ARMISelLowering.cpp revision 861986401e05e437cb33bfd8320d510b956fe41e
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMRegisterInfo.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "ARMTargetObjectFile.h"
24#include "llvm/CallingConv.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/Instruction.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/CodeGen/CallingConvLower.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/VectorExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/MathExtras.h"
42using namespace llvm;
43
44static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
45                                   CCValAssign::LocInfo &LocInfo,
46                                   ISD::ArgFlagsTy &ArgFlags,
47                                   CCState &State);
48static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
49                                    CCValAssign::LocInfo &LocInfo,
50                                    ISD::ArgFlagsTy &ArgFlags,
51                                    CCState &State);
52static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
53                                      CCValAssign::LocInfo &LocInfo,
54                                      ISD::ArgFlagsTy &ArgFlags,
55                                      CCState &State);
56static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
57                                       CCValAssign::LocInfo &LocInfo,
58                                       ISD::ArgFlagsTy &ArgFlags,
59                                       CCState &State);
60
61void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
62                                       MVT PromotedBitwiseVT) {
63  if (VT != PromotedLdStVT) {
64    setOperationAction(ISD::LOAD, VT, Promote);
65    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
66
67    setOperationAction(ISD::STORE, VT, Promote);
68    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
69  }
70
71  MVT ElemTy = VT.getVectorElementType();
72  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
73    setOperationAction(ISD::VSETCC, VT, Custom);
74  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
75    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
76  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
77  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
78  setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
79  setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
80  if (VT.isInteger()) {
81    setOperationAction(ISD::SHL, VT, Custom);
82    setOperationAction(ISD::SRA, VT, Custom);
83    setOperationAction(ISD::SRL, VT, Custom);
84  }
85
86  // Promote all bit-wise operations.
87  if (VT.isInteger() && VT != PromotedBitwiseVT) {
88    setOperationAction(ISD::AND, VT, Promote);
89    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
90    setOperationAction(ISD::OR,  VT, Promote);
91    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
92    setOperationAction(ISD::XOR, VT, Promote);
93    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
94  }
95}
96
97void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
98  addRegisterClass(VT, ARM::DPRRegisterClass);
99  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
100}
101
102void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
103  addRegisterClass(VT, ARM::QPRRegisterClass);
104  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
105}
106
107static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
108  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
109    return new TargetLoweringObjectFileMachO();
110  return new ARMElfTargetObjectFile();
111}
112
113ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
114    : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) {
115  Subtarget = &TM.getSubtarget<ARMSubtarget>();
116
117  if (Subtarget->isTargetDarwin()) {
118    // Uses VFP for Thumb libfuncs if available.
119    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
120      // Single-precision floating-point arithmetic.
121      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
122      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
123      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
124      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
125
126      // Double-precision floating-point arithmetic.
127      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
128      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
129      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
130      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
131
132      // Single-precision comparisons.
133      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
134      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
135      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
136      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
137      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
138      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
139      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
140      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
141
142      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
143      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
144      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
145      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
146      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
147      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
148      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
149      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
150
151      // Double-precision comparisons.
152      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
153      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
154      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
155      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
156      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
157      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
158      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
159      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
160
161      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
162      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
163      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
164      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
165      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
166      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
168      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
169
170      // Floating-point to integer conversions.
171      // i64 conversions are done via library routines even when generating VFP
172      // instructions, so use the same ones.
173      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
174      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
175      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
176      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
177
178      // Conversions between floating types.
179      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
180      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
181
182      // Integer to floating-point conversions.
183      // i64 conversions are done via library routines even when generating VFP
184      // instructions, so use the same ones.
185      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
186      // e.g., __floatunsidf vs. __floatunssidfvfp.
187      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
188      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
189      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
190      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
191    }
192  }
193
194  // These libcalls are not available in 32-bit.
195  setLibcallName(RTLIB::SHL_I128, 0);
196  setLibcallName(RTLIB::SRL_I128, 0);
197  setLibcallName(RTLIB::SRA_I128, 0);
198
199  if (Subtarget->isThumb1Only())
200    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
201  else
202    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
203  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
204    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
205    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
206
207    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
208  }
209
210  if (Subtarget->hasNEON()) {
211    addDRTypeForNEON(MVT::v2f32);
212    addDRTypeForNEON(MVT::v8i8);
213    addDRTypeForNEON(MVT::v4i16);
214    addDRTypeForNEON(MVT::v2i32);
215    addDRTypeForNEON(MVT::v1i64);
216
217    addQRTypeForNEON(MVT::v4f32);
218    addQRTypeForNEON(MVT::v2f64);
219    addQRTypeForNEON(MVT::v16i8);
220    addQRTypeForNEON(MVT::v8i16);
221    addQRTypeForNEON(MVT::v4i32);
222    addQRTypeForNEON(MVT::v2i64);
223
224    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
225    setTargetDAGCombine(ISD::SHL);
226    setTargetDAGCombine(ISD::SRL);
227    setTargetDAGCombine(ISD::SRA);
228    setTargetDAGCombine(ISD::SIGN_EXTEND);
229    setTargetDAGCombine(ISD::ZERO_EXTEND);
230    setTargetDAGCombine(ISD::ANY_EXTEND);
231  }
232
233  computeRegisterProperties();
234
235  // ARM does not have f32 extending load.
236  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
237
238  // ARM does not have i1 sign extending load.
239  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
240
241  // ARM supports all 4 flavors of integer indexed load / store.
242  if (!Subtarget->isThumb1Only()) {
243    for (unsigned im = (unsigned)ISD::PRE_INC;
244         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
245      setIndexedLoadAction(im,  MVT::i1,  Legal);
246      setIndexedLoadAction(im,  MVT::i8,  Legal);
247      setIndexedLoadAction(im,  MVT::i16, Legal);
248      setIndexedLoadAction(im,  MVT::i32, Legal);
249      setIndexedStoreAction(im, MVT::i1,  Legal);
250      setIndexedStoreAction(im, MVT::i8,  Legal);
251      setIndexedStoreAction(im, MVT::i16, Legal);
252      setIndexedStoreAction(im, MVT::i32, Legal);
253    }
254  }
255
256  // i64 operation support.
257  if (Subtarget->isThumb1Only()) {
258    setOperationAction(ISD::MUL,     MVT::i64, Expand);
259    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
260    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
261    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
262    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
263  } else {
264    setOperationAction(ISD::MUL,     MVT::i64, Expand);
265    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
266    if (!Subtarget->hasV6Ops())
267      setOperationAction(ISD::MULHS, MVT::i32, Expand);
268  }
269  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
270  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
271  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
272  setOperationAction(ISD::SRL,       MVT::i64, Custom);
273  setOperationAction(ISD::SRA,       MVT::i64, Custom);
274
275  // ARM does not have ROTL.
276  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
277  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
278  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
279  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
280    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
281
282  // Only ARMv6 has BSWAP.
283  if (!Subtarget->hasV6Ops())
284    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
285
286  // These are expanded into libcalls.
287  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
288  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
289  setOperationAction(ISD::SREM,  MVT::i32, Expand);
290  setOperationAction(ISD::UREM,  MVT::i32, Expand);
291  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
292  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
293
294  // Support label based line numbers.
295  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
296  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
297
298  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
299  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
300  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
301  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
302
303  // Use the default implementation.
304  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
305  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
306  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
307  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
308  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
309  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
310  if (Subtarget->isThumb())
311    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
312  else
313    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
314  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
315
316  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
317    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
318    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
319  }
320  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
321
322  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
323    // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
324    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
325
326  // We want to custom lower some of our intrinsics.
327  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
328  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
329  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
330
331  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
332  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
333  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
334  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
335  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
336  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
337  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
338  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
339  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
340
341  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
342  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
343  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
344  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
345  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
346
347  // We don't support sin/cos/fmod/copysign/pow
348  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
349  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
350  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
351  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
352  setOperationAction(ISD::FREM,      MVT::f64, Expand);
353  setOperationAction(ISD::FREM,      MVT::f32, Expand);
354  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
355    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
356    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
357  }
358  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
359  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
360
361  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
362  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
363    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
364    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
365    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
366    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
367  }
368
369  // We have target-specific dag combine patterns for the following nodes:
370  // ARMISD::FMRRD  - No need to call setTargetDAGCombine
371  setTargetDAGCombine(ISD::ADD);
372  setTargetDAGCombine(ISD::SUB);
373
374  setStackPointerRegisterToSaveRestore(ARM::SP);
375  setSchedulingPreference(SchedulingForRegPressure);
376  setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
377  setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
378
379  if (!Subtarget->isThumb()) {
380    // Use branch latency information to determine if-conversion limits.
381    // FIXME: If-converter should use instruction latency of the branch being
382    // eliminated to compute the threshold. For ARMv6, the branch "latency"
383    // varies depending on whether it's dynamically or statically predicted
384    // and on whether the destination is in the prefetch buffer.
385    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
386    const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData();
387    unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass());
388    if (Latency > 1) {
389      setIfCvtBlockSizeLimit(Latency-1);
390      if (Latency > 2)
391        setIfCvtDupBlockSizeLimit(Latency-2);
392    } else {
393      setIfCvtBlockSizeLimit(10);
394      setIfCvtDupBlockSizeLimit(2);
395    }
396  }
397
398  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
399  // Do not enable CodePlacementOpt for now: it currently runs after the
400  // ARMConstantIslandPass and messes up branch relaxation and placement
401  // of constant islands.
402  // benefitFromCodePlacementOpt = true;
403}
404
405const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
406  switch (Opcode) {
407  default: return 0;
408  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
409  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
410  case ARMISD::CALL:          return "ARMISD::CALL";
411  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
412  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
413  case ARMISD::tCALL:         return "ARMISD::tCALL";
414  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
415  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
416  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
417  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
418  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
419  case ARMISD::CMP:           return "ARMISD::CMP";
420  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
421  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
422  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
423  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
424  case ARMISD::CMOV:          return "ARMISD::CMOV";
425  case ARMISD::CNEG:          return "ARMISD::CNEG";
426
427  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
428  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
429  case ARMISD::SITOF:         return "ARMISD::SITOF";
430  case ARMISD::UITOF:         return "ARMISD::UITOF";
431
432  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
433  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
434  case ARMISD::RRX:           return "ARMISD::RRX";
435
436  case ARMISD::FMRRD:         return "ARMISD::FMRRD";
437  case ARMISD::FMDRR:         return "ARMISD::FMDRR";
438
439  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
440
441  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
442
443  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
444  case ARMISD::VCGE:          return "ARMISD::VCGE";
445  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
446  case ARMISD::VCGT:          return "ARMISD::VCGT";
447  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
448  case ARMISD::VTST:          return "ARMISD::VTST";
449
450  case ARMISD::VSHL:          return "ARMISD::VSHL";
451  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
452  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
453  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
454  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
455  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
456  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
457  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
458  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
459  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
460  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
461  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
462  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
463  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
464  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
465  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
466  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
467  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
468  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
469  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
470  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
471  case ARMISD::VDUPLANEQ:     return "ARMISD::VDUPLANEQ";
472  case ARMISD::VLD2D:         return "ARMISD::VLD2D";
473  case ARMISD::VLD3D:         return "ARMISD::VLD3D";
474  case ARMISD::VLD4D:         return "ARMISD::VLD4D";
475  case ARMISD::VST2D:         return "ARMISD::VST2D";
476  case ARMISD::VST3D:         return "ARMISD::VST3D";
477  case ARMISD::VST4D:         return "ARMISD::VST4D";
478  }
479}
480
481/// getFunctionAlignment - Return the Log2 alignment of this function.
482unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
483  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
484}
485
486//===----------------------------------------------------------------------===//
487// Lowering Code
488//===----------------------------------------------------------------------===//
489
490/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
491static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
492  switch (CC) {
493  default: llvm_unreachable("Unknown condition code!");
494  case ISD::SETNE:  return ARMCC::NE;
495  case ISD::SETEQ:  return ARMCC::EQ;
496  case ISD::SETGT:  return ARMCC::GT;
497  case ISD::SETGE:  return ARMCC::GE;
498  case ISD::SETLT:  return ARMCC::LT;
499  case ISD::SETLE:  return ARMCC::LE;
500  case ISD::SETUGT: return ARMCC::HI;
501  case ISD::SETUGE: return ARMCC::HS;
502  case ISD::SETULT: return ARMCC::LO;
503  case ISD::SETULE: return ARMCC::LS;
504  }
505}
506
507/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
508/// returns true if the operands should be inverted to form the proper
509/// comparison.
510static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
511                        ARMCC::CondCodes &CondCode2) {
512  bool Invert = false;
513  CondCode2 = ARMCC::AL;
514  switch (CC) {
515  default: llvm_unreachable("Unknown FP condition!");
516  case ISD::SETEQ:
517  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
518  case ISD::SETGT:
519  case ISD::SETOGT: CondCode = ARMCC::GT; break;
520  case ISD::SETGE:
521  case ISD::SETOGE: CondCode = ARMCC::GE; break;
522  case ISD::SETOLT: CondCode = ARMCC::MI; break;
523  case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
524  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
525  case ISD::SETO:   CondCode = ARMCC::VC; break;
526  case ISD::SETUO:  CondCode = ARMCC::VS; break;
527  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
528  case ISD::SETUGT: CondCode = ARMCC::HI; break;
529  case ISD::SETUGE: CondCode = ARMCC::PL; break;
530  case ISD::SETLT:
531  case ISD::SETULT: CondCode = ARMCC::LT; break;
532  case ISD::SETLE:
533  case ISD::SETULE: CondCode = ARMCC::LE; break;
534  case ISD::SETNE:
535  case ISD::SETUNE: CondCode = ARMCC::NE; break;
536  }
537  return Invert;
538}
539
540//===----------------------------------------------------------------------===//
541//                      Calling Convention Implementation
542//===----------------------------------------------------------------------===//
543
544#include "ARMGenCallingConv.inc"
545
546// APCS f64 is in register pairs, possibly split to stack
547static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
548                          CCValAssign::LocInfo &LocInfo,
549                          CCState &State, bool CanFail) {
550  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
551
552  // Try to get the first register.
