ARMISelLowering.cpp revision 4fb63d088bca9fc31e54eb1619e2cb448c3a4b53
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMRegisterInfo.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Instruction.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/VectorExtras.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/MathExtras.h"
41using namespace llvm;
42
43static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
44                                   CCValAssign::LocInfo &LocInfo,
45                                   ISD::ArgFlagsTy &ArgFlags,
46                                   CCState &State);
47static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
48                                    CCValAssign::LocInfo &LocInfo,
49                                    ISD::ArgFlagsTy &ArgFlags,
50                                    CCState &State);
51static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
52                                      CCValAssign::LocInfo &LocInfo,
53                                      ISD::ArgFlagsTy &ArgFlags,
54                                      CCState &State);
55static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
56                                       CCValAssign::LocInfo &LocInfo,
57                                       ISD::ArgFlagsTy &ArgFlags,
58                                       CCState &State);
59
60void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
61                                       MVT PromotedBitwiseVT) {
62  if (VT != PromotedLdStVT) {
63    setOperationAction(ISD::LOAD, VT, Promote);
64    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
65
66    setOperationAction(ISD::STORE, VT, Promote);
67    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
68  }
69
70  MVT ElemTy = VT.getVectorElementType();
71  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
72    setOperationAction(ISD::VSETCC, VT, Custom);
73  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
74    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
75  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
76  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
77  setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
78  setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
79  if (VT.isInteger()) {
80    setOperationAction(ISD::SHL, VT, Custom);
81    setOperationAction(ISD::SRA, VT, Custom);
82    setOperationAction(ISD::SRL, VT, Custom);
83  }
84
85  // Promote all bit-wise operations.
86  if (VT.isInteger() && VT != PromotedBitwiseVT) {
87    setOperationAction(ISD::AND, VT, Promote);
88    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
89    setOperationAction(ISD::OR,  VT, Promote);
90    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
91    setOperationAction(ISD::XOR, VT, Promote);
92    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
93  }
94}
95
96void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
97  addRegisterClass(VT, ARM::DPRRegisterClass);
98  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
99}
100
101void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
102  addRegisterClass(VT, ARM::QPRRegisterClass);
103  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
104}
105
106ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
107    : TargetLowering(TM), ARMPCLabelIndex(0) {
108  Subtarget = &TM.getSubtarget<ARMSubtarget>();
109
110  if (Subtarget->isTargetDarwin()) {
111    // Uses VFP for Thumb libfuncs if available.
112    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
113      // Single-precision floating-point arithmetic.
114      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
115      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
116      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
117      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
118
119      // Double-precision floating-point arithmetic.
120      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
121      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
122      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
123      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
124
125      // Single-precision comparisons.
126      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
127      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
128      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
129      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
130      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
131      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
132      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
133      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
134
135      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
136      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
137      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
138      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
139      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
140      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
141      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
142      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
143
144      // Double-precision comparisons.
145      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
146      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
147      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
148      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
149      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
150      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
151      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
152      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
153
154      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
155      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
156      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
157      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
158      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
159      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
160      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
161      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
162
163      // Floating-point to integer conversions.
164      // i64 conversions are done via library routines even when generating VFP
165      // instructions, so use the same ones.
166      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
167      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
168      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
169      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
170
171      // Conversions between floating types.
172      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
173      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
174
175      // Integer to floating-point conversions.
176      // i64 conversions are done via library routines even when generating VFP
177      // instructions, so use the same ones.
178      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
179      // e.g., __floatunsidf vs. __floatunssidfvfp.
180      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
181      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
182      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
183      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
184    }
185  }
186
187  // These libcalls are not available in 32-bit.
188  setLibcallName(RTLIB::SHL_I128, 0);
189  setLibcallName(RTLIB::SRL_I128, 0);
190  setLibcallName(RTLIB::SRA_I128, 0);
191
192  if (Subtarget->isThumb1Only())
193    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
194  else
195    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
196  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
197    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
198    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
199
200    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
201  }
202
203  if (Subtarget->hasNEON()) {
204    addDRTypeForNEON(MVT::v2f32);
205    addDRTypeForNEON(MVT::v8i8);
206    addDRTypeForNEON(MVT::v4i16);
207    addDRTypeForNEON(MVT::v2i32);
208    addDRTypeForNEON(MVT::v1i64);
209
210    addQRTypeForNEON(MVT::v4f32);
211    addQRTypeForNEON(MVT::v2f64);
212    addQRTypeForNEON(MVT::v16i8);
213    addQRTypeForNEON(MVT::v8i16);
214    addQRTypeForNEON(MVT::v4i32);
215    addQRTypeForNEON(MVT::v2i64);
216
217    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
218    setTargetDAGCombine(ISD::SHL);
219    setTargetDAGCombine(ISD::SRL);
220    setTargetDAGCombine(ISD::SRA);
221    setTargetDAGCombine(ISD::SIGN_EXTEND);
222    setTargetDAGCombine(ISD::ZERO_EXTEND);
223    setTargetDAGCombine(ISD::ANY_EXTEND);
224  }
225
226  computeRegisterProperties();
227
228  // ARM does not have f32 extending load.
229  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
230
231  // ARM does not have i1 sign extending load.
232  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
233
234  // ARM supports all 4 flavors of integer indexed load / store.
235  if (!Subtarget->isThumb1Only()) {
236    for (unsigned im = (unsigned)ISD::PRE_INC;
237         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
238      setIndexedLoadAction(im,  MVT::i1,  Legal);
239      setIndexedLoadAction(im,  MVT::i8,  Legal);
240      setIndexedLoadAction(im,  MVT::i16, Legal);
241      setIndexedLoadAction(im,  MVT::i32, Legal);
242      setIndexedStoreAction(im, MVT::i1,  Legal);
243      setIndexedStoreAction(im, MVT::i8,  Legal);
244      setIndexedStoreAction(im, MVT::i16, Legal);
245      setIndexedStoreAction(im, MVT::i32, Legal);
246    }
247  }
248
249  // i64 operation support.
250  if (Subtarget->isThumb1Only()) {
251    setOperationAction(ISD::MUL,     MVT::i64, Expand);
252    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
253    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
254    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
255    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
256  } else {
257    setOperationAction(ISD::MUL,     MVT::i64, Expand);
258    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
259    if (!Subtarget->isThumb1Only() && !Subtarget->hasV6Ops())
260      setOperationAction(ISD::MULHS, MVT::i32, Expand);
261  }
262  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
263  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
264  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
265  setOperationAction(ISD::SRL,       MVT::i64, Custom);
266  setOperationAction(ISD::SRA,       MVT::i64, Custom);
267
268  // ARM does not have ROTL.
269  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
270  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
271  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
272  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
273    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
274
275  // Only ARMv6 has BSWAP.
276  if (!Subtarget->hasV6Ops())
277    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
278
279  // These are expanded into libcalls.
280  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
281  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
282  setOperationAction(ISD::SREM,  MVT::i32, Expand);
283  setOperationAction(ISD::UREM,  MVT::i32, Expand);
284  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
285  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
286
287  // Support label based line numbers.
288  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
289  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
290
291  setOperationAction(ISD::RET,           MVT::Other, Custom);
292  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
293  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
294  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
295  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
296
297  // Use the default implementation.
298  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
299  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
300  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
301  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
302  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
303  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
304  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Expand);
305  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
306
307  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
308    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
309    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
310  }
311  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
312
313  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
314    // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
315    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
316
317  // We want to custom lower some of our intrinsics.
318  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
319
320  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
321  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
322  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
323  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
324  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
325  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
326  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
327  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
328  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
329
330  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
331  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
332  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
333  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
334  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
335
336  // We don't support sin/cos/fmod/copysign/pow
337  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
338  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
339  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
340  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
341  setOperationAction(ISD::FREM,      MVT::f64, Expand);
342  setOperationAction(ISD::FREM,      MVT::f32, Expand);
343  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
344    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
345    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
346  }
347  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
348  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
349
350  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
351  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
352    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
353    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
354    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
355    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
356  }
357
358  // We have target-specific dag combine patterns for the following nodes:
359  // ARMISD::FMRRD  - No need to call setTargetDAGCombine
360  setTargetDAGCombine(ISD::ADD);
361  setTargetDAGCombine(ISD::SUB);
362
363  setStackPointerRegisterToSaveRestore(ARM::SP);
364  setSchedulingPreference(SchedulingForRegPressure);
365  setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
366  setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
367
368  if (!Subtarget->isThumb()) {
369    // Use branch latency information to determine if-conversion limits.
370    // FIXME: If-converter should use instruction latency of the branch being
371    // eliminated to compute the threshold. For ARMv6, the branch "latency"
372    // varies depending on whether it's dynamically or statically predicted
373    // and on whether the destination is in the prefetch buffer.
374    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
375    const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData();
376    unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass());
377    if (Latency > 1) {
378      setIfCvtBlockSizeLimit(Latency-1);
379      if (Latency > 2)
380        setIfCvtDupBlockSizeLimit(Latency-2);
381    } else {
382      setIfCvtBlockSizeLimit(10);
383      setIfCvtDupBlockSizeLimit(2);
384    }
385  }
386
387  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
388  // Do not enable CodePlacementOpt for now: it currently runs after the
389  // ARMConstantIslandPass and messes up branch relaxation and placement
390  // of constant islands.
391  // benefitFromCodePlacementOpt = true;
392}
393
394const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
395  switch (Opcode) {
396  default: return 0;
397  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
398  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
399  case ARMISD::CALL:          return "ARMISD::CALL";
400  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
401  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
402  case ARMISD::tCALL:         return "ARMISD::tCALL";
403  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
404  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
405  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
406  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
407  case ARMISD::CMP:           return "ARMISD::CMP";
408  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
409  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
410  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
411  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
412  case ARMISD::CMOV:          return "ARMISD::CMOV";
413  case ARMISD::CNEG:          return "ARMISD::CNEG";
414
415  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
416  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
417  case ARMISD::SITOF:         return "ARMISD::SITOF";
418  case ARMISD::UITOF:         return "ARMISD::UITOF";
419
420  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
421  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
422  case ARMISD::RRX:           return "ARMISD::RRX";
423
424  case ARMISD::FMRRD:         return "ARMISD::FMRRD";
425  case ARMISD::FMDRR:         return "ARMISD::FMDRR";
426
427  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
428
429  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
430  case ARMISD::VCGE:          return "ARMISD::VCGE";
431  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
432  case ARMISD::VCGT:          return "ARMISD::VCGT";
433  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
434  case ARMISD::VTST:          return "ARMISD::VTST";
435
436  case ARMISD::VSHL:          return "ARMISD::VSHL";
437  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
438  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
439  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
440  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
441  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
442  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
443  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
444  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
445  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
446  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
447  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
448  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
449  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
450  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
451  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
452  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
453  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
454  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
455  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
456  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
457  case ARMISD::VDUPLANEQ:     return "ARMISD::VDUPLANEQ";
458  }
459}
460
461/// getFunctionAlignment - Return the Log2 alignment of this function.
462unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
463  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
464}
465
466//===----------------------------------------------------------------------===//
467// Lowering Code
468//===----------------------------------------------------------------------===//
469
470/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
471static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
472  switch (CC) {
473  default: llvm_unreachable("Unknown condition code!");
474  case ISD::SETNE:  return ARMCC::NE;
475  case ISD::SETEQ:  return ARMCC::EQ;
476  case ISD::SETGT:  return ARMCC::GT;
477  case ISD::SETGE:  return ARMCC::GE;
478  case ISD::SETLT:  return ARMCC::LT;
479  case ISD::SETLE:  return ARMCC::LE;
480  case ISD::SETUGT: return ARMCC::HI;
481  case ISD::SETUGE: return ARMCC::HS;
482  case ISD::SETULT: return ARMCC::LO;
483  case ISD::SETULE: return ARMCC::LS;
484  }
485}
486
487/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
488/// returns true if the operands should be inverted to form the proper
489/// comparison.
