {
8855          // A constant whose negation can be used as an immediate value in a
8856          // data-processing instruction. This can be used in GCC with an "n"
8857          // modifier that prints the negated value, for use with SUB
8858          // instructions. It is not useful otherwise but is implemented for
8859          // compatibility.
8860          if (ARM_AM::getSOImmVal(-CVal) != -1)
8861            break;
8862        }
8863        return;
8864
8865      case 'M':
8866        if (Subtarget->isThumb()) { // FIXME thumb2
8867          // This must be a multiple of 4 between 0 and 1020, for
8868          // ADD sp + immediate.
8869          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8870            break;
8871        } else {
8872          // A power of two or a constant between 0 and 32.  This is used in
8873          // GCC for the shift amount on shifted register operands, but it is
8874          // useful in general for any shift amounts.
8875          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8876            break;
8877        }
8878        return;
8879
8880      case 'N':
8881        if (Subtarget->isThumb()) {  // FIXME thumb2
8882          // This must be a constant between 0 and 31, for shift amounts.
8883          if (CVal >= 0 && CVal <= 31)
8884            break;
8885        }
8886        return;
8887
8888      case 'O':
8889        if (Subtarget->isThumb()) {  // FIXME thumb2
8890          // This must be a multiple of 4 between -508 and 508, for
8891          // ADD/SUB sp = sp + immediate.
8892          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8893            break;
8894        }
8895        return;
8896    }
8897    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8898    break;
8899  }
8900
8901  if (Result.getNode()) {
8902    Ops.push_back(Result);
8903    return;
8904  }
8905  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8906}
8907
8908bool
8909ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8910  // The ARM target isn't yet aware of offsets.
8911  return false;
8912}
8913
8914bool ARM::isBitFieldInvertedMask(unsigned v) {
8915  if (v == 0xffffffff)
8916    return 0;
8917  // there can be 1's on either or both "outsides", all the "inside"
8918  // bits must be 0's
8919  unsigned int lsb = 0, msb = 31;
8920  while (v & (1 << msb)) --msb;
8921  while (v & (1 << lsb)) ++lsb;
8922  for (unsigned int i = lsb; i <= msb; ++i) {
8923    if (v & (1 << i))
8924      return 0;
8925  }
8926  return 1;
8927}
8928
8929/// isFPImmLegal - Returns true if the target can instruction select the
8930/// specified FP immediate natively. If false, the legalizer will
8931/// materialize the FP immediate as a load from a constant pool.
8932bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8933  if (!Subtarget->hasVFP3())
8934    return false;
8935  if (VT == MVT::f32)
8936    return ARM_AM::getFP32Imm(Imm) != -1;
8937  if (VT == MVT::f64)
8938    return ARM_AM::getFP64Imm(Imm) != -1;
8939  return false;
8940}
8941
8942/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8943/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8944/// specified in the intrinsic calls.
8945bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8946                                           const CallInst &I,
8947                                           unsigned Intrinsic) const {
8948  switch (Intrinsic) {
8949  case Intrinsic::arm_neon_vld1:
8950  case Intrinsic::arm_neon_vld2:
8951  case Intrinsic::arm_neon_vld3:
8952  case Intrinsic::arm_neon_vld4:
8953  case Intrinsic::arm_neon_vld2lane:
8954  case Intrinsic::arm_neon_vld3lane:
8955  case Intrinsic::arm_neon_vld4lane: {
8956    Info.opc = ISD::INTRINSIC_W_CHAIN;
8957    // Conservatively set memVT to the entire set of vectors loaded.
8958    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8959    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8960    Info.ptrVal = I.getArgOperand(0);
8961    Info.offset = 0;
8962    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8963    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8964    Info.vol = false; // volatile loads with NEON intrinsics not supported
8965    Info.readMem = true;
8966    Info.writeMem = false;
8967    return true;
8968  }
8969  case Intrinsic::arm_neon_vst1:
8970  case Intrinsic::arm_neon_vst2:
8971  case Intrinsic::arm_neon_vst3:
8972  case Intrinsic::arm_neon_vst4:
8973  case Intrinsic::arm_neon_vst2lane:
8974  case Intrinsic::arm_neon_vst3lane:
8975  case Intrinsic::arm_neon_vst4lane: {
8976    Info.opc = ISD::INTRINSIC_VOID;
8977    // Conservatively set memVT to the entire set of vectors stored.
8978    unsigned NumElts = 0;
8979    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8980      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8981      if (!ArgTy->isVectorTy())
8982        break;
8983      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8984    }
8985    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8986    Info.ptrVal = I.getArgOperand(0);
8987    Info.offset = 0;
8988    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8989    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8990    Info.vol = false; // volatile stores with NEON intrinsics not supported
8991    Info.readMem = false;
8992    Info.writeMem = true;
8993    return true;
8994  }
8995  case Intrinsic::arm_strexd: {
8996    Info.opc = ISD::INTRINSIC_W_CHAIN;
8997    Info.memVT = MVT::i64;
8998    Info.ptrVal = I.getArgOperand(2);
8999    Info.offset = 0;
9000    Info.align = 8;
9001    Info.vol = true;
9002    Info.readMem = false;
9003    Info.writeMem = true;
9004    return true;
9005  }
9006  case Intrinsic::arm_ldrexd: {
9007    Info.opc = ISD::INTRINSIC_W_CHAIN;
9008    Info.memVT = MVT::i64;
9009    Info.ptrVal = I.getArgOperand(0);
9010    Info.offset = 0;
9011    Info.align = 8;
9012    Info.vol = true;
9013    Info.readMem = true;
9014    Info.writeMem = false;
9015    return true;
9016  }
9017  default:
9018    break;
9019  }
9020
9021  return false;
9022}
9023