553  if (unsigned Reg = State.AllocateReg(RegList, 4))
554    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
555  else {
556    // For the 2nd half of a v2f64, do not fail.
557    if (CanFail)
558      return false;
559
560    // Put the whole thing on the stack.
561    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
562                                           State.AllocateStack(8, 4),
563                                           LocVT, LocInfo));
564    return true;
565  }
566
567  // Try to get the second register.
568  if (unsigned Reg = State.AllocateReg(RegList, 4))
569    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
570  else
571    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
572                                           State.AllocateStack(4, 4),
573                                           LocVT, LocInfo));
574  return true;
575}
576
577static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
578                                   CCValAssign::LocInfo &LocInfo,
579                                   ISD::ArgFlagsTy &ArgFlags,
580                                   CCState &State) {
581  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
582    return false;
583  if (LocVT == MVT::v2f64 &&
584      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
585    return false;
586  return true;  // we handled it
587}
588
589// AAPCS f64 is in aligned register pairs
590static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
591                           CCValAssign::LocInfo &LocInfo,
592                           CCState &State, bool CanFail) {
593  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
594  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
595
596  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
597  if (Reg == 0) {
598    // For the 2nd half of a v2f64, do not just fail.
599    if (CanFail)
600      return false;
601
602    // Put the whole thing on the stack.
603    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
604                                           State.AllocateStack(8, 8),
605                                           LocVT, LocInfo));
606    return true;
607  }
608
609  unsigned i;
610  for (i = 0; i < 2; ++i)
611    if (HiRegList[i] == Reg)
612      break;
613
614  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
615  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
616                                         LocVT, LocInfo));
617  return true;
618}
619
620static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
621                                    CCValAssign::LocInfo &LocInfo,
622                                    ISD::ArgFlagsTy &ArgFlags,
623                                    CCState &State) {
624  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
625    return false;
626  if (LocVT == MVT::v2f64 &&
627      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
628    return false;
629  return true;  // we handled it
630}
631
632static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
633                         CCValAssign::LocInfo &LocInfo, CCState &State) {
634  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
635  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
636
637  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
638  if (Reg == 0)
639    return false; // we didn't handle it
640
641  unsigned i;
642  for (i = 0; i < 2; ++i)
643    if (HiRegList[i] == Reg)
644      break;
645
646  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
647  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
648                                         LocVT, LocInfo));
649  return true;
650}
651
652static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
653                                      CCValAssign::LocInfo &LocInfo,
654                                      ISD::ArgFlagsTy &ArgFlags,
655                                      CCState &State) {
656  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
657    return false;
658  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
659    return false;
660  return true;  // we handled it
661}
662
663static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
664                                       CCValAssign::LocInfo &LocInfo,
665                                       ISD::ArgFlagsTy &ArgFlags,
666                                       CCState &State) {
667  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
668                                   State);
669}
670
671/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
672/// given CallingConvention value.
673CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
674                                                 bool Return,
675                                                 bool isVarArg) const {
676  switch (CC) {
677  default:
678    llvm_unreachable("Unsupported calling convention");
679  case CallingConv::C:
680  case CallingConv::Fast:
681    // Use target triple & subtarget features to do actual dispatch.
682    if (Subtarget->isAAPCS_ABI()) {
683      if (Subtarget->hasVFP2() &&
684          FloatABIType == FloatABI::Hard && !isVarArg)
685        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
686      else
687        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
688    } else
689        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
690  case CallingConv::ARM_AAPCS_VFP:
691    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
692  case CallingConv::ARM_AAPCS:
693    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
694  case CallingConv::ARM_APCS:
695    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
696  }
697}
698
699/// LowerCallResult - Lower the result values of a call into the
700/// appropriate copies out of appropriate physical registers.
701SDValue
702ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
703                                   unsigned CallConv, bool isVarArg,
704                                   const SmallVectorImpl<ISD::InputArg> &Ins,
705                                   DebugLoc dl, SelectionDAG &DAG,
706                                   SmallVectorImpl<SDValue> &InVals) {
707
708  // Assign locations to each value returned by this call.
709  SmallVector<CCValAssign, 16> RVLocs;
710  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
711                 RVLocs, *DAG.getContext());
712  CCInfo.AnalyzeCallResult(Ins,
713                           CCAssignFnForNode(CallConv, /* Return*/ true,
714                                             isVarArg));
715
716  // Copy all of the result registers out of their specified physreg.
717  for (unsigned i = 0; i != RVLocs.size(); ++i) {
718    CCValAssign VA = RVLocs[i];
719
720    SDValue Val;
721    if (VA.needsCustom()) {
722      // Handle f64 or half of a v2f64.
723      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
724                                      InFlag);
725      Chain = Lo.getValue(1);
726      InFlag = Lo.getValue(2);
727      VA = RVLocs[++i]; // skip ahead to next loc
728      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
729                                      InFlag);
730      Chain = Hi.getValue(1);
731      InFlag = Hi.getValue(2);
732      Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
733
734      if (VA.getLocVT() == MVT::v2f64) {
735        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
736        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
737                          DAG.getConstant(0, MVT::i32));
738
739        VA = RVLocs[++i]; // skip ahead to next loc
740        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
741        Chain = Lo.getValue(1);
742        InFlag = Lo.getValue(2);
743        VA = RVLocs[++i]; // skip ahead to next loc
744        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
745        Chain = Hi.getValue(1);
746        InFlag = Hi.getValue(2);
747        Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
748        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
749                          DAG.getConstant(1, MVT::i32));
750      }
751    } else {
752      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
753                               InFlag);
754      Chain = Val.getValue(1);
755      InFlag = Val.getValue(2);
756    }
757
758    switch (VA.getLocInfo()) {
759    default: llvm_unreachable("Unknown loc info!");
760    case CCValAssign::Full: break;
761    case CCValAssign::BCvt:
762      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
763      break;
764    }
765
766    InVals.push_back(Val);
767  }
768
769  return Chain;
770}
771
772/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
773/// by "Src" to address "Dst" of size "Size".  Alignment information is
774/// specified by the specific parameter attribute.  The copy will be passed as
775/// a byval function parameter.
776/// Sometimes what we are copying is the end of a larger object, the part that
777/// does not fit in registers.
778static SDValue
779CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
780                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
781                          DebugLoc dl) {
782  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
783  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
784                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
785}
786
787/// LowerMemOpCallTo - Store the argument to the stack.
788SDValue
789ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
790                                    SDValue StackPtr, SDValue Arg,
791                                    DebugLoc dl, SelectionDAG &DAG,
792                                    const CCValAssign &VA,
793                                    ISD::ArgFlagsTy Flags) {
794  unsigned LocMemOffset = VA.getLocMemOffset();
795  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
796  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
797  if (Flags.isByVal()) {
798    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
799  }
800  return DAG.getStore(Chain, dl, Arg, PtrOff,
801                      PseudoSourceValue::getStack(), LocMemOffset);
802}
803
804void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
805                                         SDValue Chain, SDValue &Arg,
806                                         RegsToPassVector &RegsToPass,
807                                         CCValAssign &VA, CCValAssign &NextVA,
808                                         SDValue &StackPtr,
809                                         SmallVector<SDValue, 8> &MemOpChains,
810                                         ISD::ArgFlagsTy Flags) {
811
812  SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
813                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
814  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
815
816  if (NextVA.isRegLoc())
817    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
818  else {
819    assert(NextVA.isMemLoc());
820    if (StackPtr.getNode() == 0)
821      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
822
823    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
824                                           dl, DAG, NextVA,
825                                           Flags));
826  }
827}
828
829/// LowerCall - Lowering a call into a callseq_start <-
830/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
831/// nodes.
832SDValue
833ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
834                             unsigned CallConv, bool isVarArg,
835                             bool isTailCall,
836                             const SmallVectorImpl<ISD::OutputArg> &Outs,
837                             const SmallVectorImpl<ISD::InputArg> &Ins,
838                             DebugLoc dl, SelectionDAG &DAG,
839                             SmallVectorImpl<SDValue> &InVals) {
840
841  // Analyze operands of the call, assigning locations to each operand.
842  SmallVector<CCValAssign, 16> ArgLocs;
843  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
844                 *DAG.getContext());
845  CCInfo.AnalyzeCallOperands(Outs,
846                             CCAssignFnForNode(CallConv, /* Return*/ false,
847                                               isVarArg));
848
849  // Get a count of how many bytes are to be pushed on the stack.
850  unsigned NumBytes = CCInfo.getNextStackOffset();
851
852  // Adjust the stack pointer for the new arguments...
853  // These operations are automatically eliminated by the prolog/epilog pass
854  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
855
856  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
857
858  RegsToPassVector RegsToPass;
859  SmallVector<SDValue, 8> MemOpChains;
860
861  // Walk the register/memloc assignments, inserting copies/loads.  In the case
862  // of tail call optimization, arguments are handled later.
863  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
864       i != e;
865       ++i, ++realArgIdx) {
866    CCValAssign &VA = ArgLocs[i];
867    SDValue Arg = Outs[realArgIdx].Val;
868    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
869
870    // Promote the value if needed.
871    switch (VA.getLocInfo()) {
872    default: llvm_unreachable("Unknown loc info!");
873    case CCValAssign::Full: break;
874    case CCValAssign::SExt:
875      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
876      break;
877    case CCValAssign::ZExt:
878      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
879      break;
880    case CCValAssign::AExt:
881      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
882      break;
883    case CCValAssign::BCvt:
884      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
885      break;
886    }
887
888    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
889    if (VA.needsCustom()) {
890      if (VA.getLocVT() == MVT::v2f64) {
891        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
892                                  DAG.getConstant(0, MVT::i32));
893        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
894                                  DAG.getConstant(1, MVT::i32));
895
896        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
897                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
898
899        VA = ArgLocs[++i]; // skip ahead to next loc
900        if (VA.isRegLoc()) {
901          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
902                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
903        } else {
904          assert(VA.isMemLoc());
905          if (StackPtr.getNode() == 0)
906            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
907
908          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
909                                                 dl, DAG, VA, Flags));
910        }
911      } else {
912        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
913                         StackPtr, MemOpChains, Flags);
914      }
915    } else if (VA.isRegLoc()) {
916      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
917    } else {
918      assert(VA.isMemLoc());
919      if (StackPtr.getNode() == 0)
920        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
921
922      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
923                                             dl, DAG, VA, Flags));
924    }
925  }
926
927  if (!MemOpChains.empty())
928    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
929                        &MemOpChains[0], MemOpChains.size());
930
931  // Build a sequence of copy-to-reg nodes chained together with token chain
932  // and flag operands which copy the outgoing args into the appropriate regs.
933  SDValue InFlag;
934  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
935    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
936                             RegsToPass[i].second, InFlag);
937    InFlag = Chain.getValue(1);
938  }
939
940  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
941  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
942  // node so that legalize doesn't hack it.
943  bool isDirect = false;
944  bool isARMFunc = false;
945  bool isLocalARMFunc = false;
946  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
947    GlobalValue *GV = G->getGlobal();
948    isDirect = true;
949    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
950    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
951                   getTargetMachine().getRelocationModel() != Reloc::Static;
952    isARMFunc = !Subtarget->isThumb() || isStub;
953    // ARM call to a local ARM function is predicable.
954    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
955    // tBX takes a register source operand.
956    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
957      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
958                                                           ARMCP::CPStub, 4);
959      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
960      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
961      Callee = DAG.getLoad(getPointerTy(), dl,
962                           DAG.getEntryNode(), CPAddr, NULL, 0);
963      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
964      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
965                           getPointerTy(), Callee, PICLabel);
966   } else
967      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
968  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
969    isDirect = true;
970    bool isStub = Subtarget->isTargetDarwin() &&
971                  getTargetMachine().getRelocationModel() != Reloc::Static;
972    isARMFunc = !Subtarget->isThumb() || isStub;
973    // tBX takes a register source operand.
974    const char *Sym = S->getSymbol();
975    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
976      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
977                                                           ARMCP::CPStub, 4);
978      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
979      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
980      Callee = DAG.getLoad(getPointerTy(), dl,
981                           DAG.getEntryNode(), CPAddr, NULL, 0);
982      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
983      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
984                           getPointerTy(), Callee, PICLabel);
985    } else
986      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
987  }
988
989  // FIXME: handle tail calls differently.
990  unsigned CallOpc;
991  if (Subtarget->isThumb()) {
992    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
993      CallOpc = ARMISD::CALL_NOLINK;
994    else
995      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
996  } else {
997    CallOpc = (isDirect || Subtarget->hasV5TOps())
998      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
999      : ARMISD::CALL_NOLINK;
1000  }
1001  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1002    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1003    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1004    InFlag = Chain.getValue(1);
1005  }
1006
1007  std::vector<SDValue> Ops;
1008  Ops.push_back(Chain);
1009  Ops.push_back(Callee);
1010
1011  // Add argument registers to the end of the list so that they are known live
1012  // into the call.
1013  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1014    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1015                                  RegsToPass[i].second.getValueType()));
1016
1017  if (InFlag.getNode())
1018    Ops.push_back(InFlag);
1019  // Returns a chain and a flag for retval copy to use.