490static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
491                        ARMCC::CondCodes &CondCode2) {
492  bool Invert = false;
493  CondCode2 = ARMCC::AL;
494  switch (CC) {
495  default: llvm_unreachable("Unknown FP condition!");
496  case ISD::SETEQ:
497  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
498  case ISD::SETGT:
499  case ISD::SETOGT: CondCode = ARMCC::GT; break;
500  case ISD::SETGE:
501  case ISD::SETOGE: CondCode = ARMCC::GE; break;
502  case ISD::SETOLT: CondCode = ARMCC::MI; break;
503  case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
504  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
505  case ISD::SETO:   CondCode = ARMCC::VC; break;
506  case ISD::SETUO:  CondCode = ARMCC::VS; break;
507  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
508  case ISD::SETUGT: CondCode = ARMCC::HI; break;
509  case ISD::SETUGE: CondCode = ARMCC::PL; break;
510  case ISD::SETLT:
511  case ISD::SETULT: CondCode = ARMCC::LT; break;
512  case ISD::SETLE:
513  case ISD::SETULE: CondCode = ARMCC::LE; break;
514  case ISD::SETNE:
515  case ISD::SETUNE: CondCode = ARMCC::NE; break;
516  }
517  return Invert;
518}
519
520//===----------------------------------------------------------------------===//
521//                      Calling Convention Implementation
522//
523//  The lower operations present on calling convention works on this order:
524//      LowerCALL (virt regs --> phys regs, virt regs --> stack)
525//      LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
526//      LowerRET (virt regs --> phys regs)
527//      LowerCALL (phys regs --> virt regs)
528//
529//===----------------------------------------------------------------------===//
530
531#include "ARMGenCallingConv.inc"
532
533// APCS f64 is in register pairs, possibly split to stack
534static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
535                          CCValAssign::LocInfo &LocInfo,
536                          CCState &State, bool CanFail) {
537  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
538
539  // Try to get the first register.
540  if (unsigned Reg = State.AllocateReg(RegList, 4))
541    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
542  else {
543    // For the 2nd half of a v2f64, do not fail.
544    if (CanFail)
545      return false;
546
547    // Put the whole thing on the stack.
548    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
549                                           State.AllocateStack(8, 4),
550                                           LocVT, LocInfo));
551    return true;
552  }
553
554  // Try to get the second register.
555  if (unsigned Reg = State.AllocateReg(RegList, 4))
556    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
557  else
558    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
559                                           State.AllocateStack(4, 4),
560                                           LocVT, LocInfo));
561  return true;
562}
563
564static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
565                                   CCValAssign::LocInfo &LocInfo,
566                                   ISD::ArgFlagsTy &ArgFlags,
567                                   CCState &State) {
568  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
569    return false;
570  if (LocVT == MVT::v2f64 &&
571      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
572    return false;
573  return true;  // we handled it
574}
575
576// AAPCS f64 is in aligned register pairs
577static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
578                           CCValAssign::LocInfo &LocInfo,
579                           CCState &State, bool CanFail) {
580  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
581  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
582
583  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
584  if (Reg == 0) {
585    // For the 2nd half of a v2f64, do not just fail.
586    if (CanFail)
587      return false;
588
589    // Put the whole thing on the stack.
590    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
591                                           State.AllocateStack(8, 8),
592                                           LocVT, LocInfo));
593    return true;
594  }
595
596  unsigned i;
597  for (i = 0; i < 2; ++i)
598    if (HiRegList[i] == Reg)
599      break;
600
601  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
602  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
603                                         LocVT, LocInfo));
604  return true;
605}
606
607static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
608                                    CCValAssign::LocInfo &LocInfo,
609                                    ISD::ArgFlagsTy &ArgFlags,
610                                    CCState &State) {
611  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
612    return false;
613  if (LocVT == MVT::v2f64 &&
614      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
615    return false;
616  return true;  // we handled it
617}
618
619static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
620                         CCValAssign::LocInfo &LocInfo, CCState &State) {
621  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
622  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
623
624  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
625  if (Reg == 0)
626    return false; // we didn't handle it
627
628  unsigned i;
629  for (i = 0; i < 2; ++i)
630    if (HiRegList[i] == Reg)
631      break;
632
633  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
634  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
635                                         LocVT, LocInfo));
636  return true;
637}
638
639static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
640                                      CCValAssign::LocInfo &LocInfo,
641                                      ISD::ArgFlagsTy &ArgFlags,
642                                      CCState &State) {
643  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
644    return false;
645  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
646    return false;
647  return true;  // we handled it
648}
649
650static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
651                                       CCValAssign::LocInfo &LocInfo,
652                                       ISD::ArgFlagsTy &ArgFlags,
653                                       CCState &State) {
654  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
655                                   State);
656}
657
658/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
659/// given CallingConvention value.
660CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
661                                                 bool Return) const {
662  switch (CC) {
663  default:
664   llvm_unreachable("Unsupported calling convention");
665  case CallingConv::C:
666  case CallingConv::Fast:
667   // Use target triple & subtarget features to do actual dispatch.
668   if (Subtarget->isAAPCS_ABI()) {
669     if (Subtarget->hasVFP2() &&
670         FloatABIType == FloatABI::Hard)
671       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
672     else
673       return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
674   } else
675     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
676  case CallingConv::ARM_AAPCS_VFP:
677   return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
678  case CallingConv::ARM_AAPCS:
679   return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
680  case CallingConv::ARM_APCS:
681   return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
682  }
683}
684
685/// LowerCallResult - Lower the result values of an ISD::CALL into the
686/// appropriate copies out of appropriate physical registers.  This assumes that
687/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
688/// being lowered.  The returns a SDNode with the same number of values as the
689/// ISD::CALL.
690SDNode *ARMTargetLowering::
691LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
692                unsigned CallingConv, SelectionDAG &DAG) {
693
694  DebugLoc dl = TheCall->getDebugLoc();
695  // Assign locations to each value returned by this call.
696  SmallVector<CCValAssign, 16> RVLocs;
697  bool isVarArg = TheCall->isVarArg();
698  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
699                 RVLocs, DAG.getContext());
700  CCInfo.AnalyzeCallResult(TheCall,
701                           CCAssignFnForNode(CallingConv, /* Return*/ true));
702
703  SmallVector<SDValue, 8> ResultVals;
704
705  // Copy all of the result registers out of their specified physreg.
706  for (unsigned i = 0; i != RVLocs.size(); ++i) {
707    CCValAssign VA = RVLocs[i];
708
709    SDValue Val;
710    if (VA.needsCustom()) {
711      // Handle f64 or half of a v2f64.
712      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
713                                      InFlag);
714      Chain = Lo.getValue(1);
715      InFlag = Lo.getValue(2);
716      VA = RVLocs[++i]; // skip ahead to next loc
717      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
718                                      InFlag);
719      Chain = Hi.getValue(1);
720      InFlag = Hi.getValue(2);
721      Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
722
723      if (VA.getLocVT() == MVT::v2f64) {
724        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
725        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
726                          DAG.getConstant(0, MVT::i32));
727
728        VA = RVLocs[++i]; // skip ahead to next loc
729        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
730        Chain = Lo.getValue(1);
731        InFlag = Lo.getValue(2);
732        VA = RVLocs[++i]; // skip ahead to next loc
733        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
734        Chain = Hi.getValue(1);
735        InFlag = Hi.getValue(2);
736        Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
737        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
738                          DAG.getConstant(1, MVT::i32));
739      }
740    } else {
741      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
742                               InFlag);
743      Chain = Val.getValue(1);
744      InFlag = Val.getValue(2);
745    }
746
747    switch (VA.getLocInfo()) {
748    default: llvm_unreachable("Unknown loc info!");
749    case CCValAssign::Full: break;
750    case CCValAssign::BCvt:
751      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
752      break;
753    }
754
755    ResultVals.push_back(Val);
756  }
757
758  // Merge everything together with a MERGE_VALUES node.
759  ResultVals.push_back(Chain);
760  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
761                     &ResultVals[0], ResultVals.size()).getNode();
762}
763
764/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
765/// by "Src" to address "Dst" of size "Size".  Alignment information is
766/// specified by the specific parameter attribute.  The copy will be passed as
767/// a byval function parameter.
768/// Sometimes what we are copying is the end of a larger object, the part that
769/// does not fit in registers.
770static SDValue
771CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
772                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
773                          DebugLoc dl) {
774  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
775  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
776                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
777}
778
779/// LowerMemOpCallTo - Store the argument to the stack.
780SDValue
781ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
782                                    const SDValue &StackPtr,
783                                    const CCValAssign &VA, SDValue Chain,
784                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
785  DebugLoc dl = TheCall->getDebugLoc();
786  unsigned LocMemOffset = VA.getLocMemOffset();
787  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
788  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
789  if (Flags.isByVal()) {
790    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
791  }
792  return DAG.getStore(Chain, dl, Arg, PtrOff,
793                      PseudoSourceValue::getStack(), LocMemOffset);
794}
795
796void ARMTargetLowering::PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
797                                         SDValue Chain, SDValue &Arg,
798                                         RegsToPassVector &RegsToPass,
799                                         CCValAssign &VA, CCValAssign &NextVA,
800                                         SDValue &StackPtr,
801                                         SmallVector<SDValue, 8> &MemOpChains,
802                                         ISD::ArgFlagsTy Flags) {
803  DebugLoc dl = TheCall->getDebugLoc();
804
805  SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
806                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
807  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
808
809  if (NextVA.isRegLoc())
810    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
811  else {
812    assert(NextVA.isMemLoc());
813    if (StackPtr.getNode() == 0)
814      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
815
816    MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, NextVA,
817                                           Chain, fmrrd.getValue(1), Flags));
818  }
819}
820
821/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
822/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
823/// nodes.
824SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
825  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
826  MVT RetVT           = TheCall->getRetValType(0);
827  SDValue Chain       = TheCall->getChain();
828  unsigned CC         = TheCall->getCallingConv();
829  bool isVarArg       = TheCall->isVarArg();
830  SDValue Callee      = TheCall->getCallee();
831  DebugLoc dl         = TheCall->getDebugLoc();
832
833  // Analyze operands of the call, assigning locations to each operand.
834  SmallVector<CCValAssign, 16> ArgLocs;
835  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
836  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false));
837
838  // Get a count of how many bytes are to be pushed on the stack.
839  unsigned NumBytes = CCInfo.getNextStackOffset();
840
841  // Adjust the stack pointer for the new arguments...
842  // These operations are automatically eliminated by the prolog/epilog pass
843  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
844
845  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
846
847  RegsToPassVector RegsToPass;
848  SmallVector<SDValue, 8> MemOpChains;
849
850  // Walk the register/memloc assignments, inserting copies/loads.  In the case
851  // of tail call optimization, arguments are handled later.
852  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
853       i != e;
854       ++i, ++realArgIdx) {
855    CCValAssign &VA = ArgLocs[i];
856    SDValue Arg = TheCall->getArg(realArgIdx);
857    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx);
858
859    // Promote the value if needed.
860    switch (VA.getLocInfo()) {
861    default: llvm_unreachable("Unknown loc info!");
862    case CCValAssign::Full: break;
863    case CCValAssign::SExt:
864      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
865      break;
866    case CCValAssign::ZExt:
867      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
868      break;
869    case CCValAssign::AExt:
870      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
871      break;
872    case CCValAssign::BCvt:
873      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
874      break;
875    }
876
877    // f64 and v2f64 are passed in i32 pairs and must be split into pieces
878    if (VA.needsCustom()) {
879      if (VA.getLocVT() == MVT::v2f64) {
880        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
881                                  DAG.getConstant(0, MVT::i32));
882        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
883                                  DAG.getConstant(1, MVT::i32));
884
885        PassF64ArgInRegs(TheCall, DAG, Chain, Op0, RegsToPass,
886                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
887
888        VA = ArgLocs[++i]; // skip ahead to next loc
889        if (VA.isRegLoc()) {
890          PassF64ArgInRegs(TheCall, DAG, Chain, Op1, RegsToPass,
891                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
892        } else {
893          assert(VA.isMemLoc());
894          if (StackPtr.getNode() == 0)
895            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
896
897          MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
898                                                 Chain, Op1, Flags));
899        }
900      } else {
901        PassF64ArgInRegs(TheCall, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
902                         StackPtr, MemOpChains, Flags);
903      }
904    } else if (VA.isRegLoc()) {
905      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
906    } else {
907      assert(VA.isMemLoc());
908      if (StackPtr.getNode() == 0)
909        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
910
911      MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
912                                             Chain, Arg, Flags));
913    }
914  }
915
916  if (!MemOpChains.empty())
917    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
918                        &MemOpChains[0], MemOpChains.size());
919
920  // Build a sequence of copy-to-reg nodes chained together with token chain
921  // and flag operands which copy the outgoing args into the appropriate regs.
922  SDValue InFlag;
923  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
924    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
925                             RegsToPass[i].second, InFlag);
926    InFlag = Chain.getValue(1);
927  }
928
929  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
930  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
931  // node so that legalize doesn't hack it.