1020  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1021                      &Ops[0], Ops.size());
1022  InFlag = Chain.getValue(1);
1023
1024  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1025                             DAG.getIntPtrConstant(0, true), InFlag);
1026  if (!Ins.empty())
1027    InFlag = Chain.getValue(1);
1028
1029  // Handle result values, copying them out of physregs into vregs that we
1030  // return.
1031  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1032                         dl, DAG, InVals);
1033}
1034
1035SDValue
1036ARMTargetLowering::LowerReturn(SDValue Chain,
1037                               unsigned CallConv, bool isVarArg,
1038                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1039                               DebugLoc dl, SelectionDAG &DAG) {
1040
1041  // CCValAssign - represent the assignment of the return value to a location.
1042  SmallVector<CCValAssign, 16> RVLocs;
1043
1044  // CCState - Info about the registers and stack slots.
1045  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1046                 *DAG.getContext());
1047
1048  // Analyze outgoing return values.
1049  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1050                                               isVarArg));
1051
1052  // If this is the first return lowered for this function, add
1053  // the regs to the liveout set for the function.
1054  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1055    for (unsigned i = 0; i != RVLocs.size(); ++i)
1056      if (RVLocs[i].isRegLoc())
1057        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1058  }
1059
1060  SDValue Flag;
1061
1062  // Copy the result values into the output registers.
1063  for (unsigned i = 0, realRVLocIdx = 0;
1064       i != RVLocs.size();
1065       ++i, ++realRVLocIdx) {
1066    CCValAssign &VA = RVLocs[i];
1067    assert(VA.isRegLoc() && "Can only return in registers!");
1068
1069    SDValue Arg = Outs[realRVLocIdx].Val;
1070
1071    switch (VA.getLocInfo()) {
1072    default: llvm_unreachable("Unknown loc info!");
1073    case CCValAssign::Full: break;
1074    case CCValAssign::BCvt:
1075      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1076      break;
1077    }
1078
1079    if (VA.needsCustom()) {
1080      if (VA.getLocVT() == MVT::v2f64) {
1081        // Extract the first half and return it in two registers.
1082        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1083                                   DAG.getConstant(0, MVT::i32));
1084        SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1085                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1086
1087        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1088        Flag = Chain.getValue(1);
1089        VA = RVLocs[++i]; // skip ahead to next loc
1090        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1091                                 HalfGPRs.getValue(1), Flag);
1092        Flag = Chain.getValue(1);
1093        VA = RVLocs[++i]; // skip ahead to next loc
1094
1095        // Extract the 2nd half and fall through to handle it as an f64 value.
1096        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1097                          DAG.getConstant(1, MVT::i32));
1098      }
1099      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1100      // available.
1101      SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1102                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1103      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1104      Flag = Chain.getValue(1);
1105      VA = RVLocs[++i]; // skip ahead to next loc
1106      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1107                               Flag);
1108    } else
1109      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1110
1111    // Guarantee that all emitted copies are
1112    // stuck together, avoiding something bad.
1113    Flag = Chain.getValue(1);
1114  }
1115
1116  SDValue result;
1117  if (Flag.getNode())
1118    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1119  else // Return Void
1120    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1121
1122  return result;
1123}
1124
1125// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1126// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1127// one of the above mentioned nodes. It has to be wrapped because otherwise
1128// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1129// be used to form addressing mode. These wrapped nodes will be selected
1130// into MOVi.
1131static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1132  MVT PtrVT = Op.getValueType();
1133  // FIXME there is no actual debug info here
1134  DebugLoc dl = Op.getDebugLoc();
1135  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1136  SDValue Res;
1137  if (CP->isMachineConstantPoolEntry())
1138    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1139                                    CP->getAlignment());
1140  else
1141    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1142                                    CP->getAlignment());
1143  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1144}
1145
1146// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1147SDValue
1148ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1149                                                 SelectionDAG &DAG) {
1150  DebugLoc dl = GA->getDebugLoc();
1151  MVT PtrVT = getPointerTy();
1152  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1153  ARMConstantPoolValue *CPV =
1154    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1155                             PCAdj, "tlsgd", true);
1156  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1157  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1158  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
1159  SDValue Chain = Argument.getValue(1);
1160
1161  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1162  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1163
1164  // call __tls_get_addr.
1165  ArgListTy Args;
1166  ArgListEntry Entry;
1167  Entry.Node = Argument;
1168  Entry.Ty = (const Type *) Type::Int32Ty;
1169  Args.push_back(Entry);
1170  // FIXME: is there useful debug info available here?
1171  std::pair<SDValue, SDValue> CallResult =
1172    LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
1173                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1174                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1175  return CallResult.first;
1176}
1177
1178// Lower ISD::GlobalTLSAddress using the "initial exec" or
1179// "local exec" model.
1180SDValue
1181ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1182                                        SelectionDAG &DAG) {
1183  GlobalValue *GV = GA->getGlobal();
1184  DebugLoc dl = GA->getDebugLoc();
1185  SDValue Offset;
1186  SDValue Chain = DAG.getEntryNode();
1187  MVT PtrVT = getPointerTy();
1188  // Get the Thread Pointer
1189  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1190
1191  if (GV->isDeclaration()) {
1192    // initial exec model
1193    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1194    ARMConstantPoolValue *CPV =
1195      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1196                               PCAdj, "gottpoff", true);
1197    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1198    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1199    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1200    Chain = Offset.getValue(1);
1201
1202    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1203    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1204
1205    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1206  } else {
1207    // local exec model
1208    ARMConstantPoolValue *CPV =
1209      new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
1210    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1211    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1212    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1213  }
1214
1215  // The address of the thread local variable is the add of the thread
1216  // pointer with the offset of the variable.
1217  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1218}
1219
1220SDValue
1221ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1222  // TODO: implement the "local dynamic" model
1223  assert(Subtarget->isTargetELF() &&
1224         "TLS not implemented for non-ELF targets");
1225  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1226  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1227  // otherwise use the "Local Exec" TLS Model
1228  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1229    return LowerToTLSGeneralDynamicModel(GA, DAG);
1230  else
1231    return LowerToTLSExecModels(GA, DAG);
1232}
1233
1234SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1235                                                 SelectionDAG &DAG) {
1236  MVT PtrVT = getPointerTy();
1237  DebugLoc dl = Op.getDebugLoc();
1238  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1239  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1240  if (RelocM == Reloc::PIC_) {
1241    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1242    ARMConstantPoolValue *CPV =
1243      new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
1244    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1245    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1246    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1247                                 CPAddr, NULL, 0);
1248    SDValue Chain = Result.getValue(1);
1249    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1250    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1251    if (!UseGOTOFF)
1252      Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1253    return Result;
1254  } else {
1255    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1256    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1257    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1258  }
1259}
1260
1261/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
1262/// even in non-static mode.
1263static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
1264  // If symbol visibility is hidden, the extra load is not needed if
1265  // the symbol is definitely defined in the current translation unit.
1266  bool isDecl = GV->isDeclaration() || GV->hasAvailableExternallyLinkage();
1267  if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
1268    return false;
1269  return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
1270}
1271
1272SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1273                                                    SelectionDAG &DAG) {
1274  MVT PtrVT = getPointerTy();
1275  DebugLoc dl = Op.getDebugLoc();
1276  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1277  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1278  bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
1279  SDValue CPAddr;
1280  if (RelocM == Reloc::Static)
1281    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1282  else {
1283    unsigned PCAdj = (RelocM != Reloc::PIC_)
1284      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1285    ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
1286      : ARMCP::CPValue;
1287    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
1288                                                         Kind, PCAdj);
1289    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1290  }
1291  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1292
1293  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1294  SDValue Chain = Result.getValue(1);
1295
1296  if (RelocM == Reloc::PIC_) {
1297    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1298    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1299  }
1300  if (IsIndirect)
1301    Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1302
1303  return Result;
1304}
1305
1306SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1307                                                    SelectionDAG &DAG){
1308  assert(Subtarget->isTargetELF() &&
1309         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1310  MVT PtrVT = getPointerTy();
1311  DebugLoc dl = Op.getDebugLoc();
1312  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1313  ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
1314                                                       ARMPCLabelIndex,
1315                                                       ARMCP::CPValue, PCAdj);
1316  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1317  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1318  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1319  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1320  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1321}
1322
1323static SDValue LowerNeonVLDIntrinsic(SDValue Op, SelectionDAG &DAG,
1324                                     unsigned Opcode) {
1325  SDNode *Node = Op.getNode();
1326  MVT VT = Node->getValueType(0);
1327  DebugLoc dl = Op.getDebugLoc();
1328
1329  if (!VT.is64BitVector())
1330    return SDValue(); // unimplemented
1331
1332  SDValue Ops[] = { Node->getOperand(0),
1333                    Node->getOperand(2) };
1334  return DAG.getNode(Opcode, dl, Node->getVTList(), Ops, 2);
1335}
1336
1337static SDValue LowerNeonVSTIntrinsic(SDValue Op, SelectionDAG &DAG,
1338                                     unsigned Opcode, unsigned NumVecs) {
1339  SDNode *Node = Op.getNode();
1340  MVT VT = Node->getOperand(3).getValueType();
1341  DebugLoc dl = Op.getDebugLoc();
1342
1343  if (!VT.is64BitVector())
1344    return SDValue(); // unimplemented
1345
1346  SmallVector<SDValue, 6> Ops;
1347  Ops.push_back(Node->getOperand(0));
1348  Ops.push_back(Node->getOperand(2));
1349  for (unsigned N = 0; N < NumVecs; ++N)
1350    Ops.push_back(Node->getOperand(N + 3));
1351  return DAG.getNode(Opcode, dl, MVT::Other, Ops.data(), Ops.size());
1352}
1353
1354SDValue
1355ARMTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
1356  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1357  switch (IntNo) {
1358  case Intrinsic::arm_neon_vld2i:
1359  case Intrinsic::arm_neon_vld2f:
1360    return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD2D);
1361  case Intrinsic::arm_neon_vld3i:
1362  case Intrinsic::arm_neon_vld3f:
1363    return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD3D);
1364  case Intrinsic::arm_neon_vld4i:
1365  case Intrinsic::arm_neon_vld4f:
1366    return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD4D);
1367  case Intrinsic::arm_neon_vst2i:
1368  case Intrinsic::arm_neon_vst2f:
1369    return LowerNeonVSTIntrinsic(Op, DAG, ARMISD::VST2D, 2);
1370  case Intrinsic::arm_neon_vst3i:
1371  case Intrinsic::arm_neon_vst3f:
1372    return LowerNeonVSTIntrinsic(Op, DAG, ARMISD::VST3D, 3);
1373  case Intrinsic::arm_neon_vst4i:
1374  case Intrinsic::arm_neon_vst4f:
1375    return LowerNeonVSTIntrinsic(Op, DAG, ARMISD::VST4D, 4);
1376  default: return SDValue();    // Don't custom lower most intrinsics.
1377  }
1378}
1379
1380SDValue
1381ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1382  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1383  DebugLoc dl = Op.getDebugLoc();
1384  switch (IntNo) {
1385  default: return SDValue();    // Don't custom lower most intrinsics.
1386  case Intrinsic::arm_thread_pointer: {
1387    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1388    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1389  }
1390  case Intrinsic::eh_sjlj_setjmp:
1391    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1392  }
1393}
1394
1395static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1396                            unsigned VarArgsFrameIndex) {
1397  // vastart just stores the address of the VarArgsFrameIndex slot into the
1398  // memory location argument.
1399  DebugLoc dl = Op.getDebugLoc();
1400  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1401  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1402  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1403  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1404}
1405
1406SDValue
1407ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1408  SDNode *Node = Op.getNode();
1409  DebugLoc dl = Node->getDebugLoc();
1410  MVT VT = Node->getValueType(0);
1411  SDValue Chain = Op.getOperand(0);
1412  SDValue Size  = Op.getOperand(1);
1413  SDValue Align = Op.getOperand(2);
1414
1415  // Chain the dynamic stack allocation so that it doesn't modify the stack
1416  // pointer when other instructions are using the stack.
1417  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1418
1419  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1420  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1421  if (AlignVal > StackAlign)
1422    // Do this now since selection pass cannot introduce new target
1423    // independent node.
1424    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1425
1426  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1427  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1428  // do even more horrible hack later.
1429  MachineFunction &MF = DAG.getMachineFunction();
1430  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1431  if (AFI->isThumb1OnlyFunction()) {
1432    bool Negate = true;
1433    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1434    if (C) {
1435      uint32_t Val = C->getZExtValue();
1436      if (Val <= 508 && ((Val & 3) == 0))
1437        Negate = false;
1438    }
1439    if (Negate)
1440      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1441  }
1442
1443  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1444  SDValue Ops1[] = { Chain, Size, Align };
1445  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1446  Chain = Res.getValue(1);
1447  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1448                             DAG.getIntPtrConstant(0, true), SDValue());
1449  SDValue Ops2[] = { Res, Chain };
1450  return DAG.getMergeValues(Ops2, 2, dl);
1451}
1452
1453SDValue
1454ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1455                                        SDValue &Root, SelectionDAG &DAG,
1456                                        DebugLoc dl) {
1457  MachineFunction &MF = DAG.getMachineFunction();
1458  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1459
1460  TargetRegisterClass *RC;
1461  if (AFI->isThumb1OnlyFunction())
1462    RC = ARM::tGPRRegisterClass;
1463  else
1464    RC = ARM::GPRRegisterClass;
1465
1466  // Transform the arguments stored in physical registers into virtual ones.