932  bool isDirect = false;
933  bool isARMFunc = false;
934  bool isLocalARMFunc = false;
935  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
936    GlobalValue *GV = G->getGlobal();
937    isDirect = true;
938    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
939    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
940                   getTargetMachine().getRelocationModel() != Reloc::Static;
941    isARMFunc = !Subtarget->isThumb() || isStub;
942    // ARM call to a local ARM function is predicable.
943    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
944    // tBX takes a register source operand.
945    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
946      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
947                                                           ARMCP::CPStub, 4);
948      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
949      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
950      Callee = DAG.getLoad(getPointerTy(), dl,
951                           DAG.getEntryNode(), CPAddr, NULL, 0);
952      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
953      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
954                           getPointerTy(), Callee, PICLabel);
955   } else
956      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
957  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
958    isDirect = true;
959    bool isStub = Subtarget->isTargetDarwin() &&
960                  getTargetMachine().getRelocationModel() != Reloc::Static;
961    isARMFunc = !Subtarget->isThumb() || isStub;
962    // tBX takes a register source operand.
963    const char *Sym = S->getSymbol();
964    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
965      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
966                                                           ARMCP::CPStub, 4);
967      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
968      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
969      Callee = DAG.getLoad(getPointerTy(), dl,
970                           DAG.getEntryNode(), CPAddr, NULL, 0);
971      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
972      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
973                           getPointerTy(), Callee, PICLabel);
974    } else
975      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
976  }
977
978  // FIXME: handle tail calls differently.
979  unsigned CallOpc;
980  if (Subtarget->isThumb1Only()) {
981    if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
982      CallOpc = ARMISD::CALL_NOLINK;
983    else
984      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
985  } else {
986    CallOpc = (isDirect || Subtarget->hasV5TOps())
987      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
988      : ARMISD::CALL_NOLINK;
989  }
990  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
991    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
992    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
993    InFlag = Chain.getValue(1);
994  }
995
996  std::vector<SDValue> Ops;
997  Ops.push_back(Chain);
998  Ops.push_back(Callee);
999
1000  // Add argument registers to the end of the list so that they are known live
1001  // into the call.
1002  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1003    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1004                                  RegsToPass[i].second.getValueType()));
1005
1006  if (InFlag.getNode())
1007    Ops.push_back(InFlag);
1008  // Returns a chain and a flag for retval copy to use.
1009  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1010                      &Ops[0], Ops.size());
1011  InFlag = Chain.getValue(1);
1012
1013  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1014                             DAG.getIntPtrConstant(0, true), InFlag);
1015  if (RetVT != MVT::Other)
1016    InFlag = Chain.getValue(1);
1017
1018  // Handle result values, copying them out of physregs into vregs that we
1019  // return.
1020  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1021                                 Op.getResNo());
1022}
1023
1024SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1025  // The chain is always operand #0
1026  SDValue Chain = Op.getOperand(0);
1027  DebugLoc dl = Op.getDebugLoc();
1028
1029  // CCValAssign - represent the assignment of the return value to a location.
1030  SmallVector<CCValAssign, 16> RVLocs;
1031  unsigned CC   = DAG.getMachineFunction().getFunction()->getCallingConv();
1032  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1033
1034  // CCState - Info about the registers and stack slots.
1035  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
1036
1037  // Analyze return values of ISD::RET.
1038  CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true));
1039
1040  // If this is the first return lowered for this function, add
1041  // the regs to the liveout set for the function.
1042  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1043    for (unsigned i = 0; i != RVLocs.size(); ++i)
1044      if (RVLocs[i].isRegLoc())
1045        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1046  }
1047
1048  SDValue Flag;
1049
1050  // Copy the result values into the output registers.
1051  for (unsigned i = 0, realRVLocIdx = 0;
1052       i != RVLocs.size();
1053       ++i, ++realRVLocIdx) {
1054    CCValAssign &VA = RVLocs[i];
1055    assert(VA.isRegLoc() && "Can only return in registers!");
1056
1057    // ISD::RET => ret chain, (regnum1,val1), ...
1058    // So i*2+1 index only the regnums
1059    SDValue Arg = Op.getOperand(realRVLocIdx*2+1);
1060
1061    switch (VA.getLocInfo()) {
1062    default: llvm_unreachable("Unknown loc info!");
1063    case CCValAssign::Full: break;
1064    case CCValAssign::BCvt:
1065      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1066      break;
1067    }
1068
1069    if (VA.needsCustom()) {
1070      if (VA.getLocVT() == MVT::v2f64) {
1071        // Extract the first half and return it in two registers.
1072        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1073                                   DAG.getConstant(0, MVT::i32));
1074        SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1075                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1076
1077        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1078        Flag = Chain.getValue(1);
1079        VA = RVLocs[++i]; // skip ahead to next loc
1080        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1081                                 HalfGPRs.getValue(1), Flag);
1082        Flag = Chain.getValue(1);
1083        VA = RVLocs[++i]; // skip ahead to next loc
1084
1085        // Extract the 2nd half and fall through to handle it as an f64 value.
1086        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1087                          DAG.getConstant(1, MVT::i32));
1088      }
1089      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1090      // available.
1091      SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1092                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1093      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1094      Flag = Chain.getValue(1);
1095      VA = RVLocs[++i]; // skip ahead to next loc
1096      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1097                               Flag);
1098    } else
1099      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1100
1101    // Guarantee that all emitted copies are
1102    // stuck together, avoiding something bad.
1103    Flag = Chain.getValue(1);
1104  }
1105
1106  SDValue result;
1107  if (Flag.getNode())
1108    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1109  else // Return Void
1110    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1111
1112  return result;
1113}
1114
1115// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1116// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1117// one of the above mentioned nodes. It has to be wrapped because otherwise
1118// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1119// be used to form addressing mode. These wrapped nodes will be selected
1120// into MOVi.
1121static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1122  MVT PtrVT = Op.getValueType();
1123  // FIXME there is no actual debug info here
1124  DebugLoc dl = Op.getDebugLoc();
1125  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1126  SDValue Res;
1127  if (CP->isMachineConstantPoolEntry())
1128    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1129                                    CP->getAlignment());
1130  else
1131    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1132                                    CP->getAlignment());
1133  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1134}
1135
1136// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1137SDValue
1138ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1139                                                 SelectionDAG &DAG) {
1140  DebugLoc dl = GA->getDebugLoc();
1141  MVT PtrVT = getPointerTy();
1142  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1143  ARMConstantPoolValue *CPV =
1144    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1145                             PCAdj, "tlsgd", true);
1146  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1147  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1148  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
1149  SDValue Chain = Argument.getValue(1);
1150
1151  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1152  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1153
1154  // call __tls_get_addr.
1155  ArgListTy Args;
1156  ArgListEntry Entry;
1157  Entry.Node = Argument;
1158  Entry.Ty = (const Type *) Type::Int32Ty;
1159  Args.push_back(Entry);
1160  // FIXME: is there useful debug info available here?
1161  std::pair<SDValue, SDValue> CallResult =
1162    LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
1163                0, CallingConv::C, false,
1164                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1165  return CallResult.first;
1166}
1167
1168// Lower ISD::GlobalTLSAddress using the "initial exec" or
1169// "local exec" model.
1170SDValue
1171ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1172                                        SelectionDAG &DAG) {
1173  GlobalValue *GV = GA->getGlobal();
1174  DebugLoc dl = GA->getDebugLoc();
1175  SDValue Offset;
1176  SDValue Chain = DAG.getEntryNode();
1177  MVT PtrVT = getPointerTy();
1178  // Get the Thread Pointer
1179  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1180
1181  if (GV->isDeclaration()) {
1182    // initial exec model
1183    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1184    ARMConstantPoolValue *CPV =
1185      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1186                               PCAdj, "gottpoff", true);
1187    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1188    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1189    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1190    Chain = Offset.getValue(1);
1191
1192    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1193    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1194
1195    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1196  } else {
1197    // local exec model
1198    ARMConstantPoolValue *CPV =
1199      new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
1200    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1201    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1202    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1203  }
1204
1205  // The address of the thread local variable is the add of the thread
1206  // pointer with the offset of the variable.
1207  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1208}
1209
1210SDValue
1211ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1212  // TODO: implement the "local dynamic" model
1213  assert(Subtarget->isTargetELF() &&
1214         "TLS not implemented for non-ELF targets");
1215  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1216  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1217  // otherwise use the "Local Exec" TLS Model
1218  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1219    return LowerToTLSGeneralDynamicModel(GA, DAG);
1220  else
1221    return LowerToTLSExecModels(GA, DAG);
1222}
1223
1224SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1225                                                 SelectionDAG &DAG) {
1226  MVT PtrVT = getPointerTy();
1227  DebugLoc dl = Op.getDebugLoc();
1228  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1229  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1230  if (RelocM == Reloc::PIC_) {
1231    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1232    ARMConstantPoolValue *CPV =
1233      new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
1234    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1235    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1236    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1237                                 CPAddr, NULL, 0);
1238    SDValue Chain = Result.getValue(1);
1239    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1240    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1241    if (!UseGOTOFF)
1242      Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1243    return Result;
1244  } else {
1245    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1246    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1247    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1248  }
1249}
1250
1251/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
1252/// even in non-static mode.
1253static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
1254  // If symbol visibility is hidden, the extra load is not needed if
1255  // the symbol is definitely defined in the current translation unit.
1256  bool isDecl = GV->isDeclaration() || GV->hasAvailableExternallyLinkage();
1257  if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
1258    return false;
1259  return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
1260}
1261
1262SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1263                                                    SelectionDAG &DAG) {
1264  MVT PtrVT = getPointerTy();
1265  DebugLoc dl = Op.getDebugLoc();
1266  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1267  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1268  bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
1269  SDValue CPAddr;
1270  if (RelocM == Reloc::Static)
1271    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1272  else {
1273    unsigned PCAdj = (RelocM != Reloc::PIC_)
1274      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1275    ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
1276      : ARMCP::CPValue;
1277    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
1278                                                         Kind, PCAdj);
1279    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1280  }
1281  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1282
1283  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1284  SDValue Chain = Result.getValue(1);
1285
1286  if (RelocM == Reloc::PIC_) {
1287    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1288    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1289  }
1290  if (IsIndirect)
1291    Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1292
1293  return Result;
1294}
1295
1296SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1297                                                    SelectionDAG &DAG){
1298  assert(Subtarget->isTargetELF() &&
1299         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1300  MVT PtrVT = getPointerTy();
1301  DebugLoc dl = Op.getDebugLoc();
1302  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1303  ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
1304                                                       ARMPCLabelIndex,
1305                                                       ARMCP::CPValue, PCAdj);
1306  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1307  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1308  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1309  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1310  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1311}
1312
1313SDValue
1314ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1315  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1316  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1317  DebugLoc dl = Op.getDebugLoc();
1318  switch (IntNo) {
1319  default: return SDValue();    // Don't custom lower most intrinsics.
1320  case Intrinsic::arm_thread_pointer:
1321      return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1322  case Intrinsic::eh_sjlj_setjmp:
1323      SDValue Res = DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32,
1324                         Op.getOperand(1));
1325      return Res;
1326  }
1327}
1328
1329static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1330                            unsigned VarArgsFrameIndex) {
1331  // vastart just stores the address of the VarArgsFrameIndex slot into the
1332  // memory location argument.
1333  DebugLoc dl = Op.getDebugLoc();
1334  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1335  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1336  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1337  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1338}
1339
1340SDValue
1341ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1342                                        SDValue &Root, SelectionDAG &DAG,
1343                                        DebugLoc dl) {
1344  MachineFunction &MF = DAG.getMachineFunction();
1345  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1346
1347  TargetRegisterClass *RC;
1348  if (AFI->isThumb1OnlyFunction())
1349    RC = ARM::tGPRRegisterClass;
1350  else
1351    RC = ARM::GPRRegisterClass;
1352
1353  // Transform the arguments stored in physical registers into virtual ones.
1354  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1355  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1356
1357  SDValue ArgValue2;
1358  if (NextVA.isMemLoc()) {
1359    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1360    MachineFrameInfo *MFI = MF.getFrameInfo();
1361    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1362
1363    // Create load node to retrieve arguments from the stack.
1364    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1365    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1366  } else {
1367    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1368    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1369  }
1370
1371  return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1372}
1373
1374SDValue
1375ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1376  MachineFunction &MF = DAG.getMachineFunction();
1377  MachineFrameInfo *MFI = MF.getFrameInfo();
1378
1379  SDValue Root = Op.getOperand(0);
1380  DebugLoc dl = Op.getDebugLoc();
1381  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1382  unsigned CC = MF.getFunction()->getCallingConv();
1383  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1384
1385  // Assign locations to all of the incoming arguments.