1467  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1468  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1469
1470  SDValue ArgValue2;
1471  if (NextVA.isMemLoc()) {
1472    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1473    MachineFrameInfo *MFI = MF.getFrameInfo();
1474    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1475
1476    // Create load node to retrieve arguments from the stack.
1477    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1478    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1479  } else {
1480    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1481    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1482  }
1483
1484  return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1485}
1486
1487SDValue
1488ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1489                                        unsigned CallConv, bool isVarArg,
1490                                        const SmallVectorImpl<ISD::InputArg>
1491                                          &Ins,
1492                                        DebugLoc dl, SelectionDAG &DAG,
1493                                        SmallVectorImpl<SDValue> &InVals) {
1494
1495  MachineFunction &MF = DAG.getMachineFunction();
1496  MachineFrameInfo *MFI = MF.getFrameInfo();
1497
1498  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1499
1500  // Assign locations to all of the incoming arguments.
1501  SmallVector<CCValAssign, 16> ArgLocs;
1502  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1503                 *DAG.getContext());
1504  CCInfo.AnalyzeFormalArguments(Ins,
1505                                CCAssignFnForNode(CallConv, /* Return*/ false,
1506                                                  isVarArg));
1507
1508  SmallVector<SDValue, 16> ArgValues;
1509
1510  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1511    CCValAssign &VA = ArgLocs[i];
1512
1513    // Arguments stored in registers.
1514    if (VA.isRegLoc()) {
1515      MVT RegVT = VA.getLocVT();
1516
1517      SDValue ArgValue;
1518      if (VA.needsCustom()) {
1519        // f64 and vector types are split up into multiple registers or
1520        // combinations of registers and stack slots.
1521        RegVT = MVT::i32;
1522
1523        if (VA.getLocVT() == MVT::v2f64) {
1524          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1525                                                   Chain, DAG, dl);
1526          VA = ArgLocs[++i]; // skip ahead to next loc
1527          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1528                                                   Chain, DAG, dl);
1529          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1530          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1531                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1532          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1533                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1534        } else
1535          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1536
1537      } else {
1538        TargetRegisterClass *RC;
1539
1540        if (RegVT == MVT::f32)
1541          RC = ARM::SPRRegisterClass;
1542        else if (RegVT == MVT::f64)
1543          RC = ARM::DPRRegisterClass;
1544        else if (RegVT == MVT::v2f64)
1545          RC = ARM::QPRRegisterClass;
1546        else if (RegVT == MVT::i32)
1547          RC = (AFI->isThumb1OnlyFunction() ?
1548                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1549        else
1550          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1551
1552        // Transform the arguments in physical registers into virtual ones.
1553        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1554        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1555      }
1556
1557      // If this is an 8 or 16-bit value, it is really passed promoted
1558      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1559      // truncate to the right size.
1560      switch (VA.getLocInfo()) {
1561      default: llvm_unreachable("Unknown loc info!");
1562      case CCValAssign::Full: break;
1563      case CCValAssign::BCvt:
1564        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1565        break;
1566      case CCValAssign::SExt:
1567        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1568                               DAG.getValueType(VA.getValVT()));
1569        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1570        break;
1571      case CCValAssign::ZExt:
1572        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1573                               DAG.getValueType(VA.getValVT()));
1574        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1575        break;
1576      }
1577
1578      InVals.push_back(ArgValue);
1579
1580    } else { // VA.isRegLoc()
1581
1582      // sanity check
1583      assert(VA.isMemLoc());
1584      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1585
1586      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1587      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1588
1589      // Create load nodes to retrieve arguments from the stack.
1590      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1591      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1592    }
1593  }
1594
1595  // varargs
1596  if (isVarArg) {
1597    static const unsigned GPRArgRegs[] = {
1598      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1599    };
1600
1601    unsigned NumGPRs = CCInfo.getFirstUnallocated
1602      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1603
1604    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1605    unsigned VARegSize = (4 - NumGPRs) * 4;
1606    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1607    unsigned ArgOffset = 0;
1608    if (VARegSaveSize) {
1609      // If this function is vararg, store any remaining integer argument regs
1610      // to their spots on the stack so that they may be loaded by deferencing
1611      // the result of va_next.
1612      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1613      ArgOffset = CCInfo.getNextStackOffset();
1614      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1615                                                 VARegSaveSize - VARegSize);
1616      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1617
1618      SmallVector<SDValue, 4> MemOps;
1619      for (; NumGPRs < 4; ++NumGPRs) {
1620        TargetRegisterClass *RC;
1621        if (AFI->isThumb1OnlyFunction())
1622          RC = ARM::tGPRRegisterClass;
1623        else
1624          RC = ARM::GPRRegisterClass;
1625
1626        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1627        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1628        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1629        MemOps.push_back(Store);
1630        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1631                          DAG.getConstant(4, getPointerTy()));
1632      }
1633      if (!MemOps.empty())
1634        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1635                            &MemOps[0], MemOps.size());
1636    } else
1637      // This will point to the next argument passed via stack.
1638      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1639  }
1640
1641  return Chain;
1642}
1643
1644/// isFloatingPointZero - Return true if this is +0.0.
1645static bool isFloatingPointZero(SDValue Op) {
1646  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1647    return CFP->getValueAPF().isPosZero();
1648  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1649    // Maybe this has already been legalized into the constant pool?
1650    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1651      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1652      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1653        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1654          return CFP->getValueAPF().isPosZero();
1655    }
1656  }
1657  return false;
1658}
1659
1660static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
1661  return ( isThumb1Only && (C & ~255U) == 0) ||
1662         (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
1663}
1664
1665/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1666/// the given operands.
1667static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1668                         SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
1669                         DebugLoc dl) {
1670  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1671    unsigned C = RHSC->getZExtValue();
1672    if (!isLegalCmpImmediate(C, isThumb1Only)) {
1673      // Constant does not fit, try adjusting it by one?
1674      switch (CC) {
1675      default: break;
1676      case ISD::SETLT:
1677      case ISD::SETGE:
1678        if (isLegalCmpImmediate(C-1, isThumb1Only)) {
1679          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1680          RHS = DAG.getConstant(C-1, MVT::i32);
1681        }
1682        break;
1683      case ISD::SETULT:
1684      case ISD::SETUGE:
1685        if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
1686          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1687          RHS = DAG.getConstant(C-1, MVT::i32);
1688        }
1689        break;
1690      case ISD::SETLE:
1691      case ISD::SETGT:
1692        if (isLegalCmpImmediate(C+1, isThumb1Only)) {
1693          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1694          RHS = DAG.getConstant(C+1, MVT::i32);
1695        }
1696        break;
1697      case ISD::SETULE:
1698      case ISD::SETUGT:
1699        if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
1700          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1701          RHS = DAG.getConstant(C+1, MVT::i32);
1702        }
1703        break;
1704      }
1705    }
1706  }
1707
1708  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1709  ARMISD::NodeType CompareType;
1710  switch (CondCode) {
1711  default:
1712    CompareType = ARMISD::CMP;
1713    break;
1714  case ARMCC::EQ:
1715  case ARMCC::NE:
1716    // Uses only Z Flag
1717    CompareType = ARMISD::CMPZ;
1718    break;
1719  }
1720  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1721  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1722}
1723
1724/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1725static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1726                         DebugLoc dl) {
1727  SDValue Cmp;
1728  if (!isFloatingPointZero(RHS))
1729    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1730  else
1731    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1732  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1733}
1734
1735static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1736                              const ARMSubtarget *ST) {
1737  MVT VT = Op.getValueType();
1738  SDValue LHS = Op.getOperand(0);
1739  SDValue RHS = Op.getOperand(1);
1740  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1741  SDValue TrueVal = Op.getOperand(2);
1742  SDValue FalseVal = Op.getOperand(3);
1743  DebugLoc dl = Op.getDebugLoc();
1744
1745  if (LHS.getValueType() == MVT::i32) {
1746    SDValue ARMCC;
1747    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1748    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1749    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1750  }
1751
1752  ARMCC::CondCodes CondCode, CondCode2;
1753  if (FPCCToARMCC(CC, CondCode, CondCode2))
1754    std::swap(TrueVal, FalseVal);
1755
1756  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1757  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1758  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1759  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1760                                 ARMCC, CCR, Cmp);
1761  if (CondCode2 != ARMCC::AL) {
1762    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1763    // FIXME: Needs another CMP because flag can have but one use.
1764    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1765    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1766                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1767  }
1768  return Result;
1769}
1770
1771static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1772                          const ARMSubtarget *ST) {
1773  SDValue  Chain = Op.getOperand(0);
1774  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1775  SDValue    LHS = Op.getOperand(2);
1776  SDValue    RHS = Op.getOperand(3);
1777  SDValue   Dest = Op.getOperand(4);
1778  DebugLoc dl = Op.getDebugLoc();
1779
1780  if (LHS.getValueType() == MVT::i32) {
1781    SDValue ARMCC;
1782    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1783    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1784    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1785                       Chain, Dest, ARMCC, CCR,Cmp);
1786  }
1787
1788  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1789  ARMCC::CondCodes CondCode, CondCode2;
1790  if (FPCCToARMCC(CC, CondCode, CondCode2))
1791    // Swap the LHS/RHS of the comparison if needed.
1792    std::swap(LHS, RHS);
1793
1794  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1795  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1796  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1797  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1798  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1799  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1800  if (CondCode2 != ARMCC::AL) {
1801    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1802    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1803    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1804  }
1805  return Res;
1806}
1807
1808SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1809  SDValue Chain = Op.getOperand(0);
1810  SDValue Table = Op.getOperand(1);
1811  SDValue Index = Op.getOperand(2);
1812  DebugLoc dl = Op.getDebugLoc();
1813
1814  MVT PTy = getPointerTy();
1815  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1816  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1817  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1818  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1819  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1820  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1821  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1822  if (Subtarget->isThumb2()) {
1823    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1824    // which does another jump to the destination. This also makes it easier
1825    // to translate it to TBB / TBH later.
1826    // FIXME: This might not work if the function is extremely large.
1827    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1828                       Addr, Op.getOperand(2), JTI, UId);
1829  }
1830  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1831    Addr = DAG.getLoad((MVT)MVT::i32, dl, Chain, Addr, NULL, 0);
1832    Chain = Addr.getValue(1);
1833    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1834    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1835  } else {
1836    Addr = DAG.getLoad(PTy, dl, Chain, Addr, NULL, 0);
1837    Chain = Addr.getValue(1);
1838    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1839  }
1840}
1841
1842static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1843  DebugLoc dl = Op.getDebugLoc();
1844  unsigned Opc =
1845    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1846  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1847  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1848}
1849
1850static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1851  MVT VT = Op.getValueType();
1852  DebugLoc dl = Op.getDebugLoc();
1853  unsigned Opc =
1854    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1855
1856  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1857  return DAG.getNode(Opc, dl, VT, Op);
1858}
1859
1860static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1861  // Implement fcopysign with a fabs and a conditional fneg.
1862  SDValue Tmp0 = Op.getOperand(0);
1863  SDValue Tmp1 = Op.getOperand(1);
1864  DebugLoc dl = Op.getDebugLoc();
1865  MVT VT = Op.getValueType();
1866  MVT SrcVT = Tmp1.getValueType();
1867  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1868  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1869  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1870  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1871  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1872}
1873
1874SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1875  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1876  MFI->setFrameAddressIsTaken(true);
1877  MVT VT = Op.getValueType();
1878  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1879  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1880  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1881    ? ARM::R7 : ARM::R11;
1882  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1883  while (Depth--)
1884    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1885  return FrameAddr;
1886}
1887
1888SDValue
1889ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1890                                           SDValue Chain,
1891                                           SDValue Dst, SDValue Src,
1892                                           SDValue Size, unsigned Align,
1893                                           bool AlwaysInline,
1894                                         const Value *DstSV, uint64_t DstSVOff,
1895                                         const Value *SrcSV, uint64_t SrcSVOff){
1896  // Do repeated 4-byte loads and stores. To be improved.
1897  // This requires 4-byte alignment.
1898  if ((Align & 3) != 0)
1899    return SDValue();
1900  // This requires the copy size to be a constant, preferrably
1901  // within a subtarget-specific limit.
1902  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1903  if (!ConstantSize)
1904    return SDValue();
1905  uint64_t SizeVal = ConstantSize->getZExtValue();
1906  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1907    return SDValue();
1908
1909  unsigned BytesLeft = SizeVal & 3;
1910  unsigned NumMemOps = SizeVal >> 2;
1911  unsigned EmittedNumMemOps = 0;
1912  MVT VT = MVT::i32;
1913  unsigned VTSize = 4;
1914  unsigned i = 0;
1915  const unsigned MAX_LOADS_IN_LDM = 6;
1916  SDValue TFOps[MAX_LOADS_IN_LDM];
1917  SDValue Loads[MAX_LOADS_IN_LDM];
1918  uint64_t SrcOff = 0, DstOff = 0;
1919
1920  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1921  // same number of stores.  The loads and stores will get combined into
1922  // ldm/stm later on.
1923  while (EmittedNumMemOps < NumMemOps) {
1924    for (i = 0;
1925         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1926      Loads[i] = DAG.getLoad(VT, dl, Chain,
1927                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1928                                         DAG.getConstant(SrcOff, MVT::i32)),
1929                             SrcSV, SrcSVOff + SrcOff);
1930      TFOps[i] = Loads[i].getValue(1);
1931      SrcOff += VTSize;
1932    }
1933    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1934
1935    for (i = 0;
1936         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1937      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1938                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1939                                       DAG.getConstant(DstOff, MVT::i32)),
1940                           DstSV, DstSVOff + DstOff);
1941      DstOff += VTSize;
1942    }
1943    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1944
1945    EmittedNumMemOps += i;
1946  }
1947
1948  if (BytesLeft == 0)
1949    return Chain;
1950
1951  // Issue loads / stores for the trailing (1 - 3) bytes.