1386  SmallVector<CCValAssign, 16> ArgLocs;
1387  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
1388  CCInfo.AnalyzeFormalArguments(Op.getNode(),
1389                                CCAssignFnForNode(CC, /* Return*/ false));
1390
1391  SmallVector<SDValue, 16> ArgValues;
1392
1393  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1394    CCValAssign &VA = ArgLocs[i];
1395
1396    // Arguments stored in registers.
1397    if (VA.isRegLoc()) {
1398      MVT RegVT = VA.getLocVT();
1399
1400      SDValue ArgValue;
1401      if (VA.needsCustom()) {
1402        // f64 and vector types are split up into multiple registers or
1403        // combinations of registers and stack slots.
1404        RegVT = MVT::i32;
1405
1406        if (VA.getLocVT() == MVT::v2f64) {
1407          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1408                                                   Root, DAG, dl);
1409          VA = ArgLocs[++i]; // skip ahead to next loc
1410          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1411                                                   Root, DAG, dl);
1412          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1413          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1414                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1415          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1416                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1417        } else
1418          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Root, DAG, dl);
1419
1420      } else {
1421        TargetRegisterClass *RC;
1422        if (FloatABIType == FloatABI::Hard && RegVT == MVT::f32)
1423          RC = ARM::SPRRegisterClass;
1424        else if (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)
1425          RC = ARM::DPRRegisterClass;
1426        else if (AFI->isThumb1OnlyFunction())
1427          RC = ARM::tGPRRegisterClass;
1428        else
1429          RC = ARM::GPRRegisterClass;
1430
1431        assert((RegVT == MVT::i32 || RegVT == MVT::f32 ||
1432                (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)) &&
1433               "RegVT not supported by FORMAL_ARGUMENTS Lowering");
1434
1435        // Transform the arguments in physical registers into virtual ones.
1436        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1437        ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1438      }
1439
1440      // If this is an 8 or 16-bit value, it is really passed promoted
1441      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1442      // truncate to the right size.
1443      switch (VA.getLocInfo()) {
1444      default: llvm_unreachable("Unknown loc info!");
1445      case CCValAssign::Full: break;
1446      case CCValAssign::BCvt:
1447        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1448        break;
1449      case CCValAssign::SExt:
1450        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1451                               DAG.getValueType(VA.getValVT()));
1452        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1453        break;
1454      case CCValAssign::ZExt:
1455        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1456                               DAG.getValueType(VA.getValVT()));
1457        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1458        break;
1459      }
1460
1461      ArgValues.push_back(ArgValue);
1462
1463    } else { // VA.isRegLoc()
1464
1465      // sanity check
1466      assert(VA.isMemLoc());
1467      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1468
1469      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1470      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1471
1472      // Create load nodes to retrieve arguments from the stack.
1473      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1474      ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1475    }
1476  }
1477
1478  // varargs
1479  if (isVarArg) {
1480    static const unsigned GPRArgRegs[] = {
1481      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1482    };
1483
1484    unsigned NumGPRs = CCInfo.getFirstUnallocated
1485      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1486
1487    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1488    unsigned VARegSize = (4 - NumGPRs) * 4;
1489    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1490    unsigned ArgOffset = 0;
1491    if (VARegSaveSize) {
1492      // If this function is vararg, store any remaining integer argument regs
1493      // to their spots on the stack so that they may be loaded by deferencing
1494      // the result of va_next.
1495      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1496      ArgOffset = CCInfo.getNextStackOffset();
1497      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1498                                                 VARegSaveSize - VARegSize);
1499      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1500
1501      SmallVector<SDValue, 4> MemOps;
1502      for (; NumGPRs < 4; ++NumGPRs) {
1503        TargetRegisterClass *RC;
1504        if (AFI->isThumb1OnlyFunction())
1505          RC = ARM::tGPRRegisterClass;
1506        else
1507          RC = ARM::GPRRegisterClass;
1508
1509        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1510        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1511        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1512        MemOps.push_back(Store);
1513        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1514                          DAG.getConstant(4, getPointerTy()));
1515      }
1516      if (!MemOps.empty())
1517        Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1518                           &MemOps[0], MemOps.size());
1519    } else
1520      // This will point to the next argument passed via stack.
1521      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1522  }
1523
1524  ArgValues.push_back(Root);
1525
1526  // Return the new list of results.
1527  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1528                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1529}
1530
1531/// isFloatingPointZero - Return true if this is +0.0.
1532static bool isFloatingPointZero(SDValue Op) {
1533  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1534    return CFP->getValueAPF().isPosZero();
1535  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1536    // Maybe this has already been legalized into the constant pool?
1537    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1538      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1539      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1540        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1541          return CFP->getValueAPF().isPosZero();
1542    }
1543  }
1544  return false;
1545}
1546
1547static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
1548  return ( isThumb1Only && (C & ~255U) == 0) ||
1549         (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
1550}
1551
1552/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1553/// the given operands.
1554static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1555                         SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
1556                         DebugLoc dl) {
1557  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1558    unsigned C = RHSC->getZExtValue();
1559    if (!isLegalCmpImmediate(C, isThumb1Only)) {
1560      // Constant does not fit, try adjusting it by one?
1561      switch (CC) {
1562      default: break;
1563      case ISD::SETLT:
1564      case ISD::SETGE:
1565        if (isLegalCmpImmediate(C-1, isThumb1Only)) {
1566          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1567          RHS = DAG.getConstant(C-1, MVT::i32);
1568        }
1569        break;
1570      case ISD::SETULT:
1571      case ISD::SETUGE:
1572        if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
1573          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1574          RHS = DAG.getConstant(C-1, MVT::i32);
1575        }
1576        break;
1577      case ISD::SETLE:
1578      case ISD::SETGT:
1579        if (isLegalCmpImmediate(C+1, isThumb1Only)) {
1580          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1581          RHS = DAG.getConstant(C+1, MVT::i32);
1582        }
1583        break;
1584      case ISD::SETULE:
1585      case ISD::SETUGT:
1586        if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
1587          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1588          RHS = DAG.getConstant(C+1, MVT::i32);
1589        }
1590        break;
1591      }
1592    }
1593  }
1594
1595  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1596  ARMISD::NodeType CompareType;
1597  switch (CondCode) {
1598  default:
1599    CompareType = ARMISD::CMP;
1600    break;
1601  case ARMCC::EQ:
1602  case ARMCC::NE:
1603    // Uses only Z Flag
1604    CompareType = ARMISD::CMPZ;
1605    break;
1606  }
1607  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1608  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1609}
1610
1611/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1612static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1613                         DebugLoc dl) {
1614  SDValue Cmp;
1615  if (!isFloatingPointZero(RHS))
1616    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1617  else
1618    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1619  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1620}
1621
1622static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1623                              const ARMSubtarget *ST) {
1624  MVT VT = Op.getValueType();
1625  SDValue LHS = Op.getOperand(0);
1626  SDValue RHS = Op.getOperand(1);
1627  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1628  SDValue TrueVal = Op.getOperand(2);
1629  SDValue FalseVal = Op.getOperand(3);
1630  DebugLoc dl = Op.getDebugLoc();
1631
1632  if (LHS.getValueType() == MVT::i32) {
1633    SDValue ARMCC;
1634    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1635    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1636    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1637  }
1638
1639  ARMCC::CondCodes CondCode, CondCode2;
1640  if (FPCCToARMCC(CC, CondCode, CondCode2))
1641    std::swap(TrueVal, FalseVal);
1642
1643  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1644  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1645  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1646  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1647                                 ARMCC, CCR, Cmp);
1648  if (CondCode2 != ARMCC::AL) {
1649    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1650    // FIXME: Needs another CMP because flag can have but one use.
1651    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1652    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1653                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1654  }
1655  return Result;
1656}
1657
1658static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1659                          const ARMSubtarget *ST) {
1660  SDValue  Chain = Op.getOperand(0);
1661  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1662  SDValue    LHS = Op.getOperand(2);
1663  SDValue    RHS = Op.getOperand(3);
1664  SDValue   Dest = Op.getOperand(4);
1665  DebugLoc dl = Op.getDebugLoc();
1666
1667  if (LHS.getValueType() == MVT::i32) {
1668    SDValue ARMCC;
1669    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1670    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1671    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1672                       Chain, Dest, ARMCC, CCR,Cmp);
1673  }
1674
1675  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1676  ARMCC::CondCodes CondCode, CondCode2;
1677  if (FPCCToARMCC(CC, CondCode, CondCode2))
1678    // Swap the LHS/RHS of the comparison if needed.
1679    std::swap(LHS, RHS);
1680
1681  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1682  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1683  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1684  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1685  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1686  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1687  if (CondCode2 != ARMCC::AL) {
1688    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1689    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1690    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1691  }
1692  return Res;
1693}
1694
1695SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1696  SDValue Chain = Op.getOperand(0);
1697  SDValue Table = Op.getOperand(1);
1698  SDValue Index = Op.getOperand(2);
1699  DebugLoc dl = Op.getDebugLoc();
1700
1701  MVT PTy = getPointerTy();
1702  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1703  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1704  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1705  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1706  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1707  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1708  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1709  bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1710  Addr = DAG.getLoad(isPIC ? (MVT)MVT::i32 : PTy, dl,
1711                     Chain, Addr, NULL, 0);
1712  Chain = Addr.getValue(1);
1713  if (isPIC)
1714    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1715  return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1716}
1717
1718static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1719  DebugLoc dl = Op.getDebugLoc();
1720  unsigned Opc =
1721    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1722  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1723  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1724}
1725
1726static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1727  MVT VT = Op.getValueType();
1728  DebugLoc dl = Op.getDebugLoc();
1729  unsigned Opc =
1730    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1731
1732  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1733  return DAG.getNode(Opc, dl, VT, Op);
1734}
1735
1736static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1737  // Implement fcopysign with a fabs and a conditional fneg.
1738  SDValue Tmp0 = Op.getOperand(0);
1739  SDValue Tmp1 = Op.getOperand(1);
1740  DebugLoc dl = Op.getDebugLoc();
1741  MVT VT = Op.getValueType();
1742  MVT SrcVT = Tmp1.getValueType();
1743  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1744  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1745  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1746  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1747  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1748}
1749
1750SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1751  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1752  MFI->setFrameAddressIsTaken(true);
1753  MVT VT = Op.getValueType();
1754  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1755  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1756  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1757    ? ARM::R7 : ARM::R11;
1758  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1759  while (Depth--)
1760    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1761  return FrameAddr;
1762}
1763
1764SDValue
1765ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1766                                           SDValue Chain,
1767                                           SDValue Dst, SDValue Src,
1768                                           SDValue Size, unsigned Align,
1769                                           bool AlwaysInline,
1770                                         const Value *DstSV, uint64_t DstSVOff,
1771                                         const Value *SrcSV, uint64_t SrcSVOff){
1772  // Do repeated 4-byte loads and stores. To be improved.
1773  // This requires 4-byte alignment.
1774  if ((Align & 3) != 0)
1775    return SDValue();
1776  // This requires the copy size to be a constant, preferrably
1777  // within a subtarget-specific limit.
1778  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1779  if (!ConstantSize)
1780    return SDValue();
1781  uint64_t SizeVal = ConstantSize->getZExtValue();
1782  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1783    return SDValue();
1784
1785  unsigned BytesLeft = SizeVal & 3;
1786  unsigned NumMemOps = SizeVal >> 2;
1787  unsigned EmittedNumMemOps = 0;
1788  MVT VT = MVT::i32;
1789  unsigned VTSize = 4;
1790  unsigned i = 0;
1791  const unsigned MAX_LOADS_IN_LDM = 6;
1792  SDValue TFOps[MAX_LOADS_IN_LDM];
1793  SDValue Loads[MAX_LOADS_IN_LDM];
1794  uint64_t SrcOff = 0, DstOff = 0;
1795
1796  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1797  // same number of stores.  The loads and stores will get combined into
1798  // ldm/stm later on.
1799  while (EmittedNumMemOps < NumMemOps) {
1800    for (i = 0;
1801         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1802      Loads[i] = DAG.getLoad(VT, dl, Chain,
1803                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1804                                         DAG.getConstant(SrcOff, MVT::i32)),
1805                             SrcSV, SrcSVOff + SrcOff);
1806      TFOps[i] = Loads[i].getValue(1);
1807      SrcOff += VTSize;
1808    }
1809    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1810
1811    for (i = 0;
1812         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1813      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1814                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1815                                       DAG.getConstant(DstOff, MVT::i32)),
1816                           DstSV, DstSVOff + DstOff);
1817      DstOff += VTSize;
1818    }
1819    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1820
1821    EmittedNumMemOps += i;
1822  }
1823
1824  if (BytesLeft == 0)
1825    return Chain;
1826
1827  // Issue loads / stores for the trailing (1 - 3) bytes.
1828  unsigned BytesLeftSave = BytesLeft;
1829  i = 0;
1830  while (BytesLeft) {
1831    if (BytesLeft >= 2) {
1832      VT = MVT::i16;
1833      VTSize = 2;
1834    } else {
1835      VT = MVT::i8;
1836      VTSize = 1;
1837    }
1838
1839    Loads[i] = DAG.getLoad(VT, dl, Chain,
1840                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1841                                       DAG.getConstant(SrcOff, MVT::i32)),
1842                           SrcSV, SrcSVOff + SrcOff);
1843    TFOps[i] = Loads[i].getValue(1);
1844    ++i;
1845    SrcOff += VTSize;
1846    BytesLeft -= VTSize;
1847  }
1848  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1849
1850  i = 0;
1851  BytesLeft = BytesLeftSave;
1852  while (BytesLeft) {
1853    if (BytesLeft >= 2) {
1854      VT = MVT::i16;
1855      VTSize = 2;
1856    } else {
1857      VT = MVT::i8;
1858      VTSize = 1;
1859    }
1860
1861    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1862                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1863                                        DAG.getConstant(DstOff, MVT::i32)),
1864                            DstSV, DstSVOff + DstOff);
1865    ++i;
1866    DstOff += VTSize;
1867    BytesLeft -= VTSize;
1868  }
1869  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1870}
1871
1872static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
1873  SDValue Op = N->getOperand(0);
1874  DebugLoc dl = N->getDebugLoc();
1875  if (N->getValueType(0) == MVT::f64) {
1876    // Turn i64->f64 into FMDRR.
1877    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1878                             DAG.getConstant(0, MVT::i32));
1879    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1880                             DAG.getConstant(1, MVT::i32));
1881    return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
1882  }
1883
1884  // Turn f64->i64 into FMRRD.
1885  SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
1886                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
1887
1888  // Merge the pieces into a single i64 value.
1889  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
1890}
1891
1892/// getZeroVector - Returns a vector of specified type with all zero elements.
1893///
1894static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1895  assert(VT.isVector() && "Expected a vector type");
1896
1897  // Zero vectors are used to represent vector negation and in those cases
1898  // will be implemented with the NEON VNEG instruction.  However, VNEG does
1899  // not support i64 elements, so sometimes the zero vectors will need to be
1900  // explicitly constructed.  For those cases, and potentially other uses in
1901  // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
1902  // to their dest type.  This ensures they get CSE'd.
1903  SDValue Vec;
1904  SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
1905  if (VT.getSizeInBits() == 64)
1906    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1907  else
1908    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1909
1910  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1911}
1912
1913/// getOnesVector - Returns a vector of specified type with all bits set.
1914///
1915static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1916  assert(VT.isVector() && "Expected a vector type");
1917
1918  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
1919  // type.  This ensures they get CSE'd.
1920  SDValue Vec;
1921  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
1922  if (VT.getSizeInBits() == 64)
1923    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1924  else
1925    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1926
1927  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1928}
1929
1930static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
1931                          const ARMSubtarget *ST) {
1932  MVT VT = N->getValueType(0);
1933  DebugLoc dl = N->getDebugLoc();
1934
1935  // Lower vector shifts on NEON to use VSHL.
1936  if (VT.isVector()) {
1937    assert(ST->hasNEON() && "unexpected vector shift");
1938
1939    // Left shifts translate directly to the vshiftu intrinsic.
1940    if (N->getOpcode() == ISD::SHL)
1941      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
1942                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
1943                         N->getOperand(0), N->getOperand(1));
1944
1945    assert((N->getOpcode() == ISD::SRA ||
1946            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
1947
1948    // NEON uses the same intrinsics for both left and right shifts.  For
1949    // right shifts, the shift amounts are negative, so negate the vector of
1950    // shift amounts.
1951    MVT ShiftVT = N->getOperand(1).getValueType();
1952    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
1953                                       getZeroVector(ShiftVT, DAG, dl),
1954                                       N->getOperand(1));
1955    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
1956                               Intrinsic::arm_neon_vshifts :
1957                               Intrinsic::arm_neon_vshiftu);
1958    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
1959                       DAG.getConstant(vshiftInt, MVT::i32),
1960                       N->getOperand(0), NegatedCount);
1961  }
1962
1963  assert(VT == MVT::i64 &&
1964         (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
1965         "Unknown shift to lower!");
1966
1967  // We only lower SRA, SRL of 1 here, all others use generic lowering.
1968  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
1969      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
1970    return SDValue();
1971
1972  // If we are in thumb mode, we don't have RRX.
1973  if (ST->isThumb1Only()) return SDValue();
1974
1975  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
1976  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1977                             DAG.getConstant(0, MVT::i32));
1978  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1979                             DAG.getConstant(1, MVT::i32));
1980
1981  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
1982  // captures the result into a carry flag.
1983  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
1984  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
1985
1986  // The low part is an ARMISD::RRX operand, which shifts the carry in.
1987  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
1988
1989  // Merge the pieces into a single i64 value.
1990 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1991}
1992
1993static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
1994  SDValue TmpOp0, TmpOp1;
1995  bool Invert = false;
1996  bool Swap = false;
1997  unsigned Opc = 0;
1998
1999  SDValue Op0 = Op.getOperand(0);
2000  SDValue Op1 = Op.getOperand(1);
2001  SDValue CC = Op.getOperand(2);
2002  MVT VT = Op.getValueType();
2003  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2004  DebugLoc dl = Op.getDebugLoc();
2005
2006  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2007    switch (SetCCOpcode) {
2008    default: llvm_unreachable("Illegal FP comparison"); break;
2009    case ISD::SETUNE:
2010    case ISD::SETNE:  Invert = true; // Fallthrough
2011    case ISD::SETOEQ:
2012    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2013    case ISD::SETOLT:
2014    case ISD::SETLT: Swap = true; // Fallthrough
2015    case ISD::SETOGT:
2016    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2017    case ISD::SETOLE:
2018    case ISD::SETLE:  Swap = true; // Fallthrough
2019    case ISD::SETOGE:
2020    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2021    case ISD::SETUGE: Swap = true; // Fallthrough
2022    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2023    case ISD::SETUGT: Swap = true; // Fallthrough
2024    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2025    case ISD::SETUEQ: Invert = true; // Fallthrough
2026    case ISD::SETONE:
2027      // Expand this to (OLT | OGT).
2028      TmpOp0 = Op0;
2029      TmpOp1 = Op1;
2030      Opc = ISD::OR;
2031      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2032      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2033      break;
2034    case ISD::SETUO: Invert = true; // Fallthrough
2035    case ISD::SETO:
2036      // Expand this to (OLT | OGE).
2037      TmpOp0 = Op0;
2038      TmpOp1 = Op1;
2039      Opc = ISD::OR;
2040      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2041      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2042      break;
2043    }
2044  } else {
2045    // Integer comparisons.
2046    switch (SetCCOpcode) {
2047    default: llvm_unreachable("Illegal integer comparison"); break;
2048    case ISD::SETNE:  Invert = true;
2049    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2050    case ISD::SETLT:  Swap = true;
2051    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2052    case ISD::SETLE:  Swap = true;
2053    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2054    case ISD::SETULT: Swap = true;
2055    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2056    case ISD::SETULE: Swap = true;
2057    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2058    }
2059
2060    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2061    if (Opc == ARMISD::VCEQ) {
2062
2063      SDValue AndOp;
2064      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2065        AndOp = Op0;
2066      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2067        AndOp = Op1;
2068
2069      // Ignore bitconvert.
2070      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2071        AndOp = AndOp.getOperand(0);
2072
2073      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2074        Opc = ARMISD::VTST;
2075        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2076        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2077        Invert = !Invert;
2078      }
2079    }
2080  }
2081
2082  if (Swap)
2083    std::swap(Op0, Op1);
2084
2085  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2086
2087  if (Invert)
2088    Result = DAG.getNOT(dl, Result, VT);
2089
2090  return Result;
2091}
2092
2093/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2094/// VMOV instruction, and if so, return the constant being splatted.
2095static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2096                           unsigned SplatBitSize, SelectionDAG &DAG) {
2097  switch (SplatBitSize) {
2098  case 8:
2099    // Any 1-byte value is OK.
2100    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2101    return DAG.getTargetConstant(SplatBits, MVT::i8);
2102
2103  case 16:
2104    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2105    if ((SplatBits & ~0xff) == 0 ||
2106        (SplatBits & ~0xff00) == 0)
2107      return DAG.getTargetConstant(SplatBits, MVT::i16);
2108    break;
2109
2110  case 32:
2111    // NEON's 32-bit VMOV supports splat values where:
2112    // * only one byte is nonzero, or
2113    // * the least significant byte is 0xff and the second byte is nonzero, or
2114    // * the least significant 2 bytes are 0xff and the third is nonzero.
2115    if ((SplatBits & ~0xff) == 0 ||
2116        (SplatBits & ~0xff00) == 0 ||
2117        (SplatBits & ~0xff0000) == 0 ||
2118        (SplatBits & ~0xff000000) == 0)
2119      return DAG.getTargetConstant(SplatBits, MVT::i32);
2120
2121    if ((SplatBits & ~0xffff) == 0 &&
2122        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2123      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2124
2125    if ((SplatBits & ~0xffffff) == 0 &&
2126        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2127      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2128
2129    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2130    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2131    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2132    // and fall through here to test for a valid 64-bit splat.  But, then the
2133    // caller would also need to check and handle the change in size.
2134    break;
2135
2136  case 64: {
2137    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2138    uint64_t BitMask = 0xff;
2139    uint64_t Val = 0;
2140    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2141      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2142        Val |= BitMask;
2143      else if ((SplatBits & BitMask) != 0)
2144        return SDValue();
2145      BitMask <<= 8;
2146    }
2147    return DAG.getTargetConstant(Val, MVT::i64);
2148  }
2149
2150  default:
2151    llvm_unreachable("unexpected size for isVMOVSplat");
2152    break;
2153  }
2154
2155  return SDValue();
2156}
2157
2158/// getVMOVImm - If this is a build_vector of constants which can be
2159/// formed by using a VMOV instruction of the specified element size,
2160/// return the constant being splatted.  The ByteSize field indicates the
2161/// number of bytes of each element [1248].
2162SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2163  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2164  APInt SplatBits, SplatUndef;
2165  unsigned SplatBitSize;
2166  bool HasAnyUndefs;
2167  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2168                                      HasAnyUndefs, ByteSize * 8))
2169    return SDValue();
2170
2171  if (SplatBitSize > ByteSize * 8)
2172    return SDValue();
2173
2174  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2175                     SplatBitSize, DAG);
2176}
2177
2178static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2179  // Canonicalize all-zeros and all-ones vectors.
2180  ConstantSDNode *ConstVal = dyn_cast<ConstantSDNode>(Val.getNode());
2181  if (ConstVal->isNullValue())
2182    return getZeroVector(VT, DAG, dl);
2183  if (ConstVal->isAllOnesValue())
2184    return getOnesVector(VT, DAG, dl);
2185
2186  MVT CanonicalVT;
2187  if (VT.is64BitVector()) {
2188    switch (Val.getValueType().getSizeInBits()) {
2189    case 8:  CanonicalVT = MVT::v8i8; break;
2190    case 16: CanonicalVT = MVT::v4i16; break;
2191    case 32: CanonicalVT = MVT::v2i32; break;
2192    case 64: CanonicalVT = MVT::v1i64; break;
2193    default: llvm_unreachable("unexpected splat element type"); break;
2194    }
2195  } else {
2196    assert(VT.is128BitVector() && "unknown splat vector size");
2197    switch (Val.getValueType().getSizeInBits()) {
2198    case 8:  CanonicalVT = MVT::v16i8; break;
2199    case 16: CanonicalVT = MVT::v8i16; break;
2200    case 32: CanonicalVT = MVT::v4i32; break;
2201    case 64: CanonicalVT = MVT::v2i64; break;
2202    default: llvm_unreachable("unexpected splat element type"); break;
2203    }
2204  }
2205
2206  // Build a canonical splat for this value.