1952  unsigned BytesLeftSave = BytesLeft;
1953  i = 0;
1954  while (BytesLeft) {
1955    if (BytesLeft >= 2) {
1956      VT = MVT::i16;
1957      VTSize = 2;
1958    } else {
1959      VT = MVT::i8;
1960      VTSize = 1;
1961    }
1962
1963    Loads[i] = DAG.getLoad(VT, dl, Chain,
1964                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1965                                       DAG.getConstant(SrcOff, MVT::i32)),
1966                           SrcSV, SrcSVOff + SrcOff);
1967    TFOps[i] = Loads[i].getValue(1);
1968    ++i;
1969    SrcOff += VTSize;
1970    BytesLeft -= VTSize;
1971  }
1972  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1973
1974  i = 0;
1975  BytesLeft = BytesLeftSave;
1976  while (BytesLeft) {
1977    if (BytesLeft >= 2) {
1978      VT = MVT::i16;
1979      VTSize = 2;
1980    } else {
1981      VT = MVT::i8;
1982      VTSize = 1;
1983    }
1984
1985    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1986                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1987                                        DAG.getConstant(DstOff, MVT::i32)),
1988                            DstSV, DstSVOff + DstOff);
1989    ++i;
1990    DstOff += VTSize;
1991    BytesLeft -= VTSize;
1992  }
1993  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1994}
1995
1996static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
1997  SDValue Op = N->getOperand(0);
1998  DebugLoc dl = N->getDebugLoc();
1999  if (N->getValueType(0) == MVT::f64) {
2000    // Turn i64->f64 into FMDRR.
2001    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2002                             DAG.getConstant(0, MVT::i32));
2003    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2004                             DAG.getConstant(1, MVT::i32));
2005    return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
2006  }
2007
2008  // Turn f64->i64 into FMRRD.
2009  SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
2010                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2011
2012  // Merge the pieces into a single i64 value.
2013  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2014}
2015
2016/// getZeroVector - Returns a vector of specified type with all zero elements.
2017///
2018static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2019  assert(VT.isVector() && "Expected a vector type");
2020
2021  // Zero vectors are used to represent vector negation and in those cases
2022  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2023  // not support i64 elements, so sometimes the zero vectors will need to be
2024  // explicitly constructed.  For those cases, and potentially other uses in
2025  // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
2026  // to their dest type.  This ensures they get CSE'd.
2027  SDValue Vec;
2028  SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2029  if (VT.getSizeInBits() == 64)
2030    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2031  else
2032    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2033
2034  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2035}
2036
2037/// getOnesVector - Returns a vector of specified type with all bits set.
2038///
2039static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2040  assert(VT.isVector() && "Expected a vector type");
2041
2042  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2043  // type.  This ensures they get CSE'd.
2044  SDValue Vec;
2045  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2046  if (VT.getSizeInBits() == 64)
2047    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2048  else
2049    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2050
2051  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2052}
2053
2054static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2055                          const ARMSubtarget *ST) {
2056  MVT VT = N->getValueType(0);
2057  DebugLoc dl = N->getDebugLoc();
2058
2059  // Lower vector shifts on NEON to use VSHL.
2060  if (VT.isVector()) {
2061    assert(ST->hasNEON() && "unexpected vector shift");
2062
2063    // Left shifts translate directly to the vshiftu intrinsic.
2064    if (N->getOpcode() == ISD::SHL)
2065      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2066                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2067                         N->getOperand(0), N->getOperand(1));
2068
2069    assert((N->getOpcode() == ISD::SRA ||
2070            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2071
2072    // NEON uses the same intrinsics for both left and right shifts.  For
2073    // right shifts, the shift amounts are negative, so negate the vector of
2074    // shift amounts.
2075    MVT ShiftVT = N->getOperand(1).getValueType();
2076    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2077                                       getZeroVector(ShiftVT, DAG, dl),
2078                                       N->getOperand(1));
2079    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2080                               Intrinsic::arm_neon_vshifts :
2081                               Intrinsic::arm_neon_vshiftu);
2082    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2083                       DAG.getConstant(vshiftInt, MVT::i32),
2084                       N->getOperand(0), NegatedCount);
2085  }
2086
2087  assert(VT == MVT::i64 &&
2088         (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2089         "Unknown shift to lower!");
2090
2091  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2092  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2093      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2094    return SDValue();
2095
2096  // If we are in thumb mode, we don't have RRX.
2097  if (ST->isThumb1Only()) return SDValue();
2098
2099  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2100  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2101                             DAG.getConstant(0, MVT::i32));
2102  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2103                             DAG.getConstant(1, MVT::i32));
2104
2105  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2106  // captures the result into a carry flag.
2107  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2108  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2109
2110  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2111  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2112
2113  // Merge the pieces into a single i64 value.
2114 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2115}
2116
2117static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2118  SDValue TmpOp0, TmpOp1;
2119  bool Invert = false;
2120  bool Swap = false;
2121  unsigned Opc = 0;
2122
2123  SDValue Op0 = Op.getOperand(0);
2124  SDValue Op1 = Op.getOperand(1);
2125  SDValue CC = Op.getOperand(2);
2126  MVT VT = Op.getValueType();
2127  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2128  DebugLoc dl = Op.getDebugLoc();
2129
2130  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2131    switch (SetCCOpcode) {
2132    default: llvm_unreachable("Illegal FP comparison"); break;
2133    case ISD::SETUNE:
2134    case ISD::SETNE:  Invert = true; // Fallthrough
2135    case ISD::SETOEQ:
2136    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2137    case ISD::SETOLT:
2138    case ISD::SETLT: Swap = true; // Fallthrough
2139    case ISD::SETOGT:
2140    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2141    case ISD::SETOLE:
2142    case ISD::SETLE:  Swap = true; // Fallthrough
2143    case ISD::SETOGE:
2144    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2145    case ISD::SETUGE: Swap = true; // Fallthrough
2146    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2147    case ISD::SETUGT: Swap = true; // Fallthrough
2148    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2149    case ISD::SETUEQ: Invert = true; // Fallthrough
2150    case ISD::SETONE:
2151      // Expand this to (OLT | OGT).
2152      TmpOp0 = Op0;
2153      TmpOp1 = Op1;
2154      Opc = ISD::OR;
2155      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2156      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2157      break;
2158    case ISD::SETUO: Invert = true; // Fallthrough
2159    case ISD::SETO:
2160      // Expand this to (OLT | OGE).
2161      TmpOp0 = Op0;
2162      TmpOp1 = Op1;
2163      Opc = ISD::OR;
2164      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2165      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2166      break;
2167    }
2168  } else {
2169    // Integer comparisons.
2170    switch (SetCCOpcode) {
2171    default: llvm_unreachable("Illegal integer comparison"); break;
2172    case ISD::SETNE:  Invert = true;
2173    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2174    case ISD::SETLT:  Swap = true;
2175    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2176    case ISD::SETLE:  Swap = true;
2177    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2178    case ISD::SETULT: Swap = true;
2179    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2180    case ISD::SETULE: Swap = true;
2181    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2182    }
2183
2184    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2185    if (Opc == ARMISD::VCEQ) {
2186
2187      SDValue AndOp;
2188      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2189        AndOp = Op0;
2190      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2191        AndOp = Op1;
2192
2193      // Ignore bitconvert.
2194      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2195        AndOp = AndOp.getOperand(0);
2196
2197      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2198        Opc = ARMISD::VTST;
2199        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2200        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2201        Invert = !Invert;
2202      }
2203    }
2204  }
2205
2206  if (Swap)
2207    std::swap(Op0, Op1);
2208
2209  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2210
2211  if (Invert)
2212    Result = DAG.getNOT(dl, Result, VT);
2213
2214  return Result;
2215}
2216
2217/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2218/// VMOV instruction, and if so, return the constant being splatted.
2219static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2220                           unsigned SplatBitSize, SelectionDAG &DAG) {
2221  switch (SplatBitSize) {
2222  case 8:
2223    // Any 1-byte value is OK.
2224    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2225    return DAG.getTargetConstant(SplatBits, MVT::i8);
2226
2227  case 16:
2228    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2229    if ((SplatBits & ~0xff) == 0 ||
2230        (SplatBits & ~0xff00) == 0)
2231      return DAG.getTargetConstant(SplatBits, MVT::i16);
2232    break;
2233
2234  case 32:
2235    // NEON's 32-bit VMOV supports splat values where:
2236    // * only one byte is nonzero, or
2237    // * the least significant byte is 0xff and the second byte is nonzero, or
2238    // * the least significant 2 bytes are 0xff and the third is nonzero.
2239    if ((SplatBits & ~0xff) == 0 ||
2240        (SplatBits & ~0xff00) == 0 ||
2241        (SplatBits & ~0xff0000) == 0 ||
2242        (SplatBits & ~0xff000000) == 0)
2243      return DAG.getTargetConstant(SplatBits, MVT::i32);
2244
2245    if ((SplatBits & ~0xffff) == 0 &&
2246        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2247      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2248
2249    if ((SplatBits & ~0xffffff) == 0 &&
2250        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2251      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2252
2253    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2254    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2255    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2256    // and fall through here to test for a valid 64-bit splat.  But, then the
2257    // caller would also need to check and handle the change in size.
2258    break;
2259
2260  case 64: {
2261    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2262    uint64_t BitMask = 0xff;
2263    uint64_t Val = 0;
2264    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2265      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2266        Val |= BitMask;
2267      else if ((SplatBits & BitMask) != 0)
2268        return SDValue();
2269      BitMask <<= 8;
2270    }
2271    return DAG.getTargetConstant(Val, MVT::i64);
2272  }
2273
2274  default:
2275    llvm_unreachable("unexpected size for isVMOVSplat");
2276    break;
2277  }
2278
2279  return SDValue();
2280}
2281
2282/// getVMOVImm - If this is a build_vector of constants which can be
2283/// formed by using a VMOV instruction of the specified element size,
2284/// return the constant being splatted.  The ByteSize field indicates the
2285/// number of bytes of each element [1248].
2286SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2287  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2288  APInt SplatBits, SplatUndef;
2289  unsigned SplatBitSize;
2290  bool HasAnyUndefs;
2291  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2292                                      HasAnyUndefs, ByteSize * 8))
2293    return SDValue();
2294
2295  if (SplatBitSize > ByteSize * 8)
2296    return SDValue();
2297
2298  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2299                     SplatBitSize, DAG);
2300}
2301
2302/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2303/// instruction with the specified blocksize.  (The order of the elements
2304/// within each block of the vector is reversed.)
2305bool ARM::isVREVMask(ShuffleVectorSDNode *N, unsigned BlockSize) {
2306  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2307         "Only possible block sizes for VREV are: 16, 32, 64");
2308
2309  MVT VT = N->getValueType(0);
2310  unsigned NumElts = VT.getVectorNumElements();
2311  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2312  unsigned BlockElts = N->getMaskElt(0) + 1;
2313
2314  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2315    return false;
2316
2317  for (unsigned i = 0; i < NumElts; ++i) {
2318    if ((unsigned) N->getMaskElt(i) !=
2319        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2320      return false;
2321  }
2322
2323  return true;
2324}
2325
2326static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2327  // Canonicalize all-zeros and all-ones vectors.
2328  ConstantSDNode *ConstVal = dyn_cast<ConstantSDNode>(Val.getNode());
2329  if (ConstVal->isNullValue())
2330    return getZeroVector(VT, DAG, dl);
2331  if (ConstVal->isAllOnesValue())
2332    return getOnesVector(VT, DAG, dl);
2333
2334  MVT CanonicalVT;
2335  if (VT.is64BitVector()) {
2336    switch (Val.getValueType().getSizeInBits()) {
2337    case 8:  CanonicalVT = MVT::v8i8; break;
2338    case 16: CanonicalVT = MVT::v4i16; break;
2339    case 32: CanonicalVT = MVT::v2i32; break;
2340    case 64: CanonicalVT = MVT::v1i64; break;
2341    default: llvm_unreachable("unexpected splat element type"); break;
2342    }
2343  } else {
2344    assert(VT.is128BitVector() && "unknown splat vector size");
2345    switch (Val.getValueType().getSizeInBits()) {
2346    case 8:  CanonicalVT = MVT::v16i8; break;
2347    case 16: CanonicalVT = MVT::v8i16; break;
2348    case 32: CanonicalVT = MVT::v4i32; break;
2349    case 64: CanonicalVT = MVT::v2i64; break;
2350    default: llvm_unreachable("unexpected splat element type"); break;
2351    }
2352  }
2353
2354  // Build a canonical splat for this value.
2355  SmallVector<SDValue, 8> Ops;
2356  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2357  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2358                            Ops.size());
2359  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2360}
2361
2362// If this is a case we can't handle, return null and let the default
2363// expansion code take care of it.
2364static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2365  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2366  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
2367  DebugLoc dl = Op.getDebugLoc();
2368  MVT VT = Op.getValueType();
2369
2370  APInt SplatBits, SplatUndef;
2371  unsigned SplatBitSize;
2372  bool HasAnyUndefs;
2373  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2374    SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2375                              SplatUndef.getZExtValue(), SplatBitSize, DAG);
2376    if (Val.getNode())
2377      return BuildSplat(Val, VT, DAG, dl);
2378  }
2379
2380  // If there are only 2 elements in a 128-bit vector, insert them into an
2381  // undef vector.  This handles the common case for 128-bit vector argument
2382  // passing, where the insertions should be translated to subreg accesses
2383  // with no real instructions.