2207  SmallVector<SDValue, 8> Ops;
2208  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2209  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2210                            Ops.size());
2211  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2212}
2213
2214// If this is a case we can't handle, return null and let the default
2215// expansion code take care of it.
2216static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2217  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2218  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
2219  DebugLoc dl = Op.getDebugLoc();
2220
2221  APInt SplatBits, SplatUndef;
2222  unsigned SplatBitSize;
2223  bool HasAnyUndefs;
2224  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2225    SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2226                              SplatUndef.getZExtValue(), SplatBitSize, DAG);
2227    if (Val.getNode())
2228      return BuildSplat(Val, Op.getValueType(), DAG, dl);
2229  }
2230
2231  return SDValue();
2232}
2233
2234static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2235  return Op;
2236}
2237
2238static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
2239  return Op;
2240}
2241
2242static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2243  MVT VT = Op.getValueType();
2244  DebugLoc dl = Op.getDebugLoc();
2245  assert((VT == MVT::i8 || VT == MVT::i16) &&
2246         "unexpected type for custom-lowering vector extract");
2247  SDValue Vec = Op.getOperand(0);
2248  SDValue Lane = Op.getOperand(1);
2249  Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2250  Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
2251  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
2252}
2253
2254static SDValue LowerCONCAT_VECTORS(SDValue Op) {
2255  if (Op.getValueType().is128BitVector() && Op.getNumOperands() == 2)
2256    return Op;
2257  return SDValue();
2258}
2259
2260SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2261  switch (Op.getOpcode()) {
2262  default: llvm_unreachable("Don't know how to custom lower this!");
2263  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2264  case ISD::GlobalAddress:
2265    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2266      LowerGlobalAddressELF(Op, DAG);
2267  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2268  case ISD::CALL:          return LowerCALL(Op, DAG);
2269  case ISD::RET:           return LowerRET(Op, DAG);
2270  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG, Subtarget);
2271  case ISD::BR_CC:         return LowerBR_CC(Op, DAG, Subtarget);
2272  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2273  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2274  case ISD::SINT_TO_FP:
2275  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2276  case ISD::FP_TO_SINT:
2277  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2278  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2279  case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
2280  case ISD::RETURNADDR:    break;
2281  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2282  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2283  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2284  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2285  case ISD::SHL:
2286  case ISD::SRL:
2287  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2288  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2289  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2290  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2291  case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2292  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2293  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op);
2294  }
2295  return SDValue();
2296}
2297
2298/// ReplaceNodeResults - Replace the results of node with an illegal result
2299/// type with new values built out of custom code.
2300void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2301                                           SmallVectorImpl<SDValue>&Results,
2302                                           SelectionDAG &DAG) {
2303  switch (N->getOpcode()) {
2304  default:
2305    llvm_unreachable("Don't know how to custom expand this!");
2306    return;
2307  case ISD::BIT_CONVERT:
2308    Results.push_back(ExpandBIT_CONVERT(N, DAG));
2309    return;
2310  case ISD::SRL:
2311  case ISD::SRA: {
2312    SDValue Res = LowerShift(N, DAG, Subtarget);
2313    if (Res.getNode())
2314      Results.push_back(Res);
2315    return;
2316  }
2317  }
2318}
2319
2320//===----------------------------------------------------------------------===//
2321//                           ARM Scheduler Hooks
2322//===----------------------------------------------------------------------===//
2323
2324MachineBasicBlock *
2325ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2326                                               MachineBasicBlock *BB) const {
2327  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2328  DebugLoc dl = MI->getDebugLoc();
2329  switch (MI->getOpcode()) {
2330  default: assert(false && "Unexpected instr type to insert");
2331  case ARM::tMOVCCr: {
2332    // To "insert" a SELECT_CC instruction, we actually have to insert the
2333    // diamond control-flow pattern.  The incoming instruction knows the
2334    // destination vreg to set, the condition code register to branch on, the
2335    // true/false values to select between, and a branch opcode to use.
2336    const BasicBlock *LLVM_BB = BB->getBasicBlock();
2337    MachineFunction::iterator It = BB;
2338    ++It;
2339
2340    //  thisMBB:
2341    //  ...
2342    //   TrueVal = ...
2343    //   cmpTY ccX, r1, r2
2344    //   bCC copy1MBB
2345    //   fallthrough --> copy0MBB
2346    MachineBasicBlock *thisMBB  = BB;
2347    MachineFunction *F = BB->getParent();
2348    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2349    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
2350    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2351      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2352    F->insert(It, copy0MBB);
2353    F->insert(It, sinkMBB);
2354    // Update machine-CFG edges by first adding all successors of the current
2355    // block to the new block which will contain the Phi node for the select.
2356    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2357        e = BB->succ_end(); i != e; ++i)
2358      sinkMBB->addSuccessor(*i);
2359    // Next, remove all successors of the current block, and add the true
2360    // and fallthrough blocks as its successors.
2361    while(!BB->succ_empty())
2362      BB->removeSuccessor(BB->succ_begin());
2363    BB->addSuccessor(copy0MBB);
2364    BB->addSuccessor(sinkMBB);
2365
2366    //  copy0MBB:
2367    //   %FalseValue = ...
2368    //   # fallthrough to sinkMBB
2369    BB = copy0MBB;
2370
2371    // Update machine-CFG edges
2372    BB->addSuccessor(sinkMBB);
2373
2374    //  sinkMBB:
2375    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2376    //  ...
2377    BB = sinkMBB;
2378    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2379      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2380      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2381
2382    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2383    return BB;
2384  }
2385  }
2386}
2387
2388//===----------------------------------------------------------------------===//
2389//                           ARM Optimization Hooks
2390//===----------------------------------------------------------------------===//
2391
2392static
2393SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
2394                            TargetLowering::DAGCombinerInfo &DCI) {
2395  SelectionDAG &DAG = DCI.DAG;
2396  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2397  MVT VT = N->getValueType(0);
2398  unsigned Opc = N->getOpcode();
2399  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
2400  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
2401  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
2402  ISD::CondCode CC = ISD::SETCC_INVALID;
2403
2404  if (isSlctCC) {
2405    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
2406  } else {
2407    SDValue CCOp = Slct.getOperand(0);
2408    if (CCOp.getOpcode() == ISD::SETCC)
2409      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
2410  }
2411
2412  bool DoXform = false;
2413  bool InvCC = false;
2414  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
2415          "Bad input!");
2416
2417  if (LHS.getOpcode() == ISD::Constant &&
2418      cast<ConstantSDNode>(LHS)->isNullValue()) {
2419    DoXform = true;
2420  } else if (CC != ISD::SETCC_INVALID &&
2421             RHS.getOpcode() == ISD::Constant &&
2422             cast<ConstantSDNode>(RHS)->isNullValue()) {
2423    std::swap(LHS, RHS);
2424    SDValue Op0 = Slct.getOperand(0);
2425    MVT OpVT = isSlctCC ? Op0.getValueType() :
2426                          Op0.getOperand(0).getValueType();
2427    bool isInt = OpVT.isInteger();
2428    CC = ISD::getSetCCInverse(CC, isInt);
2429
2430    if (!TLI.isCondCodeLegal(CC, OpVT))
2431      return SDValue();         // Inverse operator isn't legal.
2432
2433    DoXform = true;
2434    InvCC = true;
2435  }
2436
2437  if (DoXform) {
2438    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
2439    if (isSlctCC)
2440      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
2441                             Slct.getOperand(0), Slct.getOperand(1), CC);
2442    SDValue CCOp = Slct.getOperand(0);
2443    if (InvCC)
2444      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
2445                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
2446    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
2447                       CCOp, OtherOp, Result);
2448  }
2449  return SDValue();
2450}
2451
2452/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
2453static SDValue PerformADDCombine(SDNode *N,
2454                                 TargetLowering::DAGCombinerInfo &DCI) {
2455  // added by evan in r37685 with no testcase.
2456  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2457
2458  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
2459  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
2460    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
2461    if (Result.getNode()) return Result;
2462  }
2463  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2464    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2465    if (Result.getNode()) return Result;
2466  }
2467
2468  return SDValue();
2469}
2470
2471/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
2472static SDValue PerformSUBCombine(SDNode *N,
2473                                 TargetLowering::DAGCombinerInfo &DCI) {
2474  // added by evan in r37685 with no testcase.
2475  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2476
2477  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
2478  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2479    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2480    if (Result.getNode()) return Result;
2481  }
2482
2483  return SDValue();
2484}
2485
2486
2487/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
2488static SDValue PerformFMRRDCombine(SDNode *N,
2489                                   TargetLowering::DAGCombinerInfo &DCI) {
2490  // fmrrd(fmdrr x, y) -> x,y
2491  SDValue InDouble = N->getOperand(0);
2492  if (InDouble.getOpcode() == ARMISD::FMDRR)
2493    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
2494  return SDValue();
2495}
2496
2497/// getVShiftImm - Check if this is a valid build_vector for the immediate
2498/// operand of a vector shift operation, where all the elements of the
2499/// build_vector must have the same constant integer value.
2500static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
2501  // Ignore bit_converts.
2502  while (Op.getOpcode() == ISD::BIT_CONVERT)
2503    Op = Op.getOperand(0);
2504  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2505  APInt SplatBits, SplatUndef;
2506  unsigned SplatBitSize;
2507  bool HasAnyUndefs;
2508  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2509                                      HasAnyUndefs, ElementBits) ||
2510      SplatBitSize > ElementBits)
2511    return false;
2512  Cnt = SplatBits.getSExtValue();
2513  return true;
2514}
2515
2516/// isVShiftLImm - Check if this is a valid build_vector for the immediate
2517/// operand of a vector shift left operation.  That value must be in the range:
2518///   0 <= Value < ElementBits for a left shift; or
2519///   0 <= Value <= ElementBits for a long left shift.
2520static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
2521  assert(VT.isVector() && "vector shift count is not a vector type");
2522  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2523  if (! getVShiftImm(Op, ElementBits, Cnt))
2524    return false;
2525  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
2526}
2527
2528/// isVShiftRImm - Check if this is a valid build_vector for the immediate
2529/// operand of a vector shift right operation.  For a shift opcode, the value
2530/// is positive, but for an intrinsic the value count must be negative. The
2531/// absolute value must be in the range:
2532///   1 <= |Value| <= ElementBits for a right shift; or
2533///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
2534static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic,
2535                         int64_t &Cnt) {
2536  assert(VT.isVector() && "vector shift count is not a vector type");
2537  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2538  if (! getVShiftImm(Op, ElementBits, Cnt))
2539    return false;
2540  if (isIntrinsic)
2541    Cnt = -Cnt;
2542  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
2543}
2544
2545/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
2546static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
2547  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2548  switch (IntNo) {
2549  default:
2550    // Don't do anything for most intrinsics.
2551    break;
2552
2553  // Vector shifts: check for immediate versions and lower them.
2554  // Note: This is done during DAG combining instead of DAG legalizing because
2555  // the build_vectors for 64-bit vector element shift counts are generally
2556  // not legal, and it is hard to see their values after they get legalized to
2557  // loads from a constant pool.
2558  case Intrinsic::arm_neon_vshifts:
2559  case Intrinsic::arm_neon_vshiftu:
2560  case Intrinsic::arm_neon_vshiftls:
2561  case Intrinsic::arm_neon_vshiftlu:
2562  case Intrinsic::arm_neon_vshiftn:
2563  case Intrinsic::arm_neon_vrshifts:
2564  case Intrinsic::arm_neon_vrshiftu:
2565  case Intrinsic::arm_neon_vrshiftn:
2566  case Intrinsic::arm_neon_vqshifts:
2567  case Intrinsic::arm_neon_vqshiftu:
2568  case Intrinsic::arm_neon_vqshiftsu:
2569  case Intrinsic::arm_neon_vqshiftns:
2570  case Intrinsic::arm_neon_vqshiftnu:
2571  case Intrinsic::arm_neon_vqshiftnsu:
2572  case Intrinsic::arm_neon_vqrshiftns:
2573  case Intrinsic::arm_neon_vqrshiftnu:
2574  case Intrinsic::arm_neon_vqrshiftnsu: {
2575    MVT VT = N->getOperand(1).getValueType();
2576    int64_t Cnt;
2577    unsigned VShiftOpc = 0;
2578
2579    switch (IntNo) {
2580    case Intrinsic::arm_neon_vshifts:
2581    case Intrinsic::arm_neon_vshiftu:
2582      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
2583        VShiftOpc = ARMISD::VSHL;
2584        break;
2585      }
2586      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
2587        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
2588                     ARMISD::VSHRs : ARMISD::VSHRu);
2589        break;
2590      }
2591      return SDValue();
2592
2593    case Intrinsic::arm_neon_vshiftls:
2594    case Intrinsic::arm_neon_vshiftlu:
2595      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
2596        break;
2597      llvm_unreachable("invalid shift count for vshll intrinsic");
2598
2599    case Intrinsic::arm_neon_vrshifts:
2600    case Intrinsic::arm_neon_vrshiftu:
2601      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
2602        break;
2603      return SDValue();
2604
2605    case Intrinsic::arm_neon_vqshifts:
2606    case Intrinsic::arm_neon_vqshiftu:
2607      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2608        break;
2609      return SDValue();
2610
2611    case Intrinsic::arm_neon_vqshiftsu:
2612      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2613        break;
2614      llvm_unreachable("invalid shift count for vqshlu intrinsic");
2615
2616    case Intrinsic::arm_neon_vshiftn:
2617    case Intrinsic::arm_neon_vrshiftn:
2618    case Intrinsic::arm_neon_vqshiftns:
2619    case Intrinsic::arm_neon_vqshiftnu:
2620    case Intrinsic::arm_neon_vqshiftnsu:
2621    case Intrinsic::arm_neon_vqrshiftns:
2622    case Intrinsic::arm_neon_vqrshiftnu:
2623    case Intrinsic::arm_neon_vqrshiftnsu:
2624      // Narrowing shifts require an immediate right shift.