2384  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2385    SDValue Val = DAG.getUNDEF(VT);
2386    SDValue Op0 = Op.getOperand(0);
2387    SDValue Op1 = Op.getOperand(1);
2388    if (Op0.getOpcode() != ISD::UNDEF)
2389      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2390                        DAG.getIntPtrConstant(0));
2391    if (Op1.getOpcode() != ISD::UNDEF)
2392      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2393                        DAG.getIntPtrConstant(1));
2394    return Val;
2395  }
2396
2397  return SDValue();
2398}
2399
2400static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2401  return Op;
2402}
2403
2404static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
2405  return Op;
2406}
2407
2408static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2409  MVT VT = Op.getValueType();
2410  DebugLoc dl = Op.getDebugLoc();
2411  assert((VT == MVT::i8 || VT == MVT::i16) &&
2412         "unexpected type for custom-lowering vector extract");
2413  SDValue Vec = Op.getOperand(0);
2414  SDValue Lane = Op.getOperand(1);
2415  Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2416  Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
2417  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
2418}
2419
2420static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2421  // The only time a CONCAT_VECTORS operation can have legal types is when
2422  // two 64-bit vectors are concatenated to a 128-bit vector.
2423  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2424         "unexpected CONCAT_VECTORS");
2425  DebugLoc dl = Op.getDebugLoc();
2426  SDValue Val = DAG.getUNDEF(MVT::v2f64);
2427  SDValue Op0 = Op.getOperand(0);
2428  SDValue Op1 = Op.getOperand(1);
2429  if (Op0.getOpcode() != ISD::UNDEF)
2430    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2431                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2432                      DAG.getIntPtrConstant(0));
2433  if (Op1.getOpcode() != ISD::UNDEF)
2434    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2435                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
2436                      DAG.getIntPtrConstant(1));
2437  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
2438}
2439
2440SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2441  switch (Op.getOpcode()) {
2442  default: llvm_unreachable("Don't know how to custom lower this!");
2443  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2444  case ISD::GlobalAddress:
2445    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2446      LowerGlobalAddressELF(Op, DAG);
2447  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2448  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG, Subtarget);
2449  case ISD::BR_CC:         return LowerBR_CC(Op, DAG, Subtarget);
2450  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2451  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2452  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2453  case ISD::SINT_TO_FP:
2454  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2455  case ISD::FP_TO_SINT:
2456  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2457  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2458  case ISD::RETURNADDR:    break;
2459  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2460  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2461  case ISD::INTRINSIC_VOID:
2462  case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
2463  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2464  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2465  case ISD::SHL:
2466  case ISD::SRL:
2467  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2468  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2469  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2470  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2471  case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2472  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2473  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2474  }
2475  return SDValue();
2476}
2477
2478/// ReplaceNodeResults - Replace the results of node with an illegal result
2479/// type with new values built out of custom code.
2480void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2481                                           SmallVectorImpl<SDValue>&Results,
2482                                           SelectionDAG &DAG) {
2483  switch (N->getOpcode()) {
2484  default:
2485    llvm_unreachable("Don't know how to custom expand this!");
2486    return;
2487  case ISD::BIT_CONVERT:
2488    Results.push_back(ExpandBIT_CONVERT(N, DAG));
2489    return;
2490  case ISD::SRL:
2491  case ISD::SRA: {
2492    SDValue Res = LowerShift(N, DAG, Subtarget);
2493    if (Res.getNode())
2494      Results.push_back(Res);
2495    return;
2496  }
2497  }
2498}
2499
2500//===----------------------------------------------------------------------===//
2501//                           ARM Scheduler Hooks
2502//===----------------------------------------------------------------------===//
2503
2504MachineBasicBlock *
2505ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2506                                               MachineBasicBlock *BB) const {
2507  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2508  DebugLoc dl = MI->getDebugLoc();
2509  switch (MI->getOpcode()) {
2510  default:
2511    llvm_unreachable("Unexpected instr type to insert");
2512  case ARM::tMOVCCr: {
2513    // To "insert" a SELECT_CC instruction, we actually have to insert the
2514    // diamond control-flow pattern.  The incoming instruction knows the
2515    // destination vreg to set, the condition code register to branch on, the
2516    // true/false values to select between, and a branch opcode to use.
2517    const BasicBlock *LLVM_BB = BB->getBasicBlock();
2518    MachineFunction::iterator It = BB;
2519    ++It;
2520
2521    //  thisMBB:
2522    //  ...
2523    //   TrueVal = ...
2524    //   cmpTY ccX, r1, r2
2525    //   bCC copy1MBB
2526    //   fallthrough --> copy0MBB
2527    MachineBasicBlock *thisMBB  = BB;
2528    MachineFunction *F = BB->getParent();
2529    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2530    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
2531    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2532      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2533    F->insert(It, copy0MBB);
2534    F->insert(It, sinkMBB);
2535    // Update machine-CFG edges by first adding all successors of the current
2536    // block to the new block which will contain the Phi node for the select.
2537    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2538        e = BB->succ_end(); i != e; ++i)
2539      sinkMBB->addSuccessor(*i);
2540    // Next, remove all successors of the current block, and add the true
2541    // and fallthrough blocks as its successors.
2542    while(!BB->succ_empty())
2543      BB->removeSuccessor(BB->succ_begin());
2544    BB->addSuccessor(copy0MBB);
2545    BB->addSuccessor(sinkMBB);
2546
2547    //  copy0MBB:
2548    //   %FalseValue = ...
2549    //   # fallthrough to sinkMBB
2550    BB = copy0MBB;
2551
2552    // Update machine-CFG edges
2553    BB->addSuccessor(sinkMBB);
2554
2555    //  sinkMBB:
2556    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2557    //  ...
2558    BB = sinkMBB;
2559    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2560      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2561      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2562
2563    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2564    return BB;
2565  }
2566
2567  case ARM::tANDsp:
2568  case ARM::tADDspr_:
2569  case ARM::tSUBspi_:
2570  case ARM::t2SUBrSPi_:
2571  case ARM::t2SUBrSPi12_:
2572  case ARM::t2SUBrSPs_: {
2573    MachineFunction *MF = BB->getParent();
2574    unsigned DstReg = MI->getOperand(0).getReg();
2575    unsigned SrcReg = MI->getOperand(1).getReg();
2576    bool DstIsDead = MI->getOperand(0).isDead();
2577    bool SrcIsKill = MI->getOperand(1).isKill();
2578
2579    if (SrcReg != ARM::SP) {
2580      // Copy the source to SP from virtual register.
2581      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
2582      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
2583        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
2584      BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
2585        .addReg(SrcReg, getKillRegState(SrcIsKill));
2586    }
2587
2588    unsigned OpOpc = 0;
2589    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
2590    switch (MI->getOpcode()) {
2591    default:
2592      llvm_unreachable("Unexpected pseudo instruction!");
2593    case ARM::tANDsp:
2594      OpOpc = ARM::tAND;
2595      NeedPred = true;
2596      break;
2597    case ARM::tADDspr_:
2598      OpOpc = ARM::tADDspr;
2599      break;
2600    case ARM::tSUBspi_:
2601      OpOpc = ARM::tSUBspi;
2602      break;
2603    case ARM::t2SUBrSPi_:
2604      OpOpc = ARM::t2SUBrSPi;
2605      NeedPred = true; NeedCC = true;
2606      break;
2607    case ARM::t2SUBrSPi12_:
2608      OpOpc = ARM::t2SUBrSPi12;
2609      NeedPred = true;
2610      break;
2611    case ARM::t2SUBrSPs_:
2612      OpOpc = ARM::t2SUBrSPs;
2613      NeedPred = true; NeedCC = true; NeedOp3 = true;
2614      break;
2615    }
2616    MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
2617    if (OpOpc == ARM::tAND)
2618      AddDefaultT1CC(MIB);
2619    MIB.addReg(ARM::SP);
2620    MIB.addOperand(MI->getOperand(2));
2621    if (NeedOp3)
2622      MIB.addOperand(MI->getOperand(3));
2623    if (NeedPred)
2624      AddDefaultPred(MIB);
2625    if (NeedCC)
2626      AddDefaultCC(MIB);
2627
2628    // Copy the result from SP to virtual register.
2629    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
2630    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
2631      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
2632    BuildMI(BB, dl, TII->get(CopyOpc))
2633      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
2634      .addReg(ARM::SP);
2635    MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2636    return BB;
2637  }
2638  }
2639}
2640
2641//===----------------------------------------------------------------------===//
2642//                           ARM Optimization Hooks
2643//===----------------------------------------------------------------------===//
2644
2645static
2646SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
2647                            TargetLowering::DAGCombinerInfo &DCI) {
2648  SelectionDAG &DAG = DCI.DAG;
2649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2650  MVT VT = N->getValueType(0);
2651  unsigned Opc = N->getOpcode();
2652  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
2653  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
2654  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
2655  ISD::CondCode CC = ISD::SETCC_INVALID;
2656
2657  if (isSlctCC) {
2658    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
2659  } else {
2660    SDValue CCOp = Slct.getOperand(0);
2661    if (CCOp.getOpcode() == ISD::SETCC)
2662      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
2663  }
2664
2665  bool DoXform = false;
2666  bool InvCC = false;
2667  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
2668          "Bad input!");
2669
2670  if (LHS.getOpcode() == ISD::Constant &&
2671      cast<ConstantSDNode>(LHS)->isNullValue()) {
2672    DoXform = true;
2673  } else if (CC != ISD::SETCC_INVALID &&
2674             RHS.getOpcode() == ISD::Constant &&
2675             cast<ConstantSDNode>(RHS)->isNullValue()) {
2676    std::swap(LHS, RHS);
2677    SDValue Op0 = Slct.getOperand(0);
2678    MVT OpVT = isSlctCC ? Op0.getValueType() :
2679                          Op0.getOperand(0).getValueType();
2680    bool isInt = OpVT.isInteger();
2681    CC = ISD::getSetCCInverse(CC, isInt);
2682
2683    if (!TLI.isCondCodeLegal(CC, OpVT))
2684      return SDValue();         // Inverse operator isn't legal.
2685
2686    DoXform = true;
2687    InvCC = true;
2688  }
2689
2690  if (DoXform) {
2691    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
2692    if (isSlctCC)
2693      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
2694                             Slct.getOperand(0), Slct.getOperand(1), CC);
2695    SDValue CCOp = Slct.getOperand(0);
2696    if (InvCC)
2697      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
2698                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
2699    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
2700                       CCOp, OtherOp, Result);
2701  }
2702  return SDValue();
2703}
2704
2705/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
2706static SDValue PerformADDCombine(SDNode *N,
2707                                 TargetLowering::DAGCombinerInfo &DCI) {
2708  // added by evan in r37685 with no testcase.
2709  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2710
2711  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
2712  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
2713    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
2714    if (Result.getNode()) return Result;
2715  }
2716  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2717    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2718    if (Result.getNode()) return Result;
2719  }
2720
2721  return SDValue();
2722}
2723
2724/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
2725static SDValue PerformSUBCombine(SDNode *N,
2726                                 TargetLowering::DAGCombinerInfo &DCI) {
2727  // added by evan in r37685 with no testcase.
2728  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2729
2730  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
2731  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2732    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2733    if (Result.getNode()) return Result;
2734  }
2735
2736  return SDValue();
2737}
2738
2739
2740/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
2741static SDValue PerformFMRRDCombine(SDNode *N,
2742                                   TargetLowering::DAGCombinerInfo &DCI) {
2743  // fmrrd(fmdrr x, y) -> x,y
2744  SDValue InDouble = N->getOperand(0);
2745  if (InDouble.getOpcode() == ARMISD::FMDRR)
2746    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
2747  return SDValue();
2748}
2749
2750/// getVShiftImm - Check if this is a valid build_vector for the immediate
2751/// operand of a vector shift operation, where all the elements of the
2752/// build_vector must have the same constant integer value.
2753static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
2754  // Ignore bit_converts.
2755  while (Op.getOpcode() == ISD::BIT_CONVERT)
2756    Op = Op.getOperand(0);
2757  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2758  APInt SplatBits, SplatUndef;
2759  unsigned SplatBitSize;
2760  bool HasAnyUndefs;
2761  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2762                                      HasAnyUndefs, ElementBits) ||
2763      SplatBitSize > ElementBits)
2764    return false;
2765  Cnt = SplatBits.getSExtValue();
2766  return true;
2767}
2768
2769/// isVShiftLImm - Check if this is a valid build_vector for the immediate
2770/// operand of a vector shift left operation.  That value must be in the range:
2771///   0 <= Value < ElementBits for a left shift; or
2772///   0 <= Value <= ElementBits for a long left shift.
2773static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
2774  assert(VT.isVector() && "vector shift count is not a vector type");
2775  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2776  if (! getVShiftImm(Op, ElementBits, Cnt))
2777    return false;
2778  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
2779}
2780
2781/// isVShiftRImm - Check if this is a valid build_vector for the immediate
2782/// operand of a vector shift right operation.  For a shift opcode, the value
2783/// is positive, but for an intrinsic the value count must be negative. The
2784/// absolute value must be in the range:
2785///   1 <= |Value| <= ElementBits for a right shift; or
2786///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
2787static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic,
2788                         int64_t &Cnt) {
2789  assert(VT.isVector() && "vector shift count is not a vector type");
2790  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2791  if (! getVShiftImm(Op, ElementBits, Cnt))
2792    return false;
2793  if (isIntrinsic)
2794    Cnt = -Cnt;
2795  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
2796}
2797
2798/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
2799static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
2800  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2801  switch (IntNo) {
2802  default:
2803    // Don't do anything for most intrinsics.