2625      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
2626        break;
2627      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
2628
2629    default:
2630      llvm_unreachable("unhandled vector shift");
2631    }
2632
2633    switch (IntNo) {
2634    case Intrinsic::arm_neon_vshifts:
2635    case Intrinsic::arm_neon_vshiftu:
2636      // Opcode already set above.
2637      break;
2638    case Intrinsic::arm_neon_vshiftls:
2639    case Intrinsic::arm_neon_vshiftlu:
2640      if (Cnt == VT.getVectorElementType().getSizeInBits())
2641        VShiftOpc = ARMISD::VSHLLi;
2642      else
2643        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
2644                     ARMISD::VSHLLs : ARMISD::VSHLLu);
2645      break;
2646    case Intrinsic::arm_neon_vshiftn:
2647      VShiftOpc = ARMISD::VSHRN; break;
2648    case Intrinsic::arm_neon_vrshifts:
2649      VShiftOpc = ARMISD::VRSHRs; break;
2650    case Intrinsic::arm_neon_vrshiftu:
2651      VShiftOpc = ARMISD::VRSHRu; break;
2652    case Intrinsic::arm_neon_vrshiftn:
2653      VShiftOpc = ARMISD::VRSHRN; break;
2654    case Intrinsic::arm_neon_vqshifts:
2655      VShiftOpc = ARMISD::VQSHLs; break;
2656    case Intrinsic::arm_neon_vqshiftu:
2657      VShiftOpc = ARMISD::VQSHLu; break;
2658    case Intrinsic::arm_neon_vqshiftsu:
2659      VShiftOpc = ARMISD::VQSHLsu; break;
2660    case Intrinsic::arm_neon_vqshiftns:
2661      VShiftOpc = ARMISD::VQSHRNs; break;
2662    case Intrinsic::arm_neon_vqshiftnu:
2663      VShiftOpc = ARMISD::VQSHRNu; break;
2664    case Intrinsic::arm_neon_vqshiftnsu:
2665      VShiftOpc = ARMISD::VQSHRNsu; break;
2666    case Intrinsic::arm_neon_vqrshiftns:
2667      VShiftOpc = ARMISD::VQRSHRNs; break;
2668    case Intrinsic::arm_neon_vqrshiftnu:
2669      VShiftOpc = ARMISD::VQRSHRNu; break;
2670    case Intrinsic::arm_neon_vqrshiftnsu:
2671      VShiftOpc = ARMISD::VQRSHRNsu; break;
2672    }
2673
2674    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2675                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
2676  }
2677
2678  case Intrinsic::arm_neon_vshiftins: {
2679    MVT VT = N->getOperand(1).getValueType();
2680    int64_t Cnt;
2681    unsigned VShiftOpc = 0;
2682
2683    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
2684      VShiftOpc = ARMISD::VSLI;
2685    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
2686      VShiftOpc = ARMISD::VSRI;
2687    else {
2688      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
2689    }
2690
2691    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2692                       N->getOperand(1), N->getOperand(2),
2693                       DAG.getConstant(Cnt, MVT::i32));
2694  }
2695
2696  case Intrinsic::arm_neon_vqrshifts:
2697  case Intrinsic::arm_neon_vqrshiftu:
2698    // No immediate versions of these to check for.
2699    break;
2700  }
2701
2702  return SDValue();
2703}
2704
2705/// PerformShiftCombine - Checks for immediate versions of vector shifts and
2706/// lowers them.  As with the vector shift intrinsics, this is done during DAG
2707/// combining instead of DAG legalizing because the build_vectors for 64-bit
2708/// vector element shift counts are generally not legal, and it is hard to see
2709/// their values after they get legalized to loads from a constant pool.
2710static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
2711                                   const ARMSubtarget *ST) {
2712  MVT VT = N->getValueType(0);
2713
2714  // Nothing to be done for scalar shifts.
2715  if (! VT.isVector())
2716    return SDValue();
2717
2718  assert(ST->hasNEON() && "unexpected vector shift");
2719  int64_t Cnt;
2720
2721  switch (N->getOpcode()) {
2722  default: llvm_unreachable("unexpected shift opcode");
2723
2724  case ISD::SHL:
2725    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
2726      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
2727                         DAG.getConstant(Cnt, MVT::i32));
2728    break;
2729
2730  case ISD::SRA:
2731  case ISD::SRL:
2732    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
2733      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
2734                            ARMISD::VSHRs : ARMISD::VSHRu);
2735      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
2736                         DAG.getConstant(Cnt, MVT::i32));
2737    }
2738  }
2739  return SDValue();
2740}
2741
2742/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
2743/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
2744static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
2745                                    const ARMSubtarget *ST) {
2746  SDValue N0 = N->getOperand(0);
2747
2748  // Check for sign- and zero-extensions of vector extract operations of 8-
2749  // and 16-bit vector elements.  NEON supports these directly.  They are
2750  // handled during DAG combining because type legalization will promote them
2751  // to 32-bit types and it is messy to recognize the operations after that.
2752  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2753    SDValue Vec = N0.getOperand(0);
2754    SDValue Lane = N0.getOperand(1);
2755    MVT VT = N->getValueType(0);
2756    MVT EltVT = N0.getValueType();
2757    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2758
2759    if (VT == MVT::i32 &&
2760        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
2761        TLI.isTypeLegal(Vec.getValueType())) {
2762
2763      unsigned Opc = 0;
2764      switch (N->getOpcode()) {
2765      default: llvm_unreachable("unexpected opcode");
2766      case ISD::SIGN_EXTEND:
2767        Opc = ARMISD::VGETLANEs;
2768        break;
2769      case ISD::ZERO_EXTEND:
2770      case ISD::ANY_EXTEND:
2771        Opc = ARMISD::VGETLANEu;
2772        break;
2773      }
2774      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
2775    }
2776  }
2777
2778  return SDValue();
2779}
2780
2781SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
2782                                             DAGCombinerInfo &DCI) const {
2783  switch (N->getOpcode()) {
2784  default: break;
2785  case ISD::ADD:      return PerformADDCombine(N, DCI);
2786  case ISD::SUB:      return PerformSUBCombine(N, DCI);
2787  case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
2788  case ISD::INTRINSIC_WO_CHAIN:
2789    return PerformIntrinsicCombine(N, DCI.DAG);
2790  case ISD::SHL:
2791  case ISD::SRA:
2792  case ISD::SRL:
2793    return PerformShiftCombine(N, DCI.DAG, Subtarget);
2794  case ISD::SIGN_EXTEND:
2795  case ISD::ZERO_EXTEND:
2796  case ISD::ANY_EXTEND:
2797    return PerformExtendCombine(N, DCI.DAG, Subtarget);
2798  }
2799  return SDValue();
2800}
2801
2802/// isLegalAddressImmediate - Return true if the integer value can be used
2803/// as the offset of the target addressing mode for load / store of the
2804/// given type.
2805static bool isLegalAddressImmediate(int64_t V, MVT VT,
2806                                    const ARMSubtarget *Subtarget) {
2807  if (V == 0)
2808    return true;
2809
2810  if (!VT.isSimple())
2811    return false;
2812
2813  if (Subtarget->isThumb()) { // FIXME for thumb2
2814    if (V < 0)
2815      return false;
2816
2817    unsigned Scale = 1;
2818    switch (VT.getSimpleVT()) {
2819    default: return false;
2820    case MVT::i1:
2821    case MVT::i8:
2822      // Scale == 1;
2823      break;
2824    case MVT::i16:
2825      // Scale == 2;
2826      Scale = 2;
2827      break;
2828    case MVT::i32:
2829      // Scale == 4;
2830      Scale = 4;
2831      break;
2832    }
2833
2834    if ((V & (Scale - 1)) != 0)
2835      return false;
2836    V /= Scale;
2837    return V == (V & ((1LL << 5) - 1));
2838  }
2839
2840  if (V < 0)
2841    V = - V;
2842  switch (VT.getSimpleVT()) {
2843  default: return false;
2844  case MVT::i1:
2845  case MVT::i8:
2846  case MVT::i32:
2847    // +- imm12
2848    return V == (V & ((1LL << 12) - 1));
2849  case MVT::i16:
2850    // +- imm8
2851    return V == (V & ((1LL << 8) - 1));
2852  case MVT::f32:
2853  case MVT::f64:
2854    if (!Subtarget->hasVFP2())
2855      return false;
2856    if ((V & 3) != 0)
2857      return false;
2858    V >>= 2;
2859    return V == (V & ((1LL << 8) - 1));
2860  }
2861}
2862
2863/// isLegalAddressingMode - Return true if the addressing mode represented
2864/// by AM is legal for this target, for a load/store of the specified type.
2865bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
2866                                              const Type *Ty) const {
2867  MVT VT = getValueType(Ty, true);
2868  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
2869    return false;
2870
2871  // Can never fold addr of global into load/store.
2872  if (AM.BaseGV)
2873    return false;
2874
2875  switch (AM.Scale) {
2876  case 0:  // no scale reg, must be "r+i" or "r", or "i".
2877    break;
2878  case 1:
2879    if (Subtarget->isThumb())  // FIXME for thumb2
2880      return false;
2881    // FALL THROUGH.
2882  default:
2883    // ARM doesn't support any R+R*scale+imm addr modes.
2884    if (AM.BaseOffs)
2885      return false;
2886
2887    if (!VT.isSimple())
2888      return false;
2889
2890    int Scale = AM.Scale;
2891    switch (VT.getSimpleVT()) {
2892    default: return false;
2893    case MVT::i1:
2894    case MVT::i8:
2895    case MVT::i32:
2896    case MVT::i64:
2897      // This assumes i64 is legalized to a pair of i32. If not (i.e.
2898      // ldrd / strd are used, then its address mode is same as i16.
2899      // r + r
2900      if (Scale < 0) Scale = -Scale;
2901      if (Scale == 1)
2902        return true;
2903      // r + r << imm
2904      return isPowerOf2_32(Scale & ~1);
2905    case MVT::i16:
2906      // r + r
2907      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
2908        return true;
2909      return false;
2910
2911    case MVT::isVoid:
2912      // Note, we allow "void" uses (basically, uses that aren't loads or
2913      // stores), because arm allows folding a scale into many arithmetic
2914      // operations.  This should be made more precise and revisited later.
2915
2916      // Allow r << imm, but the imm has to be a multiple of two.