2804    break;
2805
2806  // Vector shifts: check for immediate versions and lower them.
2807  // Note: This is done during DAG combining instead of DAG legalizing because
2808  // the build_vectors for 64-bit vector element shift counts are generally
2809  // not legal, and it is hard to see their values after they get legalized to
2810  // loads from a constant pool.
2811  case Intrinsic::arm_neon_vshifts:
2812  case Intrinsic::arm_neon_vshiftu:
2813  case Intrinsic::arm_neon_vshiftls:
2814  case Intrinsic::arm_neon_vshiftlu:
2815  case Intrinsic::arm_neon_vshiftn:
2816  case Intrinsic::arm_neon_vrshifts:
2817  case Intrinsic::arm_neon_vrshiftu:
2818  case Intrinsic::arm_neon_vrshiftn:
2819  case Intrinsic::arm_neon_vqshifts:
2820  case Intrinsic::arm_neon_vqshiftu:
2821  case Intrinsic::arm_neon_vqshiftsu:
2822  case Intrinsic::arm_neon_vqshiftns:
2823  case Intrinsic::arm_neon_vqshiftnu:
2824  case Intrinsic::arm_neon_vqshiftnsu:
2825  case Intrinsic::arm_neon_vqrshiftns:
2826  case Intrinsic::arm_neon_vqrshiftnu:
2827  case Intrinsic::arm_neon_vqrshiftnsu: {
2828    MVT VT = N->getOperand(1).getValueType();
2829    int64_t Cnt;
2830    unsigned VShiftOpc = 0;
2831
2832    switch (IntNo) {
2833    case Intrinsic::arm_neon_vshifts:
2834    case Intrinsic::arm_neon_vshiftu:
2835      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
2836        VShiftOpc = ARMISD::VSHL;
2837        break;
2838      }
2839      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
2840        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
2841                     ARMISD::VSHRs : ARMISD::VSHRu);
2842        break;
2843      }
2844      return SDValue();
2845
2846    case Intrinsic::arm_neon_vshiftls:
2847    case Intrinsic::arm_neon_vshiftlu:
2848      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
2849        break;
2850      llvm_unreachable("invalid shift count for vshll intrinsic");
2851
2852    case Intrinsic::arm_neon_vrshifts:
2853    case Intrinsic::arm_neon_vrshiftu:
2854      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
2855        break;
2856      return SDValue();
2857
2858    case Intrinsic::arm_neon_vqshifts:
2859    case Intrinsic::arm_neon_vqshiftu:
2860      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2861        break;
2862      return SDValue();
2863
2864    case Intrinsic::arm_neon_vqshiftsu:
2865      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2866        break;
2867      llvm_unreachable("invalid shift count for vqshlu intrinsic");
2868
2869    case Intrinsic::arm_neon_vshiftn:
2870    case Intrinsic::arm_neon_vrshiftn:
2871    case Intrinsic::arm_neon_vqshiftns:
2872    case Intrinsic::arm_neon_vqshiftnu:
2873    case Intrinsic::arm_neon_vqshiftnsu:
2874    case Intrinsic::arm_neon_vqrshiftns:
2875    case Intrinsic::arm_neon_vqrshiftnu:
2876    case Intrinsic::arm_neon_vqrshiftnsu:
2877      // Narrowing shifts require an immediate right shift.
2878      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
2879        break;
2880      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
2881
2882    default:
2883      llvm_unreachable("unhandled vector shift");
2884    }
2885
2886    switch (IntNo) {
2887    case Intrinsic::arm_neon_vshifts:
2888    case Intrinsic::arm_neon_vshiftu:
2889      // Opcode already set above.
2890      break;
2891    case Intrinsic::arm_neon_vshiftls:
2892    case Intrinsic::arm_neon_vshiftlu:
2893      if (Cnt == VT.getVectorElementType().getSizeInBits())
2894        VShiftOpc = ARMISD::VSHLLi;
2895      else
2896        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
2897                     ARMISD::VSHLLs : ARMISD::VSHLLu);
2898      break;
2899    case Intrinsic::arm_neon_vshiftn:
2900      VShiftOpc = ARMISD::VSHRN; break;
2901    case Intrinsic::arm_neon_vrshifts:
2902      VShiftOpc = ARMISD::VRSHRs; break;
2903    case Intrinsic::arm_neon_vrshiftu:
2904      VShiftOpc = ARMISD::VRSHRu; break;
2905    case Intrinsic::arm_neon_vrshiftn:
2906      VShiftOpc = ARMISD::VRSHRN; break;
2907    case Intrinsic::arm_neon_vqshifts:
2908      VShiftOpc = ARMISD::VQSHLs; break;
2909    case Intrinsic::arm_neon_vqshiftu:
2910      VShiftOpc = ARMISD::VQSHLu; break;
2911    case Intrinsic::arm_neon_vqshiftsu:
2912      VShiftOpc = ARMISD::VQSHLsu; break;
2913    case Intrinsic::arm_neon_vqshiftns:
2914      VShiftOpc = ARMISD::VQSHRNs; break;
2915    case Intrinsic::arm_neon_vqshiftnu:
2916      VShiftOpc = ARMISD::VQSHRNu; break;
2917    case Intrinsic::arm_neon_vqshiftnsu:
2918      VShiftOpc = ARMISD::VQSHRNsu; break;
2919    case Intrinsic::arm_neon_vqrshiftns:
2920      VShiftOpc = ARMISD::VQRSHRNs; break;
2921    case Intrinsic::arm_neon_vqrshiftnu:
2922      VShiftOpc = ARMISD::VQRSHRNu; break;
2923    case Intrinsic::arm_neon_vqrshiftnsu:
2924      VShiftOpc = ARMISD::VQRSHRNsu; break;
2925    }
2926
2927    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2928                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
2929  }
2930
2931  case Intrinsic::arm_neon_vshiftins: {
2932    MVT VT = N->getOperand(1).getValueType();
2933    int64_t Cnt;
2934    unsigned VShiftOpc = 0;
2935
2936    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
2937      VShiftOpc = ARMISD::VSLI;
2938    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
2939      VShiftOpc = ARMISD::VSRI;
2940    else {
2941      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
2942    }
2943
2944    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2945                       N->getOperand(1), N->getOperand(2),
2946                       DAG.getConstant(Cnt, MVT::i32));
2947  }
2948
2949  case Intrinsic::arm_neon_vqrshifts:
2950  case Intrinsic::arm_neon_vqrshiftu:
2951    // No immediate versions of these to check for.
2952    break;
2953  }
2954
2955  return SDValue();
2956}
2957
2958/// PerformShiftCombine - Checks for immediate versions of vector shifts and
2959/// lowers them.  As with the vector shift intrinsics, this is done during DAG
2960/// combining instead of DAG legalizing because the build_vectors for 64-bit
2961/// vector element shift counts are generally not legal, and it is hard to see
2962/// their values after they get legalized to loads from a constant pool.
2963static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
2964                                   const ARMSubtarget *ST) {
2965  MVT VT = N->getValueType(0);
2966
2967  // Nothing to be done for scalar shifts.
2968  if (! VT.isVector())
2969    return SDValue();
2970
2971  assert(ST->hasNEON() && "unexpected vector shift");
2972  int64_t Cnt;
2973
2974  switch (N->getOpcode()) {
2975  default: llvm_unreachable("unexpected shift opcode");
2976
2977  case ISD::SHL:
2978    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
2979      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
2980                         DAG.getConstant(Cnt, MVT::i32));
2981    break;
2982
2983  case ISD::SRA:
2984  case ISD::SRL:
2985    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
2986      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
2987                            ARMISD::VSHRs : ARMISD::VSHRu);
2988      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
2989                         DAG.getConstant(Cnt, MVT::i32));
2990    }
2991  }
2992  return SDValue();
2993}
2994
2995/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
2996/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
2997static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
2998                                    const ARMSubtarget *ST) {
2999  SDValue N0 = N->getOperand(0);
3000
3001  // Check for sign- and zero-extensions of vector extract operations of 8-
3002  // and 16-bit vector elements.  NEON supports these directly.  They are
3003  // handled during DAG combining because type legalization will promote them
3004  // to 32-bit types and it is messy to recognize the operations after that.
3005  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3006    SDValue Vec = N0.getOperand(0);
3007    SDValue Lane = N0.getOperand(1);
3008    MVT VT = N->getValueType(0);
3009    MVT EltVT = N0.getValueType();
3010    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3011
3012    if (VT == MVT::i32 &&
3013        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3014        TLI.isTypeLegal(Vec.getValueType())) {
3015
3016      unsigned Opc = 0;
3017      switch (N->getOpcode()) {
3018      default: llvm_unreachable("unexpected opcode");
3019      case ISD::SIGN_EXTEND:
3020        Opc = ARMISD::VGETLANEs;
3021        break;
3022      case ISD::ZERO_EXTEND:
3023      case ISD::ANY_EXTEND:
3024        Opc = ARMISD::VGETLANEu;
3025        break;
3026      }
3027      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3028    }
3029  }
3030
3031  return SDValue();
3032}
3033
3034SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
3035                                             DAGCombinerInfo &DCI) const {
3036  switch (N->getOpcode()) {
3037  default: break;
3038  case ISD::ADD:      return PerformADDCombine(N, DCI);
3039  case ISD::SUB:      return PerformSUBCombine(N, DCI);
3040  case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
3041  case ISD::INTRINSIC_WO_CHAIN:
3042    return PerformIntrinsicCombine(N, DCI.DAG);
3043  case ISD::SHL:
3044  case ISD::SRA:
3045  case ISD::SRL:
3046    return PerformShiftCombine(N, DCI.DAG, Subtarget);
3047  case ISD::SIGN_EXTEND:
3048  case ISD::ZERO_EXTEND:
3049  case ISD::ANY_EXTEND:
3050    return PerformExtendCombine(N, DCI.DAG, Subtarget);
3051  }
3052  return SDValue();
3053}
3054
3055/// isLegalAddressImmediate - Return true if the integer value can be used
3056/// as the offset of the target addressing mode for load / store of the
3057/// given type.
3058static bool isLegalAddressImmediate(int64_t V, MVT VT,
3059                                    const ARMSubtarget *Subtarget) {
3060  if (V == 0)
3061    return true;
3062
3063  if (!VT.isSimple())
3064    return false;
3065
3066  if (Subtarget->isThumb()) { // FIXME for thumb2
3067    if (V < 0)
3068      return false;
3069
3070    unsigned Scale = 1;
3071    switch (VT.getSimpleVT()) {
3072    default: return false;
3073    case MVT::i1:
3074    case MVT::i8:
3075      // Scale == 1;
3076      break;
3077    case MVT::i16:
3078      // Scale == 2;
3079      Scale = 2;
3080      break;
3081    case MVT::i32:
3082      // Scale == 4;
3083      Scale = 4;
3084      break;
3085    }
3086
3087    if ((V & (Scale - 1)) != 0)
3088      return false;
3089    V /= Scale;
3090    return V == (V & ((1LL << 5) - 1));
3091  }
3092
3093  if (V < 0)
3094    V = - V;
3095  switch (VT.getSimpleVT()) {
3096  default: return false;
3097  case MVT::i1:
3098  case MVT::i8:
3099  case MVT::i32:
3100    // +- imm12
3101    return V == (V & ((1LL << 12) - 1));
3102  case MVT::i16:
3103    // +- imm8
3104    return V == (V & ((1LL << 8) - 1));
3105  case MVT::f32:
3106  case MVT::f64:
3107    if (!Subtarget->hasVFP2())
3108      return false;
3109    if ((V & 3) != 0)
3110      return false;
3111    V >>= 2;
3112    return V == (V & ((1LL << 8) - 1));
3113  }
3114}
3115
3116/// isLegalAddressingMode - Return true if the addressing mode represented
3117/// by AM is legal for this target, for a load/store of the specified type.
3118bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3119                                              const Type *Ty) const {
3120  MVT VT = getValueType(Ty, true);
3121  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
3122    return false;
3123
3124  // Can never fold addr of global into load/store.
3125  if (AM.BaseGV)
3126    return false;
3127
3128  switch (AM.Scale) {
3129  case 0:  // no scale reg, must be "r+i" or "r", or "i".
3130    break;
3131  case 1:
3132    if (Subtarget->isThumb())  // FIXME for thumb2
3133      return false;
3134    // FALL THROUGH.
3135  default:
3136    // ARM doesn't support any R+R*scale+imm addr modes.
3137    if (AM.BaseOffs)
3138      return false;
3139
3140    if (!VT.isSimple())
3141      return false;
3142
3143    int Scale = AM.Scale;
3144    switch (VT.getSimpleVT()) {
3145    default: return false;
3146    case MVT::i1:
3147    case MVT::i8:
3148    case MVT::i32:
3149    case MVT::i64:
3150      // This assumes i64 is legalized to a pair of i32. If not (i.e.
3151      // ldrd / strd are used, then its address mode is same as i16.
3152      // r + r
3153      if (Scale < 0) Scale = -Scale;
3154      if (Scale == 1)
3155        return true;
3156      // r + r << imm
3157      return isPowerOf2_32(Scale & ~1);
3158    case MVT::i16:
3159      // r + r
3160      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3161        return true;
3162      return false;
3163
3164    case MVT::isVoid:
3165      // Note, we allow "void" uses (basically, uses that aren't loads or
3166      // stores), because arm allows folding a scale into many arithmetic
3167      // operations.  This should be made more precise and revisited later.