2917      if (AM.Scale & 1) return false;
2918      return isPowerOf2_32(AM.Scale);
2919    }
2920    break;
2921  }
2922  return true;
2923}
2924
2925static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT,
2926                                      bool isSEXTLoad, SDValue &Base,
2927                                      SDValue &Offset, bool &isInc,
2928                                      SelectionDAG &DAG) {
2929  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
2930    return false;
2931
2932  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
2933    // AddressingMode 3
2934    Base = Ptr->getOperand(0);
2935    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
2936      int RHSC = (int)RHS->getZExtValue();
2937      if (RHSC < 0 && RHSC > -256) {
2938        assert(Ptr->getOpcode() == ISD::ADD);
2939        isInc = false;
2940        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
2941        return true;
2942      }
2943    }
2944    isInc = (Ptr->getOpcode() == ISD::ADD);
2945    Offset = Ptr->getOperand(1);
2946    return true;
2947  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
2948    // AddressingMode 2
2949    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
2950      int RHSC = (int)RHS->getZExtValue();
2951      if (RHSC < 0 && RHSC > -0x1000) {
2952        assert(Ptr->getOpcode() == ISD::ADD);
2953        isInc = false;
2954        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
2955        Base = Ptr->getOperand(0);
2956        return true;
2957      }
2958    }
2959
2960    if (Ptr->getOpcode() == ISD::ADD) {
2961      isInc = true;
2962      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
2963      if (ShOpcVal != ARM_AM::no_shift) {
2964        Base = Ptr->getOperand(1);
2965        Offset = Ptr->getOperand(0);
2966      } else {
2967        Base = Ptr->getOperand(0);
2968        Offset = Ptr->getOperand(1);
2969      }
2970      return true;
2971    }
2972
2973    isInc = (Ptr->getOpcode() == ISD::ADD);
2974    Base = Ptr->getOperand(0);
2975    Offset = Ptr->getOperand(1);
2976    return true;
2977  }
2978
2979  // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
2980  return false;
2981}
2982
2983static bool getT2IndexedAddressParts(SDNode *Ptr, MVT VT,
2984                                     bool isSEXTLoad, SDValue &Base,
2985                                     SDValue &Offset, bool &isInc,
2986                                     SelectionDAG &DAG) {
2987  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
2988    return false;
2989
2990  Base = Ptr->getOperand(0);
2991  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
2992    int RHSC = (int)RHS->getZExtValue();
2993    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
2994      assert(Ptr->getOpcode() == ISD::ADD);
2995      isInc = false;
2996      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
2997      return true;
2998    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
2999      isInc = Ptr->getOpcode() == ISD::ADD;
3000      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3001      return true;
3002    }
3003  }
3004
3005  return false;
3006}
3007
3008/// getPreIndexedAddressParts - returns true by value, base pointer and
3009/// offset pointer and addressing mode by reference if the node's address
3010/// can be legally represented as pre-indexed load / store address.
3011bool
3012ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3013                                             SDValue &Offset,
3014                                             ISD::MemIndexedMode &AM,
3015                                             SelectionDAG &DAG) const {
3016  if (Subtarget->isThumb1Only())
3017    return false;
3018
3019  MVT VT;
3020  SDValue Ptr;
3021  bool isSEXTLoad = false;
3022  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3023    Ptr = LD->getBasePtr();
3024    VT  = LD->getMemoryVT();
3025    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3026  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3027    Ptr = ST->getBasePtr();
3028    VT  = ST->getMemoryVT();
3029  } else
3030    return false;
3031
3032  bool isInc;
3033  bool isLegal = false;
3034  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3035    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3036                                       Offset, isInc, DAG);
3037  else
3038    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3039                                        Offset, isInc, DAG);
3040  if (!isLegal)
3041    return false;
3042
3043  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3044  return true;
3045}
3046
3047/// getPostIndexedAddressParts - returns true by value, base pointer and
3048/// offset pointer and addressing mode by reference if this node can be
3049/// combined with a load / store to form a post-indexed load / store.
3050bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3051                                                   SDValue &Base,
3052                                                   SDValue &Offset,
3053                                                   ISD::MemIndexedMode &AM,
3054                                                   SelectionDAG &DAG) const {
3055  if (Subtarget->isThumb1Only())
3056    return false;
3057
3058  MVT VT;
3059  SDValue Ptr;
3060  bool isSEXTLoad = false;
3061  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3062    VT  = LD->getMemoryVT();
3063    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3064  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3065    VT  = ST->getMemoryVT();
3066  } else
3067    return false;
3068
3069  bool isInc;
3070  bool isLegal = false;
3071  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3072    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3073                                        isInc, DAG);
3074  else
3075    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3076                                        isInc, DAG);
3077  if (!isLegal)
3078    return false;
3079
3080  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3081  return true;
3082}
3083
3084void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3085                                                       const APInt &Mask,
3086                                                       APInt &KnownZero,
3087                                                       APInt &KnownOne,
3088                                                       const SelectionDAG &DAG,
3089                                                       unsigned Depth) const {
3090  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3091  switch (Op.getOpcode()) {
3092  default: break;
3093  case ARMISD::CMOV: {
3094    // Bits are known zero/one if known on the LHS and RHS.
3095    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3096    if (KnownZero == 0 && KnownOne == 0) return;
3097
3098    APInt KnownZeroRHS, KnownOneRHS;
3099    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3100                          KnownZeroRHS, KnownOneRHS, Depth+1);
3101    KnownZero &= KnownZeroRHS;
3102    KnownOne  &= KnownOneRHS;
3103    return;
3104  }
3105  }
3106}
3107
3108//===----------------------------------------------------------------------===//
3109//                           ARM Inline Assembly Support
3110//===----------------------------------------------------------------------===//
3111
3112/// getConstraintType - Given a constraint letter, return the type of
3113/// constraint it is for this target.
3114ARMTargetLowering::ConstraintType
3115ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3116  if (Constraint.size() == 1) {
3117    switch (Constraint[0]) {
3118    default:  break;
3119    case 'l': return C_RegisterClass;
3120    case 'w': return C_RegisterClass;
3121    }
3122  }
3123  return TargetLowering::getConstraintType(Constraint);
3124}
3125
3126std::pair<unsigned, const TargetRegisterClass*>
3127ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3128                                                MVT VT) const {
3129  if (Constraint.size() == 1) {
3130    // GCC RS6000 Constraint Letters
3131    switch (Constraint[0]) {
3132    case 'l':
3133      if (Subtarget->isThumb1Only())
3134        return std::make_pair(0U, ARM::tGPRRegisterClass);
3135      else
3136        return std::make_pair(0U, ARM::GPRRegisterClass);
3137    case 'r':
3138      return std::make_pair(0U, ARM::GPRRegisterClass);
3139    case 'w':
3140      if (VT == MVT::f32)
3141        return std::make_pair(0U, ARM::SPRRegisterClass);
3142      if (VT == MVT::f64)
3143        return std::make_pair(0U, ARM::DPRRegisterClass);
3144      break;
3145    }
3146  }
3147  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3148}
3149
3150std::vector<unsigned> ARMTargetLowering::
3151getRegClassForInlineAsmConstraint(const std::string &Constraint,
3152                                  MVT VT) const {
3153  if (Constraint.size() != 1)
3154    return std::vector<unsigned>();
3155
3156  switch (Constraint[0]) {      // GCC ARM Constraint Letters
3157  default: break;
3158  case 'l':
3159    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3160                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3161                                 0);
3162  case 'r':
3163    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3164                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3165                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3166                                 ARM::R12, ARM::LR, 0);
3167  case 'w':
3168    if (VT == MVT::f32)
3169      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3170                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3171                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3172                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3173                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3174                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3175                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3176                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3177    if (VT == MVT::f64)
3178      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3179                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3180                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3181                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3182      break;
3183  }
3184
3185  return std::vector<unsigned>();
3186}
3187
3188/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3189/// vector.  If it is invalid, don't add anything to Ops.
3190void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3191                                                     char Constraint,
3192                                                     bool hasMemory,
3193                                                     std::vector<SDValue>&Ops,
3194                                                     SelectionDAG &DAG) const {
3195  SDValue Result(0, 0);
3196
3197  switch (Constraint) {
3198  default: break;
3199  case 'I': case 'J': case 'K': case 'L':
3200  case 'M': case 'N': case 'O':
3201    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3202    if (!C)
3203      return;
3204
3205    int64_t CVal64 = C->getSExtValue();
3206    int CVal = (int) CVal64;
3207    // None of these constraints allow values larger than 32 bits.  Check
3208    // that the value fits in an int.
3209    if (CVal != CVal64)
3210      return;
3211
3212    switch (Constraint) {
3213      case 'I':
3214        if (Subtarget->isThumb1Only()) {
3215          // This must be a constant between 0 and 255, for ADD
3216          // immediates.
3217          if (CVal >= 0 && CVal <= 255)
3218            break;
3219        } else if (Subtarget->isThumb2()) {
3220          // A constant that can be used as an immediate value in a
3221          // data-processing instruction.
3222          if (ARM_AM::getT2SOImmVal(CVal) != -1)
3223            break;
3224        } else {
3225          // A constant that can be used as an immediate value in a
3226          // data-processing instruction.
3227          if (ARM_AM::getSOImmVal(CVal) != -1)
3228            break;
3229        }
3230        return;
3231
3232      case 'J':
3233        if (Subtarget->isThumb()) {  // FIXME thumb2
3234          // This must be a constant between -255 and -1, for negated ADD
3235          // immediates. This can be used in GCC with an "n" modifier that
3236          // prints the negated value, for use with SUB instructions. It is
3237          // not useful otherwise but is implemented for compatibility.
3238          if (CVal >= -255 && CVal <= -1)
3239            break;
3240        } else {
3241          // This must be a constant between -4095 and 4095. It is not clear
3242          // what this constraint is intended for. Implemented for
3243          // compatibility with GCC.
3244          if (CVal >= -4095 && CVal <= 4095)
3245            break;
3246        }
3247        return;
3248
3249      case 'K':
3250        if (Subtarget->isThumb1Only()) {
3251          // A 32-bit value where only one byte has a nonzero value. Exclude
3252          // zero to match GCC. This constraint is used by GCC internally for
3253          // constants that can be loaded with a move/shift combination.
3254          // It is not useful otherwise but is implemented for compatibility.
3255          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
3256            break;
3257        } else if (Subtarget->isThumb2()) {
3258          // A constant whose bitwise inverse can be used as an immediate
3259          // value in a data-processing instruction. This can be used in GCC
3260          // with a "B" modifier that prints the inverted value, for use with
3261          // BIC and MVN instructions. It is not useful otherwise but is
3262          // implemented for compatibility.
3263          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
3264            break;
3265        } else {
3266          // A constant whose bitwise inverse can be used as an immediate
3267          // value in a data-processing instruction. This can be used in GCC
3268          // with a "B" modifier that prints the inverted value, for use with
3269          // BIC and MVN instructions. It is not useful otherwise but is
3270          // implemented for compatibility.
3271          if (ARM_AM::getSOImmVal(~CVal) != -1)
3272            break;
3273        }
3274        return;
3275
3276      case 'L':
3277        if (Subtarget->isThumb1Only()) {
3278          // This must be a constant between -7 and 7,
3279          // for 3-operand ADD/SUB immediate instructions.
3280          if (CVal >= -7 && CVal < 7)
3281            break;
3282        } else if (Subtarget->isThumb2()) {
3283          // A constant whose negation can be used as an immediate value in a
3284          // data-processing instruction. This can be used in GCC with an "n"
3285          // modifier that prints the negated value, for use with SUB
3286          // instructions. It is not useful otherwise but is implemented for
3287          // compatibility.
3288          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
3289            break;
3290        } else {
3291          // A constant whose negation can be used as an immediate value in a
3292          // data-processing instruction. This can be used in GCC with an "n"
3293          // modifier that prints the negated value, for use with SUB
3294          // instructions. It is not useful otherwise but is implemented for
3295          // compatibility.
3296          if (ARM_AM::getSOImmVal(-CVal) != -1)
3297            break;
3298        }
3299        return;
3300
3301      case 'M':
3302        if (Subtarget->isThumb()) { // FIXME thumb2
3303          // This must be a multiple of 4 between 0 and 1020, for
3304          // ADD sp + immediate.
3305          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
3306            break;
3307        } else {
3308          // A power of two or a constant between 0 and 32.  This is used in
3309          // GCC for the shift amount on shifted register operands, but it is
3310          // useful in general for any shift amounts.
3311          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
3312            break;
3313        }
3314        return;
3315
3316      case 'N':
3317        if (Subtarget->isThumb()) {  // FIXME thumb2
3318          // This must be a constant between 0 and 31, for shift amounts.
3319          if (CVal >= 0 && CVal <= 31)
3320            break;
3321        }
3322        return;
3323
3324      case 'O':
3325        if (Subtarget->isThumb()) {  // FIXME thumb2
3326          // This must be a multiple of 4 between -508 and 508, for
3327          // ADD/SUB sp = sp + immediate.
3328          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
3329            break;
3330        }
3331        return;
3332    }
3333    Result = DAG.getTargetConstant(CVal, Op.getValueType());
3334    break;
3335  }
3336
3337  if (Result.getNode()) {
3338    Ops.push_back(Result);
3339    return;
3340  }
3341  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
3342                                                      Ops, DAG);
3343}
3344