3168
3169      // Allow r << imm, but the imm has to be a multiple of two.
3170      if (AM.Scale & 1) return false;
3171      return isPowerOf2_32(AM.Scale);
3172    }
3173    break;
3174  }
3175  return true;
3176}
3177
3178static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT,
3179                                      bool isSEXTLoad, SDValue &Base,
3180                                      SDValue &Offset, bool &isInc,
3181                                      SelectionDAG &DAG) {
3182  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3183    return false;
3184
3185  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
3186    // AddressingMode 3
3187    Base = Ptr->getOperand(0);
3188    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3189      int RHSC = (int)RHS->getZExtValue();
3190      if (RHSC < 0 && RHSC > -256) {
3191        assert(Ptr->getOpcode() == ISD::ADD);
3192        isInc = false;
3193        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3194        return true;
3195      }
3196    }
3197    isInc = (Ptr->getOpcode() == ISD::ADD);
3198    Offset = Ptr->getOperand(1);
3199    return true;
3200  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
3201    // AddressingMode 2
3202    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3203      int RHSC = (int)RHS->getZExtValue();
3204      if (RHSC < 0 && RHSC > -0x1000) {
3205        assert(Ptr->getOpcode() == ISD::ADD);
3206        isInc = false;
3207        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3208        Base = Ptr->getOperand(0);
3209        return true;
3210      }
3211    }
3212
3213    if (Ptr->getOpcode() == ISD::ADD) {
3214      isInc = true;
3215      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
3216      if (ShOpcVal != ARM_AM::no_shift) {
3217        Base = Ptr->getOperand(1);
3218        Offset = Ptr->getOperand(0);
3219      } else {
3220        Base = Ptr->getOperand(0);
3221        Offset = Ptr->getOperand(1);
3222      }
3223      return true;
3224    }
3225
3226    isInc = (Ptr->getOpcode() == ISD::ADD);
3227    Base = Ptr->getOperand(0);
3228    Offset = Ptr->getOperand(1);
3229    return true;
3230  }
3231
3232  // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
3233  return false;
3234}
3235
3236static bool getT2IndexedAddressParts(SDNode *Ptr, MVT VT,
3237                                     bool isSEXTLoad, SDValue &Base,
3238                                     SDValue &Offset, bool &isInc,
3239                                     SelectionDAG &DAG) {
3240  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3241    return false;
3242
3243  Base = Ptr->getOperand(0);
3244  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3245    int RHSC = (int)RHS->getZExtValue();
3246    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
3247      assert(Ptr->getOpcode() == ISD::ADD);
3248      isInc = false;
3249      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3250      return true;
3251    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
3252      isInc = Ptr->getOpcode() == ISD::ADD;
3253      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3254      return true;
3255    }
3256  }
3257
3258  return false;
3259}
3260
3261/// getPreIndexedAddressParts - returns true by value, base pointer and
3262/// offset pointer and addressing mode by reference if the node's address
3263/// can be legally represented as pre-indexed load / store address.
3264bool
3265ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3266                                             SDValue &Offset,
3267                                             ISD::MemIndexedMode &AM,
3268                                             SelectionDAG &DAG) const {
3269  if (Subtarget->isThumb1Only())
3270    return false;
3271
3272  MVT VT;
3273  SDValue Ptr;
3274  bool isSEXTLoad = false;
3275  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3276    Ptr = LD->getBasePtr();
3277    VT  = LD->getMemoryVT();
3278    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3279  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3280    Ptr = ST->getBasePtr();
3281    VT  = ST->getMemoryVT();
3282  } else
3283    return false;
3284
3285  bool isInc;
3286  bool isLegal = false;
3287  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3288    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3289                                       Offset, isInc, DAG);
3290  else
3291    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3292                                        Offset, isInc, DAG);
3293  if (!isLegal)
3294    return false;
3295
3296  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3297  return true;
3298}
3299
3300/// getPostIndexedAddressParts - returns true by value, base pointer and
3301/// offset pointer and addressing mode by reference if this node can be
3302/// combined with a load / store to form a post-indexed load / store.
3303bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3304                                                   SDValue &Base,
3305                                                   SDValue &Offset,
3306                                                   ISD::MemIndexedMode &AM,
3307                                                   SelectionDAG &DAG) const {
3308  if (Subtarget->isThumb1Only())
3309    return false;
3310
3311  MVT VT;
3312  SDValue Ptr;
3313  bool isSEXTLoad = false;
3314  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3315    VT  = LD->getMemoryVT();
3316    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3317  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3318    VT  = ST->getMemoryVT();
3319  } else
3320    return false;
3321
3322  bool isInc;
3323  bool isLegal = false;
3324  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3325    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3326                                        isInc, DAG);
3327  else
3328    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3329                                        isInc, DAG);
3330  if (!isLegal)
3331    return false;
3332
3333  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3334  return true;
3335}
3336
3337void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3338                                                       const APInt &Mask,
3339                                                       APInt &KnownZero,
3340                                                       APInt &KnownOne,
3341                                                       const SelectionDAG &DAG,
3342                                                       unsigned Depth) const {
3343  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3344  switch (Op.getOpcode()) {
3345  default: break;
3346  case ARMISD::CMOV: {
3347    // Bits are known zero/one if known on the LHS and RHS.
3348    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3349    if (KnownZero == 0 && KnownOne == 0) return;
3350
3351    APInt KnownZeroRHS, KnownOneRHS;
3352    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3353                          KnownZeroRHS, KnownOneRHS, Depth+1);
3354    KnownZero &= KnownZeroRHS;
3355    KnownOne  &= KnownOneRHS;
3356    return;
3357  }
3358  }
3359}
3360
3361//===----------------------------------------------------------------------===//
3362//                           ARM Inline Assembly Support
3363//===----------------------------------------------------------------------===//
3364
3365/// getConstraintType - Given a constraint letter, return the type of
3366/// constraint it is for this target.
3367ARMTargetLowering::ConstraintType
3368ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3369  if (Constraint.size() == 1) {
3370    switch (Constraint[0]) {
3371    default:  break;
3372    case 'l': return C_RegisterClass;
3373    case 'w': return C_RegisterClass;
3374    }
3375  }
3376  return TargetLowering::getConstraintType(Constraint);
3377}
3378
3379std::pair<unsigned, const TargetRegisterClass*>
3380ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3381                                                MVT VT) const {
3382  if (Constraint.size() == 1) {
3383    // GCC RS6000 Constraint Letters
3384    switch (Constraint[0]) {
3385    case 'l':
3386      if (Subtarget->isThumb1Only())
3387        return std::make_pair(0U, ARM::tGPRRegisterClass);
3388      else
3389        return std::make_pair(0U, ARM::GPRRegisterClass);
3390    case 'r':
3391      return std::make_pair(0U, ARM::GPRRegisterClass);
3392    case 'w':
3393      if (VT == MVT::f32)
3394        return std::make_pair(0U, ARM::SPRRegisterClass);
3395      if (VT == MVT::f64)
3396        return std::make_pair(0U, ARM::DPRRegisterClass);
3397      break;
3398    }
3399  }
3400  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3401}
3402
3403std::vector<unsigned> ARMTargetLowering::
3404getRegClassForInlineAsmConstraint(const std::string &Constraint,
3405                                  MVT VT) const {
3406  if (Constraint.size() != 1)
3407    return std::vector<unsigned>();
3408
3409  switch (Constraint[0]) {      // GCC ARM Constraint Letters
3410  default: break;
3411  case 'l':
3412    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3413                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3414                                 0);
3415  case 'r':
3416    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3417                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3418                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3419                                 ARM::R12, ARM::LR, 0);
3420  case 'w':
3421    if (VT == MVT::f32)
3422      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3423                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3424                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3425                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3426                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3427                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3428                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3429                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3430    if (VT == MVT::f64)
3431      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3432                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3433                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3434                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3435      break;
3436  }
3437
3438  return std::vector<unsigned>();
3439}
3440
3441/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3442/// vector.  If it is invalid, don't add anything to Ops.
3443void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3444                                                     char Constraint,
3445                                                     bool hasMemory,
3446                                                     std::vector<SDValue>&Ops,
3447                                                     SelectionDAG &DAG) const {
3448  SDValue Result(0, 0);
3449
3450  switch (Constraint) {
3451  default: break;
3452  case 'I': case 'J': case 'K': case 'L':
3453  case 'M': case 'N': case 'O':
3454    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3455    if (!C)
3456      return;
3457
3458    int64_t CVal64 = C->getSExtValue();
3459    int CVal = (int) CVal64;
3460    // None of these constraints allow values larger than 32 bits.  Check
3461    // that the value fits in an int.
3462    if (CVal != CVal64)
3463      return;
3464
3465    switch (Constraint) {
3466      case 'I':
3467        if (Subtarget->isThumb1Only()) {
3468          // This must be a constant between 0 and 255, for ADD
3469          // immediates.
3470          if (CVal >= 0 && CVal <= 255)
3471            break;
3472        } else if (Subtarget->isThumb2()) {
3473          // A constant that can be used as an immediate value in a
3474          // data-processing instruction.
3475          if (ARM_AM::getT2SOImmVal(CVal) != -1)
3476            break;
3477        } else {
3478          // A constant that can be used as an immediate value in a
3479          // data-processing instruction.
3480          if (ARM_AM::getSOImmVal(CVal) != -1)
3481            break;
3482        }
3483        return;
3484
3485      case 'J':
3486        if (Subtarget->isThumb()) {  // FIXME thumb2
3487          // This must be a constant between -255 and -1, for negated ADD
3488          // immediates. This can be used in GCC with an "n" modifier that
3489          // prints the negated value, for use with SUB instructions. It is
3490          // not useful otherwise but is implemented for compatibility.
3491          if (CVal >= -255 && CVal <= -1)
3492            break;
3493        } else {
3494          // This must be a constant between -4095 and 4095. It is not clear
3495          // what this constraint is intended for. Implemented for
3496          // compatibility with GCC.
3497          if (CVal >= -4095 && CVal <= 4095)
3498            break;
3499        }
3500        return;
3501
3502      case 'K':
3503        if (Subtarget->isThumb1Only()) {
3504          // A 32-bit value where only one byte has a nonzero value. Exclude
3505          // zero to match GCC. This constraint is used by GCC internally for
3506          // constants that can be loaded with a move/shift combination.
3507          // It is not useful otherwise but is implemented for compatibility.
3508          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
3509            break;
3510        } else if (Subtarget->isThumb2()) {
3511          // A constant whose bitwise inverse can be used as an immediate
3512          // value in a data-processing instruction. This can be used in GCC
3513          // with a "B" modifier that prints the inverted value, for use with
3514          // BIC and MVN instructions. It is not useful otherwise but is
3515          // implemented for compatibility.
3516          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
3517            break;
3518        } else {
3519          // A constant whose bitwise inverse can be used as an immediate
3520          // value in a data-processing instruction. This can be used in GCC
3521          // with a "B" modifier that prints the inverted value, for use with
3522          // BIC and MVN instructions. It is not useful otherwise but is
3523          // implemented for compatibility.
3524          if (ARM_AM::getSOImmVal(~CVal) != -1)
3525            break;
3526        }
3527        return;
3528
3529      case 'L':
3530        if (Subtarget->isThumb1Only()) {
3531          // This must be a constant between -7 and 7,
3532          // for 3-operand ADD/SUB immediate instructions.
3533          if (CVal >= -7 && CVal < 7)
3534            break;
3535        } else if (Subtarget->isThumb2()) {
3536          // A constant whose negation can be used as an immediate value in a
3537          // data-processing instruction. This can be used in GCC with an "n"
3538          // modifier that prints the negated value, for use with SUB
3539          // instructions. It is not useful otherwise but is implemented for
3540          // compatibility.
3541          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
3542            break;
3543        } else {
3544          // A constant whose negation can be used as an immediate value in a
3545          // data-processing instruction. This can be used in GCC with an "n"
3546          // modifier that prints the negated value, for use with SUB
3547          // instructions. It is not useful otherwise but is implemented for
3548          // compatibility.
3549          if (ARM_AM::getSOImmVal(-CVal) != -1)
3550            break;
3551        }
3552        return;
3553
3554      case 'M':
3555        if (Subtarget->isThumb()) { // FIXME thumb2
3556          // This must be a multiple of 4 between 0 and 1020, for
3557          // ADD sp + immediate.
3558          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
3559            break;
3560        } else {
3561          // A power of two or a constant between 0 and 32.  This is used in
3562          // GCC for the shift amount on shifted register operands, but it is
3563          // useful in general for any shift amounts.
3564          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
3565            break;
3566        }
3567        return;
3568
3569      case 'N':
3570        if (Subtarget->isThumb()) {  // FIXME thumb2
3571          // This must be a constant between 0 and 31, for shift amounts.
3572          if (CVal >= 0 && CVal <= 31)
3573            break;
3574        }
3575        return;
3576
3577      case 'O':
3578        if (Subtarget->isThumb()) {  // FIXME thumb2
3579          // This must be a multiple of 4 between -508 and 508, for
3580          // ADD/SUB sp = sp + immediate.
3581          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
3582            break;
3583        }
3584        return;
3585    }
3586    Result = DAG.getTargetConstant(CVal, Op.getValueType());
3587    break;
3588  }
3589
3590  if (Result.getNode()) {
3591    Ops.push_back(Result);
3592    return;
3593  }
3594  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
3595                                                      Ops, DAG);
3596}
